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Cortico-hippocampal network connections
support the multidimensional quality of
episodic memory
Rose A Cooper*, Maureen Ritchey

Department of Psychology, Boston College, Boston, United States

Abstract Episodic memories reflect a bound representation of multimodal features that can be

reinstated with varying precision. Yet little is known about how brain networks involved in memory,

including the hippocampus and posterior-medial (PM) and anterior-temporal (AT) systems, interact

to support the quality and content of recollection. Participants learned color, spatial, and emotion

associations of objects, later reconstructing the visual features using a continuous color spectrum

and 360-degree panorama scenes. Behaviorally, dependencies in memory were observed for the

gist but not precision of event associations. Supporting this integration, hippocampus, AT, and PM

regions showed increased connectivity and reduced modularity during retrieval compared to

encoding. These inter-network connections tracked a multidimensional, objective measure of

memory quality. Moreover, distinct patterns of connectivity tracked item color and spatial memory

precision. These findings demonstrate how hippocampal-cortical connections reconfigure during

episodic retrieval, and how such dynamic interactions might flexibly support the multidimensional

quality of remembered events.

DOI: https://doi.org/10.7554/eLife.45591.001

Introduction
Memories for past events are highly complex, allowing us to travel back in time and subjectively re-

experience episodes in our lives. These events are not stored and played back to us as we experi-

enced them; rather, they are reconstructed in a hierarchical manner. Episodic reconstruction is

thought to be facilitated by hippocampal-neocortical processes that rebuild the rich content and

quality of past events within a spatio-temporal framework (Barry and Maguire, 2019; Ranga-

nath, 2010; Ritchey et al., 2015a; Robin, 2018) and integrate them with prior knowledge

(Morton et al., 2017). In turn, this adaptive, reconstructive process can lead to forgetting of specific

event features and variability in the precision with which different features are remembered

(Schacter et al., 2011).

Previous research has found widespread increases in cortical and subcortical brain activity when

people successfully remember rather than forget events (Rugg and Vilberg, 2013). Beyond changes

in activity, large-scale brain networks increase their communication strength during episodic retrieval

tasks (Fornito et al., 2012; Robin et al., 2015; Westphal et al., 2017), where functional connectiv-

ity, particularly of the hippocampus, is increased when events are remembered compared to forgot-

ten (Geib et al., 2017a; King et al., 2015; Schedlbauer et al., 2014; St Jacques et al., 2011). Such

neural changes are validated by behavioral evidence showing that event features are dependent on

one another in memory, emphasizing that remembering involves the binding of distinct elements

into a single, coherent event representation (Horner and Burgess, 2013; Horner and Burgess,

2014). This binding process is widely thought to be facilitated by the hippocampus (Barry and

Maguire, 2019; Horner et al., 2015; Moscovitch et al., 2016; Ritchey et al., 2015a). Therefore,

episodic retrieval is likely dependent on the coordination of memory ‘hubs’ such as the hippocampus
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with neocortical regions to reconstruct and integrate the diverse components of memory

representations.

Despite this research, little is known about how changes in hippocampal-cortical communication

flexibly support the multidimensional quality of remembered events. Distinct cortical areas support

the different building blocks of episodic memory: for instance, parahippocampal cortex (PHC) is

thought to provide the hippocampus with spatial context information, whereas perirhinal cortex

(PRC) codes for items within this context (Davachi, 2006; Diana et al., 2007; Diana et al., 2010;

Staresina et al., 2013; Staresina et al., 2011). Moreover, these medial temporal cortical regions are

situated within two large-scale networks (Ranganath and Ritchey, 2012; Ritchey et al., 2015a).

These networks show functional separation but some common hippocampal connections (Kim et al.,

2018; Libby et al., 2012; Ritchey et al., 2014; Wang et al., 2016), and have been proposed to sup-

port complementary memory functions. The PHC is part of a posterior-medial (PM) system thought

to form situation models of events (Ritchey et al., 2015a). PM regions include retrosplenial cortex,

which also demonstrates representational specificity for spatial environment (Epstein, 2008), poste-

rior cingulate, precuneus, and angular gyrus, which are recruited during subjectively vivid recollec-

tion and represent precise episodic context information (Baldassano et al., 2017; Kuhl and Chun,

2014; Richter et al., 2016; Robin and Moscovitch, 2017; Sreekumar et al., 2018). In turn, the PRC

is part of an anterior-temporal (AT) system supporting item and emotional associations

(Ritchey et al., 2015a). Within this system, the amygdala binds item-specific features with emotion

(Kensinger et al., 2011; Yonelinas and Ritchey, 2015), and anterior ventral temporal cortex and lat-

eral orbitofrontal cortex are further involved in processing object representations and the affective

significance of items to inform decision making and memory (Libby et al., 2014; Rolls and Graben-

horst, 2008).

A core tenet of the PMAT framework is that cortical systems must interact with each other and

with the hippocampus to support the multidimensional nature of episodic memory. However, several

aspects of this crucial principle have yet to be directly tested: First, how do functional network con-

nections reorganize during episodic retrieval? Second, do changes in these connections relate to the

amount and quality of information bound within memory? Finally, do different patterns of network

connectivity changes support the fidelity of different types of memory content? In this study, we

tested these questions to determine how cortico-hippocampal networks flexibly coordinate the

reconstruction of complex events.

The contribution of network interactions to the phenomenology of memory has been difficult to

establish in part due to the nature of memory tests commonly used in conjunction with functional

connectivity methods, which have typically relied on binary measures of ‘successful’ retrieval or sub-

jective ratings of vividness. These methods are insensitive to the diversity of integrated content and

objective precision of retrieved events. To this end, we tested participants on a memory reconstruc-

tion task to obtain continuous measures of different episodic memory features (Brady et al., 2013;

Harlow and Yonelinas, 2016; Nilakantan et al., 2017; Richter et al., 2016). Participants learned a

series of objects, each with a color, scene location, and emotion association, and then reconstructed

the visual appearance of the objects later on. Here, they selected a color from a continuous spec-

trum and moved around 360˚ panorama scenes to place the object in its original location, providing

a sensitive, objective, and naturalistic way of assessing memory (cf. Serino and Repetto, 2018). We

predicted that PM and AT systems would show a distinct network structure during encoding, but

that, crucially, these networks would become more integrated during episodic retrieval. Moreover,

we expected that increased inter-network and hippocampal connectivity would dynamically track

binding and the composite quality of features within memory. In line with the representational orga-

nization of the PMAT framework, we finally predicted that functional connectivity of PM and AT sys-

tems would track memory precision for spatial context and item information, respectively.

Results
Participants completed an episodic memory task in which they learned three features associated

with trial-unique objects: a color from a continuous spectrum, a location within a panorama scene,

and an emotionally negative or neutral sound (Figure 1A). In a subsequent test, participants were

first cued to covertly retrieve as much information about each object as possible, and then they

dynamically reconstructed each object’s color and scene location (Figure 1B), providing continuous
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measures of memory error in degrees (remembered feature value - encoded feature value). Using

these fine-grained memory measures, we test how the content and fidelity of information is bound

into a single memory representation, and if these memory processes are supported by flexible

engagement of the PM and AT cortico-hippocampal networks (Ritchey et al., 2015a).

Episodic features are recollected with varying precision
We first evaluated behavioral performance to quantify memory variability, both in terms of the prob-

ability of successful retrieval and precision of each reinstated feature. The proportion of ‘correct’

responses (memory success) was calculated for each of the object features - item color, spatial con-

text, and emotion association - and the precision of correct retrieval was additionally estimated for

color and spatial features. Here memory performance was evaluated by fitting a mixture model

(Bays et al., 2009; Zhang and Luck, 2008) to each participant’s response errors (Figure 2A; see

Materials and methods). Participants remembered the features well above chance on average

(Table 1), and the proportion of correct responses did not differ between color and scene features (t

(27) = 1.09, p=0.29). Participants varied in the precision with which they could remember these visual

details, but were more precise when remembering the object’s spatial location compared to color (t

(27) = 6.48, p<0.001).

The gist but not precision of episodic features is bound in memory
Based on the hypothesis that interactions between hippocampus and the PM and AT systems sup-

port the integration of recollected episodic information, we sought to test if measures of memory

success and precision were dependent across features within participants. To this end, we calculated

trial-specific measures of memory success (binary correct (1) vs. incorrect (0)) and memory precision

Figure 1. Experiment paradigm. (A) Participants encoded a series of objects, presented in a specific color and

scene location and accompanied by either an emotionally negative (orange; ‘bomb’) or neutral (green; ‘safe’)

sound. (B) For each trial in the memory test, participants first retrieved all features associated with an object in

their mind (‘remember’ event; green box). This remember event was the basis of all retrieval-related fMRI analyses.

Participants then retrieved the individual features of the object sequentially. For questions about the color and

scene location, participants recreated the object’s appearance by moving around the 360˚ color spectrum and

panorama scene. Accuracy was measured in terms of error (response - target). Background panoramic images

taken from the SUN 360 database (Xiao et al., 2012); objects taken from the Vision and Memory Lab

(Brady et al., 2013).

DOI: https://doi.org/10.7554/eLife.45591.002

Cooper and Ritchey. eLife 2019;8:e45591. DOI: https://doi.org/10.7554/eLife.45591 3 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.45591.002
https://doi.org/10.7554/eLife.45591


(reversed absolute error of correct trials; see Materials and methods). We expected that successful

retrieval of one feature would promote memory for the others (Horner and Burgess, 2013;

Figure 2. The gist but not precision of episodic features is bound in memory. (A) Aggregate color and scene

location errors (response - target) with the best-fitting mixture model probability density functions overlaid

(Figure 2—source data 1). (B) Memory dependency between the features across trials within subjects, in terms of

binary ‘correct’ vs. ‘incorrect’ retrieval, and the precision of correctly remembered visual information. The top

panel shows corrected dependency for successful recall of each feature pair. This measure reflects the observed

dependency of each feature pair ½PAB þ PA0B0 � after subtracting the expected dependency from the independent

model ½PAPB þ PA0PB0 �. The bottom panel shows the mean Fisher-transformed Pearson’s correlation between the

precision (P) of remembered color and scene trials and successful (S; correct vs. incorrect) retrieval of those

features (Figure 2—source data 2). Bars = Mean + /- 95% CI. **=p < 0.001.

DOI: https://doi.org/10.7554/eLife.45591.005

The following source data is available for figure 2:

Source data 1. Feature Errors.

DOI: https://doi.org/10.7554/eLife.45591.006

Source data 2. Feature Memory Dependency.

DOI: https://doi.org/10.7554/eLife.45591.007

Table 1. Feature memory success and precision.

The proportion of trials for which the emotion, color, and scene features were ‘successfully’ remem-

bered (note that chance is 0.5 for emotion and 0 for color and scene) and the precision (response

concentration k) of remembered color and scene features (Table 1—source data 1). Means (SE).

Feature Memory success Memory precision

Emotion 0.76 (0.02) —

Color 0.67 (0.04) 5.40 (0.49)

Scene 0.64 (0.04) 27.00 (3.30)

DOI: https://doi.org/10.7554/eLife.45591.003

The following source data is available for Table 1:

Source data 1. Feature Memory Success and Precision.

DOI: https://doi.org/10.7554/eLife.45591.004
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Horner and Burgess, 2014). Successful retrieval must be based on memory for at least the ‘gist’ of

the feature, that is, a general representation that can be high or low in resolution. Therefore, we

additionally asked whether successful retrieval further influences the precision with which other visual

information is remembered, and if the precision of different features in memory is related. All feature

pairs showed significant memory dependency for retrieval success (Figure 2B upper panel; ts(27) >

7.30, ps<0.001), so that retrieval of one feature was likely to lead to successful retrieval of the others.

However, successful retrieval of color and scene information did not significantly benefit the preci-

sion with which the other feature was recalled (ts(27) < 1.85, ps>0.07). Color and scene memory pre-

cision were also unrelated (t(27) = 0.32, p=0.75) (Figure 2B lower panel). Therefore, integration of

episodic information into a coherent memory trace likely involves the binding of gist-like information

about distinct features, whereas the specific resolution of each feature in memory appears to be

somewhat independent of this binding process.

Memory retrieval reduces modularity and increases inter-network
background connectivity
It remains untested how hippocampal, PM, and AT networks change in their communication during

episodic retrieval, and how such changes contribute to episodic memory. Our neuroimaging analy-

ses target this question in a hierarchical manner, testing i) how background network connectivity

reorganizes between encoding and retrieval, ii) if dynamic changes in network communication track

a measure of multidimensional memory quality, and iii) if dissociable connections support the fidelity

of different types of episodic features. We first compared functional connectivity during remember

events with connectivity during encoding events. Using the CONN toolbox (Whitfield-Gabrieli and

Nieto-Castanon, 2012), HRF-weighted correlations between each ROI (Figure 3A) times series were

computed across encoding and remember task events after first regressing out all trial- and mem-

ory-related activity and nuisance variables such as motion (see Materials and methods). Thus, con-

nectivity within each task reflects background covariation in ROI activity independent of trial and

behavioral factors driving changes in region-specific activity.

Modularity during each task was calculated from each subject’s thresholded (r >= 0.25), weighted

connection matrix using the Louvain method of community detection. This algorithm calculates a

global modularity value (Q), reflecting the degree to which a set of ROIs are functioning as distinct

modules. PM and AT systems appeared to be functioning as relatively distinct networks during

encoding (Figure 3C), but modularity across our ROIs was significantly reduced during episodic

retrieval (t(27) = �3.30, p=0.003), suggesting an increase in inter-network communication and a less

segregated network structure (Figure 3B). To quantify changes in within-network and between-net-

work communication, mean network density (strength of connections) was calculated for all ROI pairs

within the same hypothesized network and for all ROI pairs in different networks. Supporting our a

priori network structure, ROIs within the same network had substantially stronger connectivity

strength than ROIs between networks (F(1,27) = 132.83, p<0.001). Episodic retrieval was accompa-

nied by an overall increase in connectivity strength relative to encoding (F(1,27) = 14.84, p<0.001),

although the change in between-network connectivity was disproportionately greater than change in

within-network connectivity (F(1,27) = 11.43, p=0.002). Of note, change in modularity between

encoding and retrieval and the disproportionate increase in between-network connectivity strength

was robust to different thresholds used to define connections (modularity ts >3.18, ps<0.004; net-

work density interaction Fs > 10.47, ps<0.003; see Materials and methods). Therefore, episodic

retrieval is characterized by a notable increase in inter-network connections of hippocampus, PM,

and AT regions, and a breakdown in a modular network structure, perhaps facilitating integration of

different event features during memory reconstruction.

Dynamic changes in hippocampal-cortical network connectivity predict
memory quality
The background connectivity results suggest that episodic retrieval is associated with a less modular

hippocampus, PM, and AT network structure, consistent with prior research (Westphal et al., 2017).

Yet it is unclear whether these changes in network connectivity reflect a general retrieval state or

whether they actually support the recovery of complex episodic information. To address this ques-

tion, we used generalized psychophysiological interaction (gPPI) analyses to measure how effective
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connectivity of each ROI pair might be modulated by an event-specific, continuous measure of multi-

dimensional memory quality. This measure captures fine-grained information bound in memory,

accounting for both the amount and precision of remembered features (see Materials and methods),

thus providing a measure of retrieval sensitive to the quality and diversity of memory content. Note

that gPPI measures the influence of a seed on a target region after partialling out task-unrelated

connectivity and task-related activity, and thus the results include an asymmetrical effective connec-

tivity matrix.

Averaging across all possible ROI pairs, as predicted, there was an overall increase in connectivity

with event-specific increases in memory quality (mean beta = 0.36, SE = 0.16; t(27) = 2.17, p=0.019).

Taking the average of within-network and between-network connections for each seed-to-target

pair, we next tested how connectivity across our networks changed with increasing quality of

remembered details (Figure 4A). In line with the results of the background connectivity analyses, it

was primarily connections between our networks, particularly with the hippocampus, that increased

with memory quality. Specifically, AT-PM connectivity increased with higher memory quality (ts(27) >

Figure 3. Memory retrieval reduces modularity and increases inter-network background connectivity. (A) Bilateral anatomical ROIs included in all

analyses, obtained from probabilistic atlases in MNI space. PM ROIs: angular gyrus (ANG), precuneus (PREC), posterior cingulate cortex (PCC),

retrosplenial cortex (RSC), and parahippocampal cortex (PHC). AT ROIs: perirhinal cortex (PRC), amygdala (AMYG), anterior fusiform gyrus (FUS),

anterior inferior temporal cortex (ITC), and lateral orbitofrontal cortex (OFC). Hippocampus was divided into anterior (aHIPP) and posterior (pHIPP).

Visualization generated with BrainNet Viewer (Xia et al., 2013). (B) Mean change in functional connectivity between encoding and retrieval

(‘remember’) events, including overall modularity as well as between- and within-network density (mean strength of connections, defined as r > 0.25)

(Figure 3—source data 1). Bars = Mean + /- 95% CI, points = individual subject mean estimates. *=p < 0.05. (C) Mean ROI-to-ROI connectivity during

encoding, retrieval, and retrieval - encoding. Connections shown within a task exceed r = 0.25, p<0.05 FDR-corrected, and connections that change

between tasks are significantly different from zero, p<0.05 FDR-corrected.

DOI: https://doi.org/10.7554/eLife.45591.008

The following source data is available for figure 3:

Source data 1. Network Modularity and Density.

DOI: https://doi.org/10.7554/eLife.45591.009
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1.96, ps<0.05, FDR-corrected), and both the AT (t(27) = 3.10, p=0.007, FDR-corrected) and PM (t

(27) = 3.29, p=0.007, FDR-corrected) networks increased their connectivity to hippocampus. In tests

of the other direction, the hippocampus seed increased its connectivity to the PM system (t(27) =

2.39, p=0.027, FDR-corrected), but not significantly so to the AT system (t(27) = 1.65, p=0.06). This

unidirectional hippocampus-AT relationship implies that AT system activity explains more variance in

hippocampal activity with greater memory quality, but not vice versa. Turning to within-network con-

nections, anterior and posterior hippocampus increased their connectivity with each other with bet-

ter memory (t(27) = 3.12, p=0.007, FDR-corrected), but there was only a small change in within-PM

connectivity (t(27) = 1.71, p=0.049, uncorrected) and no significant change in within-AT communica-

tion (t(27) = 0.73, p=0.235). The individual ROI-to-ROI connections that showed a significant increase

in connectivity with memory quality are shown in Figure 4B. Of note, when comparing objects that

had been associated with an emotionally negative or neutral sound, increases in network connectiv-

ity with memory quality appeared to be slightly stronger for negative-associated objects, most pre-

dominantly for within-PM connections (t(27) = 2.24, p=0.033 uncorrected), and AT-to-PM

Figure 4. Dynamic changes in hippocampal-cortical network connectivity predict multidimensional memory quality. (A) Mean change in within- and

between-network connection strength with increasing memory quality during remember trials. **=p < 0.05, FDR-corrected; *=p < 0.05, uncorrected. (B)

Individual ROI-to-ROI connections whose connectivity strength positively tracks the quality of episodic retrieval. (C) Mean change in connectivity

between aHipp and pHipp ROIs and regions in the AT and PM systems with increasing memory quality (Figure 4—source data 1). (D) Hippocampus to

voxel connectivity with increasing memory quality. Voxels shown at a peak threshold of p<0.001, and a cluster threshold of p<0.05, FDR-corrected. (E)

Mean change in bilateral ROI activity with memory quality during retrieval (Figure 4—source data 2). **=p < 0.001, FDR-corrected; *=p < 0.05, FDR-

corrected. Bars = Mean + /- 95% CI, points = individual subject estimates.

DOI: https://doi.org/10.7554/eLife.45591.010

The following source data is available for figure 4:

Source data 1. Memory-Modulated Hippocampal Connectivity.

DOI: https://doi.org/10.7554/eLife.45591.011

Source data 2. Memory-Modulated ROI Activity.

DOI: https://doi.org/10.7554/eLife.45591.012
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connections (t(27) = 2.74, p=0.011 uncorrected), although these emotion effects did not survive cor-

rection for multiple network comparisons.

Exploring these memory-related changes in hippocampal-cortical network connectivity in more

detail, we compared anterior and posterior hippocampus: Is there differential connectivity change

with the PM and AT systems along the hippocampal long axis? Comparing the mean of bidirectional

memory-modulated connectivity between each hippocampal subregion and cortical network

revealed no differences between aHipp and pHipp, as well as no differences in connectivity change

with the AT and PM systems, and no interaction between these factors (Fs(1,27) < 1.96, ps>0.17)

(Figure 4C). At the individual region level, there were also no significant differences between pHipp

and aHipp in terms of change in connectivity strength with increasing memory quality (|ts| < 2.34,

ps>0.26, FDR-corrected). In an exploratory, post-hoc test, we re-ran these analyses using only the

most posterior half of pHIPP and the most anterior half of aHIPP to probe if our results might have

been a function of how we subdivided the hippocampus. Interestingly, there was still no interaction

between hippocampal subregion and network (F(1,27) < 0.01, p=0.94), but across both networks,

connectivity changes were significantly greater for pHIPP than aHIPP (F(1,27) = 5.46, p=0.027).

Therefore, we found some evidence for differences along the hippocampal long axis, at least in the

most extreme segments; compared to aHipp, pHipp exhibited stronger increases in cortical connec-

tivity with higher memory complexity.

Finally, we ran two control analyses to test the role of our ROIs in supporting episodic memory

quality. First, to determine whether increases in hippocampal synchrony were specific to our net-

works of interest or whether evident globally, we analyzed whole-brain connectivity changes with

memory. Here, we evaluated the main effect of pHipp and aHipp seeds in terms of the modulatory

effect of memory quality on seed-to-voxel connectivity (see Figure 3D). The hippocampus increased

its communication with voxels in a select group of brain regions, including left dorsolateral prefrontal

cortex (�54, 18, 40, k = 784), bilateral parietal cortex (left: �36,–68, 42, k = 440; right: 40,–64, 58,

k = 170), precuneus (6,–72,46, k = 437), superior frontal gyrus (multiple clusters, total k = 620), pos-

terior cingulate (4,–28, 30, k = 186), inferior lateral occipital cortex (�50,–76, �20, k = 173), retro-

splenial cortex (�2,–42, 2, k = 111), and precentral gyrus (4,–22, 82, k = 90). Second, to verify that

our ROIs, particularly hippocampus, showed the expected sensitivity to memory retrieval in our task,

we ran a univariate general linear model in which remember events were parametrically modulated

by trial-specific values of memory quality. As expected, mean activity of a number of ROIs, particu-

larly within the PM network and hippocampus, positively tracked the quality of episodic retrieval

(Figure 4E). Surprisingly, unlike other PM regions, the relationship between angular gyrus activity

and memory quality was not significant. However, this is likely to be a function of our use of bilateral

ROIs to assess network-wide connectivity, where memory effects are more pronounced in left ANG

(Rugg and King, 2018). The present connectivity analyses control for changes in region-specific

activity with memory, thus highlighting the additional importance of functional communication of the

PM and AT systems and hippocampus to episodic retrieval.

Dissociable PMAT connections predict the precision of recalled item
and spatial features
The analyses of multidimensional memory quality provide evidence that changes in PM and AT inter-

network communication, particularly with hippocampus (cf. Fornito et al., 2012; Geib et al., 2017b;

King et al., 2015; Schedlbauer et al., 2014), positively track the complexity of information bound

within memory. Yet, because this measure is a composite of the quality of all memory features, it

remains unknown how PMAT connections support the fidelity of different types of remembered

information. This is particularly important to address in light of existing frameworks that emphasize

the role of informational content in determining memory organization (Davachi, 2006; Diana et al.,

2007; Eichenbaum et al., 2012; Graham et al., 2010). In the medial temporal lobes and connected

areas (Ranganath and Ritchey, 2012; Ritchey et al., 2015a), AT regions are sensitive to item-spe-

cific associations, and PM regions are sensitive to contextual information, but it is unclear how this

organization emerges in terms of network interactions. To this end, we further focused on remember

events, specifically trials where a feature was ‘successfully’ recalled, and tested where changes in

connectivity tracked increasing precision of event-specific i) item color and ii) spatial context, given

that these measures were found to be independent in memory (see Behavioral Results).
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Looking at the average change in connectivity across every seed-to-target pair, we found that

there was an overall positive change in connectivity with the precision of both item-color (mean

beta = 0.24, SE = 0.11; t(27) = 2.11, p=0.022) and spatial memory (mean beta = 0.25, SE = 0.13; t

(27) = 1.94, p=0.032). Are these overall increases in connectivity driven by distinct patterns? Interest-

ingly, within-subject correlations between color and spatial ROIxROI gPPI matrices revealed no evi-

dence for a similar pattern of connectivity changes with memory precision for these features (mean

z = 0.02, SE = 0.04; t(27) = 0.50, p=0.312). At the network level (Figure 5A), higher color precision

in memory was associated with increased connectivity from the AT system to the hippocampus (t(27)

= 2.24, p=0.017), between the hippocampus and PM system (ts(27) > 1.82, ps<0.04), as well as

increased communication between the AT and PM systems (ts(27) > 2.04, ps<0.026). All other

changes in connectivity were not significant (ts(27) < 1.48, ps>.074). Of note, these individual net-

work effects were relatively small and did not survive FDR-correction, although marginal. This may

be partially explained by a significant modulatory effect of emotional valence: Objects with a nega-

tive association showed more pronounced changes in connectivity with increasing color precision

than objects encoded with a neutral sound association (t(27) = 2.34, p=0.027). In contrast to the

color precision results, higher spatial precision in memory was accompanied by increased communi-

cation strength within the PM system (t(27) = 2.88, p=0.018, FDR-corrected) as well as from the AT

to the PM system (t(27) = 2.87, p=0.018, FDR-corrected). No other network-level connectivity

changes were significant (ts(27) < 1.65, ps>0.06, uncorrected), and these effects were not modulated

by the valence of the object’s emotion association (t(27) = �0.32, p=0.75). Therefore, item-color

Figure 5. PMAT connections predicting the precision of item and spatial features in memory. (A) Mean change in within- and between-network

connectivity with increasing color memory precision (left) and spatial memory precision (right) during remember trials. **=p < 0.05, FDR-corrected;

*=p < 0.05, uncorrected. (B) Individual seed-to-target connections whose connectivity strength tracks the precision of memory for color (left) and scene

(right) information, including PRC and AMYG, sensitive to item and emotion information in the AT system, and PHC and RSC, sensitive to spatial

information in the PM system. Depicted connections survive FDR-correction for all possible seed-to-target connections. Seed regions are shown as

larger nodes, with bold labels. (C) Mean strength of precision-modulated connectivity changes to ANG/PREC for AT seeds (PRC and AMYG) and PM

seeds (PHC and RSC), by feature ±95% CI. *=p < 0.05 (Figure 5—source data 1). Points = individual subject estimates.

DOI: https://doi.org/10.7554/eLife.45591.013

The following source data is available for figure 5:

Source data 1. Feature-Related Connectivity.

DOI: https://doi.org/10.7554/eLife.45591.014
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precision and spatial precision in memory were associated with dissociable network connectivity pat-

terns, and these patterns included an increase in inter-network AT connectivity and hippocampal

communication for item-color, but an increase in within-PM connectivity and no change in hippocam-

pal communication for spatial information.

Finally, to identify ROI connections that might be contributing to these feature-related network

patterns, analyses were further restricted to focus on four seed regions that we hypothesized should

show the most representational specificity within our experimental paradigm, including 2 AT regions

- PRC and AMYG - and 2 PM regions - PHC and RSC (Figure 5B). These regions show the most reli-

able findings of specificity to (i) item-feature and item-emotion bindings and (ii) spatial representa-

tions, respectively (Epstein, 2008; Kensinger et al., 2011; Ritchey et al., 2019; Robin et al., 2018;

Staresina et al., 2011) and are core representational nodes of the PMAT systems (Ritchey et al.,

2015a). We tested how these seed regions changed their connectivity to all other regions with (i)

increasing color memory precision and (ii) increasing spatial memory precision. All statistics were

FDR-corrected. For color precision, PRC showed the most widespread changes in connectivity to

aHipp, PREC, and ANG (ts(27) > 2.38, ps< 0.045). Additionally, AMYG increased its connectivity

with PREC (t(27) = 2.84, p=0.046) and PHC increased its communication with pHipp (t(27) = 2.85,

p=0.046). In contrast, the most pronounced increases in connectivity with spatial precision involved

PM regions: RSC increased its connection with ANG, PREC, and PCC (ts(27) > 2.91, ps< 0.013), PHC

with ANG and PCC (ts(27) > 2.99, ps< 0.016), and PRC increased its communication with ANG (t(27)

= 2.91, p=0.040). Because both sets of seeds showed precision-related changes in connectivity with

ANG and PREC, two regions previously associated with the vividness and precision of episodic recol-

lection (Lee et al., 2018; Oedekoven et al., 2017; Richter et al., 2016; Sreekumar et al., 2018),

we ran post-hoc tests to further investigate if PM seed (PHC and RSC) and AT seed (PRC and

AMYG) connections to these common targets differed by feature (Figure 5C). The change in con-

nectivity of PM seeds to ANG/PREC was significantly greater for spatial than color precision (t(27) =

2.67, p=0.013), but there was no difference between the features in connectivity of AT seeds (t(27) =

0.10, p=0.92). Therefore, although there is notable overlap in the PMAT connections that contribute

to the precision of different features in memory, there appears to be a degree of representational

specificity in connectivity patterns.

Discussion
Much research has demonstrated widespread increases in functional connectivity during episodic

retrieval (Fornito et al., 2012; Geib et al., 2017a; King et al., 2015; Schedlbauer et al., 2014;

St Jacques et al., 2011; Westphal et al., 2017), yet how these changes relate to the phenomenol-

ogy of recollective experience has remained unknown. The complex process of recollection is associ-

ated with several distinct elements, including subjective feelings of vividness, as well as the number

of details recalled, types of details recalled, and the precision of that information. Here, we focus on

the neural dynamics supporting the content and precision of recollected information. While several

prominent accounts have posited that medial temporal regions, including PHC and PRC, provide

memories with complementary spatial and item-specific representations, respectively, (Dava-

chi, 2006; Diana et al., 2007; Eichenbaum et al., 2012; Graham et al., 2010), a recent model - the

PMAT framework - extends this representational sensitivity to large scale cortical networks

(Ranganath and Ritchey, 2012; Ritchey et al., 2015a). Here, a PM system provides the spatial con-

textual scaffold for event details, including item, emotional, and semantic information provided by

an AT system. This content is thought to be integrated as an event via the hippocampus (Barry and

Maguire, 2019; Moscovitch et al., 2016). Although a core prediction of the PMAT framework is

that functional interactions between cortical systems and the hippocampus are crucial for reinstating

multidimensional episodic information, this prediction has not before been tested. First, we found

that the PMAT cortical systems functioned in a modular way during memory encoding, with the hip-

pocampus connecting to both systems. In contrast, episodic retrieval was accompanied by a dispro-

portionate increase in inter-network connections. Second, we found that both cortical systems

dynamically increased their connectivity to hippocampus with increasing multidimensional quality of

episodic memory. Finally, we found that color and spatial memory precision did not clearly map on

to changes in AT and PM connectivity, respectively, but rather that feature-related differences

emerged in how the networks communicated with each other and with the hippocampus.
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Previous research has reliably demonstrated functional segregation of the PMAT systems during

rest (Libby et al., 2012; Ritchey et al., 2014; Wang et al., 2016). Here, we observe a similarly clear

pattern of modularity with background connectivity during memory encoding, thus extending evi-

dence for this network structure to directed cognition. Interestingly though, this structure was less

pronounced during episodic retrieval, which was associated with an increase in between-network

connections, supporting the idea that reinstatement of event representations is likely driven by inter-

actions of the hippocampus and cortical regions and between cortical systems. Reduced modularity

during memory retrieval has been previously demonstrated at the whole-brain level alongside

increased hippocampal connectivity (Geib et al., 2017b; McCormick et al., 2015; Westphal et al.,

2017). Enhanced connectivity between large-scale cortical systems, including default mode and fron-

toparietal control networks, during episodic memory retrieval has also been shown (Fornito et al.,

2012; Kragel and Polyn, 2015; Robin et al., 2015; St Jacques et al., 2011; Westphal et al., 2017).

However, none of these prior studies directly compared whole-brain or network-level connectivity

during retrieval and encoding. Our finding of greater functional coupling of the PMAT cortical sys-

tems and hippocampus during episodic retrieval thus complements this previous work and serves as

a necessary foundation for understanding how the retrieval process alters network dynamics.

Extending evidence of PMAT-hippocampal integration during retrieval, we found that connectiv-

ity between these networks further tracked the event-specific quality of memory. Previous research

has found that increased functional communication, particularly with hippocampus, seems to be

important for ‘successful’ episodic retrieval (Geib et al., 2017b; King et al., 2015;

Schedlbauer et al., 2014). Results of our whole-brain connectivity analysis showed that the hippo-

campus increased its interaction with a select group of regions, most notably posterior medial and

left lateral frontal regions, showing a similar pattern to the results of King et al. (2015). In prior stud-

ies, memory on each trial has been typically quantified in terms of retrieving or forgetting a single

episodic feature or a subjective judgment of recollection, thus neglecting the multidimensional qual-

ity of event representations. Here, we used a composite score including information about the num-

ber of features present in memory as well as quality of those features. This allowed us to show that

inter-network connectivity changes parametrically capture an objective level of memory detail rather

than just the process of retrieval. Increased connectivity of PMAT regions to the hippocampus with

multidimensional memory quality strongly suggests that hippocampal-cortical connections may spe-

cifically act to bind multiple sources of event-specific information together in memory (Diana et al.,

2007; Horner et al., 2015; Ranganath, 2010), supporting flexible content retrieval (Horner and

Doeller, 2017), rather than simply facilitating access to individual associations or providing a general

index of recollection. Although we did not find evidence for differences in memory-related network

connectivity between our a priori anterior and posterior hippocampal subregions, an exploratory

analysis revealed differences between the most extreme long axis segments. Posterior hippocampus

showed stronger increases in memory-related connectivity than anterior hippocampus, but there

were no network-specific differences in connectivity patterns. This result aligns with recent findings

of increased representational granularity along the human hippocampal long axis (Brunec et al.,

2018; Nadel et al., 2013; Poppenk et al., 2013; Sheldon et al., 2016), such that posterior hippo-

campus might play a greater role in reconstructing detailed, precise episodic information by inte-

grating AT and PM systems.

Our behavioral results additionally revealed new evidence that episodic memories are bound at a

level that includes the gist of recovered information, but not necessarily the exact precision with

which it is remembered. Successful retrieval of episodic information showed the expected depen-

dent structure of a hippocampal binding process (Horner and Burgess, 2013; Horner and Burgess,

2014), such that retrieving one feature facilitated memory for the others. This was particularly the

case for spatial associations, such that successful retrieval of spatial location was associated with bet-

ter memory for the other features, supporting the organizational role of space in memory

(Robin, 2018). Interestingly, the precision of each individual feature was at least partially indepen-

dent of this binding mechanism, such that retrieving a scene location did not significantly improve

the precision of color memory, and vice versa, and the precision of recollected item color and spatial

context was also unrelated. These results align with the perspective that the primary role of the hip-

pocampus is to bind event features into a coherent spatio-temporal representation but the quality

of individual event features occurs at the level of cortical representations (Barry and Maguire,

2019). Therefore, the precision of bound features is theoretically separable from the binding process
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itself (cf. Richter et al., 2016). Other accounts have emphasized the role of the hippocampus in sup-

porting high-resolution bindings, but these studies have typically focused on the precision of a single

association (Kolarik et al., 2018; Nilakantan et al., 2018; Yonelinas, 2013). Thus, the present

results question whether there are limits to the precision of hippocampal representations, driven by

either the number of multimodal episodic associations or the type or precision of individual associa-

tions (Yonelinas, 2013).

The current study design additionally allowed us to examine functional connectivity changes asso-

ciated with the precision of distinct features within memory. We expected that within-PM and PM-

hippocampal communication would increase with spatial precision, whereas within-AT and AT-hippo-

campal communication would increase with item color precision. Our results partially supported

these predictions: inter-network connectivity of the AT system, hippocampus, and PM system

tracked the precision of item color memory, whereas connectivity to and within the PM system

tracked the precision of scene location memory. In line with our hypotheses, connectivity among

PHC, RSC and dorsal PM regions scaled with the precision of spatial but not color memory, suggest-

ing that within-PM connectivity might selectively support the resolution of spatial context associa-

tions. Much research has documented the complementary roles role of PHC and RSC in spatial

processing and navigation (Epstein, 2008; Mitchell et al., 2018), including sensitivity to distance

within virtual environments (Sulpizio et al., 2014). Moreover, a recent study showed that RSC is

important for forming scene representations and is sensitive to the identity of specific views in 360˚
panorama scenes (Robertson et al., 2016), in line with its role in viewpoint precision demonstrated

here. Surprisingly, we found no evidence that hippocampal connectivity supported the precision of

PM spatial representations, which is in contrast to evidence implicating the hippocampus, particu-

larly posterior, in spatial precision specifically (Nadel et al., 2013; Nilakantan et al., 2017;

Nilakantan et al., 2018; Stevenson et al., 2018).

In contrast, color precision was associated with connections between AT regions, particularly

PRC, to PM regions and hippocampus. Involvement of the PRC complements previous findings that

activity of this region is sensitive to item and item-color bindings in memory (Diana et al., 2010;

Staresina and Davachi, 2008). However, the finding that item-color precision was related to inter-

network connectivity, rather than within-AT connectivity, was an unexpected result. There are two

possible explanations: First, during episodic reconstruction, the fidelity of item representations may

be necessarily integrated within a broader PM contextual framework via the hippocampus. This

could explain why hippocampal connectivity supported the precision of color but not necessarily

spatial associations in memory. However, color memory precision was not significantly dependent

on retrieval of the scene location in our study, providing a tentative argument against this interpreta-

tion. Alternatively, the angular gyrus and precuneus may play a content-general role in the retrieval

and representation of high-fidelity information, thus explaining increased AT-PM connectivity associ-

ated with item-color precision. Previous research has demonstrated consistent involvement of these

regions in the representation of subjectively vivid and objectively precise information during memory

retrieval using both univariate activation and multivariate methods (Lee et al., 2018;

Oedekoven et al., 2017; Richter et al., 2016; Sreekumar et al., 2018). Moreover, anterior-poste-

rior neural contributions to memory have been proposed to follow a specificity gradient, from low

resolution to high resolution representations respectively, and not strictly based on informational

content (Robin and Moscovitch, 2017). Our findings lend some support to both perspectives: We

find evidence for anterior-posterior content sensitivity in terms of the most influential seed regions,

but also common functional projections to angular gyrus and precuneus supporting precise memory

retrieval.

The present study revealed network connectivity changes associated with the precision of differ-

ent features during the same retrieval event, indicating that parallel changes in network dynamics

support the complexity and content of episodic memory. Future research should examine the speci-

ficity of these cortico-hippocampal connections more closely, for instance, using causal methods that

can adjudicate their specific contributions (Kim et al., 2018; Nilakantan et al., 2017). These meth-

ods will be particularly useful given that episodic memories by definition reflect an integrated struc-

ture of item and context information. As such, our data show involvement of AT-PM connections,

including PRC and PHC seeds, in the precision of both item color and scene location memory, and

some prior research has highlighted engagement of PRC and PHC during recall of both object and

spatial information (Burke et al., 2018; Ross et al., 2017). Future research should also account for
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the temporal evolution of episodic memory, both in terms of the event itself and the retrieval pro-

cess. For instance, research has found shifting hippocampal connectivity patterns between memory

search and elaboration (McCormick et al., 2015; St Jacques et al., 2011), and it is an open ques-

tion how this temporal change would apply to the hippocampal-PMAT connections discussed here.

In summary, we provide evidence that PM and AT cortical systems increase their functional commu-

nication with each other and hippocampus during episodic retrieval, dynamically increasing with the

level of multidimensional memory quality. Moreover, we demonstrate for the first time how these

connections support the fidelity of complementary representations, driving the flexible reconstruc-

tion of past events.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifier Additional information

Software, algorithm R version 3.5.1,
RStudio

R Project for
Statistical Computing

https://www.r-project.org/

Software, algorithm FMRIPrep v1.0.3 Poldrack Lab,
Stanford University

https://fmriprep.
readthedocs
.io/en/1.0.3/

Software, algorithm MRIQC v0.10.1 Poldrack Lab,
Stanford University

https://mriqc.
readthedocs
.io/en/0.10.1/

Software, algorithm MATLAB 2017a Mathworks https://www.
mathworks.com/

Software, algorithm Psychtoolbox-3 Kleiner et al., 2007 http://psychtoolbox.
org/

Software, algorithm SPM12 Wellcome Centre
for Neuroimaging, UCL

https://www.fil.
ion.ucl.ac.uk/spm/

Software, algorithm CONN
toolbox v17

Gabrieli
Lab, MIT

https://web.conn-toolbox.org/

Participants
28 participants took part in the current experiment (16 females, 12 males). All participants were 18–

35 years of age (mean = 21.82 years, SD = 3.57) and did not have a history of any psychiatric or neu-

rological disorders. Six additional subjects took part but were excluded from data analyses: two par-

ticipants did not complete the experiment, one due to anxiety and the other due to excessive

movement in the MRI scanner, and four additional participants had chance-level performance on the

memory task (based on criteria outlined in Behavioral Analyses). This sample size was selected based

on a previous study investigating changes in functional connectivity with memory, also using psycho-

physiological interaction (PPI) analyses (King et al., 2015). Informed consent was obtained from all

participants prior to the experiment and participants were reimbursed for their time. Procedures

were approved by the Boston College Institutional Review Board.

Materials
The stimuli used in the current experiment included 144 objects selected from https://bradylab.

ucsd.edu/stimuli.html as used in Brady et al. (2013), 12 emotional and neutral sounds selected from

the International Affective Digitized Sounds (IADS) database (Bradley and Lang, 2007), and six pan-

orama scenes selected from the SUN 360 database (http://3dvision.princeton.edu/projects/2012/

SUN360/; Xiao et al., 2012).

All of the objects were selected on the basis that they did not have a stereotypical color and

were also easily recognizable. 120 unique colors from a continuous color spectrum in CIELAB color

space were used to change the appearance of the objects, where each color was separated by three

degrees around a 360-degree spectrum. Each object was resized to 240 � 240 pixels when overlaid

on a scene and 300 � 300 pixels when presented alone in grayscale. Six of the IADS sounds accom-

panying the objects were emotionally negative, as defined by valence rating of less than four and an
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arousal rating of greater than six on scales of 1 (low) to 9 (high) from the Bradley and Lang (2007)

norms, and had a mean valence of 2.43 (SD = 0.38) and a mean arousal of 7.63 (SD = 0.35). The six

neutral sounds were selected to have a valence between 4.5 and 6.5 and arousal less than 5, with a

mean valence of 5.31 (SD = 0.42) and a mean arousal of 4.03 (SD = 0.65). All sounds contained natu-

ral, easily recognizable content and were 6 s in duration.

Out of the six panorama scenes used for the experiment, half were indoor locations, including a

living room, and office, and a greenhouse, and half were outdoor locations, including a city plaza, a

field, and a beach. Each scene was selected through piloting to have no clear areas of symmetry, so

that perspectives farther apart, in terms of degrees around panorama, were not obviously more per-

ceptually similar the regions closer together. The original warped panorama images were unwarped

to provide naturalistic 100˚ field-of-view images using the ‘pano2photo’ function from the SUN 360

database, with each perspective resized to 800 � 600 pixels. Each of the panorama scenes was

divided into 120 unique image perspectives, with the center of each perspective shifted by three

degrees from the previous.

Procedures
Experimental paradigm
The experiment was divided into six study-test blocks, with all phases completed in the MRI scanner.

In each study phase, participants completed 24 trials (see Figure 1A), each of which began with a 1

s fixation, followed by the presentation of an object-scene-sound event for 6 s. Participants were

instructed to remember each object’s specific color and location within the panorama scene and

were also asked to use the sound to remember the object as a ‘bomb’ (negative sounds) or as ‘safe’

(neutral sounds). This instruction encouraged participants to integrate the object and its associated

features into a meaningful event. Within a study block, each panorama scene was shown four times

and each sound was encoded twice. All objects were trial unique. The object color and scene loca-

tion values were pseudo-randomly selected with the constraint that objects associated with the

same panorama within the same block should be at least 45 degrees apart in their color and location

within the scene to minimize interference. The trial order was randomized within each block for every

participant. Therefore, across the experiment, participants studied 144 object-scene-sound events,

with 72 objects accompanied by negative sound and 72 accompanied by a neutral sound, and 24

objects associated with each of the six panorama scenes. Allocations of the object-color-scene-

sound associations were randomly generated for each subject.

In each test phase, participants were tested on their memory for all 24 encoded events. On each

trial, a grayscale version of a studied object was shown for 4 s. During this time, participants were

asked to recall all of the details associated with that object during the study phase (emotion associa-

tion, color, and scene location) and to hold that whole image in mind as vividly as possible (see

Figure 1B). Participants then had an additional 2 s to indicate the object’s emotional association.

Following a 1 s fixation, participants were then shown the object-scene pairing that they studied,

but the object was presented in a random color, in a random location of the associated panorama

scene. Participants were asked to reconstruct both the color and scene location of the object as pre-

cisely as they could, the order of which was counterbalanced across trials. Participants had up to 6 s

to reconstruct each feature, with a 1 s fixation separating these questions. For the ‘color’ question,

participants were instructed to use two button box keys to move counterclockwise or clockwise

around the color spectrum to find the color of the object as they studied it originally (target color).

For the scene question, participants were asked to move counterclockwise or clockwise around the

panorama to find the location in which the object was originally presented (target scene location).

The feature value that participants chose for the first question was carried over to the second ques-

tion. At the end of each test phase, participants were presented with feedback on their performance

for 12 s, including the percentage of the time they correctly identified objects as bombs or safe, and

the percentage of the time that they were ‘close’ (defined as ±45 degrees from the target feature

value) to the original color or scene location of the objects.

FMRI data acquisition
MRI scanning was performed using a 3 T Siemens Prisma MRI scanner at the Harvard Center for

Brain Science, with a 32-channel head coil. Structural MRI images were obtained using a T1-
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weighted (T1w) multiecho MPRAGE protocol (field of view = 256 mm, 1 mm isotropic voxels, 176

sagittal slices with interleaved acquisition, TR = 2530 ms, TE = 1.69/3.55/5.41/7.27 ms, flip

angle = 7˚, phase encoding: anterior-posterior, parallel imaging = GRAPPA, acceleration factor = 2).

Functional images were acquired using a whole brain multiband echo-planar imaging (EPI) sequence

(field of view = 208 mm, 2 mm isotropic voxels, 69 slices at T > C�25.0 with interleaved acquisition,

TR = 1500 ms, TE = 28 ms, flip angle = 75˚, phase encoding: anterior-posterior, parallel

imaging = GRAPPA, acceleration factor = 2), for a total of 466 TRs per scan run. Fieldmap scans

were acquired to correct the EPI images for signal distortion (TR = 314 ms, TE = 4.45/6.91 ms, flip

angle = 55˚). Physiological data, including heart rate and respiration, were also collected but were

not further analyzed.

Analyses
FMRI data preprocessing
MRI data were first converted to Brain Imaging Data Structure (BIDS) format using in-house scripts,

verified using the BIDS validator: http://bids-standard.github.io/bids-validator/. MRIQC v0.10.1

(Esteban et al., 2017) was used as a preliminary check of MRI data quality. Scan runs were excluded

from data analyses if more than 20% of TRs exceeded a framewise displacement of 0.3 mm. Two

participants had one scan run excluded using this threshold. A further four participants also success-

fully completed only 5 out of the six scan runs, three as a result of exiting the scanner early and one

due to a technical problem with the sound system during the first run.

All data preprocessing was performed using FMRIPrep v1.0.3 (Esteban et al., 2019) with the

default processing steps. To summarize: each T1w volume was corrected for intensity non-uniformity

and skull-stripped. Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.0 (https://

surfer.nmr.mgh.harvard.edu/). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical tem-

plate version 2009c was performed through nonlinear registration, using brain-extracted versions of

both the T1w volume and template. All analyses reported here use structural and functional data in

MNI space. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-mat-

ter (GM) was performed on the brain-extracted T1w image. Functional data was slice time corrected,

motion corrected, and corrected for field distortion. This was followed by co-registration to the cor-

responding T1w using boundary-based registration with 9 degrees of freedom. Physiological noise

regressors were extracted applying CompCor. A mask to exclude signal with cortical origin was

obtained by eroding the brain mask, ensuring it only contained subcortical structures. Six aCompCor

components were calculated within the intersection of the subcortical mask and the union of CSF

and WM masks calculated in T1w space, after their projection to the native space of each functional

run. Framewise displacement was also calculated for each functional run. For further details of the

pipeline, including the software packages utilized by FMRIPrep for each preprocessing step, please

refer to the online documentation: https://fmriprep.readthedocs.io/en/1.0.3/.

Regions of interest
Regions of interest (ROIs) included the anterior (head) and posterior (body + tail) hippocampus

(aHipp and pHipp, respectively) and regions within the PM system and AT system. PM regions

included the parahippocampal cortex (PHC), retrosplenial cortex (RSC), posterior cingulate cortex

(PCC), precuneus (PREC), angular gyrus (ANG). AT regions included the perirhinal cortex (PRC),

amygdala (AMYG), anterior fusiform gyrus (FUS), anterior inferior temporal cortex (ITC), and lateral

orbitofrontal cortex (OFC). The selection of these PM and AT anatomical ROIs was based on previ-

ous research demonstrating both resting state and functional separation of these regions into dis-

tinct networks (Libby et al., 2012; Ritchey et al., 2014). All analyses were conducted using the

mean voxel value within each bilateral region. ROIs were obtained from probabilistic atlases thresh-

olded at 50%, including a medial temporal lobe atlas (https://neurovault.org/collections/3731/;

Ritchey et al., 2015b) for hippocampus, PHC, and PRC ROIs, and the Harvard-Oxford cortical and

subcortical atlases for all other regions (Figure 2A).

Behavioral analyses
Participants’ responses for the item color and scene location questions were analyzed by fitting a

mixture model (Bays et al., 2009; Zhang and Luck, 2008) to errors, both within-participant and
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across the aggregate group data. The mixture model includes a uniform distribution to estimate the

proportion of responses that reflected guessing, as well as a circular gaussian (von Mises) distribu-

tion to estimate the proportion of responses that reflected successful remembering (probability of

remembering the target), with some variation in precision:

p �̂

� �

¼ 1�gð Þfk �̂� �

� �

þg
1

2p

where, �̂ represents the reported feature value (in radians), � is the target (encoded) feature value,

g denotes the proportion of randomly distributed responses, and fk represents the von Mises distri-

bution whose parameters include a mean of zero and concentration k, which indicates the precision

of responses. Maximum likelihood estimates of k and g were obtained at the group and participant

level for each feature type. This model has been used in several previous behavioral and neuroimag-

ing studies to estimate long-term memory performance (Brady et al., 2013; Cooper et al., 2017;

Murray et al., 2015; Nilakantan et al., 2018; Richter et al., 2016; Xie and Zhang, 2017). Partici-

pants were excluded from all analyses if they had a mean absolute error (response - target) of 75˚ or
more on the color or scene questions, where chance-level performance would result in a mean abso-

lute error of 90˚. From pilot work, it was ascertained that such a low level of accuracy resulted in pre-

dominantly uniformly distributed data, leading to uninterpretable measures of memory precision

and unreliable model estimates of memory performance. Proportion correct was also calculated for

the emotion association.

We investigated how the emotion, color, and spatial features were bound in memory within each

participant, both in terms of quantity (successful vs. unsuccessful retrieval) and quality (retrieval pre-

cision). For the purpose of quantifying trial-specific measures of memory success and memory preci-

sion for color and scene features, we used the best fitting mixture model parameters from the

aggregate color and scene errors (Figure 2A) to generate a remembered vs. forgotten threshold.

Specifically, we calculated the probability that each color or scene error fitted the von Mises as

opposed to the uniform distribution based on the best fitting probability density function. Errors

that had at least a 50% chance of fitting the von Mises component were defined as ‘correct’ trials,

and errors with less than a 50% chance of fitting this component were defined as ‘incorrect’. This

resulted in a threshold of ±57 degrees for color errors and ±30 degrees for scene errors. First, we

computed the trial-to-trial dependency of a binary memory success (correct vs. incorrect) score for

each feature pairing (emotion-color, emotion-scene, color-scene), reflecting the proportion of trials

where features were remembered or forgotten together:PAB þ PA0B0 . These values were corrected by

the level of dependency predicted by an independent model accounting for overall memory accu-

racy, where better memory would lead to stronger correlations between the feature pairs

(Bisby et al., 2018; Horner and Burgess, 2013; Horner and Burgess, 2014):PAPB þ PA0PB0 . Second,

we calculated the within-participant Pearson’s correlation (Fisher z transformed) between the preci-

sion of correct color and scene memory and memory success. Trial-specific precision was defined as

the reversed absolute error of correct (successfully retrieved) trials, such that higher values reflect

higher precision. To test the dependence of color and scene precision, trials were restricted to those

where both features were successfully recalled. These trial-specific measures of memory success and

memory precision were also used to create parametric modulators for fMRI analyses.

Functional connectivity analyses
All connectivity analyses were conducted using the CONN toolbox (Whitfield-Gabrieli and Nieto-

Castanon, 2012). In all cases, functional data were first denoised within each scan run, including

demeaning, linear detrending, high-pass filtering at 1/128 Hz, and regression of the first principal

component from aCompCor - to remove white matter and CSF confounds -, framewise displace-

ment, and six motion parameters. All connectivity estimates were then calculated across the

concatenated functional runs, as is standard in CONN. All analyses for hippocampus, PM and AT

ROIs used unsmoothed functional data to ensure no voxels were included in mean estimates from

outside these anatomical regions. Whole brain analyses used functional data smoothed with a 5 mm

FWHM gaussian kernel, masked by gray matter. Connectivity estimates were calculated between the

mean time series of each bilateral ROI and then averaged at the network level where applicable.
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Task background connectivity
For analyses of network dynamics during encoding and retrieval, we ran a background connectivity

analysis. Here, we first created two task vectors reflecting the occurrence of i) encoding and ii)

‘remember’ events (the 6 s period containing the grayscale object cue at the beginning of each

retrieval trial) within the functional time series. Each event was modeled as a HRF-convolved delta

function and all other time points were assigned a value of zero. Five additional parametric covari-

ates were generated for each event type to capture memory effects during encoding and retrieval

trials: emotion memory, where trials were coded as incorrect (0), low confidence correct (0.5), or

high confidence correct (1), color and scene retrieval success, reflecting binary correct (1) vs. incor-

rect (0) retrieval, and the precision of ‘correct’ color and scene memory, coded as the reverse-scored

error of successfully remembered trials. Regressors for emotion memory and color and scene

retrieval success were mean-centered across all trials within an event (encoding or ‘remember’).

Regressors for color and scene precision were mean-centered within all successfully remembered tri-

als for that feature. As with the task regressors, all other time points within these memory covariates

were then set to zero and the vectors were convolved with the HRF. All task effects and memory

covariates were regressed out from the functional data prior to connectivity analyses as part of

CONN’s denoising step. Therefore, results represent connectivity during encoding and retrieval

tasks independent of trial- and memory-related changes in region activity.

To measure connectivity between our ROIs during encoding and retrieval, we calculated the Pear-

son’s correlation between each pair of mean ROI time series weighted by the vectors indicating

encoding and remember events. This produced two 12 � 12 correlation matrices for each subject -

one per task. We computed three measures to compare background connectivity between episodic

encoding and retrieval within each subject: (1) Modularity, reflecting the degree to which our regions

were operating as distinct networks, computed using the Louvain algorithm from R’s NetworkTool-

box (Christensen, 2018). This method calculates a global modularity value (Q), reflecting the degree

to which a set of ROIs are operating as a compartmentalized structure based on their covariation in

activity. (2) Within-network density, calculated as the average connectivity strength of all intra-net-

work hippocampus/PM/AT connections, and (3) Between-network density, calculated as the average

connectivity strength of all inter-network hippocampus/PM/AT connections. For the purposes of esti-

mating these graph measures, correlation matrices were thresholded at the subject level, with all

correlations less than 0.25 set to 0. This threshold was chosen arbitrarily, but note that the pattern of

results does not change when using alternative thresholds of 0, 0.1, 0.2, and 0.3 (see Results). For

the purpose of evaluating significant connections and changes in individual ROI-to-ROI connections

between the tasks, each subject’s correlation matrices were Fisher transformed to z scores before

averaging at the group-level. These statistics were FDR-corrected for multiple comparisons.

Memory-modulated connectivity
Generalized psychophysiological interactions (gPPI) analyses (McLaren et al., 2012) were used to

investigate changes in network connectivity with memory performance from trial-to-trial during

remember events. Two models were constructed. The first model tested the modulatory effect of an

objective measure of ‘multidimensional memory quality’ on connectivity. This trial-specific composite

memory quality measure incorporated both memory success and memory precision for all three

object features. Specifically, memory for each feature (emotional association, item color, scene loca-

tion) was scaled between 0 (incorrect) and 1 (perfect memory) on each trial. Low confidence, correct

memory for the emotion was coded as 0.5 and correct, high confidence emotion memory was coded

as 1. Correct memory for color and scene information was further scaled according to the precision

of the successfully remembered feature (reversed absolute error), where a value of 1 would reflect

perfect feature memory (an error of 0). Finally, these values were summed so that each trial could

have a total memory quality score between 0 and 3, with higher values reflecting better memory.

Therefore, a maximum value is achieved on any given trial not by simply remembering all features,

but by remembering them all with perfect precision. For each participant, this memory quality vector

was mean-centered within remember events and convolved with the HRF, with all other time points

set to zero. For gPPI analyses, the mean time series of each ROI was predicted by the mean time

series of a seed region, a psychological variable containing the HRF-convolved memory quality

scores, and the interaction of the seed time series and memory regressor. Taking these interaction
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terms produced a 12 � 12 gPPI matrix for each participant reflecting the change in functional con-

nectivity from each seed to target region with higher memory quality (e.g., stronger seed-target con-

nectivity when memory quality is high compared to low). Note that as gPPI measures the task-

related change in influence of a seed on a target region after partially out task-unrelated connectivity

and task-related activity, the outcome is an asymmetrical effective connectivity matrix.

We then tested whether changing network connectivity might be related to the precision of spe-

cific features in memory. In a second model, five parametric modulators captured memory retrieval

and precision for the individual episodic features during ‘remember’ events, as described in Task

Background Connectivity: emotion memory (coded in terms of incorrect, low confidence correct,

high confidence correct), color and scene retrieval success (coded as binary correct vs. incorrect

retrieval), and the precision of ‘correct’ color and scene memory, coded as the reverse-scored error

of remembered trials. In this gPPI analysis, each target ROI time series was predicted by a seed time

series, all five memory regressors, and the five seed*memory interaction terms. As before, emotion

memory, color and scene memory success regressors were orthogonalized relative to all remember

trials, whereas color and scene precision regressors were orthogonalized relative to remember trials

where memory for that feature was successfully retrieved. Therefore, each interaction beta reflects

the unique change in connectivity with each memory measure. Due to the dependency of feature

retrieval success and the contrasting independence of feature precision in memory (see Behavioral

Results), analyses were focused on changes in connectivity with i) the precision of color information

and ii) the precision of spatial information. The output from each gPPI interaction term was a 12 �

12 connectivity matrix containing the beta values for each ROI pair, reflecting the magnitude of con-

nectivity change between two regions with higher memory precision. All gPPI statistics were evalu-

ated using one-tailed tests, due to our hypothesis and prior literature suggesting that better

memory is accompanied by increased and not decreased connectivity. All network- and region-level

statistics were FDR-corrected for multiple comparisons. Some key scripts and data for behavioral

and neuroimaging analyses have been provided here: http://www.thememolab.org/paper-orbitfmri/

(Cooper and Ritchey, 2019; copy archived at https://github.com/elifesciences-publications/paper-

orbitfmri).
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