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Major depressive disorder (MDD) is a global problem for which current pharmacotherapies

are not completely effective. Hypothalamic–pituitary–adrenal (HPA) axis dysfunction has

long been associated with MDD; however, the value of assessing cortisol as a biological

benchmark of the pathophysiology or treatment of MDD is still debated. In this review, we

critically evaluate the relationship between HPA axis dysfunction and cortisol level in

relation to MDD subtype, stress, gender and treatment regime, as well as in rodent

models. We find that an elevated cortisol response to stress is associated with acute and

severe, but not mild or atypical, forms of MDD. Furthermore, the increased incidence of

MDD in females is associated with greater cortisol response variability rather than higher

baseline levels of cortisol. Despite almost all current MDD treatments influencing cortisol

levels, we could find no convincing relationship between cortisol level and therapeutic

response in either a clinical or preclinical setting. Thus, we argue that the absolute level of

cortisol is unreliable for predicting the efficacy of antidepressant treatment. We propose

that future preclinical models should reliably produce exaggerated HPA axis responses to

acute or chronic stress a priori, which may, or may not, alter baseline cortisol levels, while

also modelling the core symptoms of MDD that can be targeted for reversal. Combining

genetic and environmental risk factors in such a model, together with the interrogation of

the resultant molecular, cellular, and behavioral changes, promises a new mechanistic

understanding of MDD and focused therapeutic strategies.
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INTRODUCTION

Major depressive disorder (MDD) is a complex, multifactorial, and heterogenous clinical syndrome
that currently affects at least 120 million people worldwide and by 2030 will be the single highest
contributor to the global burden of disease (1). Existing therapies are not efficacious for all patients
and over the past five decades few, if any, truly novel treatments for MDD have emerged that go
beyond the monoamine theory of depression first presented in the 1960s (2). Although there is
growing evidence that multiple other neurotransmitter systems (3), inflammatory processes (4), and
dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis are involved in MDD, these
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insights have not yet led to new treatments due to our limited
understanding of their molecular mechanisms (5).

Progress in therapeutics has been hindered by the inadequacy
of preclinical animal models to fully recapitulate the
heterogeneous nature of the human condition (5). To improve
this, researchers have sought to develop models that maintain
adequate face, predictive, etiological, and construct validity with
MDD (3). Specifically, candidate models need to demonstrate
similarity between the behavioral phenotype and clinical
symptoms (face validity), reversal of behavior with known or
proposed antidepressants (predictive validity), and behavior
inducible by factors associated with human disease (etiological
validity), as well as displaying putative MDD biomarkers
(construct validity) (3). In meeting these criteria, a major goal
of preclinical animal models has been to emulate MDD to
provide a framework for investigating neurobiological cause
and effect mechanisms beyond those available from
clinical studies.

The seemingly causal relationship between stress and cortisol
in MDD, first described in the 1950s (6), promised just such a
mechanism that was both independent of the monoamine theory
and potentially able to deliver new therapeutic approaches.
Accordingly, rodent models using environmental and
hormonal stressors, addressing etiological and construct
validity, respectively, have been developed. Quantitative
changes in behavioral phenotypes, particularly those
recapitulating core symptoms of major depression such as
increased anxiety, anhedonia, and cognitive deficits, have been
used for face validity. Multiple drug studies have subsequently
explored the predictive validity of these models for new and
established antidepressants. Although this approach has
provided some new biological insights and increased the
knowledge base, it has not yet produced the needed
therapeutic breakthroughs.

In this review, we critically evaluate the validity of modelling
HPA dysregulation in preclinical studies as a key driver of MDD
pathophysiology. We do this by contrasting animal data with
acute and chronic clinical studies that have examined stress,
MDD treatment, and cortisol levels. We conclude by discussing
the advantages and disadvantages of the current rodent models
of MDD and HPA dysregulation, and how these might be used in
combination with genetic risk factors and modern neuroscience
tools to probe the neural circuitry of MDD and, ultimately,
improve its treatment.

Cortisol and MDD
In MDD, glucocorticoid receptor (GR) signaling is abnormal (7)
and associated with chronic hypersecretion from the
corticotrophin releasing hormone (CRH) neurons of the HPA
axis (Figure 1) (8). This hypersecretion is thought to shift HPA
activity toward ever higher set points, resulting in the persistently
elevated HPA activity seen in some MDD patients (9, 10). Many
studies of MDD patients have reported abnormalities of cortisol
suppression in response to pharmacological and psychological
challenge (11–13), and probing the mechanisms underlying this
effect has remained a popular line of inquiry for both clinical and
translational research. However, the association between cortisol

and MDD in humans is complex, and appears dependent on
stage of illness, severity, and type of challenge employed. For
example, with respect to stage of illness, HPA responsiveness
does not appear to be affected in chronic MDD (symptoms of
more than 2 years duration), with patients and controls not
showing any difference in salivary and serum cortisol levels
following dexamethasone suppression testing (DST), even after
controlling for variability in dexamethasone metabolism (14). In
contrast, remitted MDD patients generate higher cortisol levels
than controls following exposure to a visual stress cue (15). In
those with remitted MDD, persisting hyperresponsiveness to
dexamethasone can predict relapse at 6 months (16), whereas
cortisol levels do not provide prognostic information in chronic
MDD (14).

With respect to the severity of MDD, a number of studies
have shown that the severity of depressive symptoms is
proportionate to cortisol level (16). More severe MDD
subtypes, such as psychotic (17–20) and melancholic MDD
(21, 22), consistently show higher baseline and challenge
salivary and serum cortisol levels than observed in atypical
MDD, a less severe MDD variant. Atypical MDD sufferers
have been shown to have cortisol responses that are closer to
those of healthy controls, especially when contrasted against the
levels seen in melancholic MDD (21, 22). It has also been
suggested that elevated cortisol may be responsible for the
emergence of psychotic symptoms in severe MDD (23, 24).
There are also marked HPA abnormalities in bipolar
depression, which has a more severe presentation than milder
forms of MDD (25). Elevated cortisol levels are also associated
with the cognitive impairment seen in psychotic MDD (24).

Taken together, the evidence supports the notion that cortisol
dysfunction is proportionate to, and consistent with, current
nosological classifications of MDD severity. It appears that
cortisol dysregulation, specifically in response to stress, is
reliably associated with severe and acute presentations of
MDD. Chronic and less severe subtypes of MDD, such as
atypical depression, do not exhibit this robust association,
which is consistent with data suggesting that personality and
social factors may be major drivers of these subtypes (26). The
association of HPA dysregulation with MDD severity might be
mechanistically explained by parallel findings from receptor,
immunological, and imaging studies. Melancholic and
psychotic, but not atypical, depression show increased cortisol
response to laboratory stress challenge (27). This may come
about through altered functioning of GR expression, which then
affects the homeostatic regulation of cortisol (28). The resultant
hypercortisolism drives changes to serotonin receptors (29, 30),
and this has been proposed as the mechanism underlying the
specific symptoms of severe MDD (31). In atypical MDD, such
symptoms are absent and hence serotonin receptor function is
likely preserved (32). Elevated cortisol levels have also been
proposed to contribute to the psychosis seen in psychotic
MDD, via increased dopaminergic activity (33). Supporting
this theory, mifepristone, a GR antagonist, has been shown to
specifically reduce the psychotic symptoms of psychotic MDD
(34, 35). Atypical MDD shows elevated inflammatory markers
compared to melancholic MDD (22). Individuals with psychotic
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FIGURE 1 | Organization of the hypothalamic–pituitary–adrenal (HPA) axis in mouse and human. In both mouse and humans, stress leads to secretion of

corticotropin releasing hormone (CRH) and arginine vasopressin (AVP) from the hypothalamus, which subsequently stimulates the secretion of adrenocorticotropic

hormone (ACTH) from the pituitary gland. ACTH transported via blood to the adrenal cortex of the adrenal gland stimulates the synthesis and secretion of

glucocorticoids—primarily corticosterone, in mice and cortisol in humans as well as secretion of other major steroid dehydroepiandrosterone (DHEA). Glucocorticoids

regulate their own secretion via a negative feedback control mechanism via mineralocorticoid (MR) and glucocorticoid receptors (GR) at the level of the hippocampus,

hypothalamus, and pituitary gland. MRs, which have a high affinity for endogenous glucocorticoids, are found primarily in the hippocampus and determine the basal

activity of the HPA axis. In contrast, the activation GRs upon binding of glucocorticoids in the hippocampus, hypothalamus, and pituitary leads to an inhibitory

feedback onto the hypothalamus to control the stress response. A facilitatory input from amygdala to the hypothalamus also plays a role in the activation of the HPA

axis response. Arrows represent stimulation, and T-shaped lines represent inhibition. Amy, Amygdala; Hip, Hippocampus; Hyp, Hypothalamus.
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(36) and melancholic (37) MDD have been found to have smaller
hippocampal volumes than those with less severe forms of
depression. Frontal lobe volume is reduced in psychotic MDD
(38), and the sylvian fissure is enlarged in melancholic MDD
(39). In contrast to atypical depression, melancholic depression
is characterized by reduced blood flow to the right frontal lobe,
perhaps supporting the importance of social and personality in
the former (40).

Risk Factors for MDD and
Cortisol Elevation
Early Life Stress, Cortisol, and MDD
Early life stress (ELS) programs for abnormal adult cortisol
responses to stress challenge (41), potentially via glucocorticoid
resistance, increased central CRH activity (42) and changes to
GR and mineralocorticoid receptor (MR) binding (43).
Abnormal cortisol responses persist into adulthood (44) and
likely underpin the impaired HPA axis function seen in several
trauma associated psychiatric disorders, including MDD.
Nonetheless, the precise way that ELS affects adult HPA
function appears complex. In an instructive study, for
adolescents with a history of stressful life events, those who
experienced recurrent depression exhibited a persistently
elevated cortisol response to a laboratory stress task (32). In
the same cohort, those who were currently experiencing their
first episode of MDD exhibited a blunted cortisol response to the
same task (32). Despite all the adolescents having had a prior
history of ELS, there were no differences in baseline cortisol
levels, and correlation with MDD was only demonstrated by
variance in cortisol reactivity, rather than absolute level, to the
task (32). This range of state and task dependent cortisol changes
in a single cohort parallels the varied findings in the cortisol and
ELS literature (45). Several studies report increased cortisol
reactivity to stress in ELS populations (44, 46–49), whereas,
contrary data showing reduced cortisol responses have also been
reported (50–53). Variance in HPA axis outcome to ELS have
been shown to be dependent on the timing of the stress (54). ELS
from birth to age 5 years does not appear to affect adult HPA
function, whereas ELS from age 6 to11 years results in
exaggerated adult cortisol response to stress, and ELS from age
12 to 16 years is associated with blunting (54). These differing
outcomes might be due to age-dependent variance in neural
plasticity (42) and the impact of puberty (55). In any case, adults
who have experienced ELS all appear to have smaller
hippocampal volumes (56, 57), regardless of age of trauma and
differing effects on HPA function. Stress in adulthood is also a
risk factor for developing MDD, with up to 75% of MDD
episodes following stress exposure (58, 59).

Gender
Female gender is an established risk factor for MDD (60), which
has generated interest into probing whether females show higher
magnitude cortisol responses to stress than males. A simple
relationship, however, has not been established. When exposed
to a stressful public speaking task, females in luteal phase showed
similarly elevated salivary cortisol levels to men, whereas women
in follicular phase, or on oral contraceptives, actually had lower

cortisol levels than men and luteal phase women (61). The total
serum cortisol level did not differ between groups (61). In
contrast, higher cortisol levels following dexamethasone
challenge were found in females, but not males, in a depressed
cohort (62). In this study, higher cortisol was associated with
greater burden of neurovegetative symptoms, providing
additional evidence that cortisol abnormalities appear to be
positively correlated with depressive severity (62). However,
the findings that males with MDD can have higher baseline
cortisol levels than females with MDD (63, 64) argue against
there being a simple relationship between overall cortisol level
and the increased incidence of MDD in women.

A clearer picture emerges from the finding that males with
MDD and matched male controls show similar baseline cortisol
levels, whereas females with MDD have significantly higher
baseline cortisol than their matched controls (65). This
suggests that the increased incidence of MDD in females might
be better explained by intra-gender cortisol level variability (65).
Women show differences in HPA regulation based on
menopausal status, with menopausal depressed women being
more likely to be corticotrophin non-suppressors than pre-
menopausal women (66). Women in the luteal phase also
show decreased cortisol suppression to DST compared to
results obtained in the follicular phase (60). This may be due
to a decrease in GR density during the luteal phase changing
negative feedback sensitivity to dexamethasone, resulting in
phase dependent intra-individual cortisol response variability
(60). Young et al. hypothesize that it is this variable, rather than
simply higher, female HPA responsiveness to stress across
menstrual phase, and then across the lifetime, which explains
the greater incidence of MDD in women (60). In a similar
manner to the relationship between stress tasks, cortisol, and
major depression, it again appears that the variability, rather
than magnitude, of the cortisol response that correlates
with MDD.

Relationship Between Cortisol and MDD
Treatment
Antidepressants
For monoamine reuptake inhibitor antidepressants, acute dosing
is consistently associated with an increase in serum cortisol levels
(see Supplementary Table 1). For example, in healthy
volunteers, single infusions of the Selective serotonin reuptake
inhibitor (SSRI) citalopram (20 mg), fluvoxamine (100 mg), and
fluoxetine (80 mg) all produced increases in serum cortisol (67–
69). Likewise, acute administration of reboxetine (4 mg), a
noradrenaline reuptake inhibitor (NRI), and venlafaxine, a
serotonin and noradrenaline reuptake inhibitor antidepressant
(SNRI), also increased the level of cortisol in healthy subjects
(70, 71). The ability of various monoamine reuptake inhibitor
antidepressants to rapidly increase cortisol levels after acute
administration might be due to increased monoamine
concentrations directly affecting anterior pituitary hormone
secretion (72).

In contrast to the monoamine reuptake inhibitors, a single
dose of mirtazapine (15 mg) decreased serum cortisol, ACTH,
and urinary free cortisol in healthy male volunteers (73).
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Mirtazapine is a presynaptic alpha2 and postsynaptic serotonin
5-HT2, 5-HT3 receptors and histamine H1 receptor antagonist
that does not use reuptake inhibition to increase serotonin and
noradrenaline levels (74). Modulation of these receptors in the
rodent hypothalamus can inhibit CRH release, which may
explain mirtazapine's ability to rapidly decrease cortisol levels
in humans (8).

In studies of MDD patients, chronic antidepressant treatment
has also been shown to normalize cortisol levels, irrespective of
their differing pharmacological profiles (see Supplementary

Table 1) (8). It has been suggested that normalization of GR
function is the common antidepressant mechanism that allows
improved negative feedback to the HPA and restoration of
normal neuroendocrine function (75). For example, in a study
where MDD and controls had similar baseline urinary cortisol
levels, the clinical response after treatment with fluoxetine over 4
months was associated with a reduction in urinary cortisol (76).

Reductions in cortisol level are not, however, consistently
associated with the clinical response to antidepressants (see
Supplementary Table 1). For example, in a comparative study
of 94 MDD patients treated with either amitriptyline (a tricyclic
antidepressant; 150 mg) or paroxetine (a SSRI antidepressant; 40
mg), only the amitriptyline responders showed a decrease in
salivary cortisol over 5 weeks, despite the similar clinical efficacy
of these drugs (77). The consistency of the antidepressant effect
on cortisol can also vary over time (see Supplementary Table 1).
For example, after 7 days of mirtazapine treatment, the serum
cortisol level decreased in 12 MDD responders for 5 weeks but
then increased to higher levels than baseline, and was ultimately
unable to distinguish them from non-responders (78).

Antipsychotics and Lithium
There is increasing evidence that atypical antipsychotics are
efficacious in the treatment of MDD (8). The older generation
“typical” antipsychotics was mostly limited to antagonizing
dopaminergic D2 receptors, whereas newer “atypical”
antipsychotics have additional antagonist activity at 5-HT2A,
potentially allowing direct modulation of the hypothalamus to
influence cortisol levels (8). For example, in healthy controls,
acute dosing with the atypical antipsychotics olanzapine,
quetiapine, and ziprasidone has been reported to reduce
cortisol levels, whereas the typical antipsychotic haloperidol
had no effect (79, 80). With respect to chronic dosing, after 1
week of treatment with quetiapine (300 mg), MDD patients had
a significant reduction in cortisol in response to dexamethasone
challenge; however, after 5 weeks cortisol secretion had increased
to near pre-treatment levels (81). Lithium treatment in mood
disorders has also been associated with increased cortisol levels
in response to dexamethasone and DST challenge without
reliably mapping to clinical response (82, 83).

GR Antagonists and Cortisol Synthesis Inhibitors
Probing the relationship between cortisol and mood disorder, the
GR antagonist mifepristone has gathered considerable interest as
a potential treatment for MDD. While initially showing promise
for the treatment of psychotic depression (35, 84), further work
has shown that its ameliorative effect is limited only to psychotic,

rather than depressive, symptoms (85, 86). This result may be
due to the wide variation in serum mifepristone concentrations
across patients despite standard dosing (87), with higher serum
concentrations associated with reducing psychotic symptoms
only (34). Somewhat paradoxically, mifepristone, which
appears to increase cortisol levels (85), reached Phase 3 trials,
despite elevated cortisol being associated with worsening
psychosis via increased dopaminergic tone (33). Mifepristone's
modest antipsychotic mechanism remains poorly understood
and interest in further antidepressant trials has waned after three
failed Phase 3 studies (88).

Agents that block cortisol synthesis, rather than acting
directly at the GR, have also been pursued. Metyrapone is an
aromatic ketone that inhibits the synthesis of cortisol and has
long been of interest for the treatment of MDD (89). More recent
trials have confirmed that metyrapone is associated with an
improvement in mood in MDD patients (90, 91) but beneficial
effects do not appear to be related to cortisol levels and its
underlying mechanism(s) remain unclear (92). Another cortisol
synthesis inhibitor, ketoconazole, has only produced
inconclusive results in MDD (93, 94). Notably, several HPA
modulating agents showing promise in preclinical studies remain
in the early stages of investigation and are yet to reach Phase 3
clinical trials (88, 95).

Electroconvulsive Therapy
Electroconvulsive therapy (ECT) is a somatic treatment for
MDD that has been shown to be particularly efficacious in
psychotic and melancholic depression (96). In a study of nine
patients with psychotic MDD, ECT produced a reduction in
cerebrospinal fluid CRH (97). Thirty minutes after treatment,
ECT produced an increase in serum cortisol in 13 patients with
melancholic MDD (98). In two studies of unspecified MDD, ECT
led to a normalization of serum cortisol with resolution of
depressive symptoms (99, 100).

Confounders to Interpreting Cortisol in MDD
Cortisol response to stress can be measured across three phases:
(a) basal, or unstressed, phase; (b) reactivity phase, where cortisol
rises in response to a stressor; and (c) recovery phase; where
cortisol returns to baseline following stress. These phases are
regulated by different receptors, with GR regulating cortisol
during reactivity phase, and MR regulating cortisol at periods
of baseline activity. In a meta-analysis, Burke et al. reviewed these
varying cortisol phases in depressed patients versus controls
(101). Depressed patients tended to show a relatively flat
unresponsive pattern of cortisol secretion with both blunted
stress reactivity and impaired recovery phases. This association
also appears to hold true for prospective MDD risk. In patients
who had undergone coronary artery bypass grafting (a stressor),
those whose salivary cortisol returned to normal more slowly
during the recovery phase were most likely to have MDD a year
later (102). Similarly, in adolescents with a history of stressful life
events, those who also had a history of recurrent depression also
had a persistently elevated reactivity phase to stress (32). The
meta-analysis showed that blunted response curves are most
strongly associated with severe MDD. In contrast, non-depressed
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controls showed greater reactivity variability and faster recovery
phase following stressors. Conclusions from the meta-analysis
were limited, however, as it included studies focusing on total
salivary, rather than free, cortisol fraction.

Salivary cortisol has frequently been used to assay stress in
MDD studies. While being relatively inexpensive and pain-free to
test in subjects, it is limited by only being able to measure
unbound free cortisol (103). In contrast, serum cortisol assays
are able to measure unbound and protein bound cortisol fractions
but have the disadvantage of being more difficult to collect and the
added confounder of stress associated with venepuncture (104).
There is a high correlation between salivary cortisol and free
serum cortisol levels, which is maintained during DST and ACTH
challenge (105). The usefulness of this correlation, however, relies
on the presumption that only free serum cortisol is biologically
active (103). This notion has been challenged by the finding that
cortisol bound to cortisol binding globulin (CBG) can have
physiological effects on tissue (106). Furthermore, the
distinction between free and bound cortisol is not very clear,
with hepatic uptake of bound cortisol being threefold faster than
free cortisol followed by rapid dissociation, suggesting that CBG
may be acting as an active delivery mechanism, rather than
passive storage, in serum (106). In contrast to its relationship
with free serum cortisol, salivary cortisol does not have a linear
relationship with total cortisol. Instead, the ratio of salivary
cortisol to total cortisol is concentration dependent, with 1–2%
at lower concentrations and rising to 8–9% at higher
concentrations (105). Salivary cortisol levels also rise
dramatically once CBG is saturated via sex steroids such as
during the follicular phase, pregnancy, and usage of the oral
contraceptive pill (61, 106–107). Confounders such as these have
likely contributed to the marked heterogeneity of results in a
meta-analysis of salivary cortisol levels in 1,354 MDD patients
and 1,052 controls, which concluded that salivary cortisol alone
was unable to distinguish MDD (108). Recent work has also
shown how differences in dexamethasone metabolism, rather than
MDD symptoms, can better explain variance in cortisol levels
(109), though studies have attempted to control for this by directly
sampling serum dexamethasone (14). To counter difficulties with
salivary cortisol, it is possible to measure free and bound fractions
of serum cortisol directly via liquid chromatography-tandem
mass spectrometry; however, reference ranges using this
technique for suppression tests are yet to be established (110).
Furthermore, the DST only probes GR, whereas the less
frequently used, but more physiologically relevant, prednisolone
suppression test examines both GR and MR function (111), both
of which interact abnormally in MDD pathophysiology.

UNDERSTANDING THE
NEUROBIOLOGICAL MECHANISMS OF
DEPRESSION: MODELLING MDD IN
PRECLINICAL STUDIES

Despite progress in the development of non-invasive techniques
to study MDD in humans, detailed examination of the molecular

and cellular mechanisms and neural circuitry underpinning the
disorder remains limited. Some limitations can be addressed via

animal models that critically confer the ability to study cause and
effect relationships under controlled conditions. For example,
although human genome studies have revealed genes associated
with depression (112), additional human studies cannot
prospectively address how such genes might cause depression.
In contrast, being able to manipulate these genes in transgenic
animals provides an opportunity to correlate depression-
associated behaviors with candidate mechanisms (113).

Different behavioral responses are scored and quantified in
preclinical models as surrogates of mood-related changes. For
example, in rodent models, the amount of time spent immobile
in the forced swim test and the tail suspension test are used to
measure behavioral despair, which is thought to be analogous to
the hopelessness seen in MDD (114). The sucrose preference test
has been used to determine anhedonic behavior in rodents,
potentially corresponding to the diminished interest in
pleasurable experiences seen in depressed patients (114). In
rodent colonies, the social interaction test has been used to
model the social withdrawal seen in MDD (115). Due to the
high comorbidity of depression and anxiety (116), behavioral
tests that examine rodent anxiety, such as the elevated plus maze,
novelty-suppressed feeding, open field, and dark-light box tests,
are also used to study depression (117, 118). Utilizing multiple
behavioral assays thus provides an experimental system that
features analogues of human MDD and is open to detailed
experimental manipulation.

Given that both susceptible genes and environmental risk
factors are implicated in the development of depression, most
animal models employ a combination of genetic manipulation
and environmental stressors to produce animals that exhibit
depression-like behaviors. The evolutionary conservation of the
stress response brain circuitry between humans and rodents
remains fundamental to translational studies (Figure 1). In
rodents, stress induces secretion of corticosterone via the HPA
axis, with rodent corticosterone and human cortisol having
functionally equivalent roles (119).

CORTICOSTERONE LEVELS IN GENETIC
MODELS OF DEPRESSION

Most genetic models of MDD in rodents are generated via

selective breeding. Animals with the desired features are bred
over several generations, yielding inbred strains that reliably
exhibit specific physiological or behavioral abnormalities (120).
For example, Flinders sensitive line (FSL) rats display both
depression-like behavior (121) and vulnerability to stress-
induced anhedonia-like behavior (122). These behavioral traits
are also associated with elevated corticosterone levels (123–125).
Wistar-Kyoto (WKY) rats are characterized by depression-like
and anxiety-like behaviors (126), and exhibit an upregulated
basal serum corticosterone level at the start of the dark cycle,
which is reminiscent of the circadian rhythm abnormalities seen
in human MDD (127, 128). Importantly, prolonged
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corticosterone stress responses and DST non-suppressibility
have been observed in WKY rats (128, 129). Congenitally
learned helpless (cLH) rats show pronounced helplessness
behavior without prior exposure to uncontrollable shock (130).
Baseline corticosterone levels are similar between cLH rats and
controls; however, cLH rats experiencing acute stress have a
decreased cortisol response compared with adult controls (131,
132), reminiscent of the differences in the stress cortisol response
between traumatized and non-traumatized MDD patients.

CORTICOSTERONE LEVELS IN
ENVIRONMENTAL MODELS
OF DEPRESSION

Chronic mild stress (CMS) paradigms are often used to model
MDD in rodents due to their ability to induce behavioral despair,
and anxiety-like and anhedonia-like behaviors (133). In CMS
models, there is a consistent increase in serum corticosterone
following stressor exposure (134–138). Notably, reducing
corticosterone levels via pharmacological inhibition of
corticosterone synthesis or adrenalectomy has been shown to
block the development of depressive behaviors in CMS models
(139, 140). Compared to physical stressors, such as restraint,
damp bedding, and food deprivation, social stressors, such as
social isolation (141) and social defeat (142), tend to more reliably
produce depression-like behaviors but are associated with
variable basal corticosterone levels while leading to increase in
corticosterone levels in response to acute stress (141–150).

Models of ELS, induced by maternal separation or limited
nesting, have also been used to recapitulate the association
between adverse childhood events and MDD (151, 152). In
rodents, the effects of ELS on corticosterone levels are highly
variable, being stressor-specific as well as dependent on the
developmental period during which the stressors are
administered and the age at which animals are assessed (152–
159). This is reminiscent of the weak association between early life
trauma and dysregulated HPA response to acute stress in adults.

Collectively, the findings from rodent models display some
similarities to those observed in humans, where it is the variable
responsiveness to repeated stress, rather than the basal level of
corticosterone, which is associated with depression-like behavior.

MODELLING DEPRESSION USING
EXOGENEOUS CORTICOSTERONE
ADMINISTRATION

To simulate the HPA dysregulation seen in the genetic and
stress-based models of depression, researchers have used
exogeneous corticosterone administration in rodents (160).
Robust and highly reproducible anxiety- and depression-like
behaviors have been reported following chronic oral
administration of corticosterone, which may or may not lead
to an elevation in the level of serum corticosterone (133, 161–

169). In addition to the behavioral changes, chronic exogeneous
corticosterone is associated with several neurobiological changes
seen in MDD models including the disruption of adult
hippocampal neurogenesis (170), and decreased hippocampal
brain derived neurotrophic factor (BDNF) (171). Chronic
treatment with classical antidepressants such as fluoxetine and
imipramine (160, 172–174), as well as a single dose of faster-
acting antidepressant ketamine (164, 175), have been shown to
reverse corticosterone-induced depression-like behaviors. In a
subset of these studies, beneficial behavioral effects of
antidepressant treatment was accompanied by normalization of
serum corticosterone levels (172–174). Notably, sub-chronic
treatment with GR selective antagonist, RU-43044, has also
been shown to reverse corticosterone-induced depression-like
behavior (176) suggesting GR as a potential molecular target to
combat HPA axis dysregulation.

CLASSICAL ANTIDEPRESSANTS AND
CORTICOSTERONE

Mirroring findings in humans, acute and sub-chronic treatment
with classical antidepressants have been reported to increase
corticosterone levels in rodents (see Supplementary Table 2).
For example, in non-stressed animals, a single injection of
fluoxetine (10 mg/kg) or imipramine (30 mg/kg) increased
serum corticosterone levels (177, 178). It has been suggested
that following antidepressant administration, hippocampal GR
and mineralocorticoid (MR) receptors are downregulated, which
reduces HPA negative feedback, thereby leading to an increase in
corticosterone (179). This hypothesis is supported by the finding
that 9 days of fluoxetine (10 mg/kg) and venlafaxine (10 mg/kg)
treatment results in downregulation of hippocampal GRs and
MRs (180). In contrast to these effects, chronic antidepressant
treatment had no effect on basal corticosterone levels in non-
stressed rodents. For example, 24 days of either paroxetine,
(7.5 mg/kg) (181), venlafaxine (10 mg/kg) (181), or
desipramine (7.5 mg/kg) (181, 182) did not affect basal serum
corticosterone levels.

Paralleling findings in human MDD described above
(summarized in Supplementary Table 1) , mult iple
antidepressants have been shown to normalize corticosterone
levels in stressed animals (see Supplementary Table 2). For
example, treatment with fluoxetine for more than 2 weeks
normalized basal corticosterone levels in chronic unpredictable
stress and social defeat stress rodent models (183–185). Similarly,
chronic treatment with venlafaxine or imipramine normalized
basal corticosterone in chronic unpredictable stress and prenatal
stress exposed rodents (186–190).

ATYPICAL ANTIDEPRESSANTS, LITHIUM,
AND CORTICOSTERONE

In rodents, the effect of atypical antidepressants on
corticosterone levels is similar to those seen with classical
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antidepressants (see Supplementary Table 2). For example, a
single injection of mirtazapine increased basal corticosterone
levels (177), whereas a longer treatment period had no effect on
either basal or post-stress levels (177, 191). In chronic
unpredictable stress and prenatal stress, chronic mirtazapine
treatment normalized basal and post-stress corticosterone (188,
190). Chronic treatment with tianeptine (10 mg/kg), a tricyclic
antidepressant that locks the serotonin transporter into the open
position, also normalized basal corticosterone in a prenatal stress
model (190). Single (1.4 meq Li+/kg) and repeated (45 meq Li+

mixed with 1 kg food, 6 days) lithium treatment of non-stressed
rats increased corticosterone levels (192). However, in socially
isolated mice, a single high dose (10 mg/kg) injection of lithium
decreased post-stress, but not basal, corticosterone levels (193).
Similarly, repeated lithium treatment at a moderate dose (2.5
mg/kg) decreased basal corticosterone levels in a chronic
unpredictable stress model in rats (194).

CONCLUSIONS AND FUTURE
PERSPECTIVES

In summary, clinical studies show that MDD is most consistently
associated with stress-induced variability in HPA axis response
rather than absolute levels of cortisol. Elevated baseline cortisol
levels are only seen in more severe subtypes of MDD and are
conspicuously absent in those with chronic or atypical
presentations. Furthermore, a reduction in cortisol is not
re l iab ly associated with successful treatment with
monoaminergic antidepressants, regardless of type.
Accordingly, baseline cortisol, or corticosterone levels, cannot
be used as a simple proxy for modelling MDD in general, or
evaluating treatment response in either humans or animals.

Recent work has resulted in a rapid expansion of the potential
mechanisms that could underlie the increasingly complex
relationship between HPA axis dysfunction and MDD.
Arginine vasopressin (AVP), a peptide hormone secreted from
the posterior pituitary, acts synergistically with CRH to increase
the release of ACTH and cortisol (Figure 1) (196). AVP is
increased in MDD (195, 196), possibly contributing to the
variable cortisol response to stress challenge in these
populations. Interestingly, recent work has also shown that
melancholic MDD is specifically associated increased AVP
activity (197), which is linked to increased vasopressin V3
receptor expression (198). It remains unknown whether such
changes are also present in milder forms of MDD. MDD also
features HPA axis changes at the receptor level. GR and MR act
in a complementary fashion during the stress response but are
thought to be in imbalance in MDD (10, 199), which may lead to
variable cortisol expression during stress via competition
between these pathways. In addition to this abnormal
relationship between MR and GR, negative feedback through
GR is unpredictably impaired in MDD, further exacerbating
cortisol variability (200, 201). In addition to these emerging
receptor and endocrine mechanisms, genetics and epigenetic are
also likely contributing to the varied results in extant literature.

Evidence from clinical and animal studies suggests that
genetic and epigenetic mechanisms link chronic stress, HPA
axis dysregulation, and alterations to glucocorticoid levels and
signaling. For example, polymorphisms in promoter region of
the GR gene, NR3C1, have been associated with either increased
sensitivity (202, 203) or resistance to cortisol (204). There is also
increased DNA methylation of hippocampal NRC31 associated
with depression, including in the brains of suicide victims with a
history of ELS (205, 206). Expression of GR mRNA is decreased
in those with a history of childhood sexual abuse (205) and GR
gene methylation is increased in children who have experienced
trauma (207). In addition to genetic and epigenetic regulation of
the GR gene, polymorphism in FK506 binding protein (FKBP5),
an important regulator of GR function, has been associated with
DST hyperresponsiveness (208). The importance of this gene to
stress-related disorders has been further supported by studies of
FKBP5 knockout mice that show an increased sensitivity of GRs
(209, 210). Similarly, polymorphism in the CRH receptor
(CRHR1) gene has also been linked to MDD (211) and is
associated with HPA axis dysregulation.

The finding that a diverse range of antidepressants rapidly
stabilize cortisol levels following acute administration could
potentially explain why their beneficial effects are observed
within hours of commencement compared to placebo (212). We
speculate that antidepressants might be overriding ELS-induced
adult cortisol variability in response to stress, which allows
recovery to commence. However, at present, the inconsistent
relationship between chronic antidepressant administration,
clinical response, and cortisol remains difficult for any
mechanistic interrogation. Fortunately, the data showing that
multiple antidepressants have similar effects on stress hormones
in humans and rodents increases confidence that there is sufficient
evolutionary conservation between species to carefully model HPA
axis dysregulation in rodents to further probe MDD neurobiology.
While rodent models have proved extremely valuable in gaining
mechanistic insights into the pathophysiology, emerging studies
using the non-human primates have begun to offer additional
dimensions to the endocrine and behavioral correlates of chronic
stress induced MDD (213, 214). Exploring the effects of HPA axis
modulation in these animal models could provide a bridge to
improve ourmechanistic understanding of how changes in cortisol
cascade to abnormalities in metabolism, gene regulation, and
immune function, all of which have been independently
implicated in MDD. This combined with high-throughput
longitudinal monitoring of group-housed animals, as reported
recently for mice (215), could yield a variety of behavioral readouts
of individual animals and help stratify vulnerable versus resilient
subpopulations in response to various stress such as early life or
social stress.

An ideal rodent or non-human primate model should
therefore reliably produce exaggerated or blunted HPA axis
responses to acute or chronic stress a priori, which may, or
may not, alter baseline cortisol levels. Such a model would
provide an evidence-based neurochemical environment that
can inform subsequent behaviors as targets for reversal. The
value of such a model would be to correlate the established
biomarker of HPA dysregulation with multiple emerging
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biomarkers using modern neuroscience tools. For example,
recent advances in small animal imaging using magnetic
resonance imaging (MRI) confers the ability to directly
measure structural and functional changes in the rodent brain,
thereby providing a bridge to translate findings from animals to
humans. Although structural MRI has been used to report robust
subcortical brain alterations in MDD (216), a recent approach
(217) exploiting differences in the resting state connectivity
between brain regions among MDD patients to define novel
subtypes of depression has excited clinical and preclinical
researchers alike. We therefore envisage that structural and
functional MRI-based changes, together with HPA tissue
biomarkers, will correlate with clinical subtypes of MDD and
guide new treatment approaches.

Recent advances in identifying genetic risks (112), together
with access to brain-wide transcriptome data from post-mortem
clinical samples (218), will also advance our understanding of
brain region-specific roles for select genes and molecular
networks in MDD. Defining the roles of these genes, as well as
selective manipulation of the underlying brain circuits, using
tools such as optogenetics, in HPA informed animal models will
likely drive further insight into MDD.

Thus, a research pathway that encompasses multi-modal
investigations, including molecular, cellular, neurocircuitry,
and behavioral studies in preclinical models, and which is
informed and refined by clinical findings will accelerate

understanding of MDD and provide multiple strategies to
effectively diagnose and treat this heterogeneous disorder. It is
vital that we persevere and strengthen such interactions between
preclinical and clinical research to drive multiple iterations of
this pathway.
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