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Coseismic Rupture Process of the Large 2019 Ridgecrest
Earthquakes From Joint Inversion of Geodetic
and Seismological Observations

Chengli Liu1,2 , Thorne Lay2 , Emily E. Brodsky2 , Kelian Dascher‐Cousineau2 , and

Xiong Xiong1

1Hubei Subsurface Multi‐Scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of

Geosciences, Wuhan, China, 2Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA

Abstract On 4 and 6 July 2019, two large strike‐slip earthquakes with W‐phase moment magnitudes

MWW 6.5 (foreshock) and MWW 7.1 (mainshock) struck the Eastern California Shear Zone, northeast of

Ridgecrest. The faulting geometry and kinematic coseismic slip distribution of both events are determined by

jointly inverting seismological and geodetic observations guided by aftershock and surface rupture locations.

The foreshock ruptured two orthogonal faults with a prominent L‐shaped geometry with maximum slip of

~1.1 m on the NE‐SW segment. The mainshock faulting extended NW‐SE along several primary fault

segments that straddle the foreshock slip. The surface rupture and slip model indicate mostly near‐horizontal

strike‐slip motion with maximum slip of ~3.7 m, but there is a localized vertical dip‐slip motion. Both the

foreshock and mainshock ruptures terminate in regions of complex surface offsets. High aftershock

productivity and low rupture velocity may be the result of rupture of a relatively immature fault system.

Plain Language Summary Two large earthquakes on 4 July 2019 (magnitude 6.5) and 6 July

2019 (magnitude 7.1) struck northeast of Ridgecrest, California. Earthquakes such as the 1995 Ridgecrest

earthquake have occurred previously in this broad region, called the Eastern California Shear Zone, but the

deformation is not concentrated into a dominant single fault. The first rupture involved slip on two

perpendicular faults, one aligned NE‐SW and the other NW‐SE, with slip and aftershocks forming an L‐

shaped pattern. Most slip was on the NE‐SW fault. The mainshock ruptured a sequence of NW‐SE trending

faults, with slip extending across the short NW‐SE segment ruptured in the foreshock. Both ruptures were

delimited by zones of multiple surface fractures. The rupture for the mainshock expanded relatively slowly

with low radiated energy, and a large number of aftershocks occurred, suggesting rupture of an immature

segmented fault system.

1. Introduction

The Eastern California Shear Zone (ECSZ) continues to generate large strike‐slip earthquakes aligned with

the Pacific‐North American relative plate motion direction along a trend that extends northwestward from

the southernmost San Andreas Fault. The 28 June 1992 Landers (MW 7.3) and 16 October 1999 Hector

Mine (MW 7.1) events ruptured the southern ECSZ (Figure 1a). The region northeast of Ridgecrest in the cen-

tral ECSZ recently ruptured in two large events (Figure 1b); 4 July 2019 (17:33:49.04 UTC, 35.705°N 117.504°

W, 10.5 km deep, W‐phase MWW 6.5; U.S. Geological Survey‐National Earthquake Information Center

[USGS‐NEIC]: https://earthquake.usgs.gov/earthquakes/search/) and 6 July 2019 (03:19:53.04 UTC,

35.770°N, 117.599°W, 8.0 km deep, MWW 7.1; USGS‐NEIC). These events extend the last few decades of

occurrence of large earthquakes in southern California located either west or east of the locked portion of

the San Andreas Fault from Parkfield to the Imperial Valley.

The 2019 Ridgecrest earthquakes involve predominantly strike‐slip faulting, with dominant deformation

along the NW‐SE trend of the ECSZ; however, the 4 July 2019 foreshock had minor slip along this direction,

with most slip located on an orthogonal fault strand trending NE‐SW. The early aftershocks of the 4 July

event defined an L‐shaped distribution indicating this faulting complexity (Figure 2a). The mainshock

initiated just to the northwest of the rupture zone of the foreshock, with aftershocks and surface rupture dis-

tributed on a system of NW‐SE trending fault segments that straddle the foreshock rupture zone (Figure 2b).

About 10% of the aftershock activity occurred in the Coso Volcanic Field to the northwest, beyond the
©2019. American Geophysical Union.
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rupture zone, and rupture extended southeastward to within ~10 km of the ENE trending Garlock fault.

Prior activity in the source region includes the 1995 Ridgecrest ML 5.4 and 5.8 earthquakes (e.g.,

Hauksson et al., 1995), the larger of which had strike‐slip faulting along an NW‐SE trend located a few

kilometers westward from the 2019 mainshock rupture zone. Earthquake swarms in 1980–1981 and prior

moderate earthquakes with magnitudes from 5.0 to 6.3 have occurred tens of kilometers to the west of the

Ridgecrest sequences during the last century and numerous faults (USGS: https://earthquake.usgs.gov/

data/data.php#earth) with predominantly northward trends that have been mapped in the region, but

there was no well‐defined NW‐SE fault mapped in the vicinity of the rupture, consistent with what would

be expected for an immature fault system.

The rupture characteristics of the foreshock and mainshock are herein established using seismic and geode-

tic observations with constraints from the aftershock distributions andmapped surface ruptures. The rupture

kinematics and aftershock sequence are then considered in the context of an immature fault system, evolving

on the margins of the seismogenic halo around the locked central San Andreas Fault.

2. Data Processing and Faulting Geometry

Numerous seismic and GPS stations recorded the coseismic ground motions produced by the large events in

the 2019 Ridgecrest earthquake sequence. For the foreshock, we select strong motion recordings from 40 sta-

tions with epicentral distances≤150 km (Figure 2a and Figure S1 in the supporting information) to minimize

scattering effects accumulated over longer propagation distances. All strong motion waveforms are accessed

from the Center for Engineering Strong Motion Data. We remove baseline drift following Wang et al. (2011),

integrate the accelerations to velocity, and band‐pass filter all recordings in the frequency band 0.02 to 0.5

Hz. We assign the closest stations (red triangles in Figure S1) twice the weight in the inversion (discussed

below), because near‐fault recordings have more sensitivity to the slip model details than more distant data.

We select coseismic GPS static displacements at 41 sites available from the University NAVigation System

using Timing And Ranging Consortium (UNAVCO; Figures 2a and S2). Due to their larger uncertainties,

all vertical components are downweighted by a factor of 0.5 in the joint inversion.

Figure 1. (a) Tectonic setting and seismicity in southern California. Gray circles with magnitude‐scaled radius show earthquakes from the U.S. Geological Survey‐

National Earthquake Information Center with M ≥ 2.5. Black focal mechanisms are magnitude‐scaled Global Centroid Moment Tensor solutions plotted at the

centroid location. Gray lines are active faults. Red stars indicate foreshock and mainshock epicenters. Red dashed line outlines the Eastern California Shear Zone.

(b) Source region of the 2019 Ridgecrest earthquake sequence. Blue circles are magnitude‐scaled 1‐month aftershocks from U.S. Geological Survey‐National

Earthquake Information Center withM ≥ 2.5. Red stars and focal mechanisms are epicenters and Global Centroid Moment Tensor solutions for the foreshock and

mainshock, respectively. The Coso Volcanic Field is highlighted in cyan. Green squares indicate Ridgecrest and Searles Valley town locations. Gray lines are active

faults.
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Guided by early summaries of surface rupture and/or decorrelation lineations (USGS: https://www.usgs.gov/

media/images/surface‐ruptures‐july‐4‐and‐5‐ridgecrest‐ca‐earthquakes; National Aeronautics and Space

Administration: https://disasters.nasa.gov/southern‐california‐earthquakes‐july‐2019/) and the initial

Figure 2. (a) Map of the foreshock fault geometry and aftershocks (circles, color coded by lag time). Green lines represent

fault segments. (b) Map of the mainshock fault geometry and 1‐month aftershocks (blue circles). Green triangles

indicate nearby strong motion station locations, all stations used are shown in Figures S1 and S3. Nearby subsets of

coseismic static horizontal and vertical displacements are displayed in black and orange arrows, respectively. All static

displacement observations used are indicated in Figures S2 and S4. Black lines indicate fault segments. Red stars indicate

foreshock andmainshock epicenter locations; the green star indicates the perturbed epicenter of the foreshock for the joint

finite‐fault inversion. Red lines represent surface ruptures mapped by the U.S. Geological Survey, and gray lines

indicate regional faults.
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catalog aftershock distribution (Figure 2a), we conduct a series of preliminary finite fault inversions to

explore constraints on the fault geometry (see the supporting information). Ultimately, we adopt a model

with two perpendicular fault segments with an L‐shaped pattern, labeled f1 and f2, with strikes of 227° and

316°, respectively (Table S1). The rupture initiates on segment f1, which has a dip of 85°. This dip was adopted

based on the series of preliminary finite‐fault inversions of the strong motion data and is compatible with the

73° to 90° range of teleseismic long‐period point source fault orientations (Global Centroid Moment Tensor

[GCMT], https://www.globalcmt.org/CMTsearch.html, and USGS‐NEIC, https://earthquake.usgs.gov/

earthquakes/search/) and the initial California Integrated Seismic Network aftershock locations. Segment

f2 has a dip of 90°.

For the mainshock, we select strong motion recordings from 63 stations with epicentral distances ≤200 km

(Figures 2b and S3). The drift‐corrected accelerograms are integrated to obtain ground velocity and then

band‐pass filtered between 0.02 and 0.5 Hz. This data set was subdivided into three epicentral distance

groups to assign weights: Group 1 (nine close‐in stations) has weights of four (red triangles in Figure S3),

Group 2 (22 intermediate‐distance stations) has weights of two (green triangles in Figure S3), and Group 3

(32 large‐distance stations) has weights of one, (blue triangles in Figure S3).

The mainshock coseismic GPS static displacements (UNAVCO) at 329 sites are selected for the joint inver-

sion (Figures 2b and S4). Considering their associated absolute errors, we assign near‐fault displacements

(red circles in Figure S4) twice the weight of the distant displacements. We also incorporate three‐component

coseismic displacements derived from eight near‐field strong motion stations (Table S2), for which the base-

line stability is good (Figure S5). For example, the displacements computed at station TOW2 are similar to

GPS displacements at TOWG (Green arrows in Figure S4). These eight stations have the same weight as

near‐fault GPS sites in the joint inversion.

We select 41 broadband teleseismic P waves and 31 SH waves with high signal‐to‐noise ratio and good

azimuthal coverage (Figure S6), downloaded from the Incorporated Research Institutions for

Seismology data center. Instrument responses are removed to obtain ground velocities (e.g., Wald et al.,

1996), band‐pass filtered with corner frequencies of 0.0033 to 1 Hz. The teleseismic P and SH first arrivals

are aligned manually.

The mainshock appears to have ruptured a complex fault system, as indicated by the surface rupture traces

and aftershock distribution, which extend 50 km along an NW‐SE trend (Figure 1b). We again conduct a ser-

ies of preliminary finite fault inversions, considering single and multiple segment models to specify the fault

segment geometries (see the supporting information). Ultimately, we represent the mainshock faulting with

four vertical rupture segments (Figure 2b), labeled F1, F2, F3, and F4 with strikes of 315°, 334°, 312°, and

316°, respectively (Table S1). The labeling of the segments is from south to north for F1 to F3, with F4 invol-

ving an additional segment slightly oblique to F2 and F3. The dip of the segments was set to 90° based on the

initial inversions; teleseismic point source fault orientations have dips ranging from 73° to 84° (GCMT;

USGS‐NEIC). Segments F2 and F4 may converge at lower crustal depth but appear to be distinct near the

surface based on the surface fractures and shallow aftershocks. F4 of the mainshock and f2 of the foreshock

overlap in the section between the two hypocenters (Figure 2b).

3. Model Parameterization and Inversion Strategy

For the foreshock, we subdivide the two segments into 180 subfaults with lengths of 2.5 km along strike and

1.94 km along dip. We adjust the hypocenter slightly to 35.693°N, 117.493°W, 10.5 km deep to fit the surface

rupture and early aftershock distribution, placing it on segment f1. The top edges of the fault segments are

0.26 km deep (we avoid surface rupture to prevent an instability in the Green's function calculations). The

four mainshock fault segments (Table S1) have the same downdip extent, with the top edges 0.28 km deep.

We divide the four fault segments into 363 subfaults (2.5 km along strike and 2.27 km along dip). The rupture

initiates on F2 at the USGS‐NEIC hypocenter (35.770°N, 117.599°W, 8 km). We perform a finite‐fault joint

inversion of seismological and geodetic data in the wavelet domain (e.g., Ji et al., 2002a, 2002b; Ji et al.,

2003). A simulated annealing algorithm simultaneously inverts for slip amplitude, rake angle, rupture initia-

tion time, and rise time for each subfault, searching a range of parameters (Table S3). The weights of each

dataset noted above are obtained by performing inversions with varying weights, seeking to balance the

waveform fitting.
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We assume a 1‐D crustal model (Shearer et al., 2005; Figure S7) for calculating the Green's functions. Green's

functions for the coseismic GPS displacements are calculated using a generalized reflection‐transmission

coefficient matrix method developed by Xie and Yao (1989). Strong motion Green's functions are generated

using a frequency‐wave number integration method (e.g., Zhu & Rivera, 2002). The teleseismic Green's func-

tions are computed by generalized ray theory (e.g., Helmberger, 1974).

4. Rupture Inversion Results

Figure 3 shows a 3‐D map view of the preferred foreshock slip distribution. The detailed slip and rise time

distributions for a single fault model (Figure S8) and the preferred two‐fault model (Figure S9) have similar

slip on f1, with modest slip on f2 for the two‐fault model. The corresponding fits to GPS static displacements

and strong motion waveforms are shown in Figures S10–S12. The two‐fault model matches the GPS static

displacements and strong motion waveforms slightly, but systematically, better than the single fault model

(Figures S10 and S11). Synthetic waveform decompositions of the contribution from the two fault segments

indicate how the improved waveform fits are achieved (Figure S11c). The direction and magnitude of static

displacements are very well matched, but large waveform mismatches can be seen for several near‐fault

strong motion stations (for example, TOW2 and SRT), particularly in the later portion of waveforms.

Figure 3. Three‐dimensional view of theMWW 6.4 foreshock slip distribution. (a) Total slip on both fault segments. (b) Strike‐slip and (c) dip‐slip components. Note

the differences in scales. (d) Moment rate function contributions from the two fault segments and the gray‐shaded total moment rate.
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These misfits, observed for both large events, are presumably due to localized 3‐D basin effects not modeled

using a 1‐D crustal velocity model.

In our preferred joint inversion rupture model (Figures 3 and S9), the foreshock ruptured the two perpendi-

cular faults almost simultaneously near the intersection of f1 and f2, and the moment rate function quickly

reaches its first peak at about 3 s. Half of the moment released within the first 6 s of rupture and peak slip on

f2 of about ~0.5 m is reached. After that, the rupture propagated to shallow depth along f1, along which there

are clear surface breaks. The maximum slip on f1 is about 1.1 m of predominately strike‐slip displacement

(Figure 3b), corresponding to the second peak of the moment rate. Rise times are estimated to be ~1 s during

the initial phase of the rupture (Figure S9) and ~4 s for the large‐slip later rupture stage. The overall average

rupture velocity is about 1.5 km/s, a rather low value given that the inversion allowed a range from 0.5 to 3.5

km/s (Table S3). The total seismic moment (M0) is 5.05 × 1018 N·m (MW 6.4). Detailed information for each

fault segment is given in Table S4.

Figure 4. Three‐dimensional view of the MWW 7.1 mainshock slip distribution. (a) Total slip on the four fault segments.

(b) Strike‐slip and (c) dip‐slip components. Note the differences in scales. (d) Moment rate function contributions from the

four fault segments and the gray‐shaded total moment rate.
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We favor a four‐segment model for the mainshock rupture over models with one segment (Figure S13) or

three segments (Figure S14). Figure 4 shows a 3‐D view of the preferred fault model geometry and slip dis-

tribution obtained by joint inversion. Details of the slip distributions and rise times are shown in Figure

S15. The static displacement and seismic waveform fits of all datasets are shown in Figures 5 and S16–S21.

Figures S16 to S18 compare subsets of strong motion and teleseismic waveform fits for three models with

a different number of fault segments, showing systematic reduction in misfit for the preferred model.

Figure 5 demonstrates that the four‐segment model can account for the near‐field observations well, and tel-

eseismic data are satisfactorily modeled, except for some secondary features after 30 s. Near‐fault strong

motion data are generally matched in phase, but the amplitude at several stations is underestimated (nota-

bly, stations 33742, 5419, and SRT), which may be associated with local sediment amplification effects.

Overall, uncertainties associated with the complex parameterization such as precise timing between seg-

ments and trade‐offs of slip on overlapping strands are unavoidable, but the joint inversion with a four‐

segment fault system provides a viable representation of the complex source given the quality of the

data predictions.

The mainshock rupture propagated bilaterally along the strike direction and is dominated by strike slip dis-

placement (Figure 4b). Most slip is located near the hypocenter and extends from 0 to 20 km in depth. Four

regions with large‐amplitude slip are apparent (Figure S15): First one is near the intersection of F1 and F2 at

depths between 0 and 20 km, which produced significant dip‐slip surface rupture (Figure 4c); the second is

northwest of the hypocenter on F3 at depths between 0 and 12 km, with maximum slip of 3.7 m, in a region

with minor surface rupture; the third is located in the middle‐upper portion of F1, with peak slip of 1 m; and

the fourth occurred on F4, overlapping with f2 of the foreshock, with a maximum surface rupture of 2 m.

Figure 5. Comparison of subsets of the observed data and synthetics for the mainshock. (a) Coseismic horizontal static GPS displacements. (b) Strong motion

velocity and (c) teleseismic velocity comparisons. Azimuth and epicentral distance for each station are indicated above and below the waveform leader,

respectively. The number at the end of each record is the peak value of the observed data in micrometers per second (teleseismic data) or in centimeters per second

(strong motion data). Comparisons of all data and synthetics are shown in Figures S19 to S21.
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The rupture initiates almost simultaneously on F2 and F4 with slow rupture velocity of <1 km/s and then

propagates bilaterally with average rupture velocities of 1.0–1.5 km/s. Again, these low average values are

found despite allowing a range of 0.5 to 3.5 km/s (Table S3). There is a little slip on F4 north of the intersec-

tion with F2; if this half of the segment is removed, slip on F2 increases proportionately. Rupture of F1

appears to involve two separate asperities. In the northwestern segment F3 with the largest slip, rupture

stopped abruptly after 10 s. Rise time variations show consistent patterns of shorter rise times at larger depth

and longer at shallower depth (Figure S15) with the mean rise time over the entire rupture being ~4 s. Larger

slip is found for the longer rise time regions. The entire coseismic process lasted ~40 s (Figure 4d) but over

90% of the faulting occurred within the first 25 s. The late moment release involves minor slip on F1, which

is not spatially well resolved and may be an artifact.M0 = 5.0 × 1019 N·m (Mw 7.07). More detailed informa-

tion for each fault segment is given in Table S4. Movie S1 provides an animated 3‐D display of the coseismic

slip for the foreshock and mainshock.

5. Discussion and Conclusions

A conspicuous feature of the 2019 Ridgecrest sequence is the mutually perpendicular strike‐slip faults. The

kinematic inversion and the aftershock distribution both indicate that the foreshock ruptured orthogonal

faults. Such faulting is viable but unexpected in conventional fault mechanics that predict ~60° angle

between optimally oriented strike‐slip conjugate faults (e.g., Jaeger & Cook, 1979). Mutually perpendicular

conjugate faults have been observed in regions of distributed strike‐slip faulting with young faults that have

modest cumulative offset and low slip rate, including central Honshu, Japan, and the Salton trough (e.g.,

Fukuyama, 2015; Hanks &Allen, 1989; Thatcher &Hill, 1991). These fault systems have sometimes ruptured

in discrete events on orthogonal ruptures, as is the case for the 1987 Superstition Hills, CaliforniaMW 6.2 and

6.5 earthquakes (e.g., Thatcher & Hill, 1991). Near‐orthogonal strike‐slip faulting during single earthquakes

occurred in the 17 December 1987 East Chiba, Japan, earthquake (MW 6.7; e.g., Fukuyama, 1991); the 28

June 1992 Big Bear earthquake (MW 6.5; e.g., Jones & Hough, 1995); and the much larger 11 April 2012

Indian Ocean (MW 8.7; e.g., Meng et al., 2012; Yue et al., 2012; Wei et al., 2013; Hill et al., 2015) and 2018

Gulf of Alaska (MW 7.9; e.g., Ruppert et al., 2018; Lay et al., 2018; Wen et al., 2019; Zhao et al., 2019) intra-

plate oceanic events. The multisegment structure of the mainshock also has similarity to portions of the very

complex 2016 Kaikoura, New Zealand (MW 7.8), rupture (e.g., Hamling et al., 2017; Wang et al., 2018), which

had overlapping fault segments fail collectively. We speculate that immature fault systems may be particu-

larly prone to complex faulting in general and perpendicular strike‐slip faulting in particular as a result of

stress concentrations at the ends of short fault segments with rotations and cross faults between strands.

The far‐field broadband radiated elastic energy is estimated as Er= 5.4 × 1013 J for the foreshock and Er= 4.8

× 1014 J for the mainshock (Incorporated Research Institutions for Seismology EQEnergy; https://doi.org/

10.17611/DP/EQE.1), following Convers and Newman (2011). Using GCMT seismic moment estimates,

M0 = 6.1 × 1018 N·m (foreshock) and 4.4 × 1019 N·m (mainshock), gives moment‐scaled radiated energy

values, Er/M0 = 0.9 × 10−5 (foreshock) and 1.1 × 10−5 (mainshock). These are similar to the average value

for large interplate thrust events (e.g., Ye et al., 2016) and lower than typical values (~4.0 × 10−5) for large

strike‐slip events (e.g., Ye et al., 2015). Measurements of mB for periods of ~3.5 s (Kanamori & Ross, 2018)

are 6.08 (foreshock) and 6.71 (mainshock), predicting relatively low values of scaled radiated energy;

ER_B/M0 = 0.5 × 10−5 (foreshock) and 1.4 × 10−5 (mainshock; H. Kanamori, personal communication, 2

August 2019).

The relatively low radiated energy correlates with low average rupture velocity (<1.5 km/s) for the two

events. While also multisegment ruptures, the 1992 Landers and 1999 Hector Mine earthquakes had higher

rupture velocities (Table S5). Low rupture velocity may indicate high fracture energy and/or longer slip‐

weakening distance (e.g., Guatteri & Spudich, 2000).

The mainshock rupture zone is delimited by an N‐S shear zone and the Coso Volcanic Field to the northwest

and the Garlock fault to the southeast (Figure 1b). These geologic features form natural boundaries to the

segment. There are similarities to the 2016 Kumamoto, Japan, earthquake sequence, which also had complex

faulting bounded by natural boundaries (e.g., Asano & Iwata, 2016; Yagi et al., 2016). Concentrations of slip

near segment boundaries for both the foreshock and the mainshock and the low rupture velocity suggest

influence of the fault complexity on the rupture dynamics. The southwestern end of the foreshock rupture
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has multiple surface rupture branches (Figure 2a), as do the southeastern and northwestern ends of the

mainshock rupture (Figure 2b), where there is also splaying of the aftershock distribution (Figure 1b,

~50% of aftershocks locate in the northwest).

Two additional major features of the Ridgecrest earthquake are its unusually high aftershock productivity

and the close spatial proximity of the large foreshock and mainshock. These aspects are likely related, as

abundant aftershocks increase the likelihood that one aftershock will be large enough to define a new main-

shock (e.g., Ogata, 1988). We compare aftershock productivity in 34‐hr‐long time windows following the

foreshock and mainshock and in a 28‐day‐long window after the mainshock, to productivity in comparable

time windows for global earthquakes using the USGS‐NEIC catalog (completeness cutoff Mc = 4.5) and for

Southern California earthquakes using the California Integrated Seismic Network catalog (Mc = 2.5). For

instance, the aftershock productivity of the foreshock is a factor of 8.5 above the global median for the

34‐hr interval, while the aftershock productivity of the mainshock is a factor of 5 above the median.

Limiting the global datasets to only strike slip or only continental strike‐slip subpopulations, which tend

to be less productive than other faulting mechanisms, we find that the Ridgecrest events are among the most

productive strike‐slip earthquakes (Figure S23).

The high aftershock productivity may be linked to the rupture complexity. Multiple fault ruptures can result

in a larger activated volume and hence a correspondingly high productivity (e.g., Mori, 2017). Fault complex-

ity can also result in larger stress concentrations at fault junctions and step overs, which could also increase

aftershock productivity. Since high productivity enhances statistical likelihood of triggering a subsequent

mainshock, the combined implication is that complex faulting is more likely to result in a later, larger, poten-

tially more damaging, earthquake.

The overall characteristics of the 2019 ruptures support the notion of failure of an immature fault zone invol-

ving strike‐slip fault activation over an enhanced volume including orthogonal faulting, fine‐scale segmen-

tation and splaying at the ends of segments, enhanced aftershock productivity, low rupture velocity, and low

radiated energy. These conditions favor an enhanced level of triggering, leading to foreshocks, and cascading

faulting interactions, distinct from spontaneous nucleation of faulting on mature faults.
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