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The salience network (SN) plays a central role in cognitive control by integrating sensory

input to guide attention, attend to motivationally salient stimuli and recruit appropriate

functional brain-behavior networks to modulate behavior. Mounting evidence suggests

that disturbances in SN function underlie abnormalities in cognitive control and may

be a common etiology underlying many psychiatric disorders. Such functional and

anatomical abnormalities have been recently apparent in studies and meta-analyses

of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-

based morphometry (VBM). Of particular importance, abnormal structure and function in

major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior

insula (AI), have been observed as a common neurobiological substrate across a broad

spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s

associated subcortical structures, including the dorsal striatum, mediodorsal thalamus

and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit.

The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to

mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses

and their available treatments. Functional imbalances within the SN loop appear

to impair cognitive control, and specifically may impair self-regulation of cognition,

behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore,

treating such psychiatric illnesses using invasive or non-invasive brain stimulation

techniques appears to modulate SN cortical-subcortical loop integrity, and these effects

may be central to the therapeutic mechanisms of brain stimulation treatments in

many psychiatric illnesses. Here, we review clinical and experimental evidence for

abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance

use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We

also review emergent therapeutic evidence that novel invasive and non-invasive brain

stimulation treatments may exert therapeutic effects by normalizing abnormalities in the

SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series

of promising directions for future investigations on the role of SN cortico-striatal-thalamic

loop circuits in the pathophysiology and treatment of psychiatric disorders.
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INTRODUCTION

Psychiatric illnesses are among the leading causes of disability

and disease burden worldwide in the 21st century. For example,

the 2010 Global Burden of Disease study identified major

depressive disorder (MDD) as the second leading cause of years

of life lost to disability (Ferrari et al., 2013). Overall, mental

and substance use disorders (SUDs) accounted for 22.9% of

the global burden of years of life lost to disability (Whiteford

et al., 2013), with a prevalence of around one billion cases

worldwide (Whiteford et al., 2015). These illnesses have high

chronicity and community burden, and often show low response

rates to existing treatments. For example, in major depression,

conventional interventions are ineffective in at least one-third

of patients, and relapse rates are high even when remission

is achieved (Rush et al., 2006; Ferrari et al., 2013). Thus, an

important task for basic and translational neuroscience is to

better understand the underlying pathophysiology of psychiatric

illness, and to develop treatments that effectively target this

pathophysiology.

Over the last 25 years, one of the major advances in the

field has been the development of increasingly detailed maps

of the neural pathways that are affected in psychiatric illnesses.

Steady progress is being made in localizing abnormalities of both

brain structure and brain function. The neurologist’s traditional

question, ‘‘Where is the lesion?’’, formerly had few well-defined

answers for most psychiatric disorders. However, today there is

at least a first approximation of an answer to this question for

many of the most prevalent types of mental illness. Progress in

localizing psychiatric neuropathology has come from advances

in non-invasive neuroimaging techniques suitable for in vivo

use in humans. These include structural imaging techniques for

mapping gray and white matter pathology, such as voxel-based

morphometry (VBM) and diffusion tensor imaging (DTI), as well

as functional imaging techniques including functional magnetic

resonance imaging (fMRI), and positron emission tomography

(PET).

In healthy control subjects, application of these brain-

imaging techniques has been especially fruitful for delineating

the overall functional architecture of the human brain. One

major discovery has been that brain activity, during tasks or at

rest, is organized into functional networks of regions showing

correlated activity over time. The networks themselves appear to

be fairly consistent across individuals, with one influential report

identifying a set of seven reliably reproducible major networks,

subdivisible into a finer set of 17 smaller subnetworks (Yeo

et al., 2011). The earliest description of resting-state networks

was in the motor cortex (Biswal et al., 1995). Since that time, an

extensive literature of thousands of publications has developed

to describe the properties of several other major networks: a

default-mode network most active during non-task cognitive

states such as rumination or prospection (Raichle, 2015); a

central executive network most active during performance

of cognitive tasks involving attention or working memory

(Bressler and Menon, 2010); and more circumscribed networks

restricted to somatomotor or visual brain regions (Yeo et al.,

2011).

Among these brain networks, one in particular is emerging as

having particular significance to psychiatric illness: the salience

network (SN; Seeley et al., 2007; Menon, 2011). Sometimes

known by other terms such as the cingulo-opercular network

(Dosenbach et al., 2008), the SN corresponds to themore anterior

of the two subnetworks of the ‘‘ventral attention network (VAN)’’

described by Yeo et al. (2011). The SN features core nodes in

the dorsal anterior cingulate cortex (dACC) and the bilateral

anterior insula (AI), as well as additional cortical notes in specific

regions of the dorsolateral prefrontal cortex (dlPFC) and inferior

parietal lobule (IPL; Figure 1). In addition to these cortical nodes,

the SN also includes a specific set of subcortical nodes in the

head of the caudate nucleus, the mediodorsal nucleus of the

thalamus (MDN) and dopaminergic brainstem nuclei (Menon,

2011). Together, these structures complete a discrete cortico-

striatal-thalamic-cortical (CSTC) loop that can be discerned

using structural or functional neuroimaging (Seeley et al., 2007;

Metzger et al., 2010), and that also corresponds to an analogous

loop evident on tract-tracing studies in nonhuman primates

(Choi et al., 2016).

In healthy brain function, cortical nodes of the SN may

be activated passively by ‘‘salient’’ sensory stimuli (i.e., stimuli

that draw attention for being unexpected, novel or behaviorally

relevant; Corbetta et al., 2000; Downar et al., 2000, 2001, 2002).

These cortical activations become accompanied by subcortical

activations of the entire cortico-striatal-thalamic loop circuit

during active, voluntary engagement of cognitive control,

response selection or response inhibition; common examples

include the Stroop task, Go/No-Go task or flanker interference

task (Figure 2). As such, the SN has been proposed to play a

key role in cognitive control (Ham et al., 2013), i.e., switching

brain activity between introspective, ruminative functions of

the default-mode network and externally focused, task-based

functions of the central executive network (Menon and Uddin,

2010).

The importance of the SN to psychiatric illness emerges from

an influential meta-analysis of 193 VBM studies enrolling more

than 7000 individuals with a wide variety of psychiatric diagnoses

including depression, bipolar disorder, schizophrenia, SUD,

obsessive-compulsive disorder (OCD) and anxiety disorders

(Goodkind et al., 2015). Examining the patterns of decreased

gray matter in each disorder, the authors found a common

substrate across all diagnoses: loss of gray matter in the dACC

and bilateral AI. The loci of gray matter loss corresponded

closely with the core cortical nodes of the SN. As such,

loss of structural and functional integrity in the SN, and a

resultant impairment of cognitive control, has been proposed

as a transdiagnostic feature across many psychiatric illnesses

(McTeague et al., 2016) and also as a target for novel

therapeutic interventions, such as brain stimulation (Downar

et al., 2016).

As of this writing, over 1500 publications have made reference

to the SN, and a number of excellent reviews are available to

summarize this literature (Menon and Uddin, 2010; Menon,

2011; Dutta et al., 2014), including a recent book devoted entirely

to the subject (Uddin, 2017). The present review article aims

to build upon this work by considering the SN not just as
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FIGURE 1 | Meta-analytic co-activation of salience network (SN) nodes for response selection and inhibition. Neurosynth meta-analytic results following

key word searches for “response inhibition”, “response selection” and “SN”. Considerable overlap exists in the dorsal anterior cingulate cortex (dACC) region (A) and

lateral parietal cortex (B).

a resting-state cortical network, but more specifically as an

integrated, CSTC network with a particular role in the voluntary

engagement of cognitive control. First, we examine the anatomy

and function of the SN-CSTC in the healthy state. Second, we

review the available literature on abnormalities of the SN-CSTC

across a range of psychiatric disorders. Third, we review the

available literature on how brain stimulation techniques can

modulate the activity of the SN-CSTC, and how this modulation

may achieve therapeutic effects in psychiatric illness. Finally, we

consider a series of promising directions for future investigations

FIGURE 2 | Cortical and subcortical nodes of the SN from meta-analyses of functional magnetic resonance imaging (fMRI) studies of task-based

activation during cognitive control. Subcortical components of SN processing are apparent across a variety of executive functioning tasks, including Stroop task,

set shifting task, Go-No Go task and Flanker interference task, as shown through meta-analytic functional imaging data.
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on the role of the SN-CSTC loop circuits in the pathophysiology

and treatment of psychiatric disorders.

ANATOMY AND FUNCTION OF THE SN
CORTICO-STRIATAL LOOP

Anatomy of the SN
Cortico-Striatal-Thalamic Loop
The cortical nodes of the SN are evident in one of the 17 resting-

state networks cataloged in the 1000-subject, connectivity-based

parcellation of resting-state fMRI data by Yeo et al. (2011).

This network is the more anterior of the two subnetworks that

comprise the larger VAN. While the more posterior subnetwork

includes posterior insula and mid-cingulate nodes, the more

anterior subnetwork includes adjacent AI and dACC regions

(Figure 1). In addition, this network includes nodes in a specific

region of the dlPFC, on the middle frontal gyrus, distinct from

other lateral prefrontal regions assigned to the ‘‘frontoparietal’’

and ‘‘dorsal attention’’ networks in the Yeo et al. (2011) catalog.

The SN also includes a specific region of the IPL, in the angular

gyrus.

The interested reader can readily perform an independent

replication of this map of regions by using the online,

automated meta-analytic tool Neurosynth (Yarkoni et al.,

2011; Figure 2). Entering the term ‘‘SN’’ yields a set of

cortical regions that overlaps very closely with the more

anterior cingulo-insular network of Yeo et al. (2011). Entering

the term ‘‘cognitive control’’—a core domain within the

National Institute of Mental Health’s proposed Research

Domain Criteria for psychopathology research (Insel, 2014)—or

associated terms for the subdomains of ‘‘response inhibition’’

or ‘‘response selection’’ likewise yields very a similar set of

regions. Note that the purpose of this exercise is not to

infer a particular functional role for these regions, as such

inferences, based on correlations alone, are vulnerable to validity

challenges. Instead, this meta-analytic exercise demonstrates

the consistent co-activation of these regions as a coherent

network across a variety of studies in the neuroimaging

literature, with the functions of this network to be discussed

subsequently.

The meta-analytic maps in Figure 2 are also notable because

they reveal distinct subcortical nodes co-activating with the

cortical nodes of the SN during the performance of active tasks, as

opposed to during the resting state, from which the maps of Yeo

et al. (2011) were derived. These subcortical nodes are present

in the head of the caudate nucleus bilaterally, as well as in the

thalamicMDN. These striatal and thalamic nodes, taken together

with the cortical nodes of the SN, comprise the complete and

functionally integrated CSTC loop circuit particular to the SN,

for the purposes of the remainder of our review article.

The SN CSTC Loop Circuit in its Classical
Neuroanatomical Context
The classical description of cortico-striatal-thalamo-cortical loop

circuits of Alexander et al. (1986) included five parallel,

functionally segregated circuits: (i) a motor CSTC loop through

the supplementary motor area, putamen, ventrolateral globus

pallidus interna (GPi) and ventrolateral thalamus; (ii) an

oculomotor CSTC loop from the frontal eye field to the

body of the caudate, caudomedial GPi and lateral ventral

anterior thalamus; (iii) a lateral orbitofrontal CSTC loop

from the lateral orbitofrontal cortex to the ventromedial

caudate, medial dorsomedial GPi and medial ventral anterior

thalamus; (iv) a dorsolateral prefrontal CSTC loop from the

dlPFC to the dorsolateral caudate, lateral dorsomedial GPi

and parvocellular mediodorsal thalamus; and (v) an anterior

cingulate CSTC loop from the dorsal ACC to the ventral

striatum, ventral pallidum and posteriomedial mediodorsal

thalamus.

This classical set of five CSTC loops was originally derived

from nonhuman primate work; in humans, a more complex

and numerous set of CSTC loops is now considered likely.

Indeed, a 1000-subject parcellation of resting-state functional

connectivity in the striatum rather than the cortex (Choi et al.,

2012) revealed substantially more than five distinct striatal

regions, each associated with a specific cortical network cataloged

in the parcellation of Yeo et al. (2011). As such, the CSTC

loop of the SN may be expected to contain features of multiple

classical loop circuits, rather than corresponding precisely to

just one of them. The SN loop contains nodes that appear

in the classical dorsolateral prefrontal CSTC loop (i.e., dlPFC,

dorsolateral caudate and mediodorsal thalamus nodes), but also

contains cortical nodes in the anterior cingulate and the AI,

which do not appear in any of the classically described loops.

Conversely, each of the classically described CSTC loops of

Alexander et al. (1986) also includes a specific subregion of the

substantia nigra: rostrolateral for the dlPFC, and rostrodorsal

for the anterior cingulate. Substantia nigra activations do not

appear in the meta-analytic renderings of the SN (Figure 2),

as may be expected given the limited spatial resolution of

the fMRI data from which these renderings are derived.

However, it should be noted that the substantia nigra and

other midbrain dopaminergic centers such as the ventral

tegmental area (VTA) are important contributors to all

CSTC loops, and that rostral substantia nigra cell populations

have been identified as key contributors to the CSTC loops

serving SN cortical regions even in classical descriptions

(Alexander et al., 1986).

Functional Roles of Specific SN-CSTC
Nodes
Understanding the importance of SN function in cognitive

control requires a thorough review of the broader functional roles

of the SN’s individual cortical and subcortical components. As

noted earlier, key pre-Rolandic cortical nodes of the SN include

the bilateral AI, dACC and dlPFC (Seeley et al., 2007). Separately,

each of these areas have been linked to self-awareness, body

perception (Craig, 2009) and fundamental cognition (Delevich

et al., 2015). The AI plays an integral role in the response

and experience of emotional states (Craig, 2003), and level

of activity has been shown to correlate with stimulus valence

(Anders et al., 2004). In addition to emotional perception, the
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AI is proposed to estimate changing environmental demands to

modulate flexible cognitive control (Jiang et al., 2015). The AI

also responds during action selection during decision-making

(Paulus and Stein, 2006), and is therefore an integral component

of cognitive control and the SN. Furthermore, the dACC has

separately been implicated in cognitive regulation (Delevich

et al., 2015), divergent thinking, error detection and response

selection (Abraham et al., 2012; Sun et al., 2016). The dlPFC

has extensive projections to striatal nuclei and is involved in

top-down modulation of goal-directed behavior (Furman et al.,

2011). The dlPFC is also a key hub of cognitive control, as it is

implicated in executive function (Kuo and Nitsche, 2012) and

has been identified as a dominant cortical area within the brain’s

central cognitive control network (Menon, 2011;McTeague et al.,

2016).

Co-activation among cortical regions of the SN is also

associated with cognitive and behavioral phenomena related to

decision-making and cognitive control. For one, the AI, dACC

and dlPFC activate synchronously in response to uncertainty in

the environment; these regions overlap with areas implicated

in negative mood states (Feinstein et al., 2006; Naqvi and

Bechara, 2009; Davis and Hasson, 2016). The dACC and AI

activate together during decision-making; co-activation has been

shown to increase with task difficulty and stimulus ambiguity.

This finding suggests that the ‘‘difficulty dependent functional

architecture’’ between the dACC and AI plays a role in cognition

by filtering and integrating internal and external stimuli during

cognitive tasks (Lamichhane et al., 2016). In addition to coactivity

with separate functional networks, the dACC also possesses

extensive cortico-cortical connections within the PFC, including

the cognitive dlPFC hub and premotor regions, placing it

at the crossroads of learning and behavior systems (Haber,

2016).

Like other networks containing regions of association cortex,

the SN links to subcortical nodes in areas of the striatum

and limbic system, including (as noted above) the MDN, the

dorsal striatum and dopaminergic nuclei within the midbrain

and brainstem. The striatum, along with the entire basal

ganglia, is important in coordinating and sequencing the diverse

functions of the frontal lobes, from goal formation to executive

function to cognition and the selection of specific actions and

movements (Schultz et al., 2003). Whereas the ventral striatum

is involved in reward and motivation, the central and dorsal

striatum—including the caudate nucleus and the putamen—play

more integral roles in cognition and executive function (Haber,

2016).

Within the thalamus, the MDN is a relay nucleus

with reciprocal connections to regions of the medial PFC

(mPFC) that assists in flexible action selection by integrating

information from cortical, limbic and basal ganglia regions

(Delevich et al., 2015). Loss of functional communication

between the MDN and mPFC due to physical or chemical

lesions has been shown to interrupt behavioral flexibility

(Parnaudeau et al., 2013), learning and decision-making in

both humans and animals (Mitchell, 2015). The MDN is

integral to rapid associative learning and other executive tasks

that involve complex cognition, though its precise role in

integration and cognition remains incompletely characterized

(Mitchell, 2015).

The role of the SN as a coordinator of other networks

for cognitive control is supported by coactivation of its

cortical and subcortical nodes during tasks. For example,

functional links between the insula, which predicts changing

cognitive control demand, and ‘‘classic’’ cognitive control

circuits rooted in the dACC and dlPFC, allow for reactive

attentional control (Jiang et al., 2015). Extensive connections

from these regions to the dorsal striatum may link reactional

cognitive control to behavioral guidance, allowing for on-line

behavior regulation in response to salient environmental

stimuli (Botvinick et al., 2004; Haber, 2016). Specifically,

the dACC projects primarily to the dorsal caudate nucleus

and ventral striatum, overlapping partially but not completely

with frontostriatal projections from the dlPFC (Haber, 2016).

Strengthened resting state functional connectivity between

the AI and dACC has been associated with enhanced

cue reactivity in other brain areas including the putamen,

suggesting that functional connections throughout the loop

allow incoming information to exert downstream effects on

modulatory striatal areas (Janes et al., 2015). Although a general

topographic organization exists between the frontal cortex

and subcortical targets, there exists a complex convergence

across CSTC loops that originate in prefrontal areas, including

the ventromedial PFC (vmPFC) and orbitofrontal cortex; this

overlap suggests that CSTC circuit integration is structural as

well as functional, and provides modulation between and across

reward, prediction and saliency circuits (Averbeck et al., 2014;

Haber, 2016).

At the level of the brainstem, dopaminergic regions also

play a significant modulatory role in the SN CSTC loop.

Dopamine is integral to SN function: as noted earlier, the

VTA and rostral substantia nigra project to the basal ganglia

regions that subserve the classically described CSTC loops

serving the anterior cingulate and dlFPC; these dopaminergic

projections consequently play important roles in SN activity

and modulation. Dopamine projections throughout the SN have

been noted to play important roles not only in reward-oriented

learning and goal-directed behavior, but also in processing

motivational stimuli by directing attention to positive, adaptive

or rewarding environmental stimuli (i.e., mediating the salience

of environmental stimuli; Berridge, 1996; Koob and Volkow,

2010; Kroemer et al., 2014). Dopaminergic neurons in the

midbrain are critical to CSTC loops that encompass integrated

learning, executive function and motor control. Importantly,

the mesolimbic and nigrostriatal dopaminergic pathway have

been implicated in the encoding of ‘‘saliency prediction errors’’,

underscoring their broader contributions to the attribution of

salience to environmental stimuli (Kapur, 2003; Haber, 2016).

An SN Architecture for Salience, Cognitive
Control and Response Selection
In summary, the SN CSTC loop appears to function as a

distinct, well-integrated regulatory circuit that links cortical and

subcortical regions involved in cognition, attentional control,
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motivation, motor control and salience. The SN CSTC loop

has been described as a cortical input ‘‘filter’’ that selectively

identifies and flags stimuli on which to base cognitive and

behavioral responses (Furman et al., 2011; Choi et al., 2012).

The dlPFC primarily projects to the dorsolateral caudate to

serve cognitive control and executive functioning (Furman et al.,

2011), while the thalamic MDN supports cortico-striatal-cortical

information transfer and modulates cortical activity through

extensive connections with the PFC and midbrain dopaminergic

regions (Mitchell, 2015). Dopaminergic nuclei in the midbrain

and brainstem, which are often associated with limbic circuitry,

project widely throughout multiple loops of the striatum to

serve a variety of functions, both structurally and functionally.

For example, the substantia nigra makes extensive connections

with the striatum, cortex, thalamus and neighboring brainstem

regions, allowing dopaminergic outputs to exert far-reaching

effects on the flow of CSTC information (Haber, 2016). At

the same time, however, distinct populations of neurons in

the rostral substantia nigra may project more specifically to

the CSTC loops serving the cortical regions of the SN, as

recognized in classical descriptions of CSTC loop architecture

(Alexander et al., 1986). Working together, the subcortical

components of the SN communicate extensively with their

cortical counterparts to select salient (motivationally relevant)

stimuli, and to enable such stimuli to direct cognition and

behavior. It is this architecture that enables the SN to play

its central roles in salience detection, cognitive control and

the selection and/or inhibition of behavioral responses during

healthy brain function.

ABNORMALITIES OF SN-CSTC LOOP
CIRCUITS IN PSYCHIATRIC ILLNESSES

Aberrations of corticostriatal loop circuits that modulate

cognitive control and goal-directed behavior may underlie the

pathophysiology of several psychiatric illnesses. Although

specific psychiatric disorders, such as depression and

schizophrenia are characterized by distinct constellations of

symptoms, structural and functional abnormalities appear

throughout similar nodes and networks transdiagnostically,

across many Axis I disorders (Goodkind et al., 2015). It

is possible that a spectrum of SN aberrations, ranging

from hypo- to hyperactivity through the CSTC loop, can

trigger a broad range of disabling behavioral and cognitive

symptoms that are reflective of disrupted cognitive-attentional

processing. The following section briefly explores the potential

involvement of such corticostriatal circuits in the etiology,

manifestation and treatment of major psychiatric disorders,

including MDD, SUD, anxiety disorders including OCD and

post-traumatic stress disorder (PTSD), schizophrenia and eating

disorders (ED).

Major Depressive Disorder (MDD)
MDD is characterized by persistent low mood, accompanied by

loss of interest and pleasure, increased fatigue and irritability

and difficulty concentrating and making decisions (Benazzi,

2006). Neuroimaging analyses of individuals with MDD

have revealed both anatomical and functional differences

throughout SN nodes relative to healthy controls. Anatomically,

investigations have revealed reduced gray matter volume

in the anterior cingulate cortex, caudate nucleus, putamen

(Bora et al., 2012; Shepherd, 2013). Thalamic volume

abnormalities are mixed (Webb et al., 2014; Zhao et al.,

2014; Hagan et al., 2015). Neurochemical ligands via PET

have shown reduced midbrain and subcortical serotonergic

receptor binding in MDD (Hahn et al., 2014; Yeh et al.,

2015).

While anatomical and neurochemical differences have been

identified in SN nodes, symptoms of MDD have often been

attributed to dysfunctional ventral CSTC loops rather than

volumetric deviations alone (Bora et al., 2012; Kerestes et al.,

2015). MDD patients generally exhibit reduced sensitivity

to reward; this cognitive blunting is reflected by reduced

ventral CSTC loop activation in the orbitofrontal cortex,

anterior cingulate and ventral striatum to reward and loss

receipt/anticipation (Smoski et al., 2011; Chantiluke et al., 2012;

Schiller et al., 2013; Admon et al., 2015; Manelis et al., 2016).

Although MDD has classically been described in terms of

dysfunctional ventral corticostriatal loops that play a role in

affect and reward, recent reports have identified abnormalities

within dorsal, cognitive corticostriatal loops in MDD patients

(Kerestes et al., 2015). Specifically, individuals with depression

are reported to show increased functional connectivity between

the dorsal caudate nucleus and right dlPFC, with disease

severity correlated to increased connectivity; hyperactivation

between these regions may indicate a pathological compensation

of cognitive processing over negative emotions and stimuli

(Furman et al., 2011; Kerestes et al., 2015).

In addition to SN structural and functional aberrations in

MDD, symptomatic improvement to conventional treatment is

predicted by differential SN function. Connectivity between the

putamen, caudate and cingulate during a monetary incentive

delay task has been shown to predict response to psychotherapy

(Admon et al., 2015; Walsh et al., 2016). High baseline ACC

and low striatal activity were also shown to be predictive of

improvement on antidepressants in a recent meta-analysis of

15 studies (Fu et al., 2013).

SN function change is also attributed to symptomatic

improvement to conventional interventions. A recent

meta-analysis based on nine MDD fMRI studies established

that antidepressant treatment resulted in increased activation

in the dlPFC, AI and ACC, and decreased activation in the

thalamus and caudate nucleus, during emotional processing,

representing normalization of resting state activity (Delaveau

et al., 2011). Similar analyses consistently identify functional

increases in these areas relative to baseline following SSRI

treatment based on functional activity during negative mood

induction (Fitzgerald et al., 2008) and incentive cue processing

(Stoy et al., 2011).

MDD patients vary widely in terms of symptom presentation;

recent work has sought to characterize MDD by distinct

symptomatic and neural subtypes, or ‘‘endophenotypes’’. In

one notable study, MDD was partitioned into three subtypes,

one of which was characterized by regulatory deficits in
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cognitive control and altered electrical current densities in nodes

of the SN, specifically the dlPFC and dACC (Webb et al.,

2016). The conflation of several hypothetically heterogenous

MDD pathophysiological profiles in functional studies to date

may obscure important characteristics that differentiate one or

more of these subtypes. Future work should further characterize

the symptomatic and neural heterogeneity of MDD into reliable

endophenotypes.

Substance-Use Disorders (SUDs)
SUDs involve abnormal reward and motivational responses

to salient drug-related cues in the environment. Impulsivity

and compulsivity are well-characterized traits of SUD,

and both traits play important roles in the addiction cycle

(Koob and Volkow, 2010). Traditional neurobiological

research in SUD has attempted to identify how subcortical

and dopaminergic systems affect drug seeking behavior

(Menon, 2011). For example, combined PET-fMRI data

suggests that frontostriatal abnormalities may be associated

with a reduction of striatal D2 dopamine receptors and

prefrontal, dlPFC metabolic activity (Tomasi and Volkow,

2013).

Structurally, nodes of the SN display volumetric abnormalities

in SUD. For example, cocaine users display altered cingulate,

insula and caudate volume (Ersche et al., 2011; Moreno-López

et al., 2012). Also, methamphetamine craving was associated

with volumetric differences in the insula, PFC and thalamus; this

association was further correlated with dopaminergic receptor

availability in the midbrain (Morales et al., 2015). Functional

abnormalities of single SN nodes have been related to SUD

behaviors; the AI is considered critical to conscious drug-seeking

motivation (Naqvi and Bechara, 2009).

SN network connectivity is implicated in SUD. For example,

lower resting-state functional connectivity between the striatum,

cingulate and insula have been found in cocaine users; dorsal

ACC and dlPFC connectivity was linked to loss of control

and impulsivity, respectively (Hu et al., 2015). Furthermore,

reduced activation in the dorsal caudate and dlPFC has been

found to be correlated with impulsivity and Stroop task

errors in SUD (Qiu et al., 2013; Feng et al., 2016; Yuan

et al., 2016). Conversely, gambling addiction has displayed

increased PFC connectivity to the striatum; this connectivity

was associated with impulsivity, smoking frequency and

craving severity (Koehler et al., 2013). Stronger functional

coherence within SN cortical nodes was recently linked to

enhanced reactivity to smoking cues in individuals with nicotine

dependance, suggesting that hyperconnectivity within the SN

may be responsible for increased cue reactivity (Janes et al.,

2015).

On task-based fMRI, another study used a reward-guided

decision-making task to investigate reward prediction

errors—signals that guide learning behaviors—in men with

alcohol addiction. SUD patients also demonstrated abnormal

dlPFC-striatal functional connectivity following ‘‘wins’’, and

‘‘losses’’, suggesting that learning mechanisms are impaired due

to disrupted regulation of frontostriatal interactions (Park et al.,

2010). Similarly, reduced response to reward is observed across

the striatum, mPFC and dlPFC (Forbes et al., 2014).

Additionally, it appears that addictive substances activate

dopamine-dependent saliency systems in the brain, resulting in

the replacement of adaptive stimuli by more salient drug-related

cues (Koob and Volkow, 2010). For example, higher dorsal

caudate reactivity during cue induced craving has been found in

heavy drinkers, while ventral striatal activity was found in lighter

drinkers, and this the functional difference between drinkers

was correlated with compulsive craving severity (Vollstädt-

Klein et al., 2010). In another study, higher caudate and ACC

activity during cue-induced craving predicted a transition

to heavier drinking habits (Dager et al., 2014). Increases in

compulsive drug-seeking behavior has been hypothesized to

represent a shift from ‘‘top-down’’, prefrontal cortical behavior

control to striatal behavioral control due to progressively

altered dopamine transmission (Goldstein et al., 2009;

Koob and Volkow, 2010).

In summary, drug addiction has been described as a process

of maladaptive neuroplasticity that begins in mesolimbic

reward circuits and emanates through interconnected

loops in the dorsal striatum, eventually cascading to the

cortex where dysregulation results in permanent changes to

habitual behavior and impulsivity (Koob and Volkow, 2010).

SN frontostriatal circuit integrity may be associated with

improved impulse control (Peper et al., 2013); conversely,

improved top-down cognitive control over the striatum

by prefrontal cortical regions may reduce impulsivity

(Peters and Büchel, 2011).

Obsessive-Compulsive Disorder (OCD)
OCD is classically characterized by intrusive thoughts

(obsessions) that are distressing and disruptive to normal

function, followed by repetitive actions (compulsions) aimed

at reducing the associated distress (American Psychiatric

Association, 1994). In more than half of individuals with

OCD, these symptoms may be severe enough to cause

absence from work, school or social engagements; further,

treatment of these severe cases is often more difficult (Bourne

et al., 2012). Importantly, obsessions and compulsions

represent dysfunctional cognitive and motor processes

that become repetitive and disturbing; it is suggested

that hyperactivation within CSTC circuits and changes to

CSTC topography may underlie such ritualistic thoughts

and behaviors (Graybiel and Rauch, 2000; Nakamae et al.,

2014).

OCD has traditionally been attributed to dysfunction within

orbitofronto-CSTC loops; despite being somewhat distinct

from CSTC loops that traditionally mediate the cognitive

domain, this dysfunction is hypothesized to contribute to

the unusual cognitive control of behavioral patterns often

observed in OCD (Graybiel and Rauch, 2000; Dunlop et al.,

2016). CSTC loop circuits are also relevant to OCD due

to their integral role in emotional, cognitive and behavioral

self-regulation (Marsh et al., 2009a). Results of a 7-study

meta-analysis examining OCD resting-state fMRI suggested
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OCD tends to most reliably demonstrate corticostriatal network

abnormalities relative to other anxiety disorders (Peterson

et al., 2014). While many symptoms of OCD are related

to disruptions within orbitofronto-CSTC loops, regions of

the SN likely play a large role in specific symptoms; OCD

symptoms.

Within nodes of the SN, volumetric changes have been

identified in the ACC, striatum and thalamus (Gilbert et al.,

2008; Hoexter et al., 2012; Hou et al., 2013; Atmaca et al., 2016).

Functionally, the ACC appears to be abnormally altered during

disease-relevant tasks. For example, OCD patients experience

ACC hyperactivity during symptom aggravation and while

committing errors during a flanker interference task (Bourne

et al., 2012). Even outside of active task engagement, nodes

of the SN are abnormally hyperactive: increased resting state

functional activity of the ACC,MDN (Rauch et al., 2006a; Bourne

et al., 2012), dlPFC (Figee et al., 2014) and caudate nucleus

(Graybiel and Rauch, 2000) has been noted in individuals with

OCD. Frontostriatal functional connectivity stemming from the

dlPFC (Vaghi et al., 2016), and altered striatal connectivity

to the insula (Bernstein et al., 2016) has been linked to

OCD severity.
Interestingly, functional changes within SN nodes are

related to OCD symptom improvement. Notably, stereotaxically

targeted lesions of the dACC during cingulotomy procedures

results in symptom improvement in some individuals with

treatment-resistant OCD (Dougherty et al., 2002); such

lesions also reduce glucose metabolism in the caudate, medial

dorsal thalamus and caudate (Zuo et al., 2013). Traditional

pharmacotherapies are shown to attenuate ACC and striatal

hyperactivity (Rauch et al., 2006a), and normalize thalamic,

cingulate and putamen gray matter volume (Hoexter et al.,

2012; Atmaca et al., 2016). On resting-state fMRI, reduced

dorsal caudate-anterior thalamus functional connectivity was

associated with symptomatic improvement following fluoxetine

(Anticevic et al., 2014). Such findings highlight the importance

of SN-CSTC dysfunction in the pathophysiology of OCD.

Post-Traumatic Stress Disorder (PTSD)
PTSD occurs in approximately 10% of individuals who have

experienced a traumatic event; symptoms include intrusive

re-experiencing of the traumatic event, and avoidance behaviors

in order to escape similar or triggering situations (Koch et al.,

2016). Changes in arousal, behavior and mood, as well as

impairments in executive functioning, are also commonly seen in

individuals with PTSD (American Psychiatric Association, 2013).

Structurally, PTSD patients exhibit reduced gray matter volume

in SN regions including the ACC, striatum and insula (Meng

et al., 2016); caudate and insular volumetric reductions correlate

with PTSD severity (Herringa et al., 2012). Cortical thinning has

also been observed in the rostral ACC and insula, and disrupted

structurally connectivity is seen between the ACC, thalamus and

insula in PTSD (Mueller et al., 2015).

There is evidence that symptoms associated with PTSD

involve potential changes to both singular SN nodes and

corticostriatal circuits. First, during symptom provocation,

PTSD symptom severity correlates with ACC activity, and

heightened activity variability in the insula and ACC, and

lower variability in activity in the dlPFC and striatum (Ke

et al., 2015). Another study also found increased connectivity

between the insula, mPFC, striatum and dorsal ACC during

symptom provocation (Cisler et al., 2014). Second, generalization

of fear associations in PTSD is associated with heightened

insula and thalamus activity (Morey et al., 2015). Third,

PTSD severity during an emotional Stroop task was associated

with higher dlPFC, dmPFC and dorsal ACC activation to

emotional stimulation (White et al., 2014). Finally, higher dorsal

caudate and frontal activation during inhibitory control predicts

response to CBT in PTSD, suggesting a role of SN function in

symptom improvement following psychotherapy (Falconer et al.,

2013).

Resting state functional connectivity also has revealed

abnormal SN functional connectivity in PTSD. One recent

meta-analysis showed that PTSD patients display enhanced

connectivity within the SN, suggesting excessive salience

processing within the SN serves as a mechanism of abnormal

hyper-monitoring the external environment (Koch et al.,

2016). Similarly, individuals with PTSD demonstrate

hyperactivity relative to controls within the AI and dACC

across a variety of executive functioning and emotional

processing tasks, in conjunction with reduced functional

connectivity between regions involved in fear, stress and

negative affect. It is possible that enhanced vigilance combined

with decreased top-down cognitive control over fear responses

underlies PTSD symptoms (Rauch et al., 2006b; Patel et al.,

2012).

With regards to abnormalities throughout CSTC loops,

individuals with PTSD have been shown to have reduced

thalamic functional connectivity with a variety of brain regions

including the rostral ACC and mPFC (Duarte et al., 2011;

Yin et al., 2011), and it has been suggested that flashback

symptoms occur in part due to dysfunctional corticothalamic

activity (Liberzon et al., 1996/1997). Recently, the medial

rostral dorsal caudate was identified as a site of convergence

between the IPL, dlPFC and dACC, suggesting that striatal

inputs that mediate and bias attentional salience and cognitive

control (Choi et al., 2016). A region allowing for interaction

of such cortical areas may be strongly implicated in the

allocation of stimuli salience and environmental attention,

and authors suggest that future investigations probe this

area to learn more about its involvement and potential

therapeutic value in disorders including PTSD (Choi et al.,

2016).

Schizophrenia
Schizophrenia is a disabling psychiatric condition that

manifests in primarily three domains: positive, negative

and cognitive symptoms. Positive symptoms include additions

to an individual’s repertoire of thoughts or behavior, such as

hallucinations or delusions, whereas negative symptoms refer to

flattened affect, anhedonia or catatonic symptoms (American

Psychiatric Association, 2013). Individuals with this disorder

may experience impairments in executive function and have

been found to have deficits in cognitive, but not motor, learning
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(Foerde et al., 2008; Parnaudeau et al., 2013). In addition to

cognitive deficits, schizophrenia is defined by psychosis and

psychotic episodes (American Psychiatric Association, 2013).

Structural abnormalities within the SN have been observed in

schizophrenia, specifically between the insula, ACC, dlPFC and

striatum (White et al., 2010; Menon, 2011; Quan et al., 2013;

Iwabuchi et al., 2015; Chen et al., 2016). Cortical thinning is

also observed in the AI, IFG and ACC; this volumetric change

is reflected by altered functional connectivity (Pu et al., 2012;

Pujol et al., 2013). Further, schizophrenia has been associated

with abnormal dopamine signaling within the cortex (Knable and

Weinberger, 1997).

Psychosis and salience attribution deficits in schizophrenia

are related to inter-network dysfunction between the SN,

CEN and DMN (Palaniyappan et al., 2011, 2013; Moran

et al., 2013; Lee et al., 2014; for a comprehensive review,

see Nekovarova et al., 2014). Patients experiencing auditory

hallucinations show increases in AI and frontal operculum

activation and altered SN dynamics, indicating that internally

generated stimuli are perceived as abnormally salient (Sommer

et al., 2008; Lefebvre et al., 2016). Indeed, AI resting-state

functional connectivity is correlated to symptom severity

(Manoliu et al., 2013).

Frontostriatal dysconnectivity between the dlPFC, dACC, AI

and putamen are observed during an emotion judgment task,

indicating that SN inappropriate assigns valence to emotionally

salient stimuli (Lee et al., 2014). Additionally, certain genes that

impart increased risk of developing schizophrenia have been

associated with decreased striatal volume and hyperconnectivity

within frontostriatal loops (Shepherd, 2013).

Of note, insular-SN connectivity can discriminate patients

from healthy controls (Mikolas et al., 2016; Wang X. et al.,

2016). One recent publication associated the severity and

development of psychosis with the extent of hypoconnectivity

throughout SN CSTC circuitry, specifically between the left

AI, the bilateral putamen, and caudate nucleus (Wang C.

et al., 2016). Further, Wang C. et al. (2016) demonstrated that

individuals with schizophrenia displayed reduced structural and

functional integrity within CSTC tracts of the SN. Reductions in

network integrity may also explain interrupted information

processing observed in individuals with schizophrenia,

which is experienced as abnormal sensory processing

(White et al., 2010).

Eating Disorders (EDs)
EDs affect about 0.5% of women and can cause significant

physical and psychological burden; for example, anorexia

nervosa (AN) has the highest mortality of any psychiatric

disorder (Hudson et al., 2007). EDs are characterized by

altered self-image and maladaptive eating behaviors, and include

AN, bulimia nervosa (BN) and binge-eating disorder (BED;

McClelland et al., 2013). In recent years, functional imaging

studies of EDs have pinpointed the intersection of cognitive and

reward systems as integral to eating behavior regulation (Val-

Laillet et al., 2015).

One systematic review of 10 structural MRI studies suggested

that compared to healthy controls, both decreased and increased

gray matter volumes in a variety of frontal brain areas

characterize AN and BN, respectively, and may normalize with

successful treatment (Van den Eynde et al., 2012). AN and BN

patients show reduced gray matter volume specifically in SN

regions including the caudate nucleus, anterior cingulate cortex

and insula, among other areas (Schäfer et al., 2010; Friederich

et al., 2012; Frank et al., 2013; Coutinho et al., 2015). On

DTI, AN patients show abnormal thalamic connectivity to the

dlPFC and anterior PFC (Frieling et al., 2012; Hayes et al.,

2015), and reduced fractional anisotrophy in the medial dorsal

thalamic radiations (Biezonski et al., 2015; Hayes et al., 2015).

Further, increased structural connectivity between the insula and

striatum is observed in ED (Frank et al., 2016; Shott et al.,

2016).

On task-based fMRI, BN patients display low frontostriatal

activity on a number of cognitive control tasks, including the

Simon Spatial task (Marsh et al., 2009b, 2011) and Go/No-Go

(Skunde et al., 2016). Similarly, AN patients have also been

shown to have altered frontostriatal activation on executive

function tasks, including the Wisconsin Card Sorting Task (Lao-

Kaim et al., 2015), and delay discounting (Wierenga et al., 2014;

Decker et al., 2015). During reward conditioning, AN patients

show abnormally high SN activity relative to controls (Frank

et al., 2012), and an increased preference for delayed rewards

over immediate rewards. Dorsal caudate dysfunction is also

associated with AN patients in a number of tasks, including

a monetary choice task (Bischoff-Grethe et al., 2013; Bailer

et al., 2016), and food-cue processing (Sanders et al., 2015).

This increase in striatal reactivity may be related to a number

of trait-based or neurochemical factors, including abnormal

trait anxiety (Bailer et al., 2016), harm avoidance (Bailer et al.,

2013), obsessive thoughts (Rothemund et al., 2011) and striatal

dopaminergic receptor availability (Bailer et al., 2013, 2016; Broft

et al., 2015).

Both AN and BN patients have altered SN function during

disease-relevant stimuli. In one study, presenting food-related

visual cues to individuals with either BN or BED resulted

in increased ACC and insula activation, and BN patients

reported higher levels of arousal (Schienle et al., 2009). In

another study, BN participants displayed low activity in the

insula to food images, while AN showed higher activity in

the caudate and insula (Brooks et al., 2011). Another study

showed that AN participants show abnormally high activation

to aversive taste in the insula and putamen (Cowdrey et al.,

2011). Abnormal ACC-insular resting state activity has also

been observed in ED patients (Amianto et al., 2013; Dunlop

et al., 2015b). Altered connectivity strength and path length

between the insula and thalamus has been observed in AN

(Geisler et al., 2016), as well as decreased functional connectivity

between the thalamus, putamen and insula (Ehrlich et al.,

2015). Given all this evidence, the variation in symptoms

across different classes of EDs—for example, the presence

of binging behavior in BN and BED, but not AN—make it

difficult to assess convergent implicated brain regions, and

both structural gray matter and functional activity analyses

in these populations should be expanded (Schäfer et al.,

2010).
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There is evidence that corticostriatal loop circuits are

affected in EDs. Specifically, individuals with EDs often display

impaired self-regulatory control—this includes inhibition of

both motor and emotional responses—that can be traced to

dysfunction within dorsal frontostriatal circuits crucial for

self-regulation (Berner and Marsh, 2014). Authors who recently

reviewed the balance between incentive reward and inhibitory

circuits in EDs (Wierenga et al., 2014) hypothesized that

different patterns of disordered eating represent a spectrum of

regulatory capability, ranging from extreme cognitive control

in AN to deficiencies of cognitive control in BN. The dorsal

neural system supporting such regulatory capacity—which

includes functions of inhibition, emotion regulation, and

goal-directed behavior—includes the dorsal caudate, dACC

and insula, among other SN regions (Wierenga et al.,

2014).

Summary
Both structural and functional abnormalities within and

between corticostriatal loop circuits are associated with

psychiatric pathology. Generally, these disorders can be

characterized by an inability to exert cognitive control over

maladaptive thoughts, impulsive behaviors or attention

to appropriate salient internal and external stimuli; for

example, OCD involves disrupted control mechanisms, but

lacks the element of disturbed motivational salience that

is well defined in MDD and SUD. Regardless of clinical

phenotype, consistent implication of the dACC, AI and

dorsal striatal nodes in psychiatric etiology suggests that

the SN-CSTC loop is indeed crucial for psychological

health and adaptive functioning across a variety of

disorders.

TARGETING THE SN-CSTC WITH
THERAPEUTIC BRAIN STIMULATION

For individuals with psychiatric disorders, the mainstays

of conventional treatment are psychotherapy and

pharmacotherapy. However, these approaches are ineffective

for a substantial proportion of patients. For example, an

estimated one third of MDD patients do not respond to

2–4 sequential trials of pharmacotherapy or psychotherapy

(Rush et al., 2006). Therapeutic brain stimulation is an

emerging alternative in cases where conventional approaches

fail (Figure 3). A number of techniques for therapeutic brain

stimulation are entering clinical use for treatment-resistant

psychiatric illnesses. These include deep brain stimulation

(DBS; Lozano and Lipsman, 2013), repetitive transcranial

magnetic stimulation (rTMS; Lefaucheur et al., 2014) and

transcranial direct current stimulation (tDCS; Tortella et al.,

2015).

For the neuroscientist, these techniques can serve a dual

role as both an intervention and a probe for investigating

human brain function, either in health or in psychiatric illness.

It is possible to assess the neurophysiological effects of brain

stimulation using neuroimaging techniques, complemented

by electrophysiological recordings. As described above, many

clinical features of psychiatric illnesses are rooted in altered

activity within relevant brain networks. Given that brain

stimulation treatments are usually targeted to a specific brain

region, the goal of such a treatment is to normalize regional

cortical and downstream network activity.

The SN has been proposed as a key target for

neuromodulation treatments across a variety of psychiatric

illnesses (Downar et al., 2016; Dunlop et al., 2016). Stimulation-

driven changes in the SN-CSTC loop could restore capacity for

cognitive control via changes in network activity, resulting in

symptom reduction (Veit et al., 2012; Sale et al., 2015). With

respect to SN nodes and their downstream regulatory loops, both

invasive and non-invasive brain stimulation techniques appear

capable of modulating the activity of these circuits by imposing

long-term changes in cortical nodes that cascade through the

SN loop. These changes are accompanied by alterations in affect

and behavior in the patient receiving treatment (Di Filippo et al.,

2009).

In this section, we review the effects of DBS, rTMS and

tDCS on cortico-striatal-thalamo-cortical circuitry through the

SN specifically, such as they are known at the present time.

We also review the available evidence to date about how

changes in SN-CSTC function relate to the therapeutic effects of

neuromodulation therapies in psychiatric illness.

Deep Brain Stimulation (DBS)
DBS involves neurosurgical implantation of stimulation

electrodes in target regions of the brain under stereotaxic

guidance. The implanted electrodes modulate abnormal neural

activity by applying electric fields that stimulate adjacent axons,

resulting in the modification of electrical communication within

connected functional brain networks (Kühn and Volkmann,

2016; Lin et al., 2016; Rachid, 2016). Although this technique

is invasive, expensive and requires subspecialist expertise,

DBS does carry the advantage of being able to directly target

the deeper nodes of CSTC circuits, such as the striatum,

pallidum, subthalamic nucleus or brainstem dopaminergic

structures, as well as the white matter tracts connecting

these nodes.

Some of the earliest uses of DBS were in modulating the

activity of motor CSTC loops to treat movement disorders,

including essential tremor and Parkinson’s disease (PD; Chen

et al., 2013); the latter remains the most common therapeutic

application of DBS (Fasano and Lozano, 2015). However, more

recently, DBS has begun to show promise as a treatment for

a number of neuropsychiatric disorders (Williams and Okun,

2013), including MDD (Mayberg et al., 2005; Schlaepfer et al.,

2014), OCD (Lipsman et al., 2013a) and AN (Lipsman et al.,

2013b).

For DBS in psychiatric disorders, the stimulation targets are

generally found in CSTC circuits outside of motor loop. In

MDD, for example, targeting the subgenual cingulate cortex

(sgCC) may have modulatory downstream effects on the

dACC by propagating stimulation effects through the rostral

cingulate cortex (Morishita et al., 2014). Further, sgCC-DBS has

normalized hypoactivity of the dlPFC and ACC, among other

areas, in depressed patients without any observed cognitive side
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FIGURE 3 | SN cortico-striatal-thalamo-cortical circuit engagement during therapeutic brain stimulation. (A) In healthy controls, 10 Hz repetitive

transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (dlPFC) results in increased dopamine transmission in the ipsilateral caudate nucleus

and thalamus. (B) In depressed individuals, clinical improvement following 10 Hz dmPFC-rTMS was correlated with increased connectivity between the dACC and

the thalamus. (C,D) In obsessive-compulsive disorder (OCD) patients, clinical improvement following 10 Hz dmPFC-rTMS was correlated with decreased functional

connectivity between the dACC and the caudate nucleus, thalamus, putamen and midbrain. Adapted from (A) Strafella et al. (2001); (B) Salomons et al. (2014);

(C,D) Dunlop et al. (2016).

effects (Mayberg et al., 2005). More generally, sgCC-DBS appears

to be an effective intervention for severe, treatment-resistant

MDD. Follow-up studies and meta-analyses suggest that overall,

sgCC-DBS may continue to ameliorate depressive symptoms

over time, with persistence of beneficial effect for over a decade

in some cases (Giacobbe et al., 2009; Morishita et al., 2014).

It also appears that response rates to ongoing DBS stimulation

may improve over time, with benefits accruing and persisting

over periods of several years among responders (Kennedy et al.,

2011).

Thus far, DBS has not been used to target the SN-CSTC

loop directly in MDD. However, DBS targeting the nucleus

accumbens (NAcc) has been successful in some cases of

treatment-resistant depression, with responders showing

improvements in hedonic capacity (Bewernick et al., 2010).

PET imaging in these cases demonstrated that stimulation

of the NAcc yielded reductions in metabolic activity in the

‘‘reward CSTC loop’’ projecting to vmPFC and frontal pole.

This finding illustrates the potential of DBS to modulate

(i.e., suppress) activity in CSTC circuits for therapeutic

effect.

One illustrative case study suggests that DBS targeting

the SN-CSTC may not necessarily exert desirable effects in

MDD (Stefurak et al., 2003). In this report, a patient with

intractable PD (and a remote history of a major depressive

episode) underwent implantation of DBS electrodes bilaterally

in the subthalamic nucleus. Activation of one electrode yielded

the expected improvement in the tremor of the contralateral

upper limb. However, activation of the other electrode had

the unexpected effect of inducing an intense dysphoria of

rapid onset. The patient described feeling ‘‘similar in some

respects to my depression but a thousand times worse. . .

Someone could have come in to shoot me and I could

not have cared less’’. The effect was reliably reproducible,

and mood returned rapidly to baseline with cessation of

stimulation. When functional neuroimaging was performed,
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stimulation of one electrode yielded reductions in supplementary

motor area activity, alongside improvement of the contralateral

tremor. Stimulation of the other electrode yielded suppression

of activity in the SN regions including the dACC as well

as the caudate nucleus, accompanied by rapid descent into

dysphoria. This case illustrates the feasibility of using DBS to

modulate the SN-CSTC loop circuit, and also illustrates that

such modulation can be accomplished via deep subcortical

targets such as the subthalamic nucleus. However, at the

same time, it illustrates that suppression of SN activity

may impair rather than improve mood regulation, with

deleterious rather than beneficial effects in the setting of

MDD.

The suppressive effects of subcortical DBS on CSTC loop

functions may be of more benefit in the setting of OCD. DBS

targets in OCD may include the ventral striatum, sgCC, NAcc or

the medial forebrain bundle (Lipsman et al., 2013a; Williams and

Okun, 2013). Although these targets lie outside the main nodes

of the SN-CSTC loop, there is some evidence that the therapeutic

effects of DBS in OCD ensue from modulation of activity in SN

sites. Specifically, a case series of NAcc-DBS in OCD reported

considerable inter-individual variability in the degree of clinical

improvement; resting-state fMRI revealed that the degree of

symptom improvement correlated to the degree of reduction in

functional connectivity between the stimulation target (NAcc)

and two nodes of the SN: the dACC and the dlPFC (Figee et al.,

2014). Indeed, it has been suggested that all of the major DBS

targets in OCD exert therapeutic effects by modulating activity

in the ACC and associated regions of the striatum (Bourne et al.,

2012).

Subcortical DBS for psychiatric disorders is thought to

influence the regulatory activity of CSTC loops. Investigations

of DBS to central thalamic regions in neurological disorders

have identified several effects of stimulation, including increased

D2 dopamine receptor concentration in the striatum, improved

functional connectivity between the thalamus and striatum,

and modulated plasticity in the striatum (Bourne et al., 2012).

These effects are hypothesized to contribute to improvements in

striatal plasticity, resulting in increased regulatory capacity over

cognition and learning (Lin et al., 2016).

Repetitive Transcranial Magnetic
Stimulation (rTMS)
rTMS is a non-invasive brain stimulation technique that alters

neural excitability by delivering focused magnetic field pulses

to cortical areas non-invasively through the skull (Hallett,

2007). Repeated trains of pulses can produce durable increases

or decreases (depending on the stimulation pattern) in the

strength of the synapses of the stimulated neurons, via

the mechanisms of long-term potentiation and depression

(Karabanov et al., 2015). The durable effects of rTMS were

initially noted via facilitation of motor evoked potentials

with repeated stimulation of the primary motor cortex.

Subsequently, it was found that rTMS delivered to the

dlPFC improved mood in patients with depression (George

et al., 1995; Pascual-Leone et al., 1996). Over the following

20 years, dozens of studies and several meta-analyses have

established high-frequency left, low-frequency right and bilateral

dlPFC-rTMS as superior to sham stimulation in the treatment

of major depression (Berlim et al., 2013b,c; Berlim and Van

Den Eynde, 2014; Gaynes et al., 2014). rTMS is now approved

and used clinically as a treatment for medication-resistant

depression in a variety of jurisdictions around the world

(Lefaucheur et al., 2014; Milev et al., 2016; Perera et al.,

2016).

rTMS is also showing promise as a treatment for a variety of

other psychiatric disorders characterized by hypofunctioning of

the SN. Supportive meta-analyses are now available for rTMS in

treating SUD (Gorelick et al., 2014; Dunlop et al., 2016), PTSD

(Berlim and Van Den Eynde, 2014), bipolar disorder (McGirr

et al., 2016) and OCD (Berlim et al., 2013a; Trevizol et al.,

2016).

The stimulation targets used in these studies typically

correspond to frontal nodes of the SN. For example, the

dlPFC region showing greatest efficacy in MDD has been

reported to be a region anticorrelated to the sgCC, which

also corresponds well to the SN’s dlPFC node (Fox et al.,

2012). Stimulation of the dACC and adjacent dmPFC has

also been employed in MDD (Bakker et al., 2015; Kreuzer

et al., 2015), and stimulation of medial SN nodes in the

dACC/dmPFC and adjacent pre-supplementary motor area have

also shown promising effects in OCD (Mantovani et al., 2010;

Dunlop et al., 2015a) and PTSD (Isserles et al., 2013). In

healthy controls, there is evidence that rTMS of SN nodes

such as the dlPFC or dmPFC/dACC can enhance or inhibit

impulse control as measured on a delay-discounting task (Cho

et al., 2010, 2015; Figner et al., 2010), and improve cognitive

processing on executive functioning tasks (Esslinger et al.,

2014), suggesting a generalized effect on cognitive control.

Taking together these lines of evidence, recent reviews have

suggested that the therapeutic effects of rTMS may be best

understood not as ‘‘antidepressant’’ per se, but more generally

as enhancement of cognitive control via improved SN integrity

(Downar et al., 2016; Dunlop et al., 2016). This would account

for its transdiagnostic efficacy across a range of psychiatric

disorders involving cognitive control deficiency (McTeague et al.,

2016).

The pertinent issue for the purposes of this review article

is whether the therapeutic mechanisms of rTMS involve

modulation of SN-CSTC loop circuits. Two questions thus arise:

first, does rTMS of cortical targets cause neurophysiological

changes in the CSTC loop for that target; and second, do these

changes (if present) correlate to the behavioral and clinical effects

of rTMS?

Regarding the first question, the neurophysiological

mechanisms of rTMS are complex and still under investigation;

accounts have been proposed at various levels of explanation

from genetic and cell-molecular processes, to neurotransmitters

and their receptors to synapses, to micro- and macro-level

network connectivity changes (for reviews, see Noda et al.,

2015). However, several convergent lines of evidence suggest

that rTMS does indeed cause neurophysiological effects

not merely at the stimulation site, but also throughout its
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CSTC loop circuit, targeting the entire loop in a precise,

well-demarcated fashion. For example, PET studies using

the D2 receptor tracer 11C-raclopride have shown that

rTMS of the left primary motor cortex induces dopamine

release specifically in the ipsilateral putamen, in a region

corresponding to the known projection zone for corticostriatal

projections from the primary motor cortex; no changes were

seen in other striatal regions such as the caudate nucleus,

NAcc or the contralateral putamen (Strafella et al., 2003).

Another study by the same group, using the same tracer,

demonstrated that rTMS of the left dlPFC induced dopamine

release specifically in the head of the ipsilateral caudate nucleus,

but not the NAcc, putamen or contralateral caudate nucleus

(Strafella et al., 2001). A subsequent PET-rTMS study with a

D2/D3 tracer demonstrated that rTMS of the dmPFC/dACC

induced dopamine release in a circumscribed region of the

dorsal putamen and underlying globus pallidus (Cho et al.,

2015).

fMRI-rTMS studies support the premise that rTMS pulses

activate not only the target region of cortex but also its

associated striatal partner. fMRI-rTMS studies in healthy

controls have directly demonstrated that rTMS pulses to

the frontopolar cortex caused BOLD activations in both the

frontal pole and in the ventral striatum; rTMS pulses to

the dlPFC, in contrast, caused BOLD activations in both

the dlPFC and the dorsal caudate nucleus (Hanlon et al.,

2013, 2016). A session of inhibitory, continuous theta-burst

stimulation to the frontopolar cortex reduced the BOLD

response to individual pulses at the same target, with the

effect seen prominently in ventral striatum (Hanlon et al.,

2015). Thus, the available neuroimaging evidence from fMRI

and PET studies suggests that rTMS directly activates not

only the stimulation site but also the associated subcortical

loop circuit, in a circumscribed fashion; these activations are

accompanied by changes in dopamine neurotransmission in the

subcortical projection zones of the stimulation target. rTMS of

SN cortical targets (i.e., the dlPFC) appears to modulate activity

in the subcortical components of the SN-CSTC loop circuit

as well.

Regarding the second question of whether these changes in

SN-CSTC loop circuit function are related to the behavioral

and clinical effects of rTMS, several lines of evidence

are now supportive. In a PET-rTMS study in healthy

controls, an inhibitory form of rTMS (continuous theta-

burst stimulation) delivered to the left dlPFC impaired

performance on the Montreal Card Sorting Task, a

set-shifting task requiring the cognitive control functions

of the SN. This impairment was associated with reduced

dopamine release in a circumscribed region of the head

of the caudate nucleus (Ko et al., 2008). Likewise, in the

previously mentioned PET study of dmPFC-rTMS (Cho

et al., 2015), rTMS-induced changes in dopamine release

in the globus pallidus showed a U-shaped relationship

to change in impulsivity, as indexed on the delayed

discounting task. Thus, the effects of rTMS on SN-CSTC

loop circuits appear to translate into effects on cognitive control

capacity.

There is also growing evidence that the therapeutic effects

of rTMS in psychiatric illness may be mediated by changes

in SN-CSTC loop circuit integrity. One supportive study used

resting-state fMRI to examine CSTC functional connectivity in

MDD patients who underwent a course of rTMS directed at

the dmPFC/dACC. In this study, patients with low baseline

functional connectivity from the dACC to the putamen (a

region corresponding to that identified in the PET study of

dmPFC-rTMS by Cho et al., 2015) and MD thalamus showed

a greater degree of clinical improvement, and the degree

of clinical improvement correlated to increases in functional

connectivity from the stimulation target (dACC) and the MD

thalamus (Salomons et al., 2014). The finding of dACC CSTC

functional connectivity as both a predictor and correlate of

clinical improvement was replicated in a follow-up study in

ED patients undergoing dmPFC-rTMS for binge and purge

behaviors (Dunlop et al., 2015a). In another follow-up study

in patients with OCD (Dunlop et al., 2016), connectivity

from the dACC to the head of the caudate nucleus and the

MD thalamus was also a predictor and a correlate of clinical

improvement; however, reductions rather than increases in

connectivity within this CSTC loop were required for clinical

improvement, paralleling the findings of Figee et al. (2014) in

OCD patients undergoing DBS (as discussed in the previous

section). These findings suggest that the therapeutic effects of

rTMS in MDD, ED and OCD may be mediated by changes

in the integrity of the SN-CSTC circuit. Future studies will

be required to determine whether these findings also apply to

the more commonly employed protocol of dlPFC- rather than

dmPFC-rTMS.

Transcranial Direct Current Stimulation
(tDCS)
tDCS is another non-invasive brain stimulation technique that

uses scalp electrodes to deliver mild (1–2 mA) electrical currents

to target brain regions, thereby modulating ongoing brain

activity (Blumberger et al., 2015). The mechanisms of tDCS

and related techniques such as transcranial alternating current

stimulation (tACS) are still under investigation and debate (for

reviews, see Nitsche et al., 2008; Tortella et al., 2015). However,

from a clinical perspective, the technique is attractive for offering

a favorable profile of safety, tolerability and low cost. For this

reason, tDCS is under active investigation not only as a research

tool but also as a potential therapeutic intervention in psychiatric

illness (Tortella et al., 2015). The best-studied indication to

date has been MDD, with several randomized controlled trials

published; recent meta-analyses of these trials have found tDCS

to be more effective than sham stimulation, with an effect size

comparable to antidepressant medications (Meron et al., 2015;

Brunoni et al., 2016).

Lateral cortical nodes of the SN are widely used as tDCS

targets, both in basic science and clinical studies. One of

the most common targets for tDCS in the literature to

date has been the dlPFC, often operationalized as EEG sites

F3 and F4 in the standard 10–20 montage. The F3 site

has been shown to correspond fairly closely to the dlPFC
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node appearing in the SN (Mir-Moghtadaei et al., 2015),

suggesting that tDCS of F3 and F4 is anatomically positioned

to stimulate the SN. Research studies and clinical trials of

tDCS have targeted the dlPFC due to its hypothesized central

role in executive function and cognitive control (Kuo and

Nitsche, 2012). tDCS targeting this region has been shown to

improve performance across the domains of working memory

(Fregni et al., 2005), impulsivity (Fecteau et al., 2007) and social

cognition (Knoch et al., 2008). tACS has also been performed

with electrodes placed bilaterally over the dlPFC (EEG sites

F3 and F4) and its parietal counterpart sites (EEG sites

P3 and P4), with one study reporting frequency-dependent

enhancements of lucid dreaming during REM sleep (Voss et al.,

2014).

The dlPFC has also been a tDCS target in the clinical

treatment of substance use and ED. It is hypothesized

that stimulating the dlPFC enhances top-down control over

maladaptive eating behaviors and substance consumption, and

suppresses cravings generated by dysfunctional reward circuitry

(Fregni et al., 2005; Lapenta et al., 2014). Indeed, tDCS of the

dlPFC has been shown to reduce cravings, consumption and

behavioral impulsivity in long-term smokers (Rachid, 2016),

which may represent effects in attentional salience or inhibition

networks (Fregni et al., 2005; Lapenta et al., 2014).

An important question for the purposes of this review

article is whether tDCS actually stimulates any of the deeper

nodes of CSTC circuits, or whether its effects are confined

to superficial cortical regions. A purely cortical mechanism of

localized changes in synaptic plasticity is often postulated in

the literature, given that the relatively weak electrical fields

employed in tDCS may not penetrate beyond the cortex

(Nitsche et al., 2008). However, several recent findings suggest

that tDCS may indeed modulate neural activity in subcortical

structures of the CSTC loop circuits. First, a study using

resting-state fMRI found that tDCS of the primary motor

cortex increased its functional connectivity to the thalamus,

and additionally increased connectivity between the parietal

cortex and the caudate nucleus (Polanía et al., 2012). Second,

a study using the MRI-based perfusion technique of arterial

spin labeling (ASL) demonstrated that anodal right and cathodal

left dlPFC-tDCS caused decreases in resting perfusion of

the head of the caudate nucleus as well as the medial and

lateral orbitofrontal cortex (Weber et al., 2014). Finally, a

recent study using magnetic resonance spectroscopy (MRS)

has for the first time directly demonstrated that active but

not sham dlPFC-tDCS (anodal left, cathodal right) increases

levels of glutamate and glutamine in the striatum as well as

N-acetylaspartate in the dlPFC itself (Hone-Blanchet et al.,

2015). Taken together, these findings suggest that tDCS

can indeed modulate both neurotransmission and network

connectivity patterns in the subcortical as well as the cortical

components of CSTC loops when targeting the SN (i.e., via the

dlPFC).

So far, little information is available that speaks to whether

the therapeutic mechanisms of tDCS in psychiatric illness ensue

via modulation of CSTC loop circuits, as appears to be the

case for DBS and potentially for rTMS. As of this writing, the

literature on the effects of tDCS on CSTC activity in general

remains very limited (as reviewed in the preceding paragraph).

Alternative possibilities are that the therapeutic effects of

tDCS ensue purely through modulation of cortico-cortical

network connectivity, or conceivably through local modulation

of synaptic connections under the cortical stimulation site alone.

Future studies of therapeutic tDCS in psychiatric illness will

need to incorporate not only larger sample sizes, but also

more detailed measures of cognitive control capacity, as well

as neuroimaging observations before and after treatment, in

order to identify the behavioral and neural correlates of clinical

improvement. Such studies may help to determine whether tDCS

of SN nodes enhances cognitive control, and if so, whether

this enhancement ensues via modulation of the SN-CSTC loop

circuits.

UNRESOLVED QUESTIONS AND FUTURE
DIRECTIONS FOR STUDY

The emerging picture from the evidence reviewed in the previous

three sections is that: (i) the SN-CSTC loop may play a critical

role in the voluntary engagement of cognitive control; (ii)

abnormalities of cognitive control are a common, pervasive

and transdiagnostic feature of many psychiatric illnesses; (iii)

these transdiagnostic deficits of cognitive control may arise

from abnormalities of functioning within a specific member

of the brain’s many CSTC loops—namely, the CSTC loop

serving the SN; and (iv) emerging brain stimulation therapies

such as DBS, rTMS and tDCS exert neurophysiological effects

on targeted CSTC loop circuits, and these effects may be

central to the mechanisms by which they alleviate psychiatric

illness.

At the moment, this account of the CSTC loop through

the SN must be considered preliminary, with many findings

requiring further replication and study, and many questions still

outstanding. In this final section, we review some potentially

fruitful directions for further study.

Particular Contributions of the SN-CSTC
Loop to Voluntary Cognitive Control
At present, it would be helpful to have a clearer understanding

of the SN’s role in cognitive control. Specifically, more

information should be generated about the contributions of

the SN to self-regulation of cognition, emotion and behavior

in healthy brain function. The particular contributions of

the SN should be distinguished from contributions of

other functional networks involved in executive function,

such as the neighboring frontoparietal networks known as

dorsal attention or central executive networks. It would

also be helpful to have a clearer understanding of the

distinct roles of the SN vs. its immediately posterior

counterpart comprising the posterior insula and mid-cingulate

cortex. Finally, it is necessary to better understand how

engagement of the subcortical projection sites of the

SN (in the head of the caudate, globus pallidus, MD

thalamus, and rostral substantia nigra) relates to the
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voluntary vs. passive engagement of cognitive control

functions.

Abnormalities of SN-CSTC Loop Integrity
and Function in Psychiatric Illness
In parallel with the previous theme, it would be helpful to have

more detailed descriptions of the abnormalities present in the

functional integrity, structural integrity and neurochemistry of

the SN-CSTC loop circuit in the major categories of psychiatric

illness. fMRI, ASL, DTI, VBM and PET studies will all be useful in

this regard. The ‘‘intervention-probe’’ properties of DBS, rTMS,

and tDCS may also yield useful information of a causal rather

than correlational nature. It will be helpful to understand which

psychiatric disorders share SN-CSTC dysregulation as a common

feature, and whether there are disorders (for example, AN)

where such pathology is relatively absent. Finally, as relatively

few studies to date have explored the neural heterogeneity of

illness among individuals with MDD, PTSD, OCD, SUD or

other Axis I disorders (as defined by the DSM-IV), it will be

helpful to understand whether SN-CSTC pathology is a pervasive

feature across most individuals within each disease category, or

whether instead only a certain sub-population of patients within

MDD, PTSD, OCD or SUD show abnormalities of SN-CSTC

functioning. The latter case, if true, may help to explain the

problematic heterogeneity of outcomes currently seen with brain

stimulation therapies, and may lead to methods for predicting

which individuals are the best candidates for treatments

targeting the SN-CSTC loop circuits. Better characterization

of individual patients’ pathology using the Research Domain

Criteria (e.g., cognitive control, response selection and response

inhibition) may be useful in this regard (Morris and Cuthbert,

2012).

Contributions of Other CSTC Circuits to
Psychiatric Illness
Although mounting evidence suggests that SN-CSTC pathology

may be a common feature of many psychiatric disorders, it is

also clear that such pathology is far from the only, or even

the most important, pathological feature in many individuals.

For example, pathology of the ‘‘reward’’ or ‘‘incentive’’ CSTC

loop from the NAcc to the vmPFC and frontal pole increasingly

appears to be important across a variety of disorders. Aside

from the well-established example of SUD, pathology of this

loop may be important in OCD, MDD (particularly for the

symptom of anhedonia), schizophrenia, and other psychiatric

disorders (as noted throughout the previous three sections

of this review). In addition, interactions (such as mutual

inhibition) between the activity of the dorsal striatal-SN loop

and the ventral striatal reward loop may be important for

understanding psychiatric pathology and its heterogeneity;

such interactions between dorsal and ventral CSTC loops

are an increasingly prevalent theme of study in recent work

combining neuroimaging and neurostimulation in psychiatric

illness (for example, Liston et al., 2014; Hanlon et al.,

2016).

Effects of Brain Stimulation Techniques on
SN-CSTC Function
The available literature to date provides mounting evidence

that brain stimulation treatments are capable of modulating

the activity of CSTC circuits, and that these effects may

be central to the therapeutic properties of such treatments.

Nonetheless, further evidence is needed to demonstrate and

characterize the effects of brain stimulation treatments on CSTC

function—to some extent for DBS, more so for rTMS, and

especially so for tDCS and tACS. As stated above, a variety of

techniques will be useful in this regard: in addition to fMRI

studies of network integrity, PET and MRS—and potentially

voltammetry—will be useful for characterizing neurochemical

effects, while electrophysiological recordings (noninvasive MEG

and EEG, and invasive intracortical recordings when available)

will be essential in assessing the direct effects of stimulation

on neural activity. Much of the available literature to date has

focused on motor CSTC loops rather than other prefrontal

loops. However, in light of the increasing popularity of brain

stimulation in treating psychiatric illness, more attention is due

to the SN-CSTC loop in future study.

Optimizing Brain Stimulation Protocols for
Modulating SN-CSTC Function
The optimal parameters for therapeutic DBS, rTMS and

tDCS/tACS in psychiatric illness are still being refined, and in

many cases are entirely unknown. To date, very few studies

have sought to optimize the frequency, intensity, protocol,

inter-session interval or even dose (i.e., session number) for

therapeutic brain stimulation as a primary aim. The assessment

of relative efficacy in most cases has been empirical, based

on clinical measures (e.g., standardized symptom scales) that

may not be well suited to capturing the nuanced effects of

therapeutic brain stimulation. For example, after 20 years of

clinical trials of rTMS in MDD, there is a wealth of evidence

about crude response and remission rates for this heterogeneous

population, but very little evidence about which types of

patients respond best to treatment, or whether responders are

characterized specifically by deficiencies of cognitive control

rather than conventional mood symptoms per se, as proposed

in this review. A more nuanced outcome measure (behavioral,

cognitive or neurophysiological) may be helpful in providing a

benchmark for optimizing the parameters of stimulation. For

example, if the mechanism of effect for dlPFC- or dmPFC-rTMS

does indeed depend upon enhancements in deficient cognitive

control and SN-CSTC loop circuit integrity, then obtaining

markers of cognitive control and SN integrity will be essential

to any parameter-optimization study. Candidate markers might

include behavioral measures such as performance on flanker

or delayed discounting tasks, electrophysiological measures

such as coupling between theta and gamma oscillations, or

neuroimaging markers such as D2 receptor occupancy on PET

or SN-striatal-thalamic functional connectivity on fMRI. Future

studies of therapeutic brain stimulation may need to make

use of such markers in order to make progress in exploring

the many dimensions of stimulation parameters that are still
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awaiting optimization. Future studies involving fMRI should also

consider the false-positive rate of fMRI in the application of

past research, and study design and processing (Eklund et al.,

2016); this point highlights the importance of replication studies

and meta-analyses in developing new rTMS targets and in

interpreting the effects of rTMS on brain function.

CONCLUSION

Converging evidence suggests that, of the brain’s many CSTC

loop circuits, the specific circuit serving the SN may be of

particular relevance to cognitive control, and of transdiagnostic

relevance to psychiatric pathology. This proposal, if supported

by future work, is of more than purely academic interest.

With the emergence of anatomically selective brain stimulation

technologies as therapeutic tools, it is becoming possible to

target specific CSTC loop circuits of the brain in an increasingly

precise manner, and to modulate their activity in a variety of

ways. Therapeutic brain stimulation of the SN-CSTC loop circuit

may constitute a method for directly targeting the underlying

pathophysiology of several types of psychiatric illness, or at

least a subpopulation of individuals within these categories

of illness. Stimulation targeting other CSTC loops, such as

those through the ventral striatum, may further expand the

range of disorders and individuals whose illness is amenable to

brain stimulation treatments. With a better understanding of

CSTC function in health and psychiatric disease, it may become

possible to tailor the target and parameters of stimulation

to the individual, depending on the underlying pathology.

This individualized, brain-based approach to psychiatric

treatment would constitute an important step forward in

addressing the daunting prevalence and burden of mental illness

around the world.
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