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Y Taché, V Martinez, M Million, J Rivier. Corticotropin-
releasing factor and the brain-gut motor response to stress. Can
J Gastroenterol 1999;13(Suppl A):18A-25A. The character-
ization of corticotropin-releasing factor (CRF) and CRF recep-
tors, and the development of specific CRF receptor antagonists
selective for the receptor subtypes have paved the way to the un-
derstanding of the biochemical coding of stress-related alterations
of gut motor function. Reports have consistently established that
central administration of CRF acts in the brain to inhibit gastric
emptying while stimulating colonic motor function through mod-
ulation of the vagal and sacral parasympathetic outflow in rodents.
Endogenous CRF in the brain plays a role in mediating various
forms of stressor-induced gastric stasis, including postoperative
gastric ileus, and activates colonic transit and fecal excretion elic-
ited by psychologically aversive or fearful stimuli. It is known that
brain CRF is involved in the cross-talk between the immune and
gastrointestinal systems because systemic or central administra-
tion of interleukin-1-beta delays gastric emptying while stimulat-
ing colonic motor activity through activation of CRF release in
the brain. The paraventricular nucleus of the hypothalamus and
the dorsal vagal complex are important sites of action for CRF to
inhibit gastric motor function, while the paraventricular nucleus
of the hypothalamus and the locus coeruleus complex are sites of
action for CRF to stimulate colonic motor function. The inhibi-
tion of gastric emptying by CRF may be mediated by the interac-
tion with the CRF2 receptors, while the anxiogenic and colonic
motor responses may involve CRF1 receptors. Hypersecretion of
CRF in the brain may contribute to the pathophysiology of
stress-related exacerbation of irritable bowel syndrome.
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La corticolibérine (CRF) et la réponse de l’axe
cerveau-intestin au stress
RÉSUMÉ : La caractérisation de la corticolibérine (ou CRF, pour cortico-

tropin-releasing factor) et de ses récepteurs, ainsi que le développement
d’antagonistes spécifiques du CRF manifestant une sélectivité à l’endroit
de certains sous-types des récepteurs, ont pavé la voie à une meilleure com-
préhension de l’encodage biochimique de la dysmotilité intestinale liée au
stress. Les rapports ont toujours confirmé que l’administration centrale de
CRF agit sur le cerveau pour inhiber la vidange gastrique tout en stimulant
la motricité du côlon par l’entremise d’une modulation de l’influx vagal et
parasympathique sacré chez le rat. Au niveau cérébral, le CRF endogène
joue un rôle de médiateur sur diverses formes de stases gastriques dues au
stress, notamment l’iléus gastrique post-opératoire; et il active le transit co-
lique et l’émission des selles déclenchée par des stimuli aversifs ou terri-
fiants. On sait que le CRF cérébral participe aux échanges entre les
systèmes immunitaire et gastro-intestinal parce que l’administration systé-
mique ou centrale d’interleukine-1-bêta retarde la vidange gastrique tout
en stimulant l’activité motrice colique par le biais de la sécrétion de CRF
dans le cerveau. Le noyau paraventriculaire de l’hypothalamus et le
complexe vagal dorsal sont d’importants sièges de l’action inhibitrice du
CRF sur la motricité gastrique, alors que le noyau paraventriculaire de
l’hypothalamus et le complexe du locus cœruleus sont d’importants sièges
de l’action stimulante du CRF sur la motricité colique. L’inhibition de la
vidange gastrique par le CRF est amenée par l’interaction avec les récep-
teurs du CRF2, alors que les réponses motrices anxiogènes et coliques met-
tent en cause les récepteurs CRF1. On se demande si l’hypersécrétion de
CRF au cerveau ne contribuerait pas à la physiopathologie de
l’exacerbation du syndrome du côlon irritable liée au stress.
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“…Should this man receive bad news, or should sad and
baneful passions suddenly arise in his soul, his stomach
and intestine will immediately cease to act on the foods
contained in them. The very juices in which the foods
are already almost entirely dissolved will remain as
though struck by a moral stupor.”

Cabanis’ statement in 1802 (1) is among the first
prescientific recognitions that the brain affects gut

function. A few years later, Beaumont (2) reported clinical
observations that emotional states linked with fear or anger
disturbed gastric function. Pioneer experimental reports of
brain-gut interactions by Pavlov (3) and Cannon (4) dem-
onstrated that psychological stimuli such as sham feeding
and fear influence gastric secretory and motor function in
dogs and cats. Hall (5) established in rodents that defecation
scores are a means of measuring the fearfulness response to
unfamiliar surroundings or arousing situations.

Selye (6,7), while working at McGill University, Mon-
treal, fathered the unifying concept of stress initially re-
ported in 1936 as a “syndrome produced by diverse nocuous
agents” and later defined as the “nonspecific response of the
body to any demand”. The activation of the pituitary adrenal
axis induced by exposure to various stressors (7) stimulated
research on the biochemical coding of the hypothalamic fac-
tors triggering the endocrine response. In the 1960s,
Guillemin (8) (a former doctoral student of Selye) observed
independently the presence of a corticotropin-releasing fac-
tor (CRF) in hypothalamic extracts that stimulates adreno-
corticotrophic hormone (ACTH) release from anterior
pituitary cells. However, CRF eluded characterization until
1981, when Vale and coworkers (9) (former doctoral stu-
dents of Guillemin) reported the isolation of the 41-amino
acid peptide involved in the pituitary stimulation of ACTH
release. Recently, a new CRF-related mammalian peptide,
urocortin, was identified in rats and humans, and the
40-amino acid peptide shares 45% homology with CRF (10).

Since the discoveries of CRF-related peptides along with
the development of specific CRF receptor antagonists by
Rivier et al (11), Gulyas et al (12), Hernandez et al (13) and
Miranda et al (14), significant advances have been made in
the understanding of the neurobiological basis of the stress
response. In this article, we provide a brief background on
CRF distribution in the brain, CRF receptor characteriza-
tion and new advances in the development of selective CRF
antagonists. In addition, we review recent experimental evi-
dence supporting a role of brain CRF in mediating the gastric
and colonic motor alterations induced by stress and its possi-
ble pathophysiological relevance to irritable bowel syn-
drome (IBS).

BRAIN CRF AND CRF RECEPTOR
DISTRIBUTION, AND BIOLOGICAL ACTIONS

OF CENTRAL CRF
CRF is widely distributed in the brain, with the highest
abundance in the paraventricular nucleus of the hypothala-
mus (PVN) (15,16). A subset of CRF-containing neurons

projects to the portal capillary zone of the median eminence
to stimulate the secretion of ACTH from the anterior pitu-
itary gland. The subsequent ACTH-induced release of adre-
nal glucocorticoids is part of the response of the peripheral
limb of the hypothalamic-pituitary axis (HPA) to stress
(15,16). In addition to its neuroendocrine role, CRF, when
injected centrally, elicits a wide spectrum of behavioural, au-
tonomic and visceral responses, including anxiogenic be-
haviour and inhibition of food intake, increases in
sympathetic outflow, decreases in vagal activity, and alter-
ations in cardiovascular and immunological function that
mimic the bodily alterations induced by various stressors
(17-23).

CRF mediates its actions through interaction with spe-
cific, high affinity, membrane-bound receptors that are cou-
pled to a guanine nucleotide stimulatory factor-signalling
protein, resulting in increased intracellular cAMP levels
(19,24,25). Two different CRF receptors, CRF1 and CRF2
subtypes, have been cloned and characterized in rats as well
as in humans (24-26). These receptors show an overall 71%
identity and differential pharmacological and anatomical
profiles, indicative of distinct functional roles (26,27). Bind-
ing constants in transfected cells indicate that rat/human
CRF (r/hCRF) exhibits a higher affinity for the CRF1 recep-
tor than the CRF2 subtype (25,26,28). By contrast,
CRF-related peptides, sharing a 40% to 50% structural
homology with CRF, namely, sauvagine, a 40-amino acid
peptide isolated from the Phyllomedusa sauvagi amphibian’s
skin, and urotensin-I, a 41-residue peptide isolated from tele-
ost fish, as well as mammalian urocortin, display a higher af-
finity at the CRF2 receptor than CRF, while having a similar
affinity to CRF at the CRF1 subtype (25,26,28). The CRF1
receptor is the predominant form localized in the pituitary
gland, olfactory bulb and cerebral cortex, while the CRF2
subtype is found in the lateral septum, hypothalamus,
amygdala and brain stem (25,26).

CRF RECEPTOR ANTAGONISTS
Rivier et al (11), Gulyas et al (12), Hernandez et al (13),
Miranda et al (14), Fisher et al (29) and Menzaghi et al (30)
developed three generations of CRF analogues with compet-
itive antagonistic activity at both the CRF1 and CRF2 recep-
tor subtypes (Table 1). Alpha-helical CRF9-41, [Met18,Lys23

,
Glu27,29,40,Ala32,41,Leu33,36,38]r/hCRF9-41 developed in
1982 and the D-Phe12 CRF12-41 analogue [D-Phe12,
Nle21,38,C�MeLeu37]r/hCRF12-41 have been extensively
used in vivo to assess the physiological role of CRF in endo-
crine, autonomic, immune, behavioural and gastrointestinal
responses to various stressors (11,13,18-21,29-33). However,
these antagonists have some limitations due to their poor
solubility, persistence of intrinsic activity and weak potency
at pituitary receptors (12,29,30). In addition, alpha-helical
CRF9-41 has a high affinity for the CRF binding protein (12).
Further research aimed at achieving conformational stability
of CRF antagonists resulted in the development of astressin,
cyclo(30-33)[D-Phe12,Nle21,38,Glu30,Lys33]r/hCRF12-41
(12,14). Astressin’s main characteristics are its low intrinsic
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activity, high solubility in aqueous solutions, and high affin-
ity to both CRF1 and CRF2 receptor subtypes, while lacking
an affinity to the CRF binding protein (12,34). Recent re-
ports indicate that astressin has an approximately 32-fold
and 100-fold higher potency than D-Phe CRF12-41 and al-
pha-helical CRF9-41, respectively, to inhibit ACTH secre-
tion from pituitary cells in culture (12,14). Moreover, after
peripheral administration in rats, astressin is 10-fold more
potent than any other CRF antagonists reported to inhibit
stress-induced increases in ACTH plasma levels (12).

During the past two years, nonpeptide competitive CRF
receptor antagonists, namely NBI-27914, CP-154,526 and
antalarmin, which exhibit a highly selective antagonist ac-
tion at the CRF1 receptor subtype, became available (35-38)
(Table 1).

ROLE OF BRAIN CRF IN STRESS-RELATED
INHIBITION OF GASTRIC MOTOR FUNCTION

Stress influences gastric motor function, including motility
and transit. Although the pattern of gastric motor changes
can vary in function according to the stressors (pages 26A to
31A), the most consistent effect relates to the inhibition of
gastric contractions and gastric emptying in experimental
animals and humans (39-41).

The injection of CRF into the cerebrospinal fluid (CSF),
into either the lateral or third ventricle or the cisterna
magna, delays gastric emptying of a non-nutrient viscous so-
lution and of a caloric meal, either liquid (glucose) or solid
(Purina chow, Ralston Purina, Missouri), in conscious rats
and mice (42-54). Active transport of CRF from the brain to
the periphery exists (55,56); however, convergent evidence
indicates that the delay of gastric emptying induced by in-
jecting CRF into the CSF is a central nervous system action
and not a peripheral effect due to leakage of the peptide
(44,46,51,53). Brain sites responsive to CRF and resulting in
the inhibition of gastric motor function include the PVN
and dorsal vagal complex, whereas the locus coeruleus com-
plex (LCC), lateral hypothalamus or central amygdala (uni-

lateral microinjection) microinjected with CRF did not alter
gastric motor function (52,57,58). CRF action is mediated
by a specific interaction with CRF receptors in the brain.
Central administration of either of the three peptidergic
CRF receptor antagonists blocked concurrent injection of
CRF-induced inhibition of gastric emptying in rats and mice
(42,43,45,46,48,53). In particular, astressin proved to be six-
to 16-fold more potent than the two previously developed
peptidergic CRF receptor antagonists (42). Evidence based
on the potency of the CRF-related peptides sauvagine and
urotensin, with a higher affinity for the CRF2 receptor sub-
types, suggests that CRF2 receptors may be preferentially in-
volved in the intracisternal injection of CRF-induced delay
in gastric emptying in rats (50,59,60). The central action of
CRF can be modulated by other transmitters. Intracisternal
injection of the sigma ligand JO 1784 attenuated intra-
cisternal CRF-induced delayed gastric emptying (47).

Peripheral autonomic pathways convey CRF action from
the brain to the stomach, whereas associated activation of
the pituitary-adrenal axis and endorphins do not play a role.
Inhibition of the gastric motor response by the central injec-
tion of CRF was not altered by hypophysectomy, acute
adrenalectomy and naloxone pretreatment, but was
abolished by ganglionic blockade in rats and mice
(31,44,46,50,54). Most reports, except one (54), indicate
that central CRF delays gastric emptying through
vagal-dependent mechanisms. Intracisternal injection of
CRF and sauvagine decreases the discharge of gastric vagal
efferents (61), and vagotomy completely prevents the inhi-
bition of gastric emptying induced by intracisternal or
intracerebroventricular injection of CRF (44,50) and partly
prevents the inhibition of gastric emptying induced by PVN
microinjection of CRF (57). CRF microinjected into the
dorsal vagal complex inhibits exogenous and endogenous
thyrotropin-releasing hormone (TRH) in the dorsal vagal
complex-induced vagal stimulation of gastric contractility
(58). Further indication of an inhibition of preganglionic
vagal motor neuron activity by intracerebroventricular in-
jection of CRF also came from studies using Fos expression as
a marker of neuronal activation (62). Cold exposure acti-
vates dorsal motor nucleus of the vagus neurons through
medullary TRH release (63-65). Intracerebroventricular in-
jection of CRF suppressed the number of Fos-positive cells in
the dorsal motor nucleus of the vagus that were induced by
cold exposure by 80% (66).

The role of endogenous brain CRF in stress-related de-
layed gastric emptying was further established by the use of
the three peptidergic CRF receptor antagonists injected into
the CSF or the PVN at doses that block the effect of exoge-
nous CRF. Abdominal and brain surgery-, restraint-, forced
swimming- and ether anesthesia-induced inhibition of gas-
tric emptying were all prevented by the central injection of
the CRF receptor antagonists (42,43,49,53,57,67) (Table 2).
Recently, we reported that 3 µg astressin injected intra-
cisternally completely inhibited abdominal surgery, and
cecal manipulation induced 60% to 65% inhibition of gas-
tric emptying 3 h after surgery. By contrast, 10 to 50 µg is re-
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TABLE 1
Peptides and nonpeptide antagonists

CRF antagonist Selectivity Effective doses Reference

Peptides

alpha-helical CRF9-41 CRF-R1,2 50 µg, ic, icv;
2 mg/kg, iv

11,29

[D-Phe12, Nle21,38,
C�Leu37]h/rCRF12-41

CRF-R1,2 20 µg, ic, icv;
0.5 mg/kg, iv

13,30

Astressin CRF-R1,2 3 µg, ic, icv;
0.1 mg/kg, iv

12,42

Nonpeptides

CP-154,526 CRF-R1 5 to 30 mg/kg,
iv, po

36,37

NBI 27914 CRF-R1 NT 35

Antalarmin CRF-R1 20 mg/kg, ip 38

CRF Corticotropin-releasing factor; CRF-R Corticotropin-releasing factor
receptor; ic Intracisternal; icv Intracerebroventricular; ip Intraperitonial; iv
Intravenous; NT Not tested; po Oral
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quired for the other CRF receptor antagonists, D-Phe
CRF12-41 and alpha-helical CRF9-41, demonstrating the en-
hanced potency of astressin (42,67) (Figure 1). The demon-
stration that the postoperative ileus is mediated by
supraspinal CRF-dependent mechanisms may add to the un-
derstanding of the biochemical coding and neuronal cir-
cuitry involved in the efferent limb of the reflex (43,67,68).
Indeed, earlier studies recognized the importance of
sympathoadrenergic as well as vagal efferent pathways in
postoperative gastroparesis (69,70). Such pathways are con-
sistent with the release of CRF in the brain by surgery
(71,72) and CRF-dependent modulation of autonomic out-
flow, resulting in alterations of gastric motor function
(61,73-77).

In addition, CRF in the brain may play a role in func-
tional alterations of gastric motility during immune chal-
lenge. Interleukin-1, one of the key mediators involved in
the immunological and pathological response to infections
and antigenic challenges (78), activates CRF neurons in the
PVN (79,80). In line with a role of brain CRF in the regula-
tion of gastric emptying in response to various challenges,
interleukin-1-beta injected peripherally or into the CSF de-
lays gastric emptying of a non-nutrient meal (48,81-83).
Upon microinjection into the dorsal vagal complex, it inhib-
its the vagal-dependent stimulation of gastric contractility
induced by coinjection of TRH (84). Central injection of
the CRF receptor antagonist D-Phe CRF12-41 prevents the
delayed gastric emptying induced by intracisternal or intra-
venous injection of interleukin-1-beta in rats (48,81).
Taken together, these findings strengthen the important
role of brain CRF in the gastric stasis resulting not only from
exposure to psychological, physical or chemical stress (31)
but also from immunological challenges associated with acti-
vation of interleukin-1 (48,81). By contrast, CRF in the
brain is not involved in the basal regulation of gastric empty-

ing under nonstress conditions in rats (42,45). Studies in
dogs also indicate that intracerebroventricular injection of
CRF abolishes the cyclic activity front of the antrum, and
one mechanism may involve modulation of motilin release
(85,86).

ROLE OF BRAIN CRF IN STRESS-INDUCED
ACTIVATION OF COLONIC MOTOR FUNCTION

The stimulation of colonic motor function in response to ex-
posure to various stressors has been recently reviewed based
on experimental and clinical reports (33). Much of the re-
cent progress in identifying the mechanisms through which
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TABLE 2
Reversal of stress-induced gastric and colonic motor disorder by corticotropin-releasing factor (CRF) antagonists

Stressors
Gastric/colonic
motor changes CRF antagonist Antagonist dose (µg/rat) Reference

Abdominal surgery Decreased GE Astressin 3, ic 2

Abdominal surgery Decreased GE D-Phe CRF12-41 10, ic 67

Abdominal surgery Decreased GE �-helical CRF 100, ic 43

Trephination Decreased GE �-helical CRF9-41 100, ic 43

20 min swim Decreased GE �-helical CRF9-41 30, icv 49

Restraint Decreased GE �-helical CRF9-41 50, PVN 57

Interleukin-1-beta Decreased GE D-Phe CRF12-41 20, ic 48

Ether Decreased GE �-helical CRF9-41 100, ic 43

Water avoidance Increased defecation Astressin 10, ic 42

Water avoidance Increased CT, defecation �-helical CRF9-41 50, PVN, icv 53,57

Restraint Increased CT, defecation �-helical CRF9-41 50, PVN, icv 51,53,57

Conditioned fear Increased colonic spike burst �-helical CRF9-41 2.5, icv 87

Interleukin-1-beta Increased colonic spike burst �-helical CRF9-41 10, icv 102

CT Colonic transit; ic Intracisternal; icv Intracerebroventricular; GE Gastric emptying; PVN Paraventricular nucleus of the hypothalamus

Figure 1) Reversal of a postoperative ileus by intracisternal injection of
various peptidergic corticotropin-releasing factor (CRF) antagonists in
conscious rats. Fasted rats were exposed to short enflurane anesthesia for
10 mins. Saline or a CRF receptor antagonist was injected intra-
cisternally (ic) immediately before abdominal surgery (laparotomy plus
1 min manipulation of the cecum). Gastric emptying was determined
160 to 180 mins after surgery. Each column is the mean ± SEM of four
to 10 rats. Data from references 13, 42 and 67
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stress stimulates colonic motor function has come from the
use of CRF and CRF receptor antagonists injected into the
brain (31,33).

Williams et al (51) were among the first to establish that
intracerebroventricular injection of CRF results in the stim-
ulation of colonic transit and fecal output in conscious fe-
male rats. Since then, several reports have shown that CRF
injected into the lateral brain ventricle activates colonic
motor function assessed by the increase in colonic
spike-burst frequency, contractility, transit and fecal output
in conscious male rats (33,42,53,55,73,87-91). Brain sites of
action for CRF to activate colonic motor function have been
located in the PVN and LCC; microinjection of CRF tar-
geted at these specific nuclei increased colonic motility,
transit and fecal output as well as diarrhea at the maximally
effective dose in conscious rats (52,57,92-96). By contrast,
microinjection of CRF into the lateral, anterior or
ventromedial hypothalamus, central amygdala (unilateral
injection) or the bed nucleus of the stria terminalis did not
alter the rate of colonic transit or defecation (57,93,94).
CRF-induced stimulation of colonic motor function upon
central injection is mediated by receptor-specific interac-
tions in the brain as shown by the prevention of CRF action
by the competitive CRF receptor antagonists alpha-helical
CRF9-41 and astressin, injected into the CSF but not intra-
venously in conscious rats (42,51,53,87,96). In these func-
tional studies, astressin proved to be more potent than the
previously developed peptidergic CRF receptor antagonists
(42). In anesthetized rats, microinjection of the CRF antag-
onist D-Phe CRF12-41 into the LCC abolished the stimula-
tion of characteristic spike burst activity induced by
microinjection of CRF into the LCC (97).

Pharmacological studies indicate that the central action
of CRF – activation of colonic motor function – is modu-
lated by several transmitters acting on specific receptors.
The anxiolytic drug buspirone, acting through 5-hydroxy-
tryptamine1A autoreceptors (88); cholecystokinin (CCK)
through CCK-A receptors (89,98); neuropeptide Y (89,90);
the sigma agonists (90); and arginine vasopressin receptor
antagonist (91) prevented the stimulation of colonic spike
burst activity in rats induced by the intracerebroventricular
injection of CRF (87).

Autonomic pathways mediate the central action of CRF
– simulation of colonic motor function – while the activa-
tion of the HPA axis does not play a role. This was estab-
lished by the inhibition of the colonic response to CRF
injected into the lateral ventricle by the ganglionic blocker
chlorisondamine and the unchanged stimulatory response
after hypophysectomy, adrenalectomy and naloxone pre-
treatment (54,87,93). The parasympathetic nervous system
is involved as shown by the prevention of the central action
of CRF by atropine, while noradrenergic blockade by
bretylium had no effect (54,57,92,93). It is likely that the sa-
cral component of the parasympathetic pathways also plays a
role because subdiaphragmatic vagotomy does not alter the
activation of colonic transit and fecal output induced by
CRF microinjection into the PVN (57).

The role of central CRF in mediating stress-related acti-
vation of colonic motor function is supported by several
neuropharmacological studies in conscious rats. Alpha-
helical CRF9-41 injected into the lateral brain ventricle or
PVN abolishes partial wrap restraint- or water avoidance
stress-induced stimulation of colonic transit and defecation
(51,53,57,92). In other studies, intracerebroventricular in-
jection of alpha-helical CRF9-41 and astressin reduced the
water avoidance stress-induced fecal output in fed rats by
60% (42,95). Interestingly, water avoidance stress stimulates
Fos expression in specific populations of neurons, mainly in
the PVN, LCC, septum and bed nucleus of the stria
terminalis, and the alpha-helical CRF9-41 selectively de-
creases the activation of neurons located in the PVN and
LCC in tandem with the suppression of colonic output in
conscious Sprague-Dawley rats (96). In addition, simulta-
neous recording of locus coeruleus neuronal and cecocolonic
myoelectric activity showed that microinjection of CRF at
the locus coeruleus induces a similar onset of activity in both
locus coeruleus neurons and colonic myoelectric activity.
Both responses are abolished by microinjection of the CRF
antagonist into the LCC (95). Female Lewis rats, which dis-
play a defective CRF response to immune challenge stress
(99,100), have a 50% lower fecal output response to water
avoidance stress in association with a significant decrease in
Fos expression in the PVN, LCC and sacral parasympathetic
neurons compared with female Fischer rats (101). These ob-
servations suggest that the activation of PVN and LCC neu-
rons by CRF may have a bearing on the neuronal network
involved in the stimulation of colonic motor function in this
model of water avoidance stress. Conditioned fear-induced
increases in the frequency of cecal and colonic spike bursts
were also prevented by intracerebroventricular injection of
alpha-helical CRF9-41. Interleukin-1 injected into the lat-
eral brain ventricle stimulates colonic spike burst frequency
through brain CRF mechanisms as shown by the reversal of
the response by intracerebroventricular injection of alpha-
helical CRF9-41 (102). These data further support the con-
cept that immunological stress may influence colonic motor
function through interleukin-1-mediated activation of CRF
in the brain. By contrast, central CRF does not play a role in
the basal regulation of colonic motor function in nonstressed
rats (42,51,53,57, 87,93).

RELEVANCE OF BRAIN CRF PATHWAYS TO IBS
The possible relevance of brain CRF pathways in the
pathophysiology of IBS has been recently suggested (33). Of
significance is the association of IBS in patients who scored
higher on psychological vulnerability than normal subjects,
and in those with a diagnosis of psychiatric illness involving
depression, panic disorders or anxiety (103-109). A correla-
tion between stressful life events and bowel symptoms has
also been reported (110). In addition, for patients with IBS,
the improvement of psychological status by psychological or
pharmacological treatments led to parallel improvements in
bowel symptomatology, particularly in patients suffering
from anxiety or depression associated with diarrhea, and in-
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termittent abdominal pain exacerbated by stress (105,111).
Consistent with a possible role of brain CRF is the link be-
tween psychological and IBS symptoms and recent findings
that the sites in the brain inducing stimulation of colonic
motor function such as the PVN and LCC are also sites of
CRF action to increase emotional, antigenic and fear-related
behaviours in several mammals including monkeys (17-20).
In addition, CRF antagonists injected into these nuclei or
into the CSF abolished both stress-induced anxiogenic be-
haviour (112-115) and stimulation of colonic motor func-
tion (92,95). Recent reports suggest that both the anxio-
genic and colonic motor responses to stress are mediated by

endogenous CRF interaction at the CRF1 subtype
(36,37,116-118). These findings indicate that enhanced
CRF activity may be associated with neuropsychiatric disor-
ders and IBS manifestations.
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