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Abstract

e introduce the term cosegmentati on which denotes the
task of segmenting simultaneously the common parts of an
image pair. A generative model for cosegmentation is pre-
sented. Inference in the model leads to minimizing an en-
ergy with an MRF term encoding spatial coherency and
a global constraint which attempts to match the appear-
ance histograms of the common parts. This energy has not
been proposed previously and its optimization is challeng-
ing and NP-hard. For this problem a novel optimization
scheme which we call trust region graph cutis presented.
We demonstrate that this framework has the potential to im-
prove a wide range of research: Object driven image re-
trieval, video tracking and segmentation, and interactive
image editing. The power of the framework lies in its gen-
erality, the common part can be arigid/non-rigid object (or
scene), observed from different viewpoints or even similar
objects of the same class.

1. Introduction

shared shape model which has the advantage of being com-
pletely viewpoint independent.

Apart from clear applications in interactive graphics, for
segmentation of images and videos, cosegmentation has im-
plications in another important area: image similarity mea
sures. Commonly the degree of similarity of a pair of im-
ages has been computed by comparing the global statistics
of the two images. Typically the comparison is applied to
the histograms of each image, constructed from features
such as colour and texture [11, 7]. However, such a global,
undifferentiated approach to comparison is liable to rtesul
in crude comparisons, as figures 5, 6 show. Apparently, it is
essential to incorporate some form of differentiation atpa
of images, so that comparison can be based on those parts
of an image pair which are shared in common. In that way,
a similarity between subjects can be scored highly, without
unreasonable dilution by differences in backgrounds. (Con
versely, similarities in the background scenes of a pair of
images could be captured despite the subjects being unre-
lated.) One approach to such differentiation, is “integadat
region matching” [11], in which images are subjected to
mean-shift segmentation [5], and then a simple similarity

This paper looks at segmentation, which is a fundamen-measure records the similarity of paired regions, in a $earc

tal problem in computer vision, and particularly at the si- over both segmented images. However, the choice of paired
multaneous segmentation of a pair of images, an operatiorregions takes no account of object coherence, and so cannot
that we term “cosegmentation”. Powerful procedures for properly take account of the distinction between subjedt an
low-level segmentation can be produced by incorporating background. Here we address that shortcomingoiytly
difference measures at the level of pixels, into a global ob- cosegmentation the image pair using a proper MRF coher-
jective function [20, 3, 17]. The objective function canaals ence prior and a histogram matching cost, and then compare
incorporate a tendency to coherence of regions. Completelyeither subject or background.

automatic segmentation is possible [20] but prone to error, A sub-problem which arises in cosegmentation is the
and interactive input [3, 17] or fusion with other modali- problem of finding a coherent image region with given tar-
ties [13], is normally needed to correct those errors. An- get histogram. This problem has been approached previ-
other source of information for correcting segmentation is ously using ellipses or active contours to define coherence
to supply a database of related images and segment thertf, 12, 9]. Inspired by [17], we instead define coherence via
simultaneously [21]. Here we demonstrate that supplying MRF priors and solve the problem with iterated graph cuts.
just one additional image can be sufficient to segment both  In order to arrive at an objective function for cosegmen-
together, to higher accuracy than is achieved with either on tation, we begin, in sec. 2, by setting out a generative model
alone. Furthermore, in contrast to [21] we do not exploit a for an image pair, and then evaluating the hypothesis that
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Figure 1.Introducing cosegmentation.Given a pair of images (a) the objective is to segment the compart in both images. (b) Shows
the result of applying GrabCut [17] on the images separatéth a preference of foreground being more likely in the gma@enter. The
result is as expected since the joint foreground is not neatlelc) Shows the result of performing cosegmentation, kieweavithout any
spatial constraints. (d) Result of our complete cosegntientframework.

the images share common material. The recovered cosege z; € {0, 1} indicates whether pixelin imagek is fore-
mentation will then be that pair of regions, one from each  ground.x; is shorthand for the entire labeling in image
image, under which that hypothesis is most probable. One k, andx is shorthand for both images.

approach to the generative model considers pixels in thee -, is an image measurement, e.g. colour or texture at
backgrounds and foregrounds of each image to have been pixel:inimagek. We assume that this measurement falls

generated independently from a certain probability distri into a finite number of bins. Symbal will range over
ution for colour (or texture). Then, under the hypothesis,  these bins. Givery, z; is shorthand for all foreground
the foreground distributions are constrained to be idahtic pixels, andky, for all background pixelsz, is shorthand

This can be shown to yield, as a likelihood for the images, a  for the entire imagé, andz is shorthand for all images.

function of the well-known Jensen-Shannon divergence be- 6. denotes foreground model parameters#pr 65,

tween foreground histograms (see [18]). However, the in- genotes background model parametétg.is shorthand

dependence assumption is something of a drawback, as itis oy poth (6, O1), andd is shorthand for alf.

known that nearby pixels in an image are not generally in-

dependent [8]. If instead we choose a generative model forGiven two images = (z;,z2), we consider two possi-

the foreground histograms as a whole, rather than individ-ble generative models, illustrated in Fig. 2. In both mod-

ual pixels, we can obtain other standard divergences such a€ls, the segmentations and background models are indepen-

variational distance. A further Ising prior on segmentagio ~ dent across images. If = 0 then the foreground models

gated by image contrast [3], encourages smooth boundariesare independent; iff = 1 then the foreground models are
The optimisation of the objective function arising from the same. This difference shows up only in the prioréfor

that generative model, is something of a challenge. GraphTherefore the image model given the segmentations is:

cut algorithms are widely used for binary optimisation in _ B

Markov models [10, 3], but have not been used before P(z|J;X) = /p(OU)HP(Zkf|0kf)P(Zkb|0kb)d0- 1)

where the objective function contains a histogram differ- k

ence measure. It transpires that such an objective func-pye to the number of pixels, the likelihood will be sharp so

tion is not “submodular” and therefore strictly nottradeab  for simplicity we approximate the integral ové@rwith the

Therefore we develop, in sec. 3, a new, approximate al- maximunt:

gorithm based on graph cuts. Finally, in sec. 4, we show B (2a)

a series of results, demonstrating the effectiveness of thep(z|J = 0,%) ~ mgxp(a) 11 (251655 )p(25]010)

new model and algorithm in image segmentation, and in the k (2b)

development of image similarity measures that respect the p(z|.J = 1, %) ~ max p(6) Hp(zkf|0kf)p(zkb|0kb) )

distinction between subject and background. 017=02; i

Under this approximatiom(z|J = 0,x) > p(z|J = 1,X)
always.

We want to choose the segmentaticfsso that the hy-
pothesisJ = 1 has high posterior probability. In other
words, we want to find

2. A Generative Model for Cosegmenting
Image Pairs

Due to lack of space the following derivation includes
several approximations and one particular image generatio
model, the full derivation including an alternative image
generation model can be found in [18].

Letk € {17 2} range over images ande {1,...,n} 1This approximation does not affect the final answer up to s
range over pixels. [18].

X" = argmaxp(J = 1|z, X)p(x) 3)




wherep(J = 1|z,%) = generated by laying out exactly the expected number of pix-
p(|J =1,%)p(J = 1) els from each colour bin, then randomly permuting them.
— T = — e — - Thereforep(zy |01 ¢) is proportional tp(hyr = hrr|0ky)
J=0 J=0 J=1 J=1
p(z| X ) +pie X ) and we only need to specify the distributipthy ¢|65.7). In
We will setp(J = 0) = p(J = 1), so these terms disappear. the following, everything concerns foreground so we will

To simplify the formula, define drop thef subscript. The target histograim is generated
B - by a Gaussian distribution with paramet@ys= (my, vy),
D(z|%) = (Z| ,X) (4) with hyperparametet;, controlling the expected size of the
(ZI = 5() foreground region:
In this ratio, the background terms cancel, and we will ob-  p(hy|my, vi) H/\/ (hi(2); crmp(2), ciog(2)) . (7)

tain a measure of divergence between the foreground areas
of z; andz.. Under the approximation (2) > 0.

Taking the negative logarithm of (3) gives the following
energy minimization problem:

Note that(myg, vi) are shared undef = 1 but ¢ is not.
Thereforec,, can compensate for foreground size differ-
ences among the images. We will use a uniform prior on

x* = argminlog(1 + exp(D(z(x))) — logp(x)  (5a) m;, and Gamma prior oRy:

A argmin %D(Zb’() —log p(x) . (5b) p(vk(2)) o< vk (2) eXP(_Ukb(QZ)) . (8)

This approximation is justified wheR is small at the opti- ~ WhenJ = 0, i, = hy /¢, and¥, = 0 so:
mum.

Prior p(x) We use an MRF model for each image. Fur- p(zl] =0,%)~1. ©)
thermore, we assume that larger foreground regions areynen.s — 1:
more likely a priori. Thus, we have
710gp(}7() = Abg Z(lkaz)“" Z /\M’kj\xkikaj\Jrconst (6) l'il* — lz @ , @*(Z) _ 9 hl(Z) _ hQ(Z) (10)
ki k. (i,5) 2 ~ Ck 2| ¢ c

where the second sum is over pairs of neighboring pixels.
We use the following expression for coefficients ;;: . . .
/ (z|J =1,%) Hp H (hi(2); M, (2), 0.(2))
Akik = A1+ Ao exp(—|Txi — Iij|?)

h1 h2 )

where [Ii; is the colour of pixeli in imagek and 5 = Z (1)
(2 (|[Ixi — Ii;|[*))~".  This is similar to the contrast- b

sensitive term in [17], with the addition of Ising pridg .

Image generation model The remaining task is to spec- 3. Optimization
ify the image generation model for the foreground region:
p(zks|Oks). By choosing this model carefully, we ob-
tain a commonly used divergence measixeOur choice

is a Gaussian model on histograms, which leads to the

classical variational distance. Léikf be the empirical
un-normalized histogram of foreground pixels; s (z) = The first term is given by (6); it encodes the usual MRF prior

> i trid(zki — 2). Given a histogram, the foreground is on labelingx. The second term is quite different from the
first one: it depends ogiobal properties of segmentation
=1 problem quite challenging. One could think of using some
general inference algorithm, such as Swendsen-Wang Cuts

namely histograms of foreground regidins ho:
Figure 2.The two hypotheses for image generation. for sampling arbitrary posterior probabilities [1]. Aneth

In the previous section we described a generative model
that yields the following energy function:

E(%;c1,c2) = —logp(X) + E9*! (hy, hojc1,e2) (12)

I 1 hi(z)  ha(2)
! B9 (g o =Y == -2 a8
( 1 2,01762) 2h - cl Cs ( )
The presence of this global term makes the minimization




possibility is to use active contours [12, 9]. We argue, how- that the energy never goes up, iB(x") > E(x!) > ...
ever, that since the MRF term is an essential part of the en-Let x* be the current configuration. The method performs
ergy, it is desirable to use the well-established technique  the following steps:

binary MRFs - min cut/max flow algorithm [4]. Fortunately, ] )

the form of our global term will allow to use max flow algo- (&) Replace supermodular pafk(x) with a linear ap-

rithm inside the method callesibmodular-supermodular proximation By (x) = C + (x,y) = C + X, 2y
procedure [15]. where(C' is a constant ang is a real-valued vector.
For simplicity, in this paper we sef = ¢, = 1, which (Such a function is also calledodular).

means that we prefer foreground regions of the same size. . .

It is easy, however, to extend the model to account for dif- (b) gompute a global rmmmu_m of functios (x) +
ferent sizes: we can put some prior @nc, and minimize E»(x) to get new configuratior’**.

energy (12) iteratively, i.e. fix;, co and optimize ovek
and then the other way around.

We now describe how we minimize energy (12). We it-
erate between the following two steps: (1) kix, optimize
overxy, and (2) fixxy, optimize overs,. Each subproblem
requires minimizing the following function:

Note that minimization in the second step can be performed
in polynomial time since the function is submodular. (Lin-
ear function(y, x) simply adds unary terms tb; (x)).

Linear approximation chosen in step (a) must satisfy two
properties: (i) It must be an upper bound on the supermod-
ular part, i.e. E2(x) > E»(x) for all configurationsx.

(i) The functions should touch at': Ey(x!) = Ey(x").
These properties ensure that the original energy does not go
up sinceE(x'tt) < Ey(x!t1) + Ex(xt1) < Ei(x') +
where the target histograr’®"' is the empirical his- £, (xt) = E(x!).

togram of the foreground in other image. For the remainder |t remains to specify how to choose an upper bound
of this section we focus on how to solve this subproblemfor 7, x) (i.e. corresponding vectoy) with the properties

agivenimageé:. Sincek is fixed, we will omitit for brevity.  apove. (Existance of such a bound follows from supermod-

— logp(xk) + % Z |ilk (Z) - htwrget(z)' (14)

The energy function can be written as ularity of E,). [15] uses the following procedure. First,
E(x) = Ey(x) + Ea(x) (15) an orderlr_ng oftnc_)des(-) is selected which resp(-fcts cur-
rent labelingx®, i.e. all ones precede all zZeros; ;) =

where the first term corresponds to the priorsoand the

xfr@) > > ac’;(n). This ordering defines the follow-
second to the global histogram term. An important obser-

ing n + 1 configurations:x(® = (0,0,...,0),xM =

vation is_thatEl is submodular and £, is supermodular, i.e. (1,0,...,0),...,x(™ = (1,1,...,1), where we assumed
they satisfy that the nodes are ordered accordingrto(Formally, xgj)
Ei(x AX)+ Ei(xVX) < By (x)+ By (X)) is zero ifw(i) < j, and one otherwise). The fact that order-
Ea(x AxX) + Ea(x V x) > Ea(x) + Ea(x') ing 7 “respects” current IabeI!ngt smply means thg:tt is
one of these: + 1 configurations. Finally, approximation
for all configurations, x’. E,(x) is chosen so that it is exact for these- 1 configura-
It is well-known that any submodular function can be tions:EQ(x(ﬂ) = E»(x1)),5=0,1,...,n. Solvingn + 1

minimized in polynomial time [19]. In our cask, (x) is a equations with + 1 unknowns yields
sum of unary and pairwise terms, so a global minimum of

E, can be computed very efficiently via min cut/max flow C = Ey(x) | yr(iy = Ba(xV) — Bo(x7Y)
algorithm. The presence of supermodular part, however,
makes the problem NP-hard. 3.2. Trust region graph cuts (TRGC)

The submodular-supermodular procedure [15] is a
promising approximate minimization technique for func-
tions of the form (15). Sec. 3.1 gives an overview of this
approach. Sec. 3.2 we discusses its potential difficultids a
proposes an alternative methotitust region graph cuts.

For SSP it is important to choose “good” representative
configurationsc(), . .., x(")_ If, for example, a global min-
imum of E(-) happens to be among these configurations,
then the procedure will find this minimum. Choosing good
configurations, however, is a difficult problem. First, gher

3.1. Submodular-supermodular procedure (SSP) is a restriction on representative configuratforisere must

This method was inspired by concave-convex procedure N_Cl’te that ”:rl]s {eSStS”Fftlon Ont(?prer]sentafgve colnfl%urmopes ntpt nec-
for minimizing functions of continuous variables [22]. SSP 3521V mean that SSP cannot "exchange” pixels. If somégoation is
. . . . . not amongx'?), ... x(™) it may still happen that approximatias (x)
is an iterative technique which produces a sequence of CONs tight for this configuration. Furthermore, even if the apimation is

figurationsx®, x',...,x*,.... The main property of SSPisS  not very tight, theoretically it is still possible that SSRIgo there.




hold eitherx(?) < x* orxU) > x*. Second, even if there 3.3. Implementational details

is an ordering that would decrease the energy, computing . .
T : The general structure of the algorithm for cosegmenting
such an ordering is an NP-complete problem (see discus-

sion in [18]) an image pair is described in the beginning of sec. 3. The
) ) . ) . remaining question is the initialization of the target disi-

_ It could be desirable to choose linear approximation jsns and the segmentation for the first iteration. For this w

Ey(x) = C + (x,y) which is not bﬁsed on any ordering.  employ a procedure which finds the largest regions in two

For example, we could st = F(x"") — E»(x"7) where  jn o465 of the same size whose histograms match perfectly.

is | : i ¢ el : ¢ : : _
x"* is the labeling obtained from’ by settingz; t0s. This  hidis done via a greedy algorithm that adds one pixel at a
approximationis exact for all configurations that diffesit 6 16 the first and second foreground regions. Note, this

) ; . .
x' by at most one pixel. It can also be obtained by keeping gjyes the minimum energy if the spatial prior is ignored.

linear tern_"ns in the Taylor expansion of enerl@y_expressed SSP.The most important question for SSP is how to
as a function of the global histogram-o{assuming thak, choose an ordering of nodes We tested two schemes.

is differentiable). In the first one we selected a random permutation of ele-
Unfortunately, this approximation is not an upper bound ments that respects current configuratian This is sim-
on E(x). This means that minimizing: (x) + E2(x) IS jlar to the technique used in [15], with one modification:
not guaranteed to decrease the original energy. To remedyye take random permutation ®® x 10 blocks rather than
this problem, we propose an alternative method which we individual pixels. Inside each block pixels with the same
call trust region graph cuts (TRGC). It allows arbitrary lin-  segmentation are ordered sequentially. Thus, we try to take
ear approximations, (x) which are not upper bounds. Fur-  into account the fact that due to spatial coherence all pix-
thermore, in this method functioh,(x) can also be arbi-  g|s inside a block are likely to have the same segmentation.
trary - it is no longer required to be supermodular. Our second scheme is deterministic: given initial configu-
Trust region methods are well-known in continuous op- ration, we compute a signed distance map from segmenta-
timization [2]; TRGC can be viewed as their discrete ana- tion boundary and order pixels according to this distance.

logue. A related continuous optimization method is the lin- In this scheme representative configuratiaff8, ..., x(™
earization method of Pschenichnyj [16]. correspond to diluting or eroding the current foreground re
Description of TRGC  Instead of selecting unary po- gion. For a fixed target histogram we ran a maximuri®f
tentials y based on some ordering, we witiptimize iterations of SSP procedure. We observed, however, that in
overy. Our technique produces a sequence of vectorsthe majority of cases only the first few iterations decrease
(x°,y9), ..., (x*,y"), ... with the following properties: (i) the energy, and then the energy stays constant.

x! = argming B (x) + (x,y'), and (ii) the energy does TRGC. We used the SSP procedure for initialization (i.e.
notgo up:E(x°) > E(x') > ... for computing(x?, y°)). We ran the algorithm until conver-

gence, i.e. until searching overdid not yield any improve-
ment in the energy.
For both approaches we used maxflow algorithm in [4].
Furthermore for all experiments we skf, = 0.3, Ay =
1,A2 = 50 andb = 0.5. Finally let us introduce our ap-
pearance model. We have experimented with a simple 2D
intensity normalized RGB colour space and a richer tex-
ture (texton) based model [14], which has been proven to
be very powerful for image retrieval [7]. Apart from sce-
) ) ) ) narios of retrieving images of the same class we have used
We implemented the following one-dimensional search e simple model since the emphases on colour improved
routine: we start withh = 1 and we keep halving it un- {he performance, if the common part is the identical object.

til one of the following happens: (ax(a) = x; (b) A thorough testing of different appearance models is a part
a < 1073; or (c) energyE (x(«)) is larger compared to the of future work.

reviousa, and the energy for the previouswas smaller .
Fhan E(x"). ¥ P 4. Experiments

The method works as follows. Lét!, y*) be the current
state, and, (x) = C + (x,y) be a desired approximation
of Ey(x). Let us definey(a) = (1 — a)y’ + ay, and let
x() be a global minimum of functio; (x) + (x, y(«))3.
Note thatn = 0 corresponds to the current solutigh and
a = 1 corresponds to taking approximatiéh(x). We now
search forx € [0, 1] that minimizesE (x(«)). This defines
new vectorsc! ! andy’*!. If o = 0 is within the range of
values that we test, the energy is guaranteed not to go up.

Itis importantto note that TRGC is a trust region method Comparison of SSP and TRGC.We built a data set of
working in thedual space: we optimize over dual variables 50 images which depict a foreground object in front of a
y rather than primal variables background. The ground truth segmentation of the fore-
ground object has been achieved mandallyy some im-

3If there are multiple global minima, then(a) will denote one of the
them. There is one exception, howeverxif is also a global minimum, 4The data set is publicly available at
then we sek(a) = xt. http://research.microsoft.com/vision/cambridge&8mentation/GrabCut.htm




energy as a distance measure between an image pair. This
4 is a valid measurement since identical images have energy
L (distance)). Another nice feature of our energy is that by
B Q adjusting\,, = oo it gives the standard global histogram
difference of the whole image, as used in e.g. [7]. As in all
previous examples we sgt, = 0.3.
@ © () In fig. 5 we compare the distance between three images
where two of them depict the same scene and the third an
Figure 3.Comparison of TRGC and SSPThe goal is to segment  ynrelated scene. We demonstrate that using cosegmentation
the object (penguin) in the input image (a) given the target h 4 jmages of the same scene have a smaller distance than
togram of the ground truth segmentation (b). The result o6TR two unrelated images. This is in contrast to using an ap-

(c) clearly outperforms SSP (d). pearance statistics of the whole image where two unrelated

Method av. Energy| av. Error (%) | av. # Iter. images have a smaller distance (details in figure caption).
TRGC(dist.) 408 2.33 7.8 In the second example, fig. 6, we compare the distance of
TRGC (rand.) 417 2.33 7.8 a triplet of images where two images depict an object of the
SSP (dist.) 426 2.77 4.6 same class (bus) and a third unrelated image. The findings
SSP (rand.) 461 2.81 4.6 are as in the previous case, cosegmentation gives the torrec
Ground Truth 429 0.0 - relationship for the triplet (see figure caption for defails

Table 1.Comparison of SSP and TRGCwith radome ordering _GiYe” the middle i“_“age i_n fig. 6 as query, the right image
(rand.) and distance map ordering (dist.) of the nodes. Mae IS in fact the most similar image from the Corel database of

the energies are scaled by 2. 1000 images used in [11] and based on global texture (tex-
ages the object is "camouflaged” (e.g. fig. 3(left)), where ton [14]) stgtlstlcs. The.fa}ct that oqrcosegmentatlonesylst _
returns an image containing an object of the same class ( fig.

fore- and background have similar appearance, in otherim-6| 0 i £ of hat th ioval perf
ages (e.g. 4(left)) they have different appearances. Given eft) is a proof of concept that the retrieval performance

the target histogram of the ground truth segmentation Wefpr this particular query image improves. Further_quantita
compare the performance of the submodular-supermodulef'Ve 1€Sts on the whole database have to be carried out. In

procedure (SSP) with our version (TRGC). We also com- particular, it has to be tested that ignoring the similaoty
pare the performance of ordering of the nodes (see sec. 3.3)Ehe background does not decrease performance for a query

Random ordering (rand.), as suggested in [L5], versus dismage which does not contain a well defined object.

tance map ordering (dist.). As performance measure we uti_EurtherhAppI|cat|ons. L?t ufs demonsktrate %ther a?pclica—
lize the average energy (av. Energy) and the percentage ofions where our generative framework can be applied suc-

misclassified pixels (av. Error) with respect to groundtrut gessfully.. Fig. 7_ shows an exam_ple for V"?'eo summariza-
The results are summarized in table 4. Itis clear that TRGC 0" and interactive cosegmentation (see figure caption for

outperforms SSP considerably both in terms of lower en- ?etails). 'T('g 8 d%pficts an appl?caltlion thgre ou:jgeneeativ
ergy and quality of result. Note that the energy of TRGC ramework is used lor automatically tracking and segment-

wasalways lower than SSP. With respect to the pixel order- N9 @ foreground object in a video sequence given a target
ing: random versus distance transform, the later performsdiStribution in the first key frame (details in figure capgion

slightly better, and is also deterministic. Consequengy w .
used the TRGC method with distance transform ordering 5. Conclusion and Future Work

for initialization as our method for the remaining experi- We have presented a novel generative model for coseg-
ments. Fig. 3 shows an example where TRGC outperformsmenting the common parts of an image pair. The strength
SSP. Note, the fact that the ground truth has a relatively Iow of the model is its generality: The common part can be a
energy shows that our problem setting is reasonable. rigid/non-rigid object (or scene), observed from differen
Examples of cosegmentation using TRGC are shown inviewpoints or even similar objects of the same class. In-
fig. 1,4-7. Fig. 4 demonstrates that the segmentation qualference in the model leads to minimization an energy with
ity depends on the background penalty. Our generative  an MRF term encoding spatial coherency and a global con-
framework gives us the option of learning this parameter straint which tries to match the appearance histograms of
given a training and validation data set. To obtain such athe common parts. This exact energy has not been proposed
database is part of future work. earlier and its optimization is challenging and NP-hard. We
Robust Image distance for Image retrieval.ln the follow- have presented a novel optimization scheme which we call
ing we consider two examples where we demonstrate thattrust region graph cuts, and have demonstrated its superior
cosegmentation improves an image retrieval system basedty to a competitive method on a large data set. Our new
on global histogram comparison. The key idea is to use theframework has clear applications for interactive graphics



Input Image Pair )\bg = 0.3 )‘bg = 3.8
Figure 4.Dependency on background penaltyThe background penalty determines the amount of sharegdrfared. With our standard
setting ofA = 0.3 only part of the object was detected. By increaskyg = 0.8 we force more foreground material to appear. Given our
generative model we plan to leakp, from a larger training/validation data set.

Image distance using global histogram

i

58%

Figure 5.Robust Image distance - same scen€onsider the triplet of images in the top row. The left anddiedmage depict part of
the same scene, where the right image shows an unrelatedt $oene. The distance (SAD) of the global colour histografttise whole
images says that the middle image is more similar to the (¢8%) than to the left image (52%). Running cosegmentativesghe
expected answer (bottom row). The cosegmentation of theief middle image nicely moves the regions which do not apipelaoth
images (telephone box, sky and road) to the backgroundl (ighéblue). Note that the depicted cosegmentation of thddhe image is
with respect to the left image. When using the energy of tleegmentation as distance measure, the middle image is nogvsimilar
(42%) to the left than the right image (58%). Note that theepetages are derived by comparing the absolute energies, hdte that the
cosegmentation measure without the spatial coherence(RR) aives, as the alobal histoaram of whole imaaes, theriect answer.

Image distance using global histogram

37 %

Figure 6.Robust Image distance - similar objectsSame explanation as in fig. 5, apart from the fact that theappee model is based
on texture (textons [14]). Note that the trees in the baakgdovhere assigned a different texton label.



Key frame 2

Key frame 1
Figure 7.Video Summarization and Interactive cosegmentationGiven two key frames from a video, our method can extractraate
ically the common part. This can be used to summarize theovitlethis case the segmentation is not perfect, due to colatations
on the book cover. In an interactive cosegmentation systenforeground object can be extracted frbath images, by editing onlpne
image. We utilize the interactive brushing style of [3]. hetimage (second from right) a red brush stroke indicateslicé marking of
the foreground. Obviously, the updated histogram of thiaredige forced a better solution for the right image.

automatic cosegmentation

interactive cosegmentation

—

Frame 1 (a) Frame 10 (b)

Trimap segmentation (c)
Figure 8.Video Tracking and Segmentation.Given a perfect segmentation in a key frame (a) we would tkeegment the the foreground
object in all subsequent frames, e.g. fame 10 (b). An obwsoligtion is to apply standard image segmentation [3] usitngreap, which is
derived by dilating the segmentation of the previous frame fixed number of pixels. The result (c) is good, however gggreentation
of the book is sub-optimal. Our result (d) is better, by fogethe foreground object to have the same target histogramthe previous
frame.

Our Method (d)

video tracking and segmentation. Probably the most impor-[10] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact MAP
tant application is object-driven image retrieval, for aHni

we propose a new and robust similarity measurement for
image pairs. In the future we hope to quantify our initial [11]

findings in this area. A further future direction is the incor

poration of feature matches (optical flow) which is an es-
sential component of any standard wide-baseline matching,
or tracking system. Also a comparison with an alternative

generative model, introduced in [18], is important.
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