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Functional near-infrared spectroscopy (fNIRS) is one of the latest noninvasive brain function measuring technique that has been
used for the purpose of brain-computer interfacing (BCI). In this paper, we compare and analyze the effect of six most commonly
used filtering techniques (i.e., Gaussian, Butterworth, Kalman, hemodynamic response filter (hrf ), Wiener, and finite impulse
response) on classification accuracies of fNIRS-BCI. To conclude with the best optimal filter for a specific cortical task owing to a
specific cortical region, we divided our experimental tasks according to the three main cortical regions: prefrontal, motor, and
visual cortex. *ree different experiments were performed for prefrontal and motor execution tasks while one for visual stimuli.
*e tasks performed for prefrontal include rest (R) vs mental arithmetic (MA), R vs object rotation (OB), andOB vsMA. Similarly,
for motor execution, R vs left finger tapping (LFT), R vs right finger tapping (RFT), and LFTvs RFT. Likewise, for the visual cortex,
R vs visual stimuli (VS) task. *ese experiments were performed for ten trials with five subjects. For consistency among extracted
data, six statistical features were evaluated using oxygenated hemoglobin, namely, slope, mean, peak, kurtosis, skewness, and
variance. Combination of these six features was used to classify data by the nonlinear support vector machine (SVM). *e
classification accuracies obtained from SVM by using hrf and Gaussian were significantly higher for R vs MA, R vs OB, R vs RFT,
and R vs VS and Wiener filter for OB vs MA. Similarly, for R vs LFT and LFT vs RFT, hrf was found to be significant (p< 0.05).
*ese results show the feasibility of using hrf for effective removal of noises from fNIRS data.

1. Introduction

Brain-computer interface (BCI) also known as human-machine
interface (HMI) or brain-machine interface (BMI) provides a
communication mean between the user and external devices
through a combination of hardware and software systems [1–3].
*ese systems are trained to generate control commands based
on a specific set of patterns of brain signals [4].

Brain signal acquisition is categorized between invasive
and noninvasive techniques. However, due to surgical risks
and limited access to the cortical region, noninvasive

techniques are common in practice [5]. Noninvasive mo-
dalities include functional magnetic resonance interference
(fMRI), functional near-infrared spectroscopy (fNIRS) [6],
and electroencephalography (EEG) [4]. fNIRS is a com-
paratively new modality that has better spatial resolution
and low artifacts, cost, and portability [4, 7]. So far,
promising results have been shown by fNIRS-BCI [8–10].
Acquired brain signals for a specific task may contain noises
that can contaminate signals and can effect informative data.
*ese noises are categorized between physiological noise,
experimental noise, and instrumental noise [8, 11]. In fNIRS,
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the experimental noises are removed prior to the change of
the raw signal to its magnitude through the modified
Beer–Lambert law [8, 12, 13]. Noises produced due to
hardware or by surrounding are known to be instrumental
noises. *ese noises usually have high frequency that can be
removed using low-pass filter; furthermore, keeping isola-
tion from external sources such as light can reduce such type
of noises. Experimental noises include motion artifacts such
as head motion during signal acquisition that can cause the
dislocation of optodes from the assigned position, thus
generates a spike-like noise due to change in light intensity.
Various studies [13–15] have utilized commonly developed
filtering techniques randomly for noise removal. However,
obtained signals can be corrupted by different kinds of
noises that could affect further analysis. Noises can be
physiologically produced due to Mayer waves (∼0.1Hz),
respiration (0.2∼0.5Hz), and heartbeat (1∼1.5Hz), mainly
due to fluctuations of blood pressure [8, 16–19].*ese noises
can be removed using adaptive or bandpass filtering [20, 21].
After preprocessing, useful information is extracted from the
filtered data afterward classified using different classifiers
mainly named as linear discriminant analysis (LDA), sup-
port vector machine (SVM), quadratic discriminant analysis
(QDA), and naı̈ve bayes (NB) [22] to generate control
commands, hence completing the loop for BCI. Previous
studies [13, 14, 23] show that an appropriate filter for
correctness of data is the key to achieve more accurate
results.

In this study, we hypothesized to find an optimal filter
for commonly used cortical tasks, owing to a particular
cortical region. Hence, we compared six commonly used
filters to remove previously discussed noises. *ese filters
include discrete Kalman [24], time-varying Wiener [25], 4th

order Butterworth, hemodynamic response filter (hrf),
Gaussian [26], and window-based finite impulse response
(FIR) [27]. For the said purpose, cortical data were acquired
from the three main regions of the brain, namely, prefrontal
(PFC), motor (MC), and visual cortex (VC). Since the data
acquired from PFC relate to thinking tasks [28–31], hence
arithmetic and object rotation tasks were performed for this
cortical region [32–34]. Similarly, tasks related to movement
of limbs or fingers is related to the motor cortex [35];
therefore, the finger tapping tasks were performed for de-
sired data acquisition [36–38]. Likewise, flickering of
checker box was performed for visual cortex data [39].
Keeping in view the target of an optimal filter for a specific
cortical region, a previous study [22] reported the different
combinations of statistical features. *erefore, for consis-
tency of extracted data, statistical features were kept the
same for all experimental tasks, hence making combinations
of six features, namely, signal mean (SM), signal slope (SS),
signal peak (SP), signal skewness (SK), signal kurtosis (KR),
and signal variance (SV). For classification, a number of
studies [22, 40, 41] reported nonlinear SVM classifiers for
comparatively better accuracies, hence all experimental tasks
were classified using a nonlinear SVM classifier. *erefore,
the main contribution of this work is (1) to analyze the effect
of the six most commonly used filtering techniques and (2)
to propose the optimal one among the most frequently

discussed noise removal techniques. For the aforementioned
experiment, we select three main cortical regions: prefrontal,
motor, and visual cortex with seven various paradigms. *e
canonical hemodynamic response filter (hrf) [26] performed
overall best among the opted techniques. On the basis of
these systematic and explicit analyses, it can be seen that
selection of an optimal filter has a significant role in en-
hancing accuracies. Hence, these observations can serve as a
standard guide for others to test the effect of noise correction
algorithms for fNIRS experiments, and therefore can select a
significant methodology.

2. Materials and Methods

2.1. Experimental Setup. To acquire experimental data, seven
paradigms owing to three main cortical regions were designed
and explicitly performed using a dynamic near-infrared optical
tomography (DYNOT-232; NIRx Medical Technologies, NY,
USA) device at Pusan National University. It operates on two
wavelengths that are 760 and 830nm where the signal acqui-
sition sampling frequency was 1.81Hz. Five healthy subjects
with normal or corrected-to-normal vision took part in the
experiment with a verbal consent before experimentation. All
subjects were right-handed with an age range of 26±3. Right-
handed subjects were selected to minimize hemodynamic re-
sponse variation due to hemispheric-dominance difference.*e
experimental participants had no history of alcoholism, psy-
chiatric, neurological, and visual disorder, cardiovascular and
respiratory disease, mental illness, or any motor disability.
Moreover, three hours before the commencement of the study,
participants were asked to refrain from caffeinated drinks. As
discussed in the literature [28, 30, 31, 35, 37, 38], for thinking-
related task, signals were acquired from PFC, similarly for
motor execution tasks from the primary motor cortex (PMC),
and visual stimuli task from VC. Performed experiments were
according to the latest Declaration of Helsinki.

2.2. Experimental Paradigms. In accordance with the liter-
ature [35, 39], subjects were seated on a comfortable chair
and were asked to take rest with restricted movements as
they can, so that the hemodynamic response activation
owing to previous activities can be avoided. Hence, each
paradigm related to PFC, MC, and VC starts with a rest of
20 s period to set up the baseline conditions. As the literature
[42–45] show, (10∼12) s task is adequate to acquire he-
modynamic response of brain activity, hence 20 s initial rest
was followed by 10 s task, and this was followed in turn by
another 20 s rest period permitting signals to return to their
baseline values before the start of the next trial in paradigm
(a). For paradigm (b), 20 s rest after 10 s task 1 was again
followed by 10 s task 2. *e 20 s rest between two 10 s tasks
was added to differentiate two classes through the baseline
value. Figure 1 depicts paradigm (a) and paradigm (b). For
optimal filter selection, tasks were selected concerning
specific cortical regions such that for PFC, three different
experiments were performed, rest (R) vs mental arithmetic
(MA), R vs object rotation (OB), and OB vs MA task.
Similarly, for MC, R vs left finger tapping (LFT), R vs right
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finger tapping (RFT), and LFTvs RFT. Likewise, for VC, R vs
visual stimuli (VS) task.

2.2.1. Prefrontal Tasks

(1) Mental Arithmetic. According to previous studies
[44, 46, 47], for R vsMA task, subjects were asked to perform
a series of arithmetic calculations for 10 s based on the
pseudorandom order, such that to subtract the random two-
digit number (between 10 and 20) successively from the
previous result of the three-digit number subtraction
appearing on the screen (e.g., 400-11, 389-17, and 372-14).
Afterwards, the screen was turned black so that subjects does
not go beyond the 10 s task.

(2) Object Rotation. For the object rotation task, subjects
were asked to imagine a cube rotating for the 10 s task while
the “object rotation” word appeared for 10 s on the screen at
about 2m distance [48–50].

(3) Mental Arithmetic vs Object Rotation. In this protocol,
subjects were asked to perform the aforementioned MA task
versus OB task in between 20 s of rest to distinguish two
tasks. *e experimental paradigm is depicted in Figure 1(b).

2.2.2. Motor Tasks

(1) Finger Tapping. According to the literature
[8, 17, 19, 23, 31, 37, 38, 51], subjects were asked to tap the self-
paced index finger of one hand for 10 s afterwards the 20 s rest
task was performed allowing signals to return to their reference
values. Also, repetition for 10 times was performed as depicted
in Figure 1(a). Similar trials were performed on the other hand,
while for the LFT vs RFT task, 20 s rest was performed in
between two tasks for the restoration of the signal to the baseline
level as shown in Figure 1(b).

2.2.3. Visual Task

(1) Checker Box Flickering. In this experiment [4, 18, 39], a
screen was placed in front of the subjects at a distance of
approximately 2m, and also subjects were requested to avoid

eye blinking during the experiment. *e 10 s task of checker
box flickering at 4Hz was performed followed by 20 s rest of
the black screen. *e sound was also generated during the
transition between rest and task. *e paradigm followed for
visual stimuli is shown in Figure 1(a).

2.3. Experimental Setup. Since the mental imagery task
activates the PFC [34, 43], a total 11 of near-infrared (NI)
light optodes were placed on PFC, 3 of which were detectors
and 8 were the source in accordance with the literature
[46, 47]. Similarly, for the motor execution task, the primary
motor cortex (PMC) is activated [37, 43], hence 15 optodes
were placed on PMC out of which 8 were the source and 7
were detectors. To extract data for LFT, optodes were placed
on the right hemisphere, while for RFT on the left hemi-
sphere [43]. Similarly, for the visual stimuli task data ac-
quisition from the visual cortex [4, 18, 39], eleven optodes
were placed having eight sources and three detectors. *e
distance between the source and the detector was 3 cm.
Optode placement with channel configuration for MC, VC,
and PFC is shown in Figure 2.

2.3.1. Signal Acquisition. In accordance with the literature
[6, 8, 29], the raw optical density signal is converted to
oxyhemoglobin (ΔcHbO(t)) and deoxyhemoglobin
(ΔcHbR(t)) concentration using the modified Beer–Lambert
law (MBLL) as decribed in the following equation:

ΔcHbO (t)

ΔcHbR(t)
[ ] �

βHbO λ1( ) βHbR λ1( )
βHbO λ2( ) βHbR λ2( )
 

− 1 Δψ t, λ1( )
Δψ t, λ2( )
 

d∗ l ,

(1)
where βHbX(λ) is the HbX extinction coefficient in
µM− 1cm− 1{ }, d is the differential path length factor for the
curved path in (mm), l is the detector and emitter distance in
(mm), and ΔψHbX(t) is the absorbance difference of the light
emitter wavelength of λi.

2.4. Signal Processing. *e acquired raw signals of the brain
contain various noises that can be categorized into physi-
ological, experimental, and instrumental noise [8, 52]. In
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Figure 1: Experimental paradigms for cortical tasks. (a) Task vs rest. (b) Task 1 vs task 2.
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fNIRS, the instrumental and experimental noises are re-
moved prior to change of the raw signal to its magnitude
through MBLL [8, 12, 14].

2.4.1. Instrumental Noises. Noises produced due to hard-
ware or by surrounding are categorized under instrumental
noises. *ese noises usually have high frequency that can be
removed using a low-pass filter; furthermore, keeping iso-
lation from external sources such as light can reduce such
type of noises [8].

2.4.2. Experimental Noises. *ese errors contain motion ar-
tifacts due to unintentional body movements like head motion
during signal acquisition. It can cause the dislocation of optodes
from the assigned positions that result in a spike-like noise due
to change in light intensity. Filters like Kalman andWiener can
be used to remove such type of noises [12–15].

2.4.3. Physiological Noises. *ese noises are produced due to
Mayer waves (∼0.1Hz), respiration (∼0.5Hz), and heartbeat
(1∼1.5Hz) that occur due to fluctuations of blood pressure
[16–19]. *ese noises can be removed using adaptive or
bandpass filtering [8, 20, 38].

2.5. Data Analysis. NIRS-SPM is a toolbox designed for
fNIRS data analysis. For signal processing, it provides
common filtering techniques, namely, Butterworth,
Gaussian, and hrf [26]. *e comparative data analysis was
performed by implementing Gaussian and hrf filtering using
the NIRS-SPM toolbox, while other techniques on
MATLAB® 2017b. *e generalized mathematical models
with necessary details are as follows.

2.5.1. Gaussian Filtering. A Gaussian filter is used in various
forms depending upon the nature of the signal. Generally, a
Gaussian filter is based on a Gaussian function which defines

the probability distribution of noise or data. It can also be
used as a smoothing operator. A Gaussian kernel is used for
smoothing the signal in which each value is replaced with the
weighted average of itself and its neighboring values
[14, 21, 26]. A simple representation of the 2DGaussian filter
can be defined in the following equation as

G(x, y) �
1

2πσ2
e− x2+y2( )/2σ2 , (2)

where x and y are the distance from the origin in horizontal
and vertical axis and σ is the known standard deviation of the
distribution.

2.5.2. Hemodynamic Response Filter (hrf ). *e hrf is based
on the canonical representation of the hemodynamic re-
sponse functions (HRF) and is used for the temporal
smoothing of the fNIRS time series signal. In NIRS-SPM, the
given functional data were smoothen using the least square
estimate with ideal HRF. *e hrf and Gaussian filter model
details are in accordance with the literature [26].

2.5.3. Butterworth Filter. Butterworth filter is a model-based
bandpass filter which performs on frequency attenuation
using high and low-pass filter. *e filtered value not only
depends on the weighted average of the unfiltered time
series, but also recursively on the previous values of the
filtered time series. *is filter aims to have a flat frequency
response in the desired pass band [26]. *e 4th order But-
terworth filter with a band pass of (0.01∼0.1) Hz was applied
by MATLAB® build in a library for the desired experiments.

2.5.4. Finite Impulse Response Filter. FIR filter is designed by
finding the coefficients and filter order so that it performs a
cross-correlation between the input signal and the time
reversed impulse response; therefore, by sampling the pulse
shape, coefficients of the filter are designed [14]. FIR filter of
order N can be defined as the following equation:
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Figure 2: Optode placement configuration in accordance with the 10–20 international system. (a) Motor cortex. (b) Visual cortex.
(c) Prefrontal cortex.
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x[n] �∑N
i�0

aiy[n − i], (3)

where y[n] is the input signal, x[n] is the output signal,N is
the filter order, and bi is the value of impulse response at ith

instance. Here, the 4th order FIR filter with a low-pass band
of 0.1Hz was utilized. *e coefficients were estimated using
the least square estimate. However, a time-varying Wiener
filter, based on the short-time Fourier series, was imple-
mented as in [25, 53].

2.5.5. Kalman Filter. Kalman filters the input signal con-
taining statistical and other noises by linear quadratic es-
timation. *e estimated unknown variables based on the
Bayesian inference and joint probability distribution tend to
bemore accurate [13, 14]. Its simple model can be seen in the
following equation:

xk � Fkxk−1 + Bkuk + wk, (4)

where Fk is the state transition model applied to previous
state xk−1, Bk is the control input model applied to the
control vector uk, and wk is the process noise. A discrete
model of Kalman was implemented in accordance with
[24].

2.6. Feature Selection. For the consistency between extracted
data across all paradigms, six statistical features (SV, KR, SS,
SM, SK, and SP) were used to extract information across data
[28, 43, 46, 54, 55]. SM is calculated in the following equation
as

SM �
1

n
∑n
X�1

Ax, (5)

where Ax is the input signal such that ΔcHbO(t) and n is the
total number of observations. Signal variance is calculated in
equation (6) as

σ2 �
1

n − 1
∑n−1
x�1

Zx − μ( )2, (6)

where Zx is the input signal, μ is the mean found from
equation (6), n is the number of samples, and σ is the
standard deviation. For KR, calculation was made by the
following equation:

kurt(X) � E
X − μ

σ
( )4[ ], (7)

where X is the input signal and E is the expected value of X.
SK is the asymmetry of values relative to normal dis-

tribution around the mean, hence calculated in the following
equation:

skew(X) � E
X − μ

σ
( )3[ ]. (8)

MATLAB® polyfit function fits the line to all input data
points, therefore used to calculate SS. Similarly, max

function was used to calculate SP. Statistical features were
rescaled between 0 and 1 using the following equation:

Z′ �
Z −min(Z)

max(Z) −min(Z)
, (9)

where Z′ is the rescaled feature and Z refers to the original
feature values. *e scatter plot across all six statistical fea-
tures for the OB vsMA task of subject 1 is shown in Figure 3.

2.7. Support Vector Machine. Statistical significance of ac-
curacy is analyzed for selection of an optimal filter for a
specific cortical region; therefore, for higher classification
performance, nonlinear SVM is used [35, 38]. It can rescale
high-dimensional data and can control errors explicitly by
maximizing the margins between two or more classes thus
creating hyperplanes named as support vectors [40, 41, 56].

*e cost function that is to be maximized for the SVM
classifier gives a correlation between training data and hy-
perplane as defined in equations (10) and (11), respectively,

Minimize
1

2
‖z‖2 + k∑N

x�1

εx, (10)

Providedyx Z
Tξx + a( )3 ≥ 1 − εx, εx ≥ 0, (11)

where z, ξx εR
2, b εR1, z2 � zTz, k is the positive regula-

rization parameter, εx is the measure of the training error,
and yx is the class label for the nth sample. Here, the third-
degree polynomial kernel function with k � 0.5 and 10-fold
cross-validation was applied for the estimation of classifi-
cation accuracies [53].

3. Results and Discussion

3.1. Results. In this study, an optimal filter was chosen based
on cortical tasks. Activities were categorized based on three
main regions such as PFC, MC, and VC. ΔcHbO(t) signals
were filtered using six filters. Figures 4–6 show the averaged
ΔcHbO(t) filtered signals across trials of prefrontal, motor
execution and, visual stimuli tasks. *e three different sig-
nals show various paradigms for each brain region, while the
horizontal axis is aligned with one complete event. *e
pictorial analysis of filtered responses shows that using the
4th order Butterworth changes data form altogether while
discrete Kalman and Wiener filtered the signals, but there
remain some noises in the output response, whereas, ca-
nonical hrf and Gaussian give much smoother response as
compared to any other technique. Moreover, previous
studies have commonly utilized Butterworth for signal
processing, while the obtained visual does not show any
significant improvement in comparison. Likewise, the
Gaussian filter is also utilized in various studies that assume
the acquired data with some normal distribution; therefore,
it considers Gaussian function which defines the probability
distribution of noise or data. It can also be used as a
smoothing operator. A Gaussian kernel is used for
smoothing the signal in which each value is replaced with the
weighted average of itself and its neighbouring values.
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However, the hrf filter considers ideal hemodynamic re-
sponse as a reference for smoothing the data that are closely
related to chi-squared distribution. Due to this fact, hrf
outperforms any other considered technique.

For consistency among extracted information, classifi-
cation accuracies were obtained across six statistical features.
*e accuracies obtained across these features are shown in
Table 1. *e two-tailed independent t-test was performed to
check statistical significance with Holm–Bonferroni for
multiple comparison of filters. Results obtained in Table 2
show significance using hrf or the Gaussian filter for R vs
MA and R vs OB while for the OB vs MA task, no significant
filter was found; however, the time-varing Wiener filter
outperformed others. Similarly, in motor execution tasks,
hrf was found to be significant for R vs LFT, likewise for R vs
RFT hrf and Gaussian. Moreover, for LFT vs RFT, the hrf
filter shows better performance. In the VS task, hrf and
Gaussian were significant. Moreover, we plot the mean
accuracies of filters with respect to cortical regions as
depicted in Figure 7. *e Gaussian and canonical hrf per-
formed consistently better across all three cortical regions.
However, comparatively better accuracies were obtained
using hrf only. *e statistical results validate our hypothesis
of optimal filter selection by assuring that hrf generally has
better performance for fNIRS-based studies, which is in
accordance with a previous study [53].

3.2. Discussion. Despite of the fact that fNIRS offers por-
tability, low cost, and ease of equipment setup, there still
remains a challenge of removing noises like systematic
physiological (Mayer waves, muscle activity, blood pressure,

and respiration and heart rate) and artifacts [17, 57], as
fNIRS signals are highly contaminated by measurement
noises and physiology-based systemic interference [58].
Several studies have proposed methodologies that can
remove noises robustly. In [59], temporal filtering using a
low-pass filter with 0.6Hz cutoff frequency and canonical
hemodynamic response function with 4 s full width at half
maximum was applied. In [60], exponential moving average
and Chebyshev filter were used to remove artifacts from the
fNIRS data. Similarly, in [61], only low-pass filter with a
0.14Hz cutoff was applied to remove physiological noises
from fNIRS signals. Aqil et al. [62] used recursive least
square estimation for online imaging. *is adaptive ap-
proach provided a spatial filtering with low and high pass,
detrending, and baseline correction. Similarly, Seo et al. [63]
assessed the utility of NIRS in removal of physiological
noises in fMRI data by reducing variance of the residual
error in the baseline fMRI signal through the NIRS signal in
the model. Similarly, in [64], adaptive filtration with the
affine projection algorithm was used to accelerate conver-
gence with colored noise, but it increases computational
cost. In [65], a bandpass filter based on the 5th order But-
terworth filter was used to filter motor execution signals
based on EEG. In literature [52], fNIRS-based walking
signals and walking signals while talking were acquired.
*ese signals were preprocessed using a low-pass with finite
impulse response filter, while the talking task results in low-
amplitude artifacts with a similar frequency of hemody-
namic response, hence it may affect cortical activity [57]. In
[66], multiple filters were applied for EEG- and ECG-based
signal preprocessing such as for removal of motion artifacts,
a median filter with 5-point, for systemic component
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removal, a second-order Chebychev type-2 filter, high-pass
filter for signal drift removal, 1st order low-pass Butterworth
filter for blood pressure signal, and the 4th order Butterworth
bandpass filter for ECG were applied, while using too many
filters for every aspect may result in cost of computation. In
[8], previously mentioned aspects in Section 2.4 were briefly
discussed. To remove such noise methods like MBLL, eigen-
based vector approach [19], a bandpass filter was introduced
in a MATLAB-based graphical user interface-based pro-
gram, HomER. However, no such statistical significance
comparison was seen for generic tasks. In literature [14, 15],

cancellation of motion artifacts using Wiener and discrete
Kalman filter was discussed; meanwhile, t-tests performed in
comparison showed better performance with Kalman.
Similarly, in [12, 13], four techniques, namely, Kalman,
principal component analysis, wavelet analysis, and spline
interpolation, were compared to remove NIRS data artifacts.
Results showed that spine interpolation and wavelet analysis
were significant for such noise removals. In [67], systemic
noise was removed using wavelet minimum description
length detrending approach and artifact using moving
standard deviation and spline interpolation. Eggenberger
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Figure 4: Filtered averaged HbO of PFC tasks.
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et al. [68] removed movement artifacts by using visual in-
spection, and Mayer waves were avoided using averaged
blocks. In [69], physiological noise was removed with a low-
pass filter, and sliding window was applied for motion ar-
tifact rejection. Holtzer et al. [70] combined independent
component analysis and principal component analysis to
remove noise and signal drifts. In [70–77], the signal was
low-pass filtered with a cutoff frequency at 0.14Hz, and in
[78], with a cutoff frequency of 0.2Hz and in [78], a low-pass
filter set at 0.67Hz, meanwhile a moving average filter with a
width of 4 s was used to smoothen the signal. In [79],
Gaussian smoothing with a full width at half max of 2 s was

applied, while motion artifacts were removed using the
wavelet minimum description length detrending algorithm.
In [80], a bandpass filter (0.01–1.25Hz) was applied to the
signal. Likewise, in [81], a bandpass filter (0.01–0.2Hz) was
applied while motion artifacts were removed through
principal component analysis and spike rejection. Similarly,
in [82], data were bandpass filtered (0.01Hz to 0.14Hz),
while the wavelet filter and correlation-based signal im-
provement were applied to remove motion artifacts. In [83],
data were filtered with a 0.01Hz high-pass filter and a 5.0 s
moving average filter and also principal component analysis
were applied to reduce physiological noise. Metzger et al.
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Figure 6: Filtered averaged HbO of VS task.

Table 1: Accuracies across six features for multiple cortical paradigms.

Prefrontal tasks

R vs MA

Subjects Butter FIR Gaussian hrf Kalman Wiener

S1 57.03 62.22 81.48 82.96 82.96 80
S2 57.77 59.25 71.85 83.7 68.148 69.62
S3 58.51 54.07 88.14 90.37 73.33 82.22
S4 64.44 71.85 82.22 82.96 72.59 74.81
S5 55.55 69.62 85.18 82.22 61.48 74.81

R vs OB
S1 63.7 68.14 80 86.66 71.48 75.18
S2 54.81 68.88 78.51 80 68.88 73.33
S3 60 65.92 82.22 89.62 89.22 74.81
S4 63.7 71.11 97.03 97.03 90.37 94.81
S5 60 60 82.96 77.03 68.14 65.18

OB vs MA
S1 50 64.44 68.88 75.55 85.55 90
S2 53.33 66.66 72.22 72.22 84.44 86.66
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Table 1: Continued.

S3 54.44 68.88 85.55 80 76.66 74.44
S4 56.66 71.11 81.11 83.33 85.55 86.66
S5 57.77 75.55 82.22 82.22 85.55 88.88

Motor execution tasks

R vs LFT
S1 65.18 57.03 77.03 81.48 57.03 66.66
S2 60 57.77 78.51 85.18 45.18 50.37
S3 55.55 49.62 67.4 72.59 59.25 59.25
S4 53.33 56.29 68.14 73.33 60 61.48
S5 45.18 57.77 76.29 76.29 45.18 45.18

R vs RFT
S1 61.48 43.7 78.51 89.62 66.66 65.92
S2 59.25 58.51 68.88 79.25 59.25 59.25
S3 57.77 65.92 68.88 62.96 46.66 60.74
S4 54.81 51.85 66.66 74.07 60 47.4
S5 62.96 58.51 71.85 77.03 55.77 56.29

LFT vs RFT
S1 54.44 46.66 87.77 92.22 64.44 60
S2 55.55 61.11 64.44 76.66 53.33 51.11
S3 58.88 58.88 64.44 68.88 63.33 45.55
S4 54.44 57.77 78.88 80 48.88 52.22
S5 60 62.22 70 80 55.55 56.66

Visual stimuli task

R vs VS
S1 53.33 60.74 71.11 65.18 48.88 51.85
S2 54.81 66.66 74.07 75.55 59.25 62.96
S3 59.25 64.44 76.29 82.22 71.11 69.62
S4 57.77 47.4 68.14 73.33 49.62 57.77
S5 68.88 62.96 73.33 78.51 56.29 61.48

Table 2: Statistical significance of filters across multiple cortical paradigms.

Filters p values

Prefrontal tasks

R vs MA
Butter vs hrf, FIR, Gaussian, Kalman, Wiener 0.089, 0.012, 0.012, 0.012, 0.012
hrf vs Gaussian, Wiener, FIR, Kalman 0.089, 0.012, 0.012, 0.022
Gaussian vs FIR, Kalman, Wiener 0.012, 0.089, 0.012
Kalman vs Wiener, FIR 0.089, 0.089
Wiener vs FIR 0.012

R vs OB
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.022, 0.012, 0.012, 0.012, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.158, 0.012, 0.012
Gaussian vs FIR, Kalman, Wiener 0.012, 0.089, 0.012
Kalman vs Wiener, FIR 0.327, 0.022
Wiener vs FIR 0.012

OB vs MA
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.012, 0.012, 0.012, 0.012, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.089, 0.281, 0.089, 0.012
Gaussian vs FIR, Kalman, Wiener 0.012, 0.089, 0.089
Kalman vs Wiener, FIR 0.089, 0.012
Wiener vs FIR 0.012

Motor execution tasks

R vs LFT
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.65, 0.025, 1, 0.158, 0.025
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.022, 0.012, 0.025
Gaussian vs FIR, Kalman, Wiener 0.012, 0.012, 0.012
Kalman vs Wiener, FIR 0.041, 1
Wiener vs FIR 0.32
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[84] removed channels with large movement or technical
artifacts. Smaller artifacts were corrected with the correla-
tion-based signal improvement method while a low-pass
filter with a 5.0 s moving average filter was applied. In
[85–87], signals were analyzed with SPM99 (Statistical
Parametric Mapping software; Wellcome Department of
Cognitive Neurology, London, UK). In [88], moving stan-
dard deviation-based artifact removal (moving artifact re-
duction algorithm: MARA) with a threshold of 0.45 for HbO
and 0.18 for HbR was applied and signals were linearly
detrended and low-pass filtered at 0.1Hz.

Keeping in view the discussions in the literature, various
methodologies were adopted for artifact removal while for
systematic physiological noises, mostly high and low-pass
filter were applied.*erefore, to make use of the best optimal
filter for a specific cortical task, we performed an explicit and
systematic analysis to find the filter based on statistical
significance for mostly used cortical tasks in fNIRS study
applications. *e result shows that hrf outperforms the
discussed techniques due to the fact that it considers ideal
hemodynamic response distribution for smoothing the data.
Keeping this in view, our future work involves designing of

Table 2: Continued.

Filters p values

R vs RFT
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.089, 0.012, 0.5, 0.5, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.089, 0.012, 0.089
Gaussian vs FIR, Kalman, Wiener 0.012, 0.012, 0.012
Kalman vs Wiener, FIR 0.5, 0.32
Wiener vs FIR 0.32

LFT vs RFT
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.158, 0.012, 0.32, 0.089, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.012, 0.012, 0.012
Gaussian vs FIR, Kalman, Wiener 0.012, 0.012, 0.012
Kalman vs Wiener, FIR 0.32, 0.32
Wiener vs FIR 0.089

Visual stimuli

R vs VS
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.32, 0.012, 0.32, 0.5, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.089, 0.012, 0.012
Gaussian vs FIR, Kalman, Wiener 0.012, 0.012, 0.012
Kalman vs Wiener, FIR 0.089, 0.32
Wiener vs FIR 0.32

Butter FIR Gaussian hrf Kalman Wiener

PFC average accuracies

57.84
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81.30 83.05
77.62 79.42
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MC average accuracies
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Figure 7: Filters’ mean accuracies.
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an adaptive filter technique, considering different distri-
butions of data and noise. *erefore, opting more accurate
separation of data.

4. Conclusion

To the best of our knowledge, this is the first study to propose
filter selection for commonly used cortical tasks of func-
tional near-infrared spectroscopy (fNIRS) contaminated
with artifacts and systematic physiological noises. Six filters,
namely, Gaussian, hemodynamic response filter (hrf),
Butterworth, time-varying Wiener, discrete Kalman, and
window-based finite impulse response, were tested. *e
results obtained have validated the overall statistical sig-
nificance of the hrf for prefrontal, motor, and visual cortex
tasks. Furthermore, signals acquired from different cortical
regions may contain different types of noises. Hence, the
prime goal of this study was to suggest an optimal filter for a
specific task, owing to the specific cortical region so that
further studies can achieve maximum accuracies by reliably
improving the recovered hemodynamic response function.
Outcome of this study shows that there is a significant
impact of filter selection on the accuracy of the classified
data, therefore facilitating users to avoid analysis of complex
signal techniques by themselves.
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