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SUMMARY 
A method for calculating the static displacement field following earthquake faulting in 
a layered spherical earth is presented. At shallow levels, the Earth’s layering is 
characterized by sharp jumps in bulk and shear moduli at the Conrad discontinuity 
and the Moho and is therefore important to consider when evaluating crustal 
deformation. The solution to the equations of static equilibrium is represented as a 
superposition of spheroidal and toroidal components that each depend on spherical 
harmonic degree and the moment tensor. A method that has recently been applied to 
the problem of wave propagation on a layered spherical earth is here applied to the 
static deformation field. By representing the point source in terms of discontinuities in 
the displacement-stress vector, the Green’s function for a particular source geometry 
is derived directly. Numerical tests are presented to verify the accuracy of the method 
and to illustrate the effects of sphericity and layering on the calculated deformation 
fields. The effect of sphericity is generally less than about 2 per cent (of maximum 
deformation) within 100 km of an earthquake source at crustal depths. Comparisons 
between the deformation calculated on a spherical homogeneous earth and spherical 
layered earth show that up to 20 per cent errors would be introduced if the Earth’s 
layered structure were ignored. The effect of layering is strongest for sources with a 
strong horizontal slip component. 

Key words: deformation, Green’s functions, layered media. 

INTRODUCTION 

The static deformation of the Earth from a buried earthquake 
source has in recent years received several different formu- 
lations for both a homogeneous and a layered half-space. 
Okada ( 1985) presented analytic formulae for surface displace- 
ments and strains for buried earthquake sources in a homo- 
geneous half-space, and Okada ( 1992) extended this to 
observations made at  depth. In an isotropic layered half-space, 
serveral investigators have made use of propagator matrix 
methods in cylindrical coordinates (Singh 1970; Jovanovich, 
Husseini & Chinnery 1974a, b; Singh & Garg 1985; Rundle 
1980) to obtain analytic solutions for the static displacements 
and strains. Rundle’s treatment includes a zeroth-order coup- 
ling between the elastic and gravitational forces. Similarly, 
Matsu’ura, Tanimoto & Iwasaki (1981) specified an analytic 
method for calculating the displacement field in a layered half- 
space for general earthquake sources (that is, for the six 
independent elements of the moment tensor in an isotropic 
medium). A more general formulation in Cartesian coordinates 
for a transversely isotropic medium was presented by Pan 
(1989). Reviews of progress in applying elastic dislocation 

theory to the static response of a homogeneous or layered 
half-space may be found in Okada (1985) and Pan (1989). 
Since geodetic observations modelled with such calculations 
have been, in the majority of cases, close to the faulting sources, 
a homogeneous half-space has been justified in most studies, 
and the formulations of Okada have received widespread 
application. 

Geodetic observations made at moderate distances from a 
fault could benefit from a modelling procedure which accounts 
for the layering in elastic parameters in the Earth, particularly 
the sharp increases in bulk and shear moduli at the Conrad 
discontinuity and the Moho. Yoshioka, Hashimoto & Hirahara 
(1989) recently made this point effectively for modelling of 
horizontal deformation in southwest Japan. Recent space- 
based geodetic techniques have greatly extended the spatial 
range and density of measurements that are sensitive to fault 
movements. The objective of this paper is to present a method 
of calculating the static displacement field on a layered spheri- 
cal earth from a buried earthquake source, given a general 
moment tensor. The solution of this prohlem and additional 
motivation have been detailed previously by WdSon & Singh 
(1972). Here I give a more compact presentation of the various 
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2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. F. Pollitz 

steps involved in the solution, together with several examples. 
The use of a spherical earth geometry considerably simplifies 
the Dumber of steps involved with the calculation of the static 
deformation fields. In particular, we may express the solution 
conveniently as a sum of spherical harmonic components, and 
it is relatively straightforward to express the appropriate 
boundary conditions for each component. The relative sim- 
plicity of the described method could make it applicable to 
problems in crustal deformation on a more systematic basis 
than the half-space formulations. Although the effect of the 
Earth's sphericity is found to be slight for near-field crustal 
deformation, the new treatment could find application in 
modelling the deformation following very deep earthquakes, 
such as the 1994 Bolivian earthquake. Except for an application 
to a layered elastic plate, coupling between gravitation and 
elasticity is ignored here. This is an excellent approximation 
for most conceivable applications involving unrelaxed defor- 
mation. Any extension of the method presented here to the 
problem of viscoelastic relaxation would benefit from the 
inclusion of the effects of gravity (Rundle 1980, 1982). 

In the following sections, I shall give the details of the 
computational method, followed by numerical tests. 
Comparisons with the exact solution for a homogeneous half- 
space will demonstrate the accuracy of the method, and 
comparisons between the deformation calculated on the layered 
and homogeneous earth models will illuminate the errors 
involved with ignoring the Earth's layered structure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
THEORY 

We work throughout in a spherical earth geometry in an 
epicentral coordinate system (Fig. 1). Let r denote the radius 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 the colatitude and longitude, respectively, of an 
observation point r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,$) relative to a specified point 

Spherical Coordinate System 

\ 

\ 1 

Figure 1.  Spherical coordinate and source geometry. The Earth's 
radius a is taken to be 6371 km. 

sourcc. The source at rs has coordinates (I' = I ' ~ .  0 = 0). It is 
assumed that bulk modulus t i ( r )  and shear modulus p ( r )  are 
laterally homogeneous, depending only on radius. 

The displacement field for a point dislocation is obtained as 
a summation of normal modes. Let Y;'(fl, 4 )  represent the fully 
normalized spherical harmonic of total degree I and azimuthal 
order number 171 (Edmonds 1960). Explicitly. for positive 171 we 
define 

where P;" is the associated Legendre polynomial: and 

Y;"'(o, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) = (- 1 ry* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, &)  , ( 2 )  

where * denotes complex conjugation. Then the displacement 
field may be represented in terms of a basis set of spheroidal 
and toroidal modes, with 

s;""'(I', (I, 4) = [y:m's'(r)f + yp(s!(~)V,] Y ; " ( O ,  4) 

S ; " ( ' ~ ~ ( I ' ,  O,4) = -jjy(T)(r)f x V, Yy(H, 4) 

( 3 4  

for spheroidal modes, and 

(3b) 

for toroidal modes. In eqs ( 3 ) ,  V, is the surface gradient 
operator, 

(4) 

The corresponding normal and shear tractions on the spherical 
shell of radius I' may be expressed in the form 

f .  ~;""'(r, H, 4) = [y:"'S!(r)i + yy('!(r)Vl]Y;"(O, 4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i. T;"'"(r, H, 4) = - y\m(T)(r)f x V1 Yf(O, 4) 

( 5 4  

for spheroidal modes, and 

( 3 3 )  

for toroidal modes, where T denotes the stress tensor in an 
isotropic medium. The total displacement field is given by 

s(r, O , $ )  = 1 1 s;"("(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,4) + s;"'T'(r, 0, 4 ) .  (6)  

In the subsequent development, 1 and rn are taken to be fixed 
unless indicated otherwise. Also, with the mode type under 
discussion understood, the superscripts (S) and (T)  will be 
dropped. 

I m  

The equation of static equilibrium has the form 

V. T(r) = M.Vfi(r - r,) ,  ( 7 )  

where M is the moment tensor. This is subject to the boundary 
conditions f a  T(u)  = 0 (where u is the Earth's radius) and the 
solution must be regular at the origin r = 0 .  Defining the 
displacement-stress vector via 

y ( r )  = Cy,(r) ,  4'2(r) ,  4.3(y), L'4(r)IT (8)  

y ( r )  = [Jl(r)> Y 2 ( 4 I T  (9 )  

for spheroidal modes, and 

for toroidal modes, ( 7 )  may be rewritten as a system of six 
first-order ordinary differential equations (SODE), with a 
source term f at r = r,. 

dY(r) 
__ = A(r)y(r) + f ,  

dr 

where A is a 4 x 4 matrix for spheroidal modes and 2 x 2 
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matrix for toroidal modes. These are given by the upper 4 x 4 
matrix of eq. (43) of Pollitz (1992) or eq. (35) of that paper 
(note that a factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr - 2  must be included in the A, ,  component 
printed in that equation), both of which correspond to the 
static case. Derivations of these matrix elements have been 
given by Takeuchi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Saito (1972) and Lapwood & Usami 
(1981). The explicit form of the source term has been derived 
by Friederich & Dalkolmo (1995). who also describe the 
method of solution of (7)  for the case of wave propagation (in 
which case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA in eq. 10 has terms which depend on frequency). 
Except at the source radius, eq. (10) is a homogeneous SODE. 
In the static case, where the frequency dependence of A 
vanishes, the solution of this homogeneous SODE is given by 
the layer matrix solutions of Pollitz (1992, eqs 36-40 and 

For spheroidal modes, there exist two linearly independent 
solutions of (10) for r < r ,  and four linearly independent 
solutions for r > r s .  There are two boundary conditions at the 
surface, 

49-52). 

Y z ( 4  = Y 4 ( 4  = 0 > (11) 

and four boundary conditions at the source, which together 
determine the unknown coefficients which weigh the six inde- 
pendent solutions. 

For toroidal modes, there exists one solution of (8) for r < r ,  
and two linearly independent solutions for r > r s .  There is one 
boundary condition at the surface, 

and two boundary conditions at  the source. 

displacement-stress vector across the source radius 
The source boundary conditions specify the jump in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AY = Y@,+ 1 - y(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1  (13) 

where r: and r ,  denote evaluation just above or below the 
source radius. The jumps Ay have been specified for a shear 
dislocation by Ben-Menahem & Singh (1981, p. 217). This 
solution completely specifies the required source boundary 
conditions for the toroidal modes, which are not sensitive to 
isotropic source components. To completely specify the jumps 
for spheroidal modes, we must append these solutions with 
one which corresponds to a moment tensor with an isotropic 
component. The simplest is to consider a source composed of 
three dipoles, such that horizontal strain at the source is zero 
and only vertical strain err is non-zero. 
That is, 

e,, = eg, = e8, = ere = er, = 0 ,  

err non-zero . (14) 

The strain component err may be written in terms of the stress 
tensor via zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. 

(15) 3Kp " - 1 err@) = ~ (;. + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP)Tr ( r )  - +(r) + 7&)1 

e,&) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 ?rj im(s)(r)Yy(d,  $1, 

> 

where i = K - f p ,  and in terms of y via 

(16) 
1 r n  

where 07, denotes partial differentiation with respect to r .  By 
multiplying eqs (7) and (15) by Yy*(Q, b ) ,  integrating them 
over the volume between two spherical shells of radius r ,  - br 
and r ,  + (Sr(6r > O), and taking the limit cir + 0, we obtain non- 

zero Ay only for the components i?i = 0, given by 

0 

0 I 0 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXy that appear in (17) and below are related to the 
spherical harmonics via Y y ( 0 , b )  = X y ( 0 )  exp(iin$), where the 
Y y  are defined by eq. (1). This solution, plus that for a shear 
dislocation, are sufficient to specify Ay for spheroidal modes 
and toroidal modes for a general moment tensor. These are 
non-zero only for m = 0, & 1, or 2, and are specified for 
non-negative m as follows 

Spheroidal modes: 
m = O  

Ay = 

m = l  

Ay = 

m = 2  

I Ay = 

1 0 

0 

0 1 

Toroidal modes: 
m = l  

L 0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 1996 RAS, GJI  125, 1-14 
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. F. Pollitz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m = 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

The quantities Xp, COX: ,  and 2ooX; have the values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Strike-Slip Line Source 

A 

R i f t  Line Source 
A 

Thrust Line Source 
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. Three candidate source geometries used in the examples. 
Each line source extends from y = - 5 to y = 5 and is buried a depth 
d below the surface. The width of each fault is taken as infinitesimally 
small, such that the product of the width and slip is a constant. The 
dip of the strike-slip and rift faults is 90', and the dip of the thrust 
fault is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45'. The seismic moment for sources shallower than 16 km has 
the values 1.02 x 10'j N m (thrust), 0.720 x l O I 7  N m (strike-slip), and 
1.80 x 10'j N m (rift). Profile AA' is taken on the planar or spherical 
surface of the earth parallel to the x axis and passing through the 
origin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, which is the source epicentre. For calculations on the 
spherical earth, 0 is taken on the equator in a geographic coordinate 
system, and the x, y and i axes are locally parallel to the due East, 
due North, and upward directions, respectively. 

The i n  summation for displacements and stresses in eqs 
(3a)-(3b) and (5a)-(5b) is from -2 to 2, and the jumps for 
negative m are formally obtained from eqs (18)-(22) and 

Ay"-"' = (- l)"(Ayf")*, (24) 

Note that when the moment tensor is specified in geographic 
coordinates, as we have assumed, then the longitude 4 in eqs 
(3) and ( 5 )  represents the source-receiver azimuth measured 
counterclockwise from due South. 

The equivalence of (18)-(22) to the source jumps given by 
Ben-Menahem & Singh (1981, p. 217) for a shear dislocation 
may be obtained by transforming their summation convention 
(which goes from 0 to 2). spherical harmonic and scale 
parameter conventions to our summation convention (which 
goes from -2  to 2) and spherical harmonic conventions (eqs 
1 and 2). For example, their equations (4.179) and (4.181) for 

0 

50 

E 100 

150 5 
200 n 
250 

300 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.f 
W 

L7 
homogeneous '--: 

L- 

J .-. 

0 40 80 120 160 200 
Bulk modulus (GPa) 

01 

0 20 40 60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 
Shear modulus (GPa) 

Figure 3. Distribution of isotropic elastic parameters with depth, 
shown for the upper 300 km of the Earth. The earth model used is a 
discretized version of the mantle portion of Model 1066A (Gilbert & 
Dziewonski 1975), with modifications for a continental crust. The 
solid lines give the constant values of 36 GPa and 65 GPa for shear 
and bulk modulus, respectively, on the homogeneous earth models. 
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Static deformation on a spherical earth 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.25 

0.20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 0.15- 
5 
xN 0.10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv 

0.05 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

the source jumps for spheroidal modes from pure dip-slip on 
a vertical fault may be converted to our conventions by 
inserting (in their notation) rake i = -n;2 and dip 6 = 1112 

into these formulae, leading to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAyl = Ay2 = Ay4 = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P 

- source depth 
=15 krn 

- 

- 

- 

The factor 1/2 arises from the difference in summation conven- 
tion, and the factor (-i) corresponds to their 'sine' solution in 
longitude 9. Taking a north-south striking fault, we have 

0.8 

0.6 

h 

E 
.% 0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.2 

0.0.  

M,, ~- 

4nr; - Z&!J ' 

yielding the M,, term of eq. (19). Taking an east-west striking 
fault yields the M,, term of (19). 

source depth=lO km 

_ _ _  - _ _ _  - - - 
spherical layered 
spherical homogeneous - - - - 
homogeneous holf-space - 

- c 

- 

- 

Thrust 

Surface Displacement 

As an additional check on the spheroidal mode jumps for 
sources with an isotropic component, the values of displace- 
ment jump Ayl and shear stress jump Ay4 for a purely isotropic 
source can be derived independently and compared with (18). 
Putting an isotropic source at r = rs with non-zero moment 
tensor elements M,, = M,, = M,, = M ,  the displacement field 
takes the form (Aki & Richards 1980, eq. 4.29) 

M(r - r,)  
4n( i  + 2p)  Ir - rs l 3  . 

s(r) = 

The jumps are non-zero only for the spheroidal ( I ,  rn = 0) 
components and may be obtained directly by evaluating the 
limits 

where r+/r denotes evaluation just above/below the spherical 
shell at radius r,, over which the integration is carried out. 

Line Source 
Surface Displacement 

0.10 - 

0.08 - 

0.06 - 

0.04 - 

-0.02 " " " I '  ' 
A-a0 -40 o 40 80 A'  

Profile Distance (krn) 

Surface Displacement 
0.20 

~ - a o  -40 o 40 80 A '  
Profile Distance (km) 

Figure 4. Vertical displacement u, along profile AA' for a thrust line source buried at different depths. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. F. Pollitz 

Applying the integrations in (26) to the displacement fields in 
the form (3a) and (25) yields 

These jumps agree with eq. (18). The jump is not directly 
obtainable using a limit of the form (26) because the integrals 
in that case are unbounded on both sides as the spherical shell 
r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr,  is approached. 

Finally, the source jumps (18)-(20) agree with those derived 
by Dalkolmo (1993, his eqs 3.9-3.11) for spheroidal modes, 
when care is taken to note the slightly different conventions 
for the spherical harmonics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NUMERICAL TESTS 

In the following tests we shall calculate displacements and 
strains for some simple fault geometries using our approach 
on the spherical earth. The surface deformation on both 
spherical homogeneous and spherical layered earth models 
will be compared with that on a homogeneous half-space, 
calculated using the formulae of Okada (1985). These tests 
will enable us to evaluate the effects of sphericity and layering 
on predicted deformation. 

From a practical viewpoint, the integration of the homo- 
geneous SODE need not extend more than a few wavelengths 
from the source radius, particularly for the deepest spherical 
shell where the integration of the r < r ,  solutions is begun. One 
wavelength is defined here as 2na,'(1 + l /2), where I is the total 

Thrust 
Surface Displacement 

0.081 I 

-0.08l ' ' ' ' ' ' ' ' ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
A-80 -40 0 40 80 A '  

Profile Distance (km) 

Surface Displacement 

source depth=lO krn 

. . . . . . . . . 

spherical homogeneous - - - - 

degree number, l t  is found that 2.5 wavelengths is sufficient to 
estimate the deformation fields with high accuracy. This implies 
that, for surface observations, if the source is more than 2.5 
wavelengths deep, then components of degree I will not contrib- 
ute to the deformation field. Therefore, for surface observations, 
the source depth acts as a spatial filter and defines the cut-off 
degree I (or cut-off wavelength). Similarly. for observations at 
depth, the integration of the homogeneous SODE is started 
2.5 wavelengths beneath the source and propagated up to 
either the true free surface or a radius 2.5 wavelengths shallower 
than the source, whichever is deeper. Thus, in general, if the 
observation depth is not within 2.5 wavelengths of the source 
then that wavelength will not contribute to the deformation 
observed there. When the observation depth is sufficiently 
close to the source depth and the source is buried by more 
than 2.5 wavelengths beneath the surface, then free-surface 
boundary conditions are imposed on the spherical shell 2.5 
wavelengths above the source radius. A test of this procedure 
for surface observations is given below and is found to yield 
very stable results at all observation depths. A similar pro- 
cedure is outlined by Friederich & Dalkolmo (1995) for the 
case of wave propagation, in which only low-/ PKIKP- 
equivalent modes are allowed to propagate through the core 
in their integration of the homogenous SODE. 

Three different fault geometries are shown in Fig. 2. In 
calculations on a spherical earth, the coordinates x and y are 
taken due East and North, respectively, and the coordinate z 

the upward normal to the spherical surface. Unless otherwise 
indicated, the spherical harmonic expansion is truncated at 
1 = 10 000. corresponding to a minimum wavelength of 4 km. 
The upper 300km of the earth models used are shown in 
Fig. 3. On both the spherical homogeneous earth and the 
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Stutic defbrniation on u spherical eurth 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASame as Fig. 4. but for horizontal strain e,, 
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Figure7. Dependence of e,, on cut-off wavelength ;.-I. If I,,, is the truncation degree in the spherical harmonic expansion (eq. 6), then i. is 
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8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. F. Pollits 

homogeneous half-space. constant elastic parameters are 
assigned; these coincide with the elastic parameters in the 
layered model in the upper crust (shallower than 16 km). The 
layered earth model is actually the mantle portion of Model 
1066A (Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dziewonski 1975), except for small revisions 
above the Moho (shallower than 33 km depth); below 33 km 
depth note that the smooth Model 1066A has been approxi- 
mated by several discrete layers. The line sources each extend 
from J’ = -5 to = 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s = 0) at a specified depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 (Fig. 2).  In 
effect, the fault width is taken as infinitesimally small, such 
that the product of the fault width and slip is a constant. This 
procedure is preferable to fixing the total moment because 
moment is proportional to rigidity, in which case slip distri- 
butions would be a discontinuous function of fault depth. The 
seismic moment for sources shallower than 16 km has the 
values 1.02 x 10” N m (thrust), 0.720 x 10” N m (strike-slip), 
and 1.80 x 10” N m (rift). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A line source is realized by numerical integration of the 
appropriate Green’s functions for deformation from a point 
source, given by Okada’s (1985) eqs (8)-( 16)  or our eq. (6). A 
very fine integration step was used and tested to ensure uniform 
sampling of the line source. 

Results for a thrust line source are shown in Figs 4-6. These 
results demonstrate that the effect of sphericity for this source 
type is very small in both horizontal and vertical displacement 

and horizontal strain e,, out to at least 100 km from the fault, 
regardless of fault depth. The effect of layering is to slightly 
reduce displacements and strains for sources shallower than 
16 km depth, and to slightly amplify the deformation for 
sources deeper than 16 km depth. This must reflect the effect 
of the sharp increase in bulk and shear moduli at 16 km depth. 
Approximately 10 per cent errors in displacements and strains 
(relative to the maximum value of deformation) would be 
introduced by ignoring the Earth’s layering. 

The effect of truncation of the spherical harmonic expansion 
was tested by varying the cut-ofr wavelength. Fig. 7 shows the 
calculated strain ex, as a function of cut-off wavelength for 
various source depths. It is clear that the minimum spatial 
wavelength content of the strain field is roughly proportional 
to the source depth. The plotted curves were found to be 
absolutely flat beyond a wavelength of 4 km. I also explored 
the geographical pattern of the effect of sphericity. This was 
done by calculating the difference between the spherical homo- 
geneous and homogeneous half-space strain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexx over a 
200 km x 200 km grid. The results for several different source 
depths are shown in Fig. 8. For reference, the profile AA‘ from 
Fig. 3 is repeated in the bottom left panel. Since the strain 
values themselves are of the order of to lo-’, these results 
show that the effect of sphericity is generally small for a 45’ 
thrust source at  crustal depths out to at  least 100 km from the 

Thrust Line Source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 8. Difference between the strain e,, calculated on the homogeneous sphere and that calculated on the homogeneous half-space, at different 
source depths. Since the strain values themselves are of the order of lo-’ or (Fig. 6),  this shows that the effect of sphericity is quite small out 
to 100 km from the source. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Static defiirzation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon a spherical earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 

fault. The ragged spatial patterns far from the fault are very 
small-amplitude fluctuations and exhibit a wavelength compar- 
able with the cut-off wavelength used in the calculation. The 
differences between the spherical layered and spherical homo- 
geneous patterns are shown in Fig. 9. This reveals that the 
geographical distribution of the effect of layering is most 
pronounced within about 30 km of the fault. Beyond that 
distance the strains are generally amplified for sources deeper 
than 16 km, as observed before. 

The results of similar calculations for a rift and strike-slip 
line source are shown in Figs 10 and 11, respectively. The 
effect of layering is even more pronounced for these two cases. 
For a source at 20 km depth, the effect of layering is to increase 
the displacements by 15--20 per cent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs with the other source 
types, the effect of layering is to reduce the amplitude of the 
deformation for sources shallower than 16 km, and to increase 
the am litude for sources deeper than 16 km. 

This amplification!deamplification effect of the layering 
can be explained in terms of stress localization at the layer 
boundaries so that, in general, the deformation field within an 
entire layer exhibits the same response to the interactions 
above or below the layer. In order to show this, I calculated 
the deformation from the strike-slip line source on a 
40 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 16 km grid in the x z  plane (in the plane y = 0) in the 
upper 16 km of the Earth; that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis, shallower than the shallowest 
layer boundary at  z =  -16 km, taking a source depth of 

5 . .  

15.9 km. A cut-off wavelength of 1 km was used. Fig. 12 shows 
the pattern of y-displacement 11) for both the spherical homo- 
geneous and spherical layered cases. as well as the homo- 
geneous half-space (calculated using the formulae of Okada 
1992). Fig. 13 shows the corresponding pattern of shear stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T,:, These patterns are truncated at depth 15.9 km in order to 
avoid a sharp change in the pattern just below the source 
radius. In  calculating these patterns for a fixed source depth. 
the radial displacement functions [ ~ . ~ ( r ) ,  etc.] Lvere calculated 
discretely at 1 km depth knots from 0.5 km down to 16.5 km. 
Cubic spline interpolation was performed for depths falling 
within this depth range. Because of the jump in shear strcss 
T,; at the source radius, a small distortion is thus expected in 
the shear stress profiles near 15.9 km depth (Fig. 13). A slight 
distortion near 15.9 km depth is also expected in the displace- 
ment profiles because of the 1 km cut-off wavelength. This is 
clearly seen as a slight curvature in the displacement profile in 
the lowermost 1 km in the spherical homogeneous case, as is 
seen by comparison with the homogeneous half-space (Fig. 12). 
This was verified by repeating the displacement profiles with 
a 4 km cut-off wavelength, when i t  was found that the distortion 
due to wavelength truncation persisted up to about 11 km 
depth. Regardless of these small effects. Fig. 12 shows that, in 
the layered case, displacement is relatively diminished in the 
entire upper 16 km. Fig. 13 shows that shear stress has a more 
complicated spatial dependence but is also diminished in the 
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Figure 9. Difference between the strain e , ,  calculated on the layered sphere and that calculated on the homogeneous sphere, at different 
source depths. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. F. Pollitz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 10. Horizontal displacement u, along profile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAA'  for a rift line source buried at different depths. 
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Figure 11. Horizontal displacement t iy along profile A.4' for a strike-slip line source buried at different depths. The effect of ignoring the layered 
structure of the Earth reaches up to 20 per cent of the maximum displacement in this case. 
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Static deformation or1 a spherical earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 12. Depth profile of uy for the strike-slip line source, taken in the plane defined by y = O .  The line source is placed at a depth of d =  
15.9 km (bottom of each panel). Displacement is unbounded as one approaches the source, but the contours are truncated for visual simplicity. 
The displacements in the layered case are clearly diminished relative to the homogeneous case. Slight distortion in the bottom 1 km of the spherical 
earth calculations is an effect of wavelength truncation at 1 km. 

layered case. In particular, the top panel shows that the 
difference between the layered and homogeneous stresses is of 
opposite sign to the stresses themselves, showing that the 

source depth and the size of the jump in elastic parameters 
across these boundaries. 

.. - 

DEFORMATION AFTER COMPLETE 
RELAXATION 

stresses in the layered case are substantially diminished. Both 
the displacement and stress patterns are due to the increase in 
bulk and shear moduli at 16 km deuth. It is expected that 
similar phenomena occur at all of the layer boundaries, particu- 
larly the Moho, with corresponding effects that depend on the 

Many applications require the evaluation of crustal defor- 
mation in an elastic plate overlying a viscoelastic substrate (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 13. Depth profile of stress component ?;z for the strike-slip line source, taken in the plane defined by y = 0. The line source is placed at a 
depth of d = 15.9 km (bottom of each panel). The top panel shows the difference between the layered and homogeneous cases; its pattern is of 
opposite sign to the actual stress values, indicating smaller stresses in the layered case. 

half-space) in the limit of complete relaxation following an 
earthquake (e.g. King, Stein & Rundle 1988). One method is 
to evaluate the post-seismic elastic deformation in the limit of 
complete relaxation and to add this to the initial coseismic 
deformation (Thatcher & Rundle 1979; King et a/. 1988). As 
an alternative to this method, which generally depends on the 
accuracy of the inverse Laplace transforms, it is feasible to 
evaluate the deformation in the purely elastic layer directly by 
calculating the coseismic deformation subject to a fluid-solid 
boundary condition at a specified depth. 

It is also straightforward to include gravitational restoring 
forces at this boundary, driven by the density contrast beween 
the elastic and ductile regions. Let r = rbot define the top of a 
fluid region bounded above by solid material. Then, for 
spheroidal modes, the radial eigenfunctions are a linear 
combination of two independent solutions (Pollitz 1992), 

y'"(r) = ( 1  0 1 o y ,  (28a) 
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Figure 14. Comparisons among the displacements ur for a finite 
thrust source, with different elastic plate thicknesses in the homo- 
geneous sphere. The fault length is 50 km extending from = -25 km 
to y = 25 km. The solid lines correspond to the coseismic deformation 
on the homogeneous sphere (without an elastic plate), and the dotted 
and dashed lines give the deformation for an elastic plate of thickness 
H bounded below by a fluid with gravitational restoring forces (eqs 
28c and 29). 

Solution (28a) does not include the effect of gravitational 
restoring forces at the interface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = rbot. Such buoyancy effects 
may be accounted for by explicitly including the buoyancy 
force in the normal stress component y $ )  

y"'(r) = [ I  l(Ap)g,, 1 OIT. ( 2 W  

In the above equation, go is the acceleration due to gravity 
and Ap is the difference between the asthenospheric density 
and the average lithospheric density. In the example to be 
shown here, I have assigned A p  = 0.46 g ~ m - ~ .  For toroidal 
modes, the boundary conditions are simply 

y y r )  = (0 1)T .  (29) 

As an example, Fig. 14 shows a profile of vertical displace- 
ment u, calculated from a finite thrust source, with different 
values of elastic plate thickness H .  In these calculations, 
boundary conditions (28c) and (29) are applied at rbot = a - H ,  
and the minimum wavelength is 3.3 km. There is a strong 
sensitivity to elastic plate thickness, such that post-seismic 
(completely relaxed minus coseismic) uplift or depression is 
predicted, depending on which portion of the elastic plate is 
ruptured. For the case H = 20 km, much of the lower half of 
the elastic plate is ruptured, and post-seismic uplift is predicted. 
For the case H = 30 km, rupture is almost entirely in the upper 
part of the elastic plate, and post-seismic depression is pre- 
dicted. These results are in excellent agreement with Fig. 7 of 
Cohen ( 1984), who calculated the elastic-gravitational post- 
seismic deformation for thrust faults which penetrate various 
portions of an elastic lithosphere overlying a viscoelastic 
asthenosphere. 

CONCLUSIONS 

A method for calculating the static deformation field on a 
layered spherical earth has been presented. This method is 

similar to that recently applied to the case of wave propagation 
on a layered spherical earth. It characterizes the seismic source 
in terms of jumps in the displacement-stress vector in order 
to determine the Green's functions directly. The deformation 
field is then obtained as a truncated sum of spheroidal and 
toroidal modes and can be readily calculated at  both the 
Earth's surface and at depth. No numerical problems have 
been encountered in applying the method with cut-off wave- 
lengths as small as 1 km. The method presented is also easily 
adapted to calculation of deformation in a layered elastic plate 
after complete relaxation of a ductile layer below the base of 
the elastic plate, which may include gravitational restoring 
forces at the base of the elastic plate. 

Several comparisons among the spherical layered, spherical 
homogeneous, and homogeneous half-space cases have been 
presented. These demonstrate that the effect of sphericity is 
quite small out to at least 100 km from the epicentral region. 
The Earth's layering is characterized by sharp increases in the 
isotropic elastic parameters at the Conrad discontinuity and 
the Moho, assumed to be at depths 16 km and 33 km, respect- 
ively. in this paper. Relative to the spherical homogeneous 
earth, the effect of the Earth's layering is generally to diminish 
the calculated deformation for source depths shallower than 
16 km and to enhance the deformation for source depths 
greater than 16 km. This result is analogous to the well-known 
seismic wave amplification/deamplification observed when seis- 
mic waves propagate across large impedence contrasts. Up to 
20 per cent errors would be introduced in the calculated 
deformation fields for sources at  crustal depths if the Earths 
layering were not taken into account. 
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