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To understand connected speech, listeners must construct a hierarchy  
of linguistic structures of different sizes, including syllables,  
words, phrases and sentences1–3. It remains puzzling how the brain 
simultaneously handles the distinct timescales of the different lin-
guistic structures, for example, from a few hundred milliseconds for 
syllables to a few seconds for sentences4–14. Previous studies have 
suggested that cortical activity is synchronized to acoustic features 
of speech, approximately at the syllabic rate, providing an initial 
timescale for speech processing15–19. But how the brain utilizes such 
syllabic-level phonological representations closely aligned with the 
physical input to build multiple levels of abstract linguistic structure,  
and represent these concurrently, is not known. We hypothesized 
that cortical dynamics emerge at all timescales required for the 
processing of different linguistic levels, including the timescales 
corresponding to larger linguistic structures such as phrases and 
sentences, and that the neural representation of each linguistic level 
corresponds to timescales matching the timescales of the respective 
linguistic level.

Although linguistic structure building can clearly benefit from 
prosodic20,21 or statistical cues22, it can also be achieved purely on 
the basis of the listeners’ grammatical knowledge. To experimentally  
isolate the neural representation of the internally constructed hier-
archical linguistic structure, we developed new speech materials 
in which the linguistic constituent structure was dissociated from 
prosodic or statistical cues. By manipulating the levels of linguistic 
abstraction, we found separable neural encoding of each different 
linguistic level.

RESULTS

Cortical tracking of phrasal and sentential structures

In the first set of experiments, we sought to determine the neural 
representation of hierarchical linguistic structure in the absence 
of prosodic cues. We constructed hierarchical linguistic structures  
using an isochronous, 4-Hz sequence of syllables that were inde-
pendently synthesized (Fig. 1a,b, Supplementary Fig. 1 and 
Supplementary Table 1). As a result of the acoustic independence 
between syllables (that is, no co-articulation), the linguistic constituent  
structure could only be extracted using lexical, syntactic and  
semantic knowledge, and not prosodic cues. The materials were first 
developed in Mandarin Chinese, in which syllables are relatively  
uniform in duration and are also the basic morphological unit 
(always morphemes and, in most cases, monosyllabic words). 
Cortical activity was recorded from native listeners of Mandarin 
Chinese using magnetoencephalography (MEG). Given that differ-
ent linguistic levels, that is, the monosyllabic morphemes, phrases 
and sentences, were presented at unique and constant rates, the 
hypothesized neural tracking of hierarchical linguistic structure 
was tagged at distinct frequencies.

The MEG response was analyzed in the frequency domain and 
we extracted response power in every frequency bin using an opti-
mal spatial filter (Online Methods). Consistent with our hypothesis,  
the response spectrum showed three peaks at the syllabic rate (P = 1.4 
× 10−5, paired one-sided t test, false discovery rate (FDR) corrected),  
phrasal rate (P = 1.6 × 10−4, paired one-sided t test, FDR corrected) 
and sentential rate (P = 9.6 × 10−7, paired one-sided t test, FDR  
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The most critical attribute of human language is its unbounded combinatorial nature: smaller elements can be combined into 

larger structures on the basis of a grammatical system, resulting in a hierarchy of linguistic units, such as words, phrases and 

sentences. Mentally parsing and representing such structures, however, poses challenges for speech comprehension. In speech, 

hierarchical linguistic structures do not have boundaries that are clearly defined by acoustic cues and must therefore be internally 

and incrementally constructed during comprehension. We found that, during listening to connected speech, cortical activity of 

different timescales concurrently tracked the time course of abstract linguistic structures at different hierarchical levels, such as 

words, phrases and sentences. Notably, the neural tracking of hierarchical linguistic structures was dissociated from the encoding 

of acoustic cues and from the predictability of incoming words. Our results indicate that a hierarchy of neural processing 

timescales underlies grammar-based internal construction of hierarchical linguistic structure.

n
p
g

©
 2

0
1
6 

N
a

tu
re

 A
m

e
ri

c
a

, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

http://www.nature.com/doifinder/10.1038/nn.4186


NATURE NEUROSCIENCE VOLUME 19 | NUMBER 1 | JANUARY 2016 159

A R T I C L E S

corrected) and the response was highly consistent across listeners 
(Fig. 1c). Given that the phrasal- and sentential-rate rhythms were 
not conveyed by acoustic fluctuations at the corresponding frequen-
cies (Fig. 1b), cortical responses at the phrasal and sentential rates 
must be a consequence of internal online structure building processes.  
Cortical activity at all the three peak frequencies was seen bilater-
ally (Fig. 1c). The response power averaged over sensors in each  
hemisphere was significantly stronger in the left hemisphere at the 
sentential rate (P = 0.014, paired two-sided t test), but not at the 
phrasal (P = 0.20, paired two-sided t test) or syllabic rates (P = 0.40, 
paired two-sided t test).

Dependence on syntactic structures

Are the responses at the phrasal and sentential rates indeed separate 
neural indices of processing at distinct linguistic levels or are they 
merely sub-harmonics of the syllabic rate response, generated by 
intrinsic cortical dynamical properties? We address this question by 
manipulating different levels of linguistic structure in the input. When 
the stimulus is a sequence of random syllables that preserves the 
acoustic properties of Chinese sentences (Fig. 1 and Supplementary 

Fig. 2), but eliminates the phrasal/sentential structure, only syllabic 
(acoustic) level tracking occurs (P = 1.1 × 10−4 at 4 Hz, paired one-
sided t test, FDR corrected; Fig. 2a). Furthermore, this manipulation 
preserves the position of each syllable in a sentence (Online Methods) 
and therefore further demonstrates that the phrasal- and sentential-
rate responses are not a result of possible acoustic differences between 
the syllables in a sentence. When two adjacent syllables and mor-
phemes combine into verb phrases, but there is no four-element sen-
tential structure, phrasal-level tracking emerges at half of the syllabic 
rate (P = 8.6 × 10−4 at 2 Hz and P = 2.7 × 10−4 at 4 Hz, paired one-sided 
t test, FDR corrected; Fig. 2b). Similar responses are observed for 
noun phrases (Supplementary Fig. 3).

To test whether the phrase-level responses segregate from the sen-
tence level, we constructed longer verb phrases that were unevenly 
divided into a monosyllabic verb followed by a three-syllable noun 
phrase (Fig. 2c). We expect that the neural responses to the long 
verb phrase to be tagged at 1 Hz, whereas the neural responses to the 
monosyllabic verb and the three-syllable noun phrase will present as 
harmonics of 1 Hz. Consistent with our hypothesis, cortical dynam-
ics emerged at one-fourth of the syllabic rate, whereas the response 
at half of the syllabic rate is no longer detectable (P = 1.9 × 10−4, 1.7 
× 10−4 and 9.3 × 10−4 at 1, 3 and 4 Hz, respectively, paired one-sided 
t test, FDR corrected).

Dependence on language comprehension

When listening to Chinese sentences (Fig. 1a), listeners who did not 
understand Chinese only showed responses to the syllabic (acoustic) 
rhythm (P = 3.0 × 10−5 at 4 Hz, paired one-sided t test, FDR corrected; 
Fig. 2d), further supporting the argument that cortical responses 
to larger, abstract linguistic structures is a direct consequence of  
language comprehension.

If aligning cortical dynamics to the time course of linguistic constit-
uent structure is a general mechanism required for comprehension, 
it must apply across languages. Indeed, when native English speakers 
were tested with English materials (Fig. 1a), their cortical activity also 
followed the time course of larger linguistic structures, that is, phrases 
and sentences (P = 4.1 × 10−5, syllabic rate; Fig. 2e; P = 3.9 × 10−3, 
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Figure 1 Neural tracking of hierarchical linguistic structures.  

(a) Sequences of Chinese or English monosyllabic words were presented 

isochronously, forming phrases and sentences. (b) Spectrum of stimulus 

intensity fluctuation revealed syllabic rhythm, but no phrasal or sentential 

modulation. The shaded area covers 2 s.e.m. across stimuli. (c) MEG-

derived cortical response spectrum for Chinese listeners and materials 

(dark red curve, grand average; light red curves, individual listeners;  

N = 16, 0.11-Hz frequency resolution). Neural tracking of syllabic, 

phrasal and sentential rhythms was reflected by spectral peaks at 

corresponding frequencies. Frequency bins with significantly stronger 

power than neighbors (0.5 Hz range) are marked (*P < 0.001, paired  

one-sided t test, FDR corrected). The topographical maps of response 

power across sensors are shown for the peak frequencies.
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Figure 2 Tracking of different linguistic structures. Each panel shows 

syntactic structure repeating in the stimulus (left) and the cortical 

response spectrum (right; shaded area indicates 2 s.e.m. over listeners,  

N = 8). (a) Chinese listeners, Chinese materials: syllables were 

syntactically independent and cortical activity encoded only acoustic and 

syllabic rhythm. (b,c) Additional tracking emerged with larger linguistic 

structures. Spectral peaks marked by a star (black, P < 0.001; gray,  

P < 0.005; paired one-sided t test, FDR corrected). (d) English listeners, 

Chinese materials from Figure 1: acoustic tracking only, as there was 

no parsable structure. (e,f) English listeners, English materials: syllabic 

rate (4/1.28 Hz) and sentential and phrasal rate responses to parsable 

structure in stimulus.
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4.3 × 10−3 and 6.8 × 10−6 at the sentential, phrasal and syllabic rates, 
respectively; Fig. 2f; paired one-sided t test, FDR corrected).

Neural tracking of linguistic structures rather than probability cues

We found that concurrent neural tracking of multiple levels of lin-
guistic structure was not confounded with the encoding of acoustic 
cues (Figs. 1 and 2). However, is this simply explained by the neural 
tracking of the predictability of smaller units? As a larger linguistic 
structure, such as a sentence, unfolds in time, its component units 
become more predictable. Thus, cortical networks solely tracking 
transitional probabilities across smaller units could show temporal 
dynamics matching the timescale of larger structures. To test this 
alternative hypothesis, we crafted a constant transitional probability 
Markovian Sentence Set (MSS) in which the transitional probability 
of lower level units was dissociated from the higher level structures  
(Fig. 3a and Supplementary Fig. 1e,f). The constant transitional 
probability MSS is contrasted with a varying transitional probability 
MSS, in which the transitional probability is low across sentential 
boundaries and high in a sentence (Fig. 3b,c). If cortical activity only 
encodes the transitional probability between lower level units (for 
example, acoustic chunks in the MSS) independent of the underlying 
syntactic structure, it can show tracking of the sentential structure for 
the varying probability MSS, but not for the constant probability MSS. 
In contrast with this prediction, indistinguishable neural responses 
to sentences were observed for both MSS (Fig. 3d), demonstrating 
that neural tracking of sentences is not confounded by transitional 
probability. Specifically, for the constant transitional probability MSS, 
the response was statistically significant at the sentential rate, twice 
the sentential rate and the syllable rate (P = 1.8 × 10−4, 2.3 × 10−4 and 

2.7 × 10−6, respectively). For the varying transitional probability MSS, 
the response was statistically significant at the sentential rate, twice 
the sentential rate and the syllable rate (P = 7.1 × 10−4, 7.1 × 10−4 and 
4.8 × 10−6, respectively).

Given that the MSS involved real English sentences, listeners had 
prior knowledge of the transitional probabilities between acoustic 
chunks. To control for the effect of such prior knowledge, we created 
a set of Artificial Markovian Sentences (AMS). In the AMS, the tran-
sitional probability between syllables was the same in and across sen-
tences (Supplementary Fig. 4a). The AMS was composed of Chinese 
syllables, but no meaningful Chinese expressions were embedded in 
the AMS sequences. As the AMS was not based on the grammar of 
Chinese, the listeners had to learn the AMS grammar to segment 
sentences. By comparing the neural responses to the AMS sequences 
before and after the grammar was learned, we were able to separate 
the effect of prior knowledge of transitional probability and the effect 
of grammar learning. Here, the grammar of the AMS indicates the 
set of rules that governs the sequencing of the AMS, that is, the rule 
of which syllables can follow which syllables.

The neural responses to the AMS before and after grammar learning 
were analyzed separately (Supplementary Fig. 4). Before learning, 
when the listeners were instructed that the stimulus was just a sequence 
of random syllables, the response showed a statistically significant 
peak at the syllabic rate (P = 0.0003, bootstrap), but not at the senten-
tial rate. After the AMS grammar was learned, however, a significant 
response peak emerged at the sentential rate (P = 0.0001, bootstrap). 
A response peak was also observed at twice the sentential rate, possibly 
reflecting the second harmonic of the sentential response. This result 
further confirms that neural tracking of sentences is not confounded 
by neural tracking of transitional probability.

Neural tracking of sentences varying in duration and structure

These results are based on sequences of sentences that have uniform 
duration and syntactic structure. We next addressed whether cortical  
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Figure 3 Dissociating sentential structures and transitional probability. 

(a,b) Grammar of an artificial Markovian stimulus set with constant (a) 

or variable (b) transitional probability. Each sentence consists of three 

acoustic chunks, each containing 1–2 English words. The listeners 

memorized the grammar before experiments. (c) Schematic time course 

and spectrum of the transitional probability. (d) Neural response spectrum 

(shaded area covers 2 s.e.m. over listeners, N = 8). Significant neural 

responses to sentences were seen for both languages. Spectral peaks are 

shown by an asterisk (P < 0.001, paired one-sided t test, FDR corrected, 

same color code as the spectrum). Responses were not significantly 

different between the two languages in any frequency bin (paired  

two-sided t test, P > 0.09, uncorrected).
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tracking of larger linguistic structures generalizes to sentences that 
are variable in duration (4–8 syllables) and syntactic structures. 
These sentences were again built on isochronous Chinese syllables, 
intermixed and sequentially presented without any acoustic gap at 
the sentence boundaries. Examples translated into English include 
“Don’t be nervous,” “The book is hard to read,” and “Over the street 
is a museum.”

As these sentences have irregular durations that are not tagged by 
frequency, the MEG responses were analyzed in the time domain by 
averaging sentences of the same duration. To focus on sentential level 
processing, we low-pass filtered the response at 3.5 Hz. The MEG 
response (root mean square, r.m.s., over all sensors) rapidly increased 
after a sentence boundary and continuously changed throughout the 
duration of a sentence (Fig. 4a). To illustrate the detailed temporal 

dynamics, we averaged the r.m.s. response over all sentences contain-
ing six or more syllables after aligning them to the sentence offset  
(Fig. 4b). During the last four syllables of a sentence, the r.m.s. 
response continuously and significantly decreased for every syllable, 
indicating that the neural response continuously changes during the 
course of a sentence rather than being a transient response only occur-
ring at the sentence boundary.

A single-trial decoding analysis was performed to independ-
ently confirm that cortical activity tracks the duration of sentences  
(Fig. 4c). The decoder applied template matching for the response 
time course (leave-one-out cross-validation, Online Methods) and 
correctly determined the duration of 34.9 ± 0.6% sentences (mean 
± s.e.m. over subjects, significantly above chance, P = 1.3 × 10−7, 
one-sided t test).

After demonstrating cortical tracking of sentences, we further 
tested whether cortical activity also tracks the phrasal structure inside 
of a sentence. We constructed sentences that consist of a noun phrase 
followed by a verb phrase and manipulated the duration of the noun 
phrase (three syllable or four syllable). The cortical responses closely 
follow the duration of the noun phrase: the r.m.s. response gradually 
decreased in the noun phrase, then showed a transient increase after 
the onset of the verb phrase (Fig. 4d).

Neural source localization using electrocorticography (ECoG)

We found that large-scale neural activity measured by MEG concur-
rently follows the hierarchical linguistic structure of speech, but which 
neural networks generate such activity? To address this question,  
we recorded the ECoG responses to English sentences (Fig. 2e) and 
an acoustic control (Fig. 2f). ECoG signals are mesoscopic neuro-
physiological signals recorded by intracranial electrodes implanted in  
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epilepsy patients for clinical evaluation (see Supplementary Fig. 5 
for the electrode coverage), and they possess better spatial resolution 
than MEG. We first analyzed the power of the ECoG signal in the 
high gamma band (70–200 Hz), as it highly correlates with multiunit 
firing23. The electrodes exhibiting significant sentential, phrasal and 
syllabic rate fluctuations in high gamma power are shown separately 
(Fig. 5). The sentential rate response clustered over the posterior and 
middle superior temporal gyrus (pSTG), bilaterally, with a second 
cluster over the left inferior frontal gyrus (IFG). Phrasal rate responses 
were also observed over the pSTG bilaterally. Notably, although the 
sentential and phrasal rate responses were observed in similar cortical 
areas, electrodes showing phrasal rate responses only partially over-
lapped with electrodes showing sentential rate responses in the pSTG 
(Fig. 6). For electrodes showing a significant response at either the 
sentential rate or the phrasal rate, the strength of the sentential rate 
response was negatively correlated with the strength of the phrasal 
rate response (R = –0.32, P = 0.004, bootstrap). This phenomenon 
demonstrates spatially dissociable neural tracking of the sentential 
and phrasal structures.

Furthermore, some electrodes with a significant sentential or 
phrasal rate response showed no significant syllabic rate response  
(P < 0.05, FDR corrected, Fig. 6). In other words, there are cortical  
circuits specifically encoding larger, abstract linguistic structures  
without responding to syllabic-level acoustic features of speech.  
In addition, although the syllabic responses were not significantly  
different (P > 0.05, FDR corrected) for English sentences and the 
acoustic control in the MEG results, they were dissociable spatially 
in the ECoG results (Fig. 7). Electrodes showing significant syllabic 
responses (P < 0.05, FDR corrected) to sentences, but not the acoustic 
control, were seen in bilateral pSTG, bilateral anterior STG (aSTG), 
and left IFG.

We then analyzed neural tracking of the sentential, phrasal and  
syllabic rhythms in the low-frequency ECoG waveform (Fig. 5), which 
is a close neural correlate of MEG activity. Fourier analysis was directly 
applied to the ECoG waveform and the Fourier coefficients at 1, 2 and 
4 Hz are extracted. Low-frequency ECoG activity is usually viewed as 
the dendritic input to a cortical area24. The low-frequency responses 
are more distributed than high-gamma activity, possibly reflecting 
the fact that the neural representations of different levels of linguistic  
structures serve as inputs to broad cortical areas. Sentential and 
phrasal rate responses are strong in STG, IFG and temporoparietal 
junction (TPJ). Compared with the acoustic control, the syllabic-rate 
response to sentences was stronger in broad cortical areas, including 
the temporal and frontal lobes (Fig. 7). Similar to the high-gamma 
activity, the low-frequency responses to the sentential and phrasal 
structures were not reflected in the same set of electrodes (Fig. 6).  

For electrodes showing a significant response at either the sentential 
rate or the phrasal rate, the strength of the sentential rate response was 
also negatively correlated with the strength of the phrasal rate response 
(R = –0.21, significantly greater than 0, P = 0.023, bootstrap).

DISCUSSION

Our data show that the multiple timescales that are required for the 
processing of linguistic structures of different sizes emerge in corti-
cal networks during speech comprehension. The neural sources for  
sentential, phrasal and syllabic rate responses are highly distributed 
and include cortical areas that have been found to be critical for  
prosodic (for example, right STG), syntactic and semantic (for exam-
ple, left pSTG and left IFG) processing9,25–28. Neural integration on 
different timescales is likely to underlie the transformation from 
shorter lived neural representations of smaller linguistic units to longer 
lasting neural representations of larger linguistic structures11–14.  
These results underscore the undeniable existence of hierarchical 
structure building operations in language comprehension1,2 and can 
be applied to objectively assess language processing in children and 
difficult-to-test populations, as well as animal preparations to allow 
for cross-species comparisons.

Relation to language comprehension

Concurrent neural tracking of hierarchical linguistic structures  
provides a plausible functional mechanism for temporally integrat-
ing smaller linguistic units into larger structures. In this form of 
concurrent neural tracking, the neural representation of smaller 
linguistic units is embedded at different phases of the neural activity  
tracking a higher level structure. Thus, it provides a possible  
mechanism to transform the hierarchical embedding of linguistic 
structures into hierarchical embedding of neural dynamics, which 
may facilitate information integration in time10,11. Low-frequency 
neural tracking of linguistic structures may further modulate higher 
frequency neural oscillations29–31, which have been proposed to pro-
vide additional roles for structure building7. In addition, multiple 
resources and computations are needed for syntactic analysis, for 
example, access to combinatorial syntactic subroutines, and such 
operations may correspond to neural computations on distinct  
frequency scales, which are coordinated by the low-frequency  
neural tracking of linguistic constituent structures. Furthermore, 
low-frequency neural activity and oscillations have been hypoth-
esized as critical mechanisms to generate predictions about future 
events32. For language processing, it is likely that concurrent neural  
tracking of hierarchical linguistic structures provides mechanisms 
to generate predictions on multiple linguistic levels and allow  
interactions across linguistic levels33.
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Figure 7 Syllabic-rate ECoG responses to English sentences and the 

acoustic control (N = 5). Top, electrodes showing statistically significant 

syllabic-rate ECoG responses to the acoustic control, that is, shuffled 

sequences, which had the same acoustic and syllabic rhythm as the 

English sentences, but contained no hierarchical linguistic structures 

(Fig. 2f). Significance was determined by bootstrap (FDR corrected) and 

the significance level is 0.05. The responses were most strongly seen 

in bilateral STG for both high-gamma and low-frequency activity and in 

bilateral pre-motor areas for low-frequency activity. Bottom, syllabic-rate 

ECoG responses to English sentences. The electrodes displayed are those 

that showed statistically significant neural responses to sentences and no 

significant response to the acoustic control. The syllabic rate responses 

specific to sentences were strong along bilateral STG for high-gamma 

activity and were widely distributed in the frontal and temporal lobes for 

low-frequency activity.
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Neural entrainment to speech

Recent work has shown that cortex tracks the slow acoustic fluctuations  
of speech below 10 Hz (refs. 15–18,34,35), and this phenomenon is 
commonly described as ‘cortical entrainment’ to the syllabic rhythm of  
speech. It has been controversial whether such syllabic-level cortical 
entrainment is related to low-level auditory encoding or language 
processing6. Our findings demonstrate that processing goes well 
beyond stimulus-bound analysis: cortical activity is entrained to larger 
linguistic structures that are, by necessity, internally constructed, 
based on syntax. The emergence of slow cortical dynamics provides 
timescales suitable for the analysis of larger chunk sizes13,14.

A long-lasting controversy concerns how the neural responses to 
sensory stimuli are related to intrinsic, ongoing neural oscillations. 
This question is heavily debated for the neural response entrained 
to the syllabic rhythm of speech36 and can also be asked for neural  
activity entrained to the time courses of larger linguistic structures. 
Our experiment was not designed to answer this question; however, 
we clearly found that cortical speech processing networks have the 
capacity to generate activity on very long timescales corresponding  
to larger linguistic structures, such as phrases and sentences. In other  
words, the timescales of larger linguistic structures fall in the  
timescales, or temporal receptive windows12,13, that the relevant  
cortical networks are sensitive to. Whether the capacity of generating  
low-frequency activity during speech processing is the same as the 
mechanisms generating low-frequency spontaneous neural oscilla-
tions will need to be addressed in the future.

Nature of the linguistic representations

Language processing is not monolithic and involves partially  
segregated cortical networks for the processing of, for example, pho-
nological, syntactic and semantic information9. The phonological,  
syntactic and semantic representations are all hierarchically  
organized37 and may rely on the same core structure building opera-
tions38. In natural speech, linguistic structure building can be facili-
tated by prosodic39 and statistical cues22, and some underlying neural 
signatures have been demonstrated6,8,20. Such cues, however, are not 
always available, and even when they are available, they are generally 
not sufficient. Thus, robust structure building relies on a listeners’ 
tacit syntactic knowledge, and our findings provide unique insights 
into the neural representation of abstract linguistic structures that 
are internally constructed on the basis of syntax alone. Although the  
construction of abstract structures is driven by syntactic analysis, when 
such structures are built, different aspects of the structure, including 
semantic information, can be integrated in the neural representa-
tion. Indeed, the wide distribution of cortical tracking of hierarchical 
linguistic structures suggests that it is a general neurophysiological 
mechanism for combinatorial operations involved in hierarchical  
linguistic structure building in multiple linguistic processing networks 
(for example, phonological, syntactic and semantic). Furthermore, 
coherent synchronization to the correlated linguistic structures in dif-
ferent representational networks, for example, syntactic, semantic and 
phonological, provides a way to integrate multi-dimensional linguistic 
representations into a coherent language percept38,40, just as tempo-
ral synchronization between cortical networks provides a possible  
solution to the binding problem in sensory processing41.

Relation to event-related responses

Although many previous neurophysiological studies on structure 
building have focused on syntactic and semantic violations42–44, fewer 
have addressed normal structure building; on the lexical-semantic 
level, the N400/N400m has been identified as a marker of the semantic  

predictability of words43,45 and its amplitude continuously reduces in 
a sentence46,47. For syntactic processing, when two words combine 
into a short phrase, increased activity is seen in the temporal and 
frontal lobes4. Our results build on and extends these findings by 
demonstrating structure building at different levels of the linguis-
tic hierarchy, during online comprehension of connected speech 
materials in which the structural boundaries are neither physically 
cued nor confounded by the semantic predictability of the individual  
words (Fig. 3). Note that, although the two Markovian languages  
(compared in Fig. 3) differed in their transitional probability between 
acoustic chunks, they both had fully predictable syntactic structures.  
The equivalence in syntactic predictability is likely to result in the 
very similar responses between the two conditions.

Lastly, the emergence of slow neural dynamics tracking superor-
dinate stimulus structures is reminiscent of what has been observed 
during decision making48, action planning49 and music perception50, 
suggesting a plausible common neural computational framework to 
integrate information over distinct timescales12. These findings invite 
MEG and EEG studies to extend from the classic event-related designs 
to investigating continuous neural encoding of internally constructed 
perceptual organization of an information stream.

METHODS

Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. 34 native listeners of Mandarin Chinese (19–36 years old, mean  
25 years old; 13 male) and 13 native listeners of American English (22–46 years 
old, mean 26 years old; 6 male) participated in the study. All Chinese listeners 
received high school education in China and 26 of them also received college 
education in China. None of the English listeners understood Chinese. All partici-
pants were right-handed51. Five experiments were run for Chinese listeners and 
two experiments for English listeners. Each experiment included eight listeners 
(except that the AMS experiment involved five listeners) and each listener par-
ticipated in at most two experiments. The number of listeners per experiment was 
chosen based on previous MEG experiments on neural tracking of continuous 
speech. The sample size for previous experiments was typically between three 
and 12 (refs. 15,16), and the basic phenomenon reported here was replicated 
in all the seven experiments of the study (N = 47 in total). The experimental  
procedures were approved by the New York University Institutional Review 
Board, and written informed consent was obtained from each participant before 
the experiment.

Stimuli I: Chinese materials. All Chinese materials were constructed based on 
an isochronous sequence of syllables. Even when the syllables were hierarchi-
cally grouped into linguistic constituents, no acoustic gaps were inserted between 
constituents. All syllables were synthesized independently using the Neospeech 
synthesizer (http://www.neospeech.com/, the male voice, Liang). The synthesized 
syllables were 75–354 ms in duration (mean duration 224 ms), and were adjusted 
to 250 ms by truncation or padding silence at the end. The last 25 ms of each 
syllable were smoothed by a cosine window.

Four-syllable sentences. 50 four-syllable sentences were constructed, in which 
the first two syllables formed a noun phrase and the last two syllables formed a 
verb phrase (Supplementary Table 1). The noun phrase could be composed of 
either a single two-syllable noun or a one-syllable adjective followed by a one- 
syllable noun. The verb phrase could be composed of either a two-syllable verb or 
a one-syllable verb followed by a one-syllable noun object. In a normal trial, ten 
sentences were sequentially played and no acoustic gaps were inserted between 
sentences (Supplementary Fig. 1a). Due to the lack of phrasal and sentential 
level prosodic cues, the sound intensity of the stimulus, characterized by the 
sound envelope, only fluctuates at the syllabic rate but not at the phrasal or sen-
tential rate (Supplementary Fig. 2). An outlier trial was the same as a normal 
trial except that the verb phrases in two sentences were exchanged, creating two 
nonsense sentences with incompatible subjects and predicates (an example in 
English would be “new plans rub skin”).

Four-syllable verb phrases. Two types of four-syllable verb phrases were  
created. Type I verb phrase contained a one-syllable verb followed by a three-
syllable noun phrase, which could be a compound noun or an adjective + noun 
phrase (Supplementary Fig. 1b and Supplementary Table 1). Type II verb phrase  
contained a two-syllable verb followed by a two-syllable noun (Supplementary 

Fig. 1c, all phrases listed in Supplementary Table 1). 50 instances were created 
for each type of verb phrases. In a normal trial, ten phrases of the same type were 
sequentially presented. An outlier trial was the same as a normal trial except that 
the verbs in two phrases were exchanged, creating two nonsense verb phrases 
with incompatible verbs and objects (an example in English would be “drink a 
long walk”).

Two-syllable phrases. The verb phrases (or the noun phrases) in the four- 
syllable sentences were presented in a sequence (Supplementary Fig. 1d).  
In a normal trial, 20 different phrases were played. In an outlier trial, one of 
the 20 phrases was replaced by two random syllables that did not constitute a 
sensible phrase.

Random syllabic sequences. The random syllabic sequences were generated 
based on the four-syllable sentences. Each four-syllable sentence was trans-
formed into four random syllables using the following rule: the first syllable in 
the sentence was replaced by the first syllable of a randomly chosen sentence. 
The second syllable was replaced by the second syllable of another randomly 
chosen sentence and the same for the third and the fourth syllables. This way, if 
there were any consistent acoustic differences between the syllables at different 
positions in a sentence, those acoustic differences were preserved in the random 
syllabic sequences. Each normal trial contained 40 syllables. In outlier trials, four 
consecutive syllables were replaced by a Chinese idiom.

Backward syllabic sequences. In normal trials, ten four-syllable sentences were 
played but with all syllables being played backward in time. An outlier trial was 
the same as a normal trial except that four consecutive syllables at a random  
position were replaced by four random syllables that were not reversed in time.

Four-syllable idioms. 50 common four-syllable idioms were selected 
(Supplementary Table 1), in which the first two syllables formed a noun phrase 
and the last two syllables formed a verb phrase. In a normal trial ten sentences 
were played. An outlier trial was the same as a normal trial except that the noun 
phrases in two idioms were exchanged, creating two nonexistent and semanti-
cally nonsensical idioms.

Sentences with variable duration and syntactic structures. The sentence dura-
tion was varied between four and eight syllables. 40 sentences were constructed 
for each duration, resulting in a total of 200 sentences (listed in Supplementary  

Table 1). All 200 sentences were intermixed. In a normal trial, ten different  
sentences were sequentially played without inserting any acoustic gap in 
between sentences. In an outlier trial, one of the ten sentences was replaced by a  
syntactically correct but semantically anomalous sentence. Examples of nonsense 
sentences, translated into English, included “ancient history is drinking tea” and 
“take part in his portable hard drive”.

Sentences with variable NP durations. All sentences consisted of a noun phrase 
followed by a verb phrase (Supplementary Table 1). The noun phrase had three 
syllables for half of the sentences (N = 45) and four syllables for the other half. 
A three-syllable noun phrase was followed by either a four-syllable verb phrase 
(N = 20) or a five-syllable verb phrase (N = 25). A four-syllable noun phrase was 
followed by a three-syllable verb phrase (N = 20) or a four-syllable verb phrase  
(N = 25). Sentences with different noun phrase durations and verb phrase dura-
tions were intermixed. In a normal trial 10 different sentences were played 
sequentially, without inserting any acoustic gap between phrases or sentences. 
In an outlier trial one sentence was replaced by a sentence with the same syntactic 
structure but that was semantically anomalous.

AMS. Five sets of AMS were created. Each sentence consisted of three compo-
nents, C1, C2 and C3. Each component (C1, C2 or C3) was independently chosen 
from three candidate syllables with equal probability. The grammar of the AMS 
is illustrated in Supplementary Figure 4a. In the experiments, sentences were 
played sequentially without any gap between sentences. Since all components 
were chosen independently and each component was chosen from three syllables 
with equal probability, all components were equally predictable regardless of its 
position in a sequence. In other words, P(C1) = P(C2) = P(C3) = P(C2|C1) = 
P(C3|C2) = P(C1|C3) = 1/3.

All Chinese syllables were synthesized independently and adjusted to 300 ms 
by truncation or padding silence at the end. In each trial, 60 sentences were 
played and no additional gap was inserted between sentences. Therefore, the 
syllables were played at a constant rate of 3.33 Hz and the sentences were played 
at a constant rate of 1.11 Hz. To make sure that neural encoding of the AMS was 
not confounded by acoustic properties of a particular set of syllables, five sets of 
AMS were created (Supplementary Table 1). No meaningful Chinese expressions 
are embedded in the AMS sequences.

Stimuli II: English materials. All English materials were synthesized using the 
MacinTalk Synthesizer (male voice Alex, in Mac OS X 10.7.5).

Four-syllable English sentences. 60 four-syllable English sentences were con-
structed (Supplementary Table 1), and each syllable was a monosyllabic word. All 
sentences had the same syntactic structure: adjective/pronoun + noun + verb +  
noun. Each syllable was synthesized independently, and all the synthesized  
syllables (250–347 ms in duration) were adjusted to 320 ms by padding silence 
at the end or truncation. The offset of each syllable was smoothed by a 25-ms 
cosine window. In each trial, 12 sentences were presented without any acous-
tic gap between them. In an outlier trial, 3 consecutive words from a random  
position were replaced by three random words so that the corresponding 
sentence(s) became ungrammatical.

Shuffled sequences. Shuffled sequences were constructed as an unintelligible 
sound sequence that preserved the acoustic properties of the sentence sequences. 
All syllables in the four-syllable English sentences were segmented into five over-
lapping slices. Each slice was 72 ms in duration and overlapped with neighboring 
slices for 10 ms. The first 10 ms and the last 10 ms of each slice was smoothed by a 
linear ramp, except for the onset of the first slice and the offset of the last slice.
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A shuffled ‘sentence’ was constructed by shuffling all slices at the same position 
across the four-syllable sentences. For example, the first slice of the first syllable 
in a given sentence was replaced by the first slice of the first syllable in a different 
randomly chosen sentence. For another example, the third slice of the fourth 
syllable in one sentence was replaced by the third slice of the fourth syllable in 
another randomly chosen sentence. In a normal trial, 12 different shuffled sen-
tences were played sequentially, resulting in a trial that had the same duration 
as a trial of four-syllable English sentences. In an outlier trial, four consecutive 
shuffled syllables were replaced by four randomly chosen English words that did 
not construct a sentence.

Markovian sentences. The pronunciation of an English syllable strongly 
depends on its neighbors. To simulate more natural English, we also synthe-
sized English sentences based on an isochronous multi-syllabic ‘acoustic chunk’. 
Every sentence was divided into three acoustic chunks that were roughly equal in 
duration. Each acoustic chunk consisted of 1–2 monosyllabic or bisyllabic words 
and was synthesized as a whole, independently of neighboring acoustic chunks.  
All synthesized acoustic chunks (250–364 ms in duration) were adjusted to 350 ms  
by truncation or padding silence at the end. The offset of each chunk was 
smoothed by a 25-ms cosine window.

Two types of Markov chain sentences were generated based on isochronous 
sequences of acoustic chunks. In one type of Markovian sentences, called the 
constant predictability sentences, each acoustic chunk was equally predictable 
based on the preceding chunk, regardless of its position within a sentence.  
The constant predictability sentences were generated based on the grammar 
specified in Figure 3a and Supplementary Figure 1e. Listeners were familiar-
ized with the grammar and were able to write down the full grammar table 
before participating in the experiment. In each trial, ten sentences were sepa-
rately generated based on the grammar and sequentially presented without any 
acoustic gap between them.

The other type of Markovian sentences, called the predictable sentences, con-
sisted of a finite number of sentences (N = 25, Supplementary Table 1) that 
were extensively repeated (11–12 times) in a ~7-min block. In these sentences, 
the second and the third acoustic chunks were uniquely determined by the first 
chunk. In each trial, ten different sentences were played sequentially without any 
acoustic gap between them.

Acoustic analysis. The intensity fluctuation of the sound stimulus is charac-
terized by its temporal envelope. To extract the temporal envelope, the sound 
signal is first half-wave rectified and then downsampled to 200 Hz. The Discrete 
Fourier Transform of the temporal envelope (without any windowing) is shown in  
Figure 1 and Supplementary Figure 2.

Experimental procedures. Seven experiments were run. Experiment 1–4 
involved Chinese listeners listening to Chinese materials, experiment 5 involved 
English listeners listening to Chinese materials, and experiment 6 involved 
English listeners listening to English materials. Experiment 7 involved Chinese 
listeners listening to AMS.

In all experiments except for experiment 5, listeners were instructed to detect 
outlier trials. At the end of each trial, listeners had to report whether it was a  
normal trial or an outlier trial via button press. Following the button press, 
the next trial was played after a delay randomized between 800 and 1,400 ms.  
In experiment 5, listeners performed a syllable counting task described below. 
Behavioral results are reported in Supplementary Table 2.

Experiment 1. Four-syllable Chinese sentences, four-syllable idioms, random 
syllabic sequences and backward syllabic sequences were presented in separate 
blocks. The order of the blocks was counter balanced across listeners. Listeners 
took breaks between blocks. In each block, 20 normal trials and ten outlier trials 
were intermixed and presented in a random order.

Experiment 2. Four-syllable sentences, type I four-syllable verb phrases, type II  
four-syllable verb phrases, two-syllable noun phrases, and two-syllable verb 
phrases were presented in separate blocks. The order of the blocks was counter  
balanced across listeners. Listeners took breaks between blocks. In each block, 
20 normal trials and five outlier trials were intermixed and presented in a  
random order.

Experiment 3. Sentences with variable durations and syntactic structures, as 
described above, were played in an intermixed order. Listeners took a break every 
25 trials. In total, 80 normal trials and 20 outlier trials were presented.

Experiment 4. Sentences with variable NP durations, as described above, 
were presented in a single block, counterbalanced with three other blocks that 
presented language materials not analyzed here. In that block, 27 normal trials 
and seven outlier trials were presented. The other three blocks presented other 
language materials not analyzed here. The order of the blocks was counterbal-
anced across listeners.

Experiment 5. Trials consisting of four-syllable sentences, four-syllable idioms, 
random syllabic sequences, and backward syllabic sequences were intermixed and 
presented in a random order. 20 normal trials for each type of materials were pre-
sented. In each trial, the last 1 or 2 syllable was removed, each with 50% probability. 
Listeners were instructed to count the number of syllables in each trial in a cyclic 
way: 1, 2, 3, 4, 1, 2, 3, 4, 1, 2 … The final count could only be 2 or 3 and the listeners 
had to report whether it was 2 or 3 at the end of each trial via button press.

Experiment 6. Four-syllable English sentences, shuffled sequences, constant 
predictability Markovian sentences, and predictable Markovian sentences were 
presented in separate blocks. The order of the blocks was counterbalanced across 
listeners. Listeners took breaks between blocks. In each block, 22 normal trials 
and 8 outlier trials were intermixed and presented in a random order.

Experiment 7. The experiment involved the AMS and was divided into two  
sessions. In the first session, ten trials were presented (two trials from each AMS 
set; see the upper row in Supplementary Fig. 4b). In each trial, the last syllable was 
removed with 50% probability. The listeners were told that the stimulus was only a 
sequence of random syllables. They were asked to count the number of syllables in a 
cyclic way: 1, 2, 1, 2, 1, 2 … and report whether the final count was 1 or 2 at the end 
of each trial via button press. Since each trial contained 179 or 180 rapidly presented 
syllables, the listeners were not able to count accurately (mean performance 52 ± 
9.7%, not significantly above chance, P > 0.8, t test). However, the listeners were 
asked to follow the rhythm and keep counting even when they lost count. After 
the first session of the experiment was finished, the listeners were told about that 
the general structure of the AMS and examples were given based on real Chinese 
sentences. In the second session of the experiment, the listeners had to learn the 
5 sets of AMS separately (lower row, Supplementary Fig. 4b). For each set of the 
AMS, during training, the listeners listened to 20 sentences from the AMS set in a 
sequence, with a 300-ms gap being inserted between sentences to facilitate learning. 
Then, the listeners listened to two trials of sentences from the same AMS set, which 
they also listened to in the first session (shown by symbol S in Supplementary  

Fig. 4b). They had to do the same cyclical counting task. However, they were told 
that the last count was 1 if the last sentence was incomplete and the last count was 2 
if the last sentence was complete (mean performance 82 ± 8.0%, significantly above 
chance P < 0.2, t test). At the end of the two trials, the listeners had to report the 
grammar of the AMS, i.e. which 3 syllables could be the first syllable of a sentence, 
which three syllables could be the middle one, and which three syllables could 
be the last one. The grammatical roles of 77 ± 7.6% (mean ± s.e. across subjects)  
syllables were reported correctly.

Neural recordings. Cortical neuromagnetic activity was recorded using a  
157-channel whole-head MEG system (KIT) in a magnetically shielded room. 
The MEG signals were sampled at 1 kHz, with a 200-Hz low-pass filter and a 
60-Hz notch filter applied online and a 0.5-Hz high-pass filter applied offline 
(time delay compensated). The environmental magnetic field was recorded using 
three reference sensors and regressed out from the MEG signals using time-
shifted PCA52. Then, the MEG responses were further denoised using the blind 
source separation technique, Denoising Source Separation (DSS)53. The MEG 
responses were decomposed into DSS components using a set of linear spatial 
filters, and the first 6 DSS components were retained for analysis and transformed 
back to the sensor space. The DSS decomposes multi-channel MEG recordings 
to extract neural response components that are consistent over trials and has 
been demonstrated to be effective in denoising cortical responses to connected 
speech18,54,55. The DSS was applied to more accurately estimate the strength of 
neural activity phase-locked to the stimulus. Even when the DSS spatial filtering 
process was omitted, for the r.m.s. response over all MEG sensors, the senten-
tial, phrasal, and syllabic responses in Figure 1 were still statistically significant  
(P < 0.001, bootstrap).

Data analysis. Only the MEG responses to normal trials were analyzed.
Frequency domain analysis. In experiments 1, 2, 5 and 6, the linguistic  

structures of different hierarchies were presented at unique and constant rates 
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and neural tracking of those linguistic structures was analyzed in the frequency 
domain. For each trial, to avoid the transient response to the acoustic onset of each 
trial, the neural recordings were analyzed in a time window between the onset of 
the second sentence (or the fifth syllable if the stimulus contained no sentential 
structure) and the end of the trial. The single-trial responses were transformed into 
the frequency domain using the discrete Fourier transform (DFT). For all Chinese 
materials and the artificial Markovian language materials, nine sentences were ana-
lyzed in each trial, resulting in a frequency resolution of 1/9 of the sentential rate 
(~0.11 Hz). For the English sentences and the shuffled sequences, the trials were 
longer and the duration equivalent to 44 English syllables was analyzed, resulting 
in a frequency resolution of 1/44 of the syllabic rate, that is, 0.071 Hz.

The response topography (Fig. 1c) showed the power of the DFT coefficients 
at a given frequency and hemispheric lateralization was calculated by averaging 
the response power over the sensors in each hemisphere (N = 54).

Given that the properties of the neural responses to linguistic structures and 
background neural activity might vary in different frequency bands, to treat each 
frequency band equally, a separate spatial filter was designed for every frequency 
bin in the DFT output to optimally estimate the response strength. The linear 
spatial filter was the DSS filter56. The output of the DSS filter was a weighted  
summation over all MEG sensors, and the weights were optimized to extract 
neural activity consistent over trials. In brief, if the DFT of the MEG response 
averaged over trials is X(f) and the autocorrelation matrix of single-trial MEG 
recordings is R(f), the spatial filter is w = R−1(f)X(f) (see the appendix of ref. 56). 
The spatial filter w is an 157 × 1 vector (for the 157 sensors), the same size as X(f), 
and R(f) is a 157 × 157 matrix. The spatial filter could be viewed as a virtual sen-
sor that was optimized to record phase-locked neural activity at each frequency. 
Power of the scalar output of the spatial filter, |XT(f)R−1(f)X(f)|2, was the power 
spectral density shown in the figures.

Time domain analysis. The response to each sentence was baseline corrected 
based on the 100-ms period preceding the sentence onset, for each sensor.  
To remove the neural response to the 4-Hz isochronous syllabic rhythm and focus 
on the neural tracking of sentential/phrasal structures, we low-pass filtered the 
neural response waveforms using a 0.5-s duration linear phase FIR filter (cut-off 
3.5 Hz). The filter delay was compensated by filtering the neural signals twice, 
once forward and once backward. When the response power at 4 Hz was extracted 
separately by a Fourier analysis, it does not significantly change as a function of 
sentence duration (P > 0.19, one-way ANOVA). The r.m.s. of the MEG responses 
was calculated as the sum of response power (that is, square of the MEG response) 
of all sensors, and the r.m.s. response was further low-pass filtered by a 0.5-s  
duration linear phase FIR filter (cut-off 3.5 Hz, delay compensated).

A linear decoder was built to decode the duration of sentences. In the decoding 
analysis, the multi-channel MEG responses were compressed to a single channel, 
i.e. the first DSS component, and the decoder solely relied on the time course of 
the neural response. A 2.25-s response epoch was extracted for each sentence, 
starting from the sentence onset. A leave-one-out cross-validation procedure 
was employed to evaluate the decoder’s performance. Each time, the response 
to one sentence was used as the testing response, and the responses to all other 
sentences were treated as the training set. The training signals were averaged 
for sentences of the same duration, creating a template for the response time 
course for each sentence duration. The testing response was correlated with all 
the templates and the category of the most correlated templates was the decoder’s 
output. For example, if the testing response was most correlated with the template 
for 5-syllable sentences, the decoder’s output would be that the testing response 
was generated by a five-syllable sentence.

Statistical analysis and significance tests. For spectral peaks (Figs. 1 and 2), a 
one-tailed paired t test was used to test if the neural response in a frequency bin 
was significantly stronger than the average of the neighboring four frequency 
bins (two bins on each side). Such a test was applied to all frequency bins below 
5 Hz, and a FDR correction for multiple comparisons was applied. Except for the 
analysis of the spectral peaks, two-tailed t tests were applied. For all the t tests 
applied in this study, data from the two conditions had comparable variance 
and showed no clear deviation from the normal distribution when checking the  
histograms. If the t test was replaced by a bias-corrected and accelerated  
bootstrap, all results remained significant.

In Figure 4, the s.e.m. over subjects was calculated using bias-corrected and 
accelerated bootstrap57. In the bootstrap procedure, all the subjects were resampled 

with replacement 2,000 times. The s.d. of the resampled results was taken as the 
s.e.m. In Figure 4d, the statistical difference between the two curves, that is, the 
three-syllable NP condition and the four-syllable NP condition, was also tested 
using bootstrap. For each subject, the difference between the responses in these 
two conditions was taken. At each time point, the response difference was resam-
pled with replacement 2,000 times across the eight subjects, and percentage of the 
resampled differences being larger or smaller than 0 (the smaller value) was taken 
as the significance level. A FDR correction was applied to the bootstrap results.

Code availability. The computer code used for the MEG analyses is available 
upon request.

Neural Source Localization Using ECoG. ECoG participants. ECoG recordings 
were obtained from five patients (three female; average 33.6 years old, range 19–42 
years old) diagnosed with pharmaco-resistant epilepsy and undergoing clinically 
motivated subdural electrode recordings at the New York University Langone 
Medical Center. Patients provided informed consent before participating in the 
study in accordance with the Institutional Review Board at the New York University 
Langone Medical Center. Three patients were right-handed, two were left-handed. 
All patients were native English speakers (one of them was a bilingual Spanish/
English speaker), and all patients were left-hemisphere dominant for language.

ECoG recordings. Participants were implanted with 96–179 platinum-iridium  
clinical subdural grid or strip electrodes (three patients with a left-hemisphere 
implant and two patients with a right hemisphere implant, additional depth elec-
trodes implanted for some patients but not analyzed). The electrode locations per 
patient are shown in Supplementary Figure 5. Electrode localization followed previ-
ously described procedures58. In brief, for each patient we obtained pre-op and post-
op T1-weighted MRIs which were co-registered with each other and normalized to a 
MNI-152 template, allowing the extraction of the electrode location in MNI space.

The ECoG signals were recorded with a Nicolet clinical amplifier at a sampling 
rate of 512 Hz. The ECoG recordings were re-referenced to the grand average over 
all electrodes (after removing artifact-laden or noisy channels). Electrodes from 
different subjects were pooled per hemisphere, resulting in 385/261 electrodes 
in the left/right hemispheres. High gamma activity was extracted by high-pass 
filtering the ECoG signal above 70 Hz (with additional notch filters at 120 and 
180 Hz). The energy envelope of high gamma activity was extracted by taking 
the square of high-gamma response waveform.

ECoG procedures. Participants performed the same task as healthy subjects in 
the MEG (Fig. 2e,f). In brief, they listened to a set of English sentences and control 
stimuli in the first and second block. The control stimulus, that is, the shuffled 
sequences, preserves the syllabic-level acoustic rhythm of English sentences but 
contain no hierarchical linguistic structure. The procedure was the same as the 
MEG experiment, except for a familiarization session in which the subjects listened 
to individual sentences with visual feedback. 60 trials of sentences and control stim-
uli were played. The ECoG data from each electrode was analyzed separately and 
converted to the frequency domain via DFT (frequency resolution 0.071 Hz).

A significant response at the syllabic, phrasal or sentential rate was reported if 
the response power at the target frequency was stronger than the response power 
averaged over neighboring frequency bins (0.5-Hz range above and below the 
target frequency). The significance level for each electrode was first determined 
based on a bootstrap procedure that randomly sampled the 60 trials 1,000 times 
and then underwent FDR correction for multiple comparisons across all elec-
trodes in the same hemisphere.

A Supplementary Methods Checklist is available.
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