
COSET REPRESENTATIONS IN FREE GROUPS(1)
BY

MARSHALL HALL, JR.

1. Introduction. Schreier [5 ](2) proved that every subgroup U of a free
group F is free by constructing generators of U from the generators of F and
the coset representatives of U in F. In a recent paper On Schreier systems in
free groups [l] written jointly by T. Rad ó and the author, subgroups of free
groups were completely characterized by left coset representatives and a
certain function. This paper will be referred to as SS.

In the present paper the study of a subgroup U of a free group F is
further advanced, primarily in terms of the representation U= Z/HG}, <t>(H)]
established in SS. §2 shows the relation of the decision problem to this
representation. In §3 a canonical representation, called the alphabetical rep-
resentation, is defined. This is based on an alphabetical ordering of the ele-
ments of F. A more complicated ordering, the semi-alphabetical ordering, is
defined in §4, and this provides a link between the coset representations of U
and a canonical system of free generators for U. This generalizes the Nielsen
construction [4]. As an application of techniques available it is shown in §5
that in a free group F there is a subgroup of finite index which contains given
elements au o% • ■ • , am but none of given elements ßi, ■ ■ ■ , ß„ under the
obviously necessary condition that no ß is directly expressible by the a's.
The special case in which « = 1, ra = 0 was first stated by von Neumann and
Wigner [6] and later proved by Iwasawa [2]. In §6 properties are given
which distinguish the representation of a normal subgroup U from a non-
normal subgroup.

Except in §5 the assumption is made that the free group F is finitely
generated. If this assumption is dropped similar results may be obtained
but at the expense of more complicated statement of the theorems and
straightforward but more complicated proofs. Enumerations must be re-
placed by well orderings, and inductions must be replaced by transfinite in-
ductions. If this more general treatment had been used throughout it would
still have been necessary to give the more precise formulations for finitely
generated F.

2. The standard representation and the decision problem. Let us take a
subgroup U of a free group F and the decomposition of F into left cosets of U

(2.1) F = U-1+ Ug2+ ■ ■■ + Ugi+ ■■■ .
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Using G asa generic term for the representatives 1, g2, • • • , git • ■ ■ , Schreier
[5] showed that the G's may be chosen so that if in reduced form
öia2 • • • öj-ißi is a G, each a,- being s^, e¿= ±1, s¡ a generator of F, then
«102 • • ■ at-i is also a G. A set {G} with this property is called a Schreier
system. Let S be a generic term for a generator of F. In the paper SS it was
shown that the Schreier system {g} and a function <p(H) defined for argu-
ments H=GS', e= +1, determines U if (p(H) satisfies

(2.1.1) <t>(H) isa G,
(2.1.2) <p(H) = G    if    H = G,
(2.1.3) cp[(j>(GS')S-'] =G.

Thus {G] and (p(H) give a means of describing U which we shall call a
standard representation U= Une}, (¡>(H)\.

In §5 of SS a function $(/) was defined for an arbitrary /Gr7 so that if
Uf= UG, then $(/) = G. Here if
(2.2) f — a-ifl2 • • • at-iat,

put

fo=l, fi = ai, f2 = aia2, • • • ,fi = aia2 • • • c¿, • ■ • ,fi=f.

Then

*(/o) = 1,
*(A) = *(i-ai) -ft,

*(/) ■ 0(G,-_ia,-) = G,-,

$(/) = ¿(G*-!««) = ft = G.

Thus (2.3) gives a constructive method of finding $>(/) for an arbitrary /,
given a standard representation of U. In particular /£ ¿7 if and only if
<i>(/) = 1. Hence a standard representation of U yields a solution of the deci-
sion problem for U, that is, gives a finite constructive method for deciding
whether or not a given element / belongs to U.

3. The alphabetical representation. Consider a free group Fr with r
generators, which we may number si, s2, • • ■ , sr. We wish to establish a
simple ordering of all the elements of Fr. We begin by putting

-i -i -i
(3.1) Si < 5i    < S2 < • ■ ■   < Si < Sj    < si+i < • • •   < sr < sr   .

Any other simple ordering of the s's and their inverses could be used. Then we
order an arbitrary/G/^r written in reduced form
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/ = aia2 • • ■ at

respectively on (1) 1(f)—t, (2) au (3) a2, ■ • ■ , (t + l)at. It is readily verified
that this is a simple ordering, which we shall call the alphabetical ordering.
In fact it is a well ordering since an arbitrary set of elements {/} contains a
first in this ordering. The first of a set {/} we shall call the earliest of this set.
A useful property of this ordering is the following: If x^y, then xz^yz if
there is no cancellation between y and z, and similarly zx^zy if there is no
cancellation between z and y.

Theorem 3.1. Given a free group Fr, and a subgroup U. If the representative
G of a left coset UG is the earliest element of the coset, then the set {G} is a
Schreier system. If U is a normal subgroup, then the set {G} has the stronger
property: If aia2 ■ • • at-iat is a G, then both ai<x2 • • • at~i and a2 ■ • -at-iat are
G's.

Proof. Let gi = ax ■ ■ ■ at be the earliest element in its coset Ugi. Then if
x = ai • ■ ■ ««-i, let Q(x) =gj. Since gj is the earliest element in the coset Ug¡,
gj^x in the alphabetical ordering. Hence g,a¡í£xa¡ = g¿, noting that xat is
in reduced form. But gjatÇ^Ugi, whence gi^g¡at. Hence gjat = xat = gi, whence
x = gj and x = ai ■ • ■ at-i is a G. Now if U is a normal subgroup, let
y = a2 • ■ ■ at, and f>(y) =gk. Hence gkúy and, as g.=aiy is in reduced form,
aigk^avy = g*. But, since U is normal,

Uaxgk = aiUgk = a-iUy = Uaiy = Ugi,

whence gi = Q(aigk) and gi^aigk. Hence gi = aigk=axy and y = a2 ■ ■ • at = gk
is a G.

Thus, once having chosen an order as in (3.1) for the generators of Fr and
their inverses, the alphabetical ordering of Fr determines a unique Schreier
system for a subgroup U, and hence a unique representation U=U[{G},
<p(H) ] where each G is the earliest element in its coset UG. Such a representa-
tion will be called the alphabetical representation for U.

Theorem 3.2. A standard representation U= U[{G}, 4>(H)] is the alpha-
betical representation if and only if for every H=GS', <f>(H) ̂ H in the alpha-
betical ordering.

Proof. We require *(/) á/ for every /G-F. Hence <î>(H) =4>(H) ^H is
clearly a necessary condition for the representation to be the alphabetical
representation. For sufficiency, suppose <p(H) ^11 for all II = GSi. Let us take
an arbitrary f — ai ■ ■ ■ at in reduced form and define /o = l, /i = fli, /2
= aia2, • • ■ ,ft = at • ■ ■ at=f. Here

*C/o) = 1 = /o,
$(/i) = <b(l-ai) = gi ^ 1-ai = fu
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*(/*) = <p(gia2) = g2 è gia2 è aia2 = /2,

*(/<+l)  = ¿(giOi+l)  =  gi+1  ^ g¿ff¿+l  g /i<Xi+i  = fi+M

*(/()   =  0(gí-l«í)   =  gt ^  ¿i-l«i ^ /í-l«í  - ft-

As/=/¡, <!?(/) s=/. Note that since/ is in reduced form we may conclude from
gi Sfi that giüi+i SfiOi+i.

Given a standard representation of U= L'Ile], <p(H)] which is not the
alphabetical representation, it is not difficult to construct the alphabetical
representation. Since this is not the alphabetical representation, there will be
some giS* such that <f>(giSj) =gk>gis'. The procedure is to replace the Schreier
system {GJ by another Schreier system {G'j in which the new representa-
tive of the coset Ugk is gl = g%s). We define gú = gu for all gu which do not have
gk as a beginning section. We define gk =giSj=gis'. Note that gisj = g{Sj is
reduced as it stands, since if s) cancels with g,-, then by (2.1.2) <p(gi Sj) = gis',
contrary to our assumption that gk>gis"j. If gv has gk as a beginning section,
then gv = gkw is the reduced form of gv. Here w does not begin with sj ', for
then gks~' is a G, and by (2.1.3) (p(gkSj~*) = <p[<p(gis')Sj~'] =gi, whence by (2.1.2)
gkSj~t = gi and gk = giSj again contrary to the assumption gk>g,Sj. Hence if
we put gv' =giSjW whenever gv=gkW, we are sure that g'v is reduced as written,
since we have verified that 5* does not cancel with either g¿ or w. Also since
Ugk = UgiSj, it follows that UgkW = UgiSjW or Ugv = Ug„. The beginning sec-
tions of gú = gu will be of the form gr' = gr. The beginning sections of g„' = gis)w
will be either of the same form or beginning sections of gi=gl ■ Hence {G'} is a
Schreier system. The new <p function is easily determined by the rule <p'(G'S')
= [4>(GSe)]'. This replacement of {G} by {G'\ has the effect of replacing
every G which is altered by an earlier G', since from gis'<gk we have gis)w
<gkw. Since any sequence gk>gk >gi'> • ■ • must be finite, after a finite
number of alterations the representative of a given coset remains unaltered,
no matter how often this process is repeated. Moreover, if an/ = aia2 • • • at
is the earliest element in its coset, each oi fo = í, fi = ai, ft = aia2, ■ ■ ■ ,ft—f
is the earliest element in its coset and so this process will in t applications
replace <ï>(/i) <£(/2) • • • <£(/) by /i, ft, • • • , ft =/■ Hence repeated applica-
tions of the process will yield the alphabetical representation. In general the
process is infinite. But if F = Fr has a finite number of generators, finding the
earliest representative for each coset which contains an element of length less
than some given TV is a finite process.

4. Semi-alphabetical ordering. J. Nielsen [4] has devised a process for
finding the free generators of a finitely generated subgroup U of a free group
Fr. The properties of the alphabetical representation suggest a refinement of
the Neilsen process. Two advantages of the process given here are that we
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find a canonical set of generators for U, and that it is not necessary that U be
finitely generated.

If U is given its alphabetical representation U=U[{G}, <p(II)], then
the free generators of U are of the form u=gis'agj19i 1 where 4>(giSea) =g¡,
and <p(gjS~') =gi. From the property <p(H) ^H in the alphabetical representa-
tion we have

(4.1) gj   <   giSa, gi   <  gjSa.

Since m^I we may exclude <p(H)=H and have the proper inequalities of
(4.1). From (4.1) we have directly: (A) If u is of odd length, l(u) =2k + l,
l(gi)=l(gi)=k. (B) If u is of even length, l(u)=2k, then either: (1) l(gis'a)
= l(g,)=k and gj<gis'a or (2) l(gi)=l(gjsZ')=k and g,<g,s~e- In case l(u) is
even and the first alternative holds, we may replace u by u~1—gjS~'g^1 and
the second alternative holds. In other words, we choose whichever of u or u~l
has the significant factor s'a or s~' in position k + 1.

Suppose now that we are given a subgroup U of Fr, not in terms of any
standard representation but as generated by elements ai, a2, • • • , ar, • • •
of FT not assumed to be free generators of U. We define a semi-alphabetical
ordering for all elements a of Fr. If in its reduced form a is of odd length,
1(a) =2& + l, write a in the form a=ßis'ß2~1, where l(ßi) =l(ß2) —k. We order
all a's on (1) 1(a) =2& + l, (2) the alphabetical order of ßi, (3) the alphabetical
order of ß2, (4) the alphabetical order of s¡. If in its reduced form the length of
a is even, 1(a) =2k, write a in the form a = ßiß21 where l(ßi) =l(ß2). We order
all a's on (1) 1(a) =2k, (2) the alphabetical order of ßi, (3) the alphabetical
order of pV We combine these two orderings to define the semi-alphabetical
ordering of Fr. There is no difficulty about the ordering between elements of
even and odd lengths, since the lengths are different. It is not difficult to show
that the semi-alphabetical ordering is a simple ordering of the elements of Fr,
and in fact an enumeration since r is finite. We shall write the semi-alpha-
betical ordering in the form x<SCy and also write x^^y to mean that x
precedes or is equal to y. The semi-alphabetical ordering may be used to char-
acterize the free generators of a subgroup U given by its alphabetical
representation.

Theorem 4.1. Let the generators of U given by the alphabetical representa-
tion U= VUG}, <t>(H)] be the set {u\. Replacing, if necessary, each u by w1
so that u<£Lu~x and numbering the u's so that 1 <3Cmi<5Cm2<ííM3<íí • • •, then we
have Uj<g.ulu]7¿l, Uj<£ujUt¿¿l, for e= +1, rj= +1. Conversely if a\, a2, • ■ •
are elements of Fr satisfying

(4.2.1) 1 « ai « a2 « a3 « • • • ,

(4.2.2) a,««,"1,

(4.2.3) ctj <3C cactj ?¿ 1, a,- <3C a,«,- j¿ 1, all i, j,
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then the a's are the free generators of a subgroup U of Fr given by the alphabetical
representation of U.

Proof. The direct part of the theorem is relatively easy. Let u=gis'agf1
7*1 where <p(gis'a)=gj and <j>(gjsZ') = gi- Then as remarked above the condi-
tion w<Kw_1 means gi<gj for u's of odd length, 2k + \, and for u's of even
length, 2k, it means l(gi)=k, l(gj)=k — l and gi<gjS~'. Here the significant
factor s'a is in the middle of a « of odd length and in position k + 1 of a u of
even length, 2k. Now consider the semi-alphabetical ordering of a u¡ in com-
parison with that of a product u\u] or u)u¡. Since the cancellation in these
products cannot include the significant factor of either term by SS 3.11, the
number of cancellations from each term is at most half the length of the
shorter of m< or u¡. Hence u¡ will be shorter than either product unless l(u/)
^l(uj) and exactly half of w, has been cancelled with part of u¡. If M¿=/3i|o¿"1,
l(ßi) =/(/?2), ßi<ß2, the significant factor of w, is the first term in ß2l, and so the
ßi terms have been cancelled. If this happens in u\u], then e = — 1, u] =ßiz with
l(z) ^l(ßi) since l(Uj) ^l(u/)=2 l(ßi). Here Ur1u]=ß2ßT1ßiZ = ß2z. But as p\</32
and l(ßi) =l(ß2) ^l(z) it follows that u]<^u\u], and as Uj<£.uJl a fortiori that
Uj<KuluJ. If the cancellation of half of w¿ occurs in u)u¡ it follows that r¡= +1,
Ui=ßiß2\ u^zßi1, u'jUi^zß^1 where l(ßi)=l(ß2) = £l(z). Since ßi<ß2 it
follows that u*j = zß^<£.zß2l = u)ui. Note that we have proved slightly more
than was required having shown that u]<£m\u] and m'<5Cm'm?.

The converse is somewhat more difficult though the ideas are similar.
Let ai=ßistß2l where if l(ai)=2k + l, l(ß/)=l(ß2)=k and if l(a/)=2k,
l(ßi)—k, l(ß2)=k — l, and ßi<ß2sf since «.«aT/1. Now define the 5¡e as the
significant factor of a¿, sf" as the significant factor of ar1=ß2sj~'ßi1. We wish
to show that from (4.2) it follows that in a product a\a] neither significant
factor is cancelled. Arguing on length alone (4.2.3) will be violated if either
ai or a¡ is of odd length and its significant factor is cancelled in the product.
Similarly (4.2.3) is violated by length alone if more than half of either a\ or
a] is cancelled in the product. Suppose then the significant factor of a' is
cancelled. Then we need only consider the case in which a¿ is of even length
2k, e= +1, ai = ßisplß21, l(ßi) =¿ = /(pVrP), ßi<ß2sr" and l(a])^2k, a]=ß2sT"z,
l(z)^k. Here aia]=ßiz«.a]=ß2srf'z since ßi<ß2sr'. This is in conflict with
(4.2.3) if rj = +l. If ij= -1 then «ft1 =z-1j31"1«o:J- = z-1sfr32~1. A similar con-
flict is reached if the significant factor of a] is cancelled.

Lemma 4.1. The elements a satisfying 4.2 are free generators of a subgroup U
ofFr.

Proof. Consider any product of as, A1A2 ■ ■ • At, where AiAi+i^l,
i = l, • ■ ■ , t—1, and each A, is some a'. From what has just been shown
neither significant factor is included in the cancellation between consecutive
terms AiAi+i. Thus all cancellation in A1A2 • • ■ At leaves the significant
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factors intact and so ^4i^42 • • • At9^1, whence the a's are free generators of a
subgroup U of Fr.

To prove that the a's are the generators of U given by the alphabetical
representation of U we need a stronger lemma.

Lemma 4.2. If f=AiA2 • ■ • At, t^2, where AiAi+iy^i and each Ai is some
a" of (4.2), then AiA2 ■ • • At-i<Cf and A2 • • • At<&f. Consequently Ai<£.f,
i = l, ■ • ■ , t.

The special case t = 2 has already been treated in showing that the signifi-
cant factor of a'ai^l is not cancelled and that a¡<Kala], a]<^.a\a^. Let us
proceed by induction on /./will be longer than ^4^42 • ■ ■ At-i unless exactly
half of A t has been cancelled in the product. In this case At=ai=ßiß2~1 where
l(ßi)=l(ß2)=k and ßi<ß2. Here AiA2 • • •^¡_i = zj31"1 where ft"1 is part of
^4(_i and at most half of At-i is cancelled by At. Hence l(ßi1)ikl(At-i)/2
^l(Ai ■ • -Ai-i)/2 and so l(z)^l(ß^1). Here f=AiAt • • • At = zß-[xßiß2x
= zß2~1 whence Ax ■ • ■ A ¡_i = zßf '<Kzß2 x =/ since ßi<ß2. A similar argument
shows _42 • • -At<<if. Applying the lemma repeatedly we find Ai^Ai^A,
« • • • <SC4i • • • Ai<ZAi ■ ■ ■ ̂ ,+i« • • • «/, for i = l, ■ ■ ■ , t.

Now let 1 <<ÍMi<<CM2<fC • • • be the generators of U given by the alpha-
betical representation of U where u^u^1. Both the m's and the a's satisfy
(4.3) and so Lemma 4.2 is applicable. If we express «i as a product of a's, and
some a, occurs in the product, then a,-<CMi if the product has more than two
terms and a\ = Uiii there is but one term. Here ai-CíCaT^Mi^Mf1, whence e— +1
and ai = «i. In either event ai^ ^a¿^ á«i- By reversing the roles of m's and
a's we find Wig £<fi, whence ai = Mi. Now we proceed by induction. Having
shown that ai = U\, a2 = u2, ■ ■ • , a,_i = M,_i let us consider a,- and W;. Expressing
a¿ in terms of u's we must have some u¡, j 2:1, in the form of a¡, for since the a's
are free generators as- cannot be a product of u/s,j<i. Hence by Lemma 4.2,
UiS ^Uj^ ^ai. Similarly, «¿íS gw¿ and so a, = w¿. Hence the a's have been
identified with the u's and the proof of the theorem is complete.

In still another way the generators given by the alphabetical representa-
tion are unique among all possible sets of free generators. They are the earliest
possible system of generators in a very strong sense.

Theorem 4.2. Let ai, a2, a3, ■ ■ • be the generators of U given by its alpha-
betical representation indexed so that relations (4.2) hold. Then if ßi, /S2, - - - are
any set of free generators of U indexed so that ßi<^.ß2<^.ßz<^. • • • , then ai
Sußi, • • -.a^^ft,

Proof. The commutator subgroup U' of U can be characterized in terms of
any set of free generators of U. An element/G U will belong to U' if and only
if in the expression for / each generator occurs with exponents whose alge-
braic sum is zero. See SS, §7.6. Hence in expressing ßi, ■ • ■ , ßn in terms of
a's at least n different a's will occur, since otherwise we could find an element
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which should belong to U' according to its expression in a's but not according
to its expression in ß's. If ar is the latest a in the product for ßj, then, by
Lemma 4.2, arik isft^ ísft- But some r^n, whence a„^ ^ari= isft. This
holds for all finite n, proving the theorem.

We now apply Theorem 4.1 to obtain a refinement of the Nielsen process.
Suppose we are given elements ßi, ß2, ■ • • of Fr which generate some sub-
group U of Fr. We do not assume that the ß's are free generators of U or that
they are finite in number. We may replace the set ßi, ß2, • • • by another set
ßi , ßi i • • • which generate U applying any one of the four following elemen-
tary changes:

Type A. If some ft = l, put ßj =ßj for j <i, ßj = ft+i for/à*. This sup-
presses a ßi = 1.

Type B. For a fixed pair of indices i and j, put ßi =ßj, ßj = ft and for
k^i,j, put ßi =(3*.

Type C. For a fixed *, put ßi = ft-1 and for jj^i, put ßj = ft.
Type D. For a fixed pair i and j, i^j, put ßj =ß\ß] or ftft', e, r¡= ±1,

ßi=ßi, and ßi=ßk all k^i,j.

Theorem 4.3. By a well defined succession of elementary changes of types
A, B, C, D we may replace arbitrary generators ß\, ß2, • • • of a subgroup U of
Fr by the free generators ait a2, ■ ■ ■ of U which satisfy relations 4.3.

Proof. We shall operate in turn on the sets {ßi}, {ßi, ß2}, • ■ •
{ßi, • ■ ■ , ßn}, ■ ■ ■ ■ More precisely we begin with the set Fi= {ft}, and
proceed in a definite way. Given a set Vk we transform it into a set Wk, and
then take a set Vk+i which will be Wk with ft+i adjoined. In a set V (1) we
apply the change of type A to the first ßi to which it applies ; (2) we apply
type B if ft<3Cft, using the smallest i to which this is applicable and for the
given i the smallestj; (3) we apply type C to the smallest i for which ft-1<5Cft;
(4) we apply type D if ßj «ft, using the smallest possible j and the smallest *
consistent with this j. Each Vk is a finite set and so type A changes can be
applied only a finite number of times. For the rest of the changes the first ß
altered is replaced by an earlier ft. Hence these processes must come to an
end for a set Vk. When no further alterations are possible we call the set Wk.
Now Wk will satisfy the relations (4.2). We may verify trivially that ft<5Cftft
always and so any failure of relations (4.2) to hold will lead to one of the
elementary changes. Now what relation do the elements obtained in the Wk's
bear to the generators «i, a2, • • ■ of U given by the alphabetical representa-
tion which satisfy (4.2) ? By application of Lemma 4.2 we see that at+i is the
earliest element of U not a product of «i, • • • , a,-. Hence if ai is expressible
as a product of ft, • ■ • , ft, then, in Wk, ßi = oti. For ft' is the earliest element
( 9^ 1 naturally) in the group generated by ft, • ■ • , ft and ai is the earliest
element in U. Similarly as k increases ft' =ai, ft-' =a2, and so on. In this way
we may construct the a's from the fts. If the number of fts is finite, then the
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process is finite. If the number of fts is infinite, then the values of ft', ft', • • •
become stationary for increasing k when and only when ft' =ai, ft =a2,
and so on.

Theorem 4.4. Given a subgroup U of Fr generated by elements ah a2, a3, ■ ■ ■
satisfying the relations (4.2). Then we may solve the decision problem for U,
that is, we may decide whether or not a given y belongs to U.

Proof. If 7 does belong to U, then y = AiA2 ■ ■ ■ At where each A,= some
aj and AiAi+i^l, i = l, • • ■ , t—1. Since the a's may be identified with the
generators given by the alphabetical representation of U, even though this
representation is not assumed to be known, the cancellation in the product
AiA2 • ■ -At does not include any significant factor. Hence the reduced form
of y begins with fts' if Ai = a=ßiSiß21 and with ftsfe if ^4i=a_1. Hence y
does not belong to U unless its reduced form begins with either fts,e or ftsf
belonging to some a=fti'ft1. If y is of reduced form fts'z, put yi=a~ly
= ß21z, and if y is of reduced form ß2~1srez, put yi = ay=ßiz. In both cases y
belong to U if and only if 71 belongs to U. But 71 «7 by the same arguments
as used in Lemma 4.2, and so in a finite number of steps the question may be
settled.

Corollary. For the subgroup U of the theorem we may construct in a finite
number of steps all left coset representatives of the alphabetical representation of
U whose length does not exceed a given finite value N.

For we may test in turn the finite number of elements of Fr whose length
does not exceed N. The first element g2^gi=l which does not belong to U
will be an earliest coset representative. Then an x not belonging to U will
belong to Ug2 if and only if xg2l belongs to U. In general two elements x and
y will belong to the same left coset of U if and only if xy~1 belongs to U. Thus
applying the methods of the theorem we may subdivide any finite set of
elements of F according to the left cosets of U and find from these the earliest
element in each coset.

5. A separation theorem. Using results of Magnus [3 ] on the complex
commutator series in a free group, Iwasawa [2] has shown that there exists a
subgroup U of finite index in a free group F which does not contain a given
ft^l. With the machinery available here we may prove a much stronger
result.

Theorem 5.1. Given a free group F with an arbitrary number of generators,
and a finite number of elements ai, a2, ■ • • , am of F. Suppose we are also given a
finite number of elements ft, ft, • • -, ft, such that no ß belongs to the subgroup
H generated by ai, a2, • • • , am. Then we may construct a subgroup H of finite
index in F containing a\, a2, ■ ■ • , am (and hence H) but no one o/ft. ft, • • •, ft.

Proof. Let r be the number of generators of F which appear in any of the
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words for ai, • • • , am, ft, ■ • • , ft. Then without loss of generality we may
confine our attention to Fr. For if we may find an H in Fr as required, then
we may construct a subgroup of the same properties in F by adjoining to H
all of the generators of F not in Fr and also all conjugates of these gen-
erators. By Theorem 4.3 we may in Fr replace ai, • • • , am by other elements
generating H which satisfy relations (4.2). Since the number of a's is finite
this is a finite process. Let us suppose this already done. By the corollary to
Theorem 4.4 we may construct the coset representatives of any limited length
for the alphabetical representation of U. Let us suppose this done for all
cosets containing elements of lengths not exceeding the longest of «i, • • ■ , am,
ft, • ■ • , ft. Let these be gi = l, g2, ■ • -, g„. From Theorem 4.1 every a is of
the form gislgj1. Now let us consider the <p(GSe) table treated in §§3 and 4 of
SS. Any finite part of this table for H may be constructed by application of
Theorem 4.4. This means that for every a = gisfgjl we find gy in the si column
and gi row and g,- in the s¡~e column and g¡ row. Now in the manner of §4 let
us construct a subgroup H of Fr of index s with coset representatives gi = 1,
g2, • • • , gs- The G's as earliest coset representatives of H of lengths not ex-
ceeding N will form a Schreier system. In filling in the <b(GS') table for H
there cannot be more compulsory entries than there were in the correspond-
ing part of the H table. For each of ai, • • • , am, we have a = gis'lgj1. If in the
H table we enter g¡ for 4>(gis'¡) and g,- for <¡>(gjsr*), then au • • ■ , am will be
among the generators of II. Let us then complete the H table in any per-
missible way, and this will surely be possible since the Schreier system {G}
is finite. Hence H is a subgroup of finite index s in Fr and contains ai, • ■ • , cem
and so also II. What about the ft, • • • , ft? A ft belongs to some coset of ii
whose representative does not exceed N in length. Hence for some g¡ of
g2, • • • , g„ ßigflEiII. As H^ H it follows that ßigJ'lCH. But if it were true
that ftG# it would follow that gyG#- This cannot happen since gyM 1 is one
of the coset representatives of H in Fr. Hence ftG# and the theorem is
proved.

A comparison of this result with Iwasawa's is not out of order. Iwasawa
proved the existence of a normal subgroup of finite index not containing a
given ft^l. Since every subgroup of finite index contains a normal subgroup
of finite index, the result given here trivially includes Iwasawa's. Moreover
there is no real generality in the theorem above in taking more than one ft
since we may exclude the fts one at a time and take the intersection of the
resulting subroups. But it is not possible with the methods used here to find a
normal subgroup of finite index containing the a's and excluding the ß's. In
fact it is conceivable that F may contain no proper normal subgroup of finite
index containing the a's, even though the normal subgroup generated by the
a's and their transforms should be of infinite index in F.

6. Representation of normal subgroups. It has been shown in Theorem
3.1 that if U is a normal subgroup of a free group F, then U possesses coset
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representatives {G} which are a two-sided Schreier system, that is:
If g = Oia2 • • • at is a G, then
(1) ai ■ • ■ at-i is a G and
(2) a2 ■ ■ • at is a G.

But there may not be any normal subgroup whose coset representatives are a
given two-sided Schreier system. For example, if F is the free group on two
generators a, b, then the set 1, a, b, ab, ba is a two-sided Schreier system, but
there is no norrnal subgroup U of F with these as coset representatives. If
there were then F/U would be a group of order 5 and hence abelian, and
so aba~lb_1 ÇzU whence ab and ba should belong to the same coset.

It is not at all easy to distinguish normal subgroups of F from non-normal
subgroups, nor do we possess as much information on the existence of normal
subgroups such as we find in Theorem 5.1 for subgroups in general.

As a first step in the study of normal subgroups we find a criterion for a
standard representation U= Une}, <¡>(H)\ which assures us that U is a
normal subgroup.

Theorem 6.1. Given a standard representation U= Une}, 4>(II)] of a
subgroup U of F. Then U is a normal subgroup of F if and only if 3?(S'H)
= <ï)(5<0(iz")) for every S* and every H.

Proof. Necessity. Suppose U is a normal subgroup of F. Here I-I<f>(IT)~1Çz U
and as U is a normal subgroup, then also StII<t>(H)~lS~'Ç:U. Thus S'H and
S'<b(H) belong to the same coset of U and so $(StH)=$(S'4>(II)).

Sufficiency. Suppose $(S*H) = $(Si<t>(H)) for every S' and every H. This
is equivalent to saying S'H4>(II)~1S~tÇ:U. But the elements H<j>(H)~l gen-
erate U. The condition assures us that the transform of any generator of U
by an arbitrary 5 or 5_1 is again an element of U. Hence U is transformed
into itself by words of length one in F. By induction it follows that U is
transformed into itself by every element of F and hence is a normal subgroup
of F.

The standard representation of subgroups has been given in terms of
left cosets. It is clear, however, that right cosets may be similarly used if the
representatives {G} are a reverse Schreier system, that is, if aiö2 • • ■ at is a
G, then a2 ■ ■ ■ at is a G. The analogue to <j>(GS') is a function \p(SlG) where

(6.1.1) ip(S'G) is a G,
(6.1.2) If S'G is a G, then ¿(S'G) =S'G,
(6.1.3) ^[S-'^(5«G)] = G.
It has been noted above that a normal subgroup U has a set of representa-

tives {G} which form a two-sided Schreier system. Hence such a set may be
used for both a (left) standard representation and a right standard representa-
tion of U. If we write &(G~1)=GI, then we may easily show that \//(S'G)
= [<t>(GIS~e)]1. This idea may be used to define another characterization
of normal subgroups, which we shall give here without proof.
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Theorem 6.2. Given a standard representation U= U [ {G}, <j>(H) ] of a sub-
group U of F where {G} is a two-sided Schreier system. Then U is a normal
subgroup of F if and only if there is a mapping of G onto itself G-+G1 with the
following properties:

(6.2.1) 1*-1.
(6.2.2) (G')' = G.
(6.2.3) <KS-')'=0(S<).
(6.2.4) If we put \KS*G) = [<t>(GIS-*)]1, then 0[^(r»G)5«]=^[7>0(G5«)]

for any G and any generators T, S and r\, e = +1.

Both Theorem 6.1 and 6.2 are somewhat tedious in application, but the
condition of normality is so strong that it seems unlikely that any criterion
noticeably easier may be found.
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