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The auditory efferent system originates in the auditory cortex and projects to the
medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and
superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC)
fibers. This unique neuronal network is organized in several afferent-efferent feedback
loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and
(iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking
ongoing auditory-cortex activity with pharmacological and physical methods modulates
the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation
independently modulates cochlear sensitivity and the strength of the OC reflex. In
this mini-review, anatomical and physiological evidence supporting the presence of a
functional efferent network from the auditory cortex to the cochlear receptor is presented.
Special emphasis is given to the corticofugal effects on initial auditory processing, that
is, on CN, auditory nerve and cochlear responses. A working model of three parallel
pathways from the auditory cortex to the cochlea and auditory nerve is proposed.
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Introduction

Since the first description of the crossed and uncrossed olivocochlear (OC) bundles by Rasmussen
(1946, 1960), these brainstem pathways have been considered as the auditory efferent system itself,
and the terms ‘‘olivocochlear’’ and ‘‘auditory efferent’’ have been frequently used as synonyms.
However, several lines of neuroanatomical evidence demonstrate the presence of an efferent
network originated in the auditory cortex that reaches the cochlear receptor through OC neurons
(Feliciano et al., 1995; Mulders and Robertson, 2000). This network comprises descending
projections from the auditory cortex to the medial geniculate body (MGB), inferior colliculus
(IC), cochlear nucleus (CN) and superior olivary complex (SOC) that form multiple feedback
loops, including the: (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and
(iii) cortico-(collicular)-CN pathways (Saldaña et al., 1996; Robles and Delano, 2008; Xiong et al.,
2009; Malmierca and Ryugo, 2011; Schofield, 2011).

The functionality of the corticofugal pathways to OC neurons has been proven by recent
evidence demonstrating that auditory cortex activity can modulate afferent responses even at
the level of sensory transduction (Xiao and Suga, 2002; León et al., 2012). Several functions
have been attributed to these corticofugal effects on cochlear responses, including selective
attention (Oatman, 1971), modulation of afferent inputs during wake/sleep cycle (Velluti et al.,
1989) and antimasking of acoustic signals in noise background (Nieder and Nieder, 1970). It
is important to highlight that any efferent modulation of the most peripheral structures of the
auditory pathway—the auditory nerve and cochlear hair cells—must bemediated by the OC system.
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In this mini-review, anatomical and physiological evidence
supporting the presence of a functional efferent network from
the auditory cortex to the cochlear receptor are presented. Special
emphasis is given to the corticofugal effects on CN, auditory
nerve and cochlear responses produced by auditory cortex
manipulations. A working model of three parallel pathways from
the auditory cortex to the cochlea and auditory nerve is proposed.

The Olivocochlear System: the Final and
Mandatory Pathway from the Central
Nervous System to the Cochlear Receptor

The OC system comprises medial (MOC) and lateral (LOC)
olivocochlear neurons located in the SOC (Warr and Guinan,
1979). MOC neurons have thick and myelinated axons that
are mainly directed towards outer hair cells (OHC) of the
contralateral cochlea, while LOC neurons possess thin and
unmyelinated fibers that make synapses with ipsilateral auditory
nerve dendrites just beneath cochlear inner hair cells (Guinan,
1996). Similarly to alpha-motor neurons, MOC neurons release
acetylcholine as their main neurotransmitter, and activate
nicotinic receptors comprised by five α9/α10 subunits located
in OHCs (Elgoyhen et al., 1994, 2001). On the other hand,
several neurotransmitters and neuromodulators are known to
be released by LOC neurons, including acetylcholine, GABA,
dopamine, dynorphines, encephalin, and CGRP (Eybalin, 1993).
Importantly, for the central nervous system, MOC neurons are
the final and mandatory pathway to regulate the mechanical
vibrations of the basilar membrane, acting as individual motor
units along the cochlear partition (LePage, 1989; Murugasu and
Russell, 1996; Cooper and Guinan, 2003). Therefore, the OC
system is fundamental in the functioning of the efferent network,
as all cortical or subcortical modulations of cochlear and auditory
nerve responses must be transmitted through MOC or LOC
synapses.

The OC function can be evaluated through a brainstem
reflex that is activated by ipsilateral or contralateral auditory
stimulation (Buño, 1978; Liberman, 1989). The neural circuit of
this reflex is constituted by auditory nerve fibers, CN neurons,
and crossed or uncrossed MOC fibers (de Venecia et al.,
2005). The ipsilateral MOC reflex pathway comprises a double
crossing, including the afferent pathway from the CN and
the crossed MOC fibers, while the contralateral MOC reflex
comprises only one crossing in the ascending pathway and
the uncrossed MOC fibers. There is also anatomical evidence
showing differences in the cochlear innervation patterns of
crossed and uncrossed MOC fibers (Brown, 2014), which is
in agreement with physiological data obtained in humans, that
suggest different functions for the crossed and uncrossed MOC
reflex (Lilaonitkul and Guinan, 2009). In addition, indirect LOC
stimulation through IC descending pathways modulates the
amplitude of auditory nerve responses (Groff and Liberman,
2003). Therefore, the OC system can modulate OHC and
auditory nerve responses through three different pathways:
(i) the crossed; (ii) uncrossed MOC fibers; and (iii) LOC
neurons.

Descending Projections from the Auditory
Cortex to the Medial Geniculate Body

Among the auditory subcortical nuclei, the MGB receives
the largest number of cortical descending projections from
pyramidal neurons located in layers V and VI of the auditory
cortex, forming tonotopic feedback loops between the primary
auditory cortex and ventral MGB (Bartlett et al., 2000; Winer
et al., 2001; Winer, 2006; Winer and Lee, 2007). Physiological
studies demonstrate that the auditory cortex modulates MGB
responses (Ryugo and Weinberger, 1976; Villa et al., 1991;
Zhang and Suga, 2000; Antunes and Malmierca, 2011), and
that this modulation is different for ventral and medial MGB
neurons (Tang et al., 2012). The electrical microstimulation
of the auditory cortex produced sharply tuned effects in
the ventral MGB, while suppressive and broad-band effects
were obtained in the medial MGB. However, whether the
corticofugal modulation of thalamic neurons affects OC activity
is unknown. Importantly, as there is no anatomical evidence of
direct descending connections from MGB to OC neurons, any
possible thalamic modulation of OC activity should be produced
indirectly through the colliculo-thalamic-cortico-collicular loop.

Descending Projections from the Auditory
Cortex to the Inferior Colliculus, Superior
Olivary Complex and Cochlear Nucleus

The IC is a key structure of the ascending and descending
auditory pathways (Huffman and Henson, 1990). Direct
descending projections from the auditory cortices to the IC are
mainly originated in layer V of the primary fields, and in a lesser
extent from layer VI (Faye-Lund, 1985; Doucet et al., 2003). Most
of the cortico-collicular fibers are glutamatergic (Feliciano and
Potashner, 1995) and are directed to the ipsilateral IC, but there
are also fibers directed to the contralateral IC (Bajo et al., 2007;
Nakamoto et al., 2013a,b). Although the majority of cortico-
collicular descending projections are directed to the IC cortices,
a small subset reaches the central nucleus of the IC, which is the
main ascending and tonotopic structure of this nucleus (Saldaña
et al., 1996; Bajo and Moore, 2005). In agreement with these
neuroanatomical findings, physiological evidence demonstrates
a tonotopic modulation of the central nucleus of the IC by
auditory cortex microstimulation (Yan and Suga, 1998; Yan
et al., 2005). In addition, IC responses to sound intensity (Yan
and Ehret, 2002), duration (Ma and Suga, 2001) and location
(Zhou and Jen, 2005) are also modulated by the auditory
cortex. More comprehensive reviews about the corticofugal
effects on IC responses can be found elsewhere (Anderson
and Malmierca, 2013; Bajo and King, 2013; Malmierca et al.,
2015).

The SOC and the CN are also direct targets of cortical
descending projections, mainly from primary auditory cortex,
but also from ventral and rostral secondary fields (Weedman
and Ryugo, 1996a,b; Doucet et al., 2002). Moreover, Mulders
and Robertson showed evidence of the presence of synaptic
connections between cortical descending axons and MOC
neurons (Mulders and Robertson, 2000). There is also evidence
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of indirect connections between the auditory cortex and SOC
through IC synapses (Thompson and Thompson, 1993; Vetter
et al., 1993). Despite these neuroanatomical findings, there
is still no physiological evidence of how the auditory cortex
modulates the activity of SOC neurons. Regarding connections
from the auditory cortex to the CN, Schofield and colleagues
have demonstrated that the dorsal and ventral CN receive
direct projections from the auditory cortex, as well as indirect
projections, passing through the IC or the SOC (Schofield and
Cant, 1999; Schofield and Coomes, 2005; Schofield et al., 2006).
In summary, descending projections from the auditory cortex
to the IC, SOC and CN create multiple feedback loops that can
modulate cochlear responses through OC neurons (Figure 1).

Corticofugal Effects on Cochlear Nucleus

The first evidence of a feedback control of CN responses
by the central nervous system was found several decades
ago in physiological experiments performed in awake and
behaving cats (Hernández-Peón et al., 1956; Dewson et al.,
1966). Hernández-Peón et al. (1956) found a reduction in
the evoked potentials recorded from the CN in cats while

FIGURE 1 | Schematic diagram of the auditory efferent network.
Ascending and descending pathways are depicted in black and red arrows
respectively. A simplified model of the auditory efferent system is presented.
Corticofugal projections from the auditory cortex to the inferior colliculus (IC)
and medial geniculate body (MGB) and afferent connections from the IC and
MGB to the auditory cortex form a “top loop” within this network
(colliculo-thalamic-cortico-collicular loop, Xiong et al., 2009). Bottom loops are
constituted by auditory-cortex descending projections to the CN
(cortico-(collicular)-cochlear nucleus loop) and SOC (cortico-(collicular)-
olivocochlear loop), which are connected to the cochlear receptor by the OC
bundle. Note, the relevant position of the IC in the interaction between top and
bottom loops. In addition, it is important to highlight that cortical modulations
of cochlear responses, can modify IC responses through ascending
connections to the CN and IC, meaning that the interaction between the top
and bottom loops is bidirectional. CN: cochlear nucleus; IC: inferior colliculus;
MGB: medial geniculate body; SOC: superior olivary complex.

receiving stimuli of other sensory modalities. Later, Dewson
et al. (1966) showed that auditory cortex ablations modified the
evoked responses of the CN. These pioneer studies suggested
the presence of corticofugal pathways from the auditory
cortex to the CN that were discovered several decades later
(Weedman and Ryugo, 1996a,b; Schofield and Coomes, 2005,
2006).

The functionality of these pathways has been recently
confirmed by studying the effects of electrical microstimulation
of the auditory cortex in the contralateral CN of mice (Luo
et al., 2008). These authors found that focal stimulation
of a specific area of the auditory cortex increased the
magnitudes and shortened the latencies of the responses of
ventral CN neurons that had similar characteristic frequencies
to the stimulated cortical site, while opposite effects were
observed for CN neurons with other characteristic frequencies
(Luo et al., 2008). Moreover, they found similar results in
the ipsilateral ventral CN (Liu et al., 2010) and in the
dorsal CN (Kong et al., 2014). These physiological studies
are illustrative of a general characteristic of the efferent
system: the frequency selectivity of corticofugal projections,
which has also been obtained activating the descending
pathways to the MGB, IC and cochlea (Suga and Ma,
2003).

Corticofugal Effects on Auditory-Nerve
and Cochlear Responses

Only a few physiological studies have assessed the corticofugal
effects of auditory cortex manipulations on the most peripheral
auditory structures, including, auditory nerve responses (León
et al., 2012; Dragicevic et al., 2015), cochlear electrical responses
(Xiao and Suga, 2002; León et al., 2012; Dragicevic et al., 2015)
and otoacoustic emissions (OAE; Khalfa et al., 2001; Perrot et al.,
2006). In a seminal work, Xiao and Suga (2002) demonstrated
that the auditory cortex activity modulates the amplitude and
frequency tuning of cochlear microphonics (CM) responses
near the echolocalizing frequency of the mustached bat (61
kHz). In addition, corticofugal effects on cochlear responses
have been found in human patients with epilepsy refractory to
pharmacological treatment. In these patients, cortical resection
of the temporal superior gyrus produced a bilateral reduction
of the MOC reflex that was more pronounced in the ear
contralateral to the resected auditory cortex (Khalfa et al., 2001).
Moreover, electrical microstimulation of the auditory cortex by
means of a chronic intra-cerebral multielectrode array produced
a significant reduction of OAE, while there was no change
under stimulation of non-auditory cortical areas (Perrot et al.,
2006).

A recent work by León et al. (2012) extended the findings
of the corticofugal effects observed in bats and humans to
the chinchilla. In this work the spontaneous activity of the
auditory cortex was inactivated by two methods: cortical cooling
with cryoloops and lidocaine microinjections. The combined
experimental approaches and the adequate control of the
cochlear temperature ruled out the possibility of a direct
cooling of the cochlea by the cortical cryoloops, as it has

Frontiers in Systems Neuroscience | www.frontiersin.org 3 September 2015 | Volume 9 | Article 134

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Terreros and Delano Auditory efferent network

been suggested in guinea pigs by Coomber et al. (2011).
Both types of cortical manipulations produced changes in the
amplitudes of auditory-nerve compound action potentials (CAP)
and CM responses (León et al., 2012). Although these effects
were diverse, the most common pattern was a concomitant
reduction in the amplitudes of CAP and CM responses. The
electrical stimulation of the crossed MOC fibers at the floor
of the fourth ventricle produces a decrease in CAP amplitudes
and a simultaneous increase of CM responses (Gifford and
Guinan, 1987). Therefore, the parallel changes of CAP and
CM amplitudes observed in chinchillas after auditory cortex
inactivation suggest a concomitant modulation of MOC and
LOC neurons, as the latter system can only affect CAP but
not CM responses (Groff and Liberman, 2003). León et al.
(2012) proposed that the ongoing activity of the auditory cortex
regulates cochlear sensitivity through parallel pathways to the
cochlear receptor. However, whether these corticofugal effects
were affecting the functioning of the OC reflex circuit remained
unknown.

In a recent study, Dragicevic et al. (2015) used auditory
cortex microstimulation in chinchillas to demonstrate that in
addition to the corticofugal modulation of cochlear sensitivity
on CAP and CM responses, the auditory cortex also modulates
the strength of the contralateral OC reflex on CAP but not on
CM responses. In agreement with neuroanatomical data, the
largest corticofugal effects were obtained in auditory cortices
with short latency responses (<15 ms), which correspond to
primary auditory fields.Moreover, these two types of corticofugal
modulations: (i) on cochlear sensitivity; and (ii) on the OC
reflex strength were not correlated, suggesting the presence
of at least two functionally different descending pathways to
the crossed and uncrossed MOC neurons, and possibly a
third pathway to LOC neurons (Figure 2). Some functional
consequences of the corticofugal effects on the strength of
the OC reflex could be the finding of stronger reflexes in
awake than in anesthetized animals (Guitton et al., 2004;
Chambers et al., 2012; Aedo et al., 2015), and the diminishing
of tinnitus perception during stimulation of the auditory
cortex in human patients (Fenoy et al., 2006; Fregni et al.,
2006).

The model of three parallel descending pathways from the
auditory cortex, is also supported by the presence of different
types of projecting neurons, including regular and burst spiking
pyramidal neurons from layer V (Hefti and Smith, 2000),
and neurons from layer VI (Winer et al., 2001). Moreover,
the differential corticofugal effects obtained with different
microstimulation rates: 5 Hz to modulate IC andMGB responses
(Suga and Ma, 2003) and 32–33 Hz to modulate SOC activity
(Xiao and Suga, 2002; Dragicevic et al., 2015), suggest different
activation thresholds for cortical neurons projecting to these
subcortical nuclei.

Functional Role of the Auditory Efferent
System

Different functions can be assigned to the different loops
formed in the auditory efferent pathways. Functions mainly

depending on the OC brainstem circuit are protection to acoustic
trauma (Maison and Liberman, 2000) and balance of interaural
cochlear sensitivity (Darrow et al., 2006), while neural plasticity
during learning of behaviorally relevant auditory tasks has
been attributed to the colliculo-thalamic-cortico-collicular loop
(Xiong et al., 2009; Bajo et al., 2010). A top-down frequency filter
needed in different behavioral situations can be proposed as the
general function for the cortico-olivocochlear circuit, including
selective attention to auditory or visual stimuli (Delano et al.,
2007; Smith et al., 2012), regulation of afferent responses during
wake/sleep cycle (Velluti et al., 1989; Froehlich et al., 1993), and
antimasking of auditory stimuli in a noisy environment (Kawase
and Liberman, 1993). As there is increasing evidence of the
modulation of cochlear responses during selective attention, this
putative function of the corticofugal system is discussed next.

Selective Attention to Visual or Auditory
Stimuli

Since the early experiments performed in cats by Hernández-
Peón et al. (1956), the auditory efferent system has been
proposed to function as a top-down filter of peripheral auditory
responses during attention. To address this proposal, two types
of attentional paradigms have been used: (i) attention to visual
stimuli using irrelevant auditory distractors (Oatman, 1971;
Delano et al., 2007), in which all peripheral auditory responses at
all frequencies should be suppressed through the efferent system;
and (ii) attention to auditory targets of specific frequency (Smith
et al., 2012; Srinivasan et al., 2012), in which the peripheral
auditory responses near the target frequency would be enhanced
while other frequencies would be suppressed by the efferent
system.

CAP reductions in response to click and tone auditory
distractors during selective attention to visual stimuli have been
obtained in cats and chinchillas (Oatman, 1971; Delano et al.,
2007). In the latter work, CM increases concomitant to CAP
reductions were obtained during visual attention, suggesting that
these attentional effects were indeed produced by activation
of MOC neurons, as the electrical stimulation of MOC fibers
produces CAP reductions with simultaneous CM increases
(Elgueda et al., 2011).

Contradictory results have been obtained in visual attention
tasks with auditory distractors in humans. For instance, Puel
et al. (1988) showed that click-evoked OAE were reduced in
13 out of 16 evaluated subjects during visual attention (1.25
dB in average). Similarly, Wittekindt et al. (2014) showed that
during periods of visual attention to Gabor patches, there was
a reduction in the amplitude of distortion product otoacoustic
emissions (DPOAE). On the other hand, Smith and colleagues
(Smith et al., 2012; Srinivasan et al., 2012), found a DPOAE
increase during selective attention to visual stimuli, but a DPOAE
reduction during auditory attention to theDPOAE primary tones
(f1 and f2). These opposite results could be explained by the
differential generating mechanisms of click-evoked OAE with
that of DPOAEs (Shera and Guinan, 1999). Importantly, in the
work of Smith et al. (2012), subjects attended to the primary tones
(f1 and f2) that generate the DPOAEs, but measurements were
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FIGURE 2 | The three pathways model for the cortico-collicular-olivocochlear and cochlear nucleus circuits. In order to simplify this model, the
colliculo-thalamic-cortico-collicular loop has been omitted. In addition, only efferent pathways from the left auditory cortex to the right cochlea are presented. Three
OC pathways are directed to the right cochlear receptor and auditory nerve, which are depicted in color green, orange and blue corresponding to the: (i) right LOC
fibers; (ii) right uncrossed MOC; and (iii) left crossed MOC neurons respectively. Ipsilateral acoustic stimulation of the right cochlea activates right AN, right CN
neurons that send projections to the contralateral MOC. In turn, left crossed MOC neurons modulate right cochlear responses (blue brainstem pathways),
constituting the ipsilateral OC reflex. On the other hand, contralateral acoustic stimulation of the left cochlea activates, left AN, left CN neurons that send projections
to the right uncrossed MOC fibers, which modulate right cochlear responses (orange brainstem pathways), constituting the contralateral OC reflex that connects
both ears. This model proposes that the descending pathways from the left auditory cortex directed to the left IC and to the left CN (orange corticofugal pathways)
modulate the contralateral OC reflex, by regulating the activity of the left CN and right uncrossed MOC neurons. On the other hand, descending pathways directed to
the left IC and left MOC (blue corticofugal pathways) regulate crossed MOC activity, which is involved in the ipsilateral OC reflex. Finally, corticofugal pathways to the
contralateral IC (green corticofugal pathways) could regulate right LOC neurons, modulating the activity of right AN fibers. The +/− signs represent possible
excitatory and inhibitory pathways. Modified from Dragicevic et al. (2015) with permission. AN: auditory nerve; CN: cochlear nucleus; LOC: lateral olivocochlear;
MOC: medial olivocochlear; IC: inferior colliculus.

obtained from a distant location in the cochlear partition at the
2f1–f2 frequency. Future experiments should clarify whether the
corticofugal effects are different if the subject attention is directed
to the primary tones (f1 and f2) or to the DPOAE frequency
(2f1–f2).

Both ears are connected through the uncrossedMOCpathway
that is activated by contralateral sounds (de Venecia et al.,
2005). Notably, differential effects of interaural attention through
uncrossed MOC fibers have been found in human studies (de
Boer and Thornton, 2007; Srinivasan et al., 2014). Srinivasan
et al. (2014) found that alternating auditory attention between
the two ears modifies the strength of corticofugal effects on
DPOAEs responses, suggesting that attention can independently
modulate crossed and uncrossed MOC neurons. These findings
are in agreement with the results obtained by Dragicevic
et al. (2015) and support the model proposed in this article
(Figure 2).

Concluding Remarks

In summary, here we reviewed the growing anatomical
and physiological evidence supporting the presence of an
efferent network from auditory cortex to OC neurons. Cortical
descending effects on CN, auditory nerve and cochlear responses
are proposed to be produced by three parallel pathways from
auditory cortex to the crossed and uncrossed MOC neurons
and to LOC neurons. These connections are probably activated
during selective attention, learning induced plasticity and other
cognitive functions.
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