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Abstract—Pervasive availability of programmable smart de-
vices is giving rise to sensing and computing scenarios that involve
collaboration between multiple devices. Maximizing the benefits
of collaboration requires careful selection of devices with whom
to collaborate as otherwise collaboration may be interrupted
prematurely or be sub-optimal for the characteristics of the
task at hand. Existing research on collaborative scenarios has
mostly focused on providing mechanisms that can establish and
harness collaboration, without considering how to maximally
benefit from it. In this paper, we contribute by developing
COSINE as a novel approach for selecting collaborators in multi-
device computing scenarios. COSINE identifies and recommends
collaborators based on a novel information theoretic measure
based on Markov trajectory entropy. Rigorous experimental
benchmarks carried out using a large-scale dataset of device-
to-device encounters demonstrate that COSINE can significantly
improve collaboration benefits compared to current state-of-the-
art solutions, increasing expected duration of collaboration and
reducing variability of collaborations.

Index Terms—collaborative sensing, collaborative computing,
mobile computing, pervasive computing, multi-device systems,
device-to-device, opportunistic collaborations
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I. INTRODUCTION

Pervasive availability of programmable smart devices is
giving rise to computing scenarios that involve collaboration
between multiple users or devices. For example, collaborative
sensing scenarios have examined how energy and other re-
source costs can be saved by sharing costs among neighboring
devices [1]-[3] or how the capabilities of individual devices
can be augmented through collaboration [4]-[6]. As another
example, opportunistic computing scenarios have explored the
potential of using collaboration between proximal devices to
support computing tasks [7]-[9]. Finding suitable collaborators
is critical for the success of these scenarios as the costs
of finding and managing collaboration may otherwise offset
the benefits it brings [1]. This is especially the case when
collaboration has a short duration or is fragmented in nature.
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Finding optimal collaborators can be highly difficult due to
the fact that the devices that are available for collaboration at
any given time are influenced by human mobility — regardless
of whether the devices are part of the environment or carried
by other people [1], [10], [11]. Another complicating factor
is that the best collaborators depend on the context where
collaboration takes place and characteristics of the task at
hand. For example, at work or at home the best collabora-
tors may be those that have close social relationships with
us, but during our commute the best collaborators may be
people that are strangers that we encounter in that particular
setting (so-called familiar strangers [12]). Existing research on
collaborative multi-device sensing and computing has largely
focused on supporting collaboration, without looking at how to
find the best possible collaborators for the current context. For
example, several works have explored how to minimize energy
and resource overhead of finding candidates without looking
at how to select the best ones amongst them [13]-[17]. Other
works have explored how to provide middleware support for
specific kinds of collaboration scenarios without addressing
how the collaborators are chosen for these tasks [1], [2], [4],
[18]. To maximize benefits of collaboration, the characteristics
of collaboration and the context where it takes place need to be
considered. Indeed, as we show in Section II, the selection of
collaborators can be highly sub-optimal unless characteristics
of collaboration are taken into account.

In this paper, we contribute by developing COSINE as
a collaborator selector service for cooperative multi-device
sensing and computing scenarios. COSINE overcomes the
main limitations of current solutions through a novel infor-
mation theoretic approach, where potential collaborators are
ranked according to their Markov trajectory entropy [19]. The
use of Markov trajectory entropy enables our approach to adapt
collaborator selection to different types of collaborations or
task characteristics, and to account for individual variations
in mobility. We demonstrate the benefits of COSINE through
rigorous benchmark experiments conducted on a large-scale
dataset of device encounters that contains different mobility
patterns, and collaboration contexts (locations). Our results
demonstrate that COSINE consistently identifies collaboration
opportunities with a high duration. The median duration
of collaboration opportunities for COSINE is 22 minutes.



Equally importantly, COSINE produces the most consistent
collaborations among all baselines and has least variation to
the conditions of collaboration. Accordingly, COSINE not
only identifies high quality collaborators, but recommends
collaboration opportunities that have the most predictable
duration, facilitating scheduling and allocation of tasks across
the collaborating devices.

Summary of Contributions:

« New method We develop COSINE, a novel regularity-based
collaborator selector for cooperative multi-device sensing
and computing tasks.

o New insights We demonstrate that current collaborator
selection algorithms are sensitive to the location where
collaboration takes place and characteristics of the task
where collaboration is required, motivating the need for
solutions that can work consistently and robustly across
wide range of collaboration contexts.

« Improved Performance We perform rigorous benchmarks
to demonstrate that COSINE significantly improves benefits
of collaboration. Compared to state-of-the-art, our approach
recommends collaborators that are available for longer du-
ration. COSINE is also more robust in identifying collab-
oration opportunities, providing consistent and predictable
recommendations across different locations and users.

II. MOTIVATION

We begin by demonstrating the need for improved col-
laborator selection by showing how current state-of-the-art
solutions are sensitive to characteristics of user mobility and
the context where collaboration takes place. As representa-
tive example of state-of-the-art approaches we consider the
familiarity-based collaborator selector algorithm integrated
into the CoMon collaborative context monitoring platform [1].
As part of our main experiments, in Section V, we consider a
wider range of baselines and demonstrate that the same find-
ings hold also for them. The dataset we consider is described in
Section IV-A and the familiarity-based collaborator selection
algorithm is described in Section I'V-B.

Figure 1 shows the performance of the familiarity-based
collaborator selection algorithm for four different locations
in our primary dataset. From the figure, we can observe
that characteristics of encounters contain significant variation
across the locations. For example, at railway station encounters
are generally short, whereas in entertainment areas encounters
last longer on average but also contain more variation. We can
observe the performance of the familiarity-based collaborator
selector to be highly sensitive to characteristics of the location
and tending to result in the algorithm identifying short collab-
oration opportunities. Also, the performance is sensitive to the
number of encounters that devices need to have in common.
While higher threshold tends to result in longer collaboration
opportunities, finding suitable people for a given threshold is
not always possible, e.g., in the park or railway it is difficult
to find devices that have encounter frequency of 75.

The performance analysis highlights how state-of-the-art
collaborator selection algorithms are sensitive to the charac-

teristics and context of collaboration. This makes it difficult
to find parameter values for these algorithms so that the
performance is robust in different locations and collaboration
contexts. Our analysis also highlights how the characteristics
of collaboration are likely to vary considerably during the day
according to human mobility, hence solutions that can work
robustly across different contexts are required.

III. COSINE COLLABORATOR SELECTOR

COSINE is a collaborator selector service that uses a novel
information theoretic approach to identify and recommend the
best possible collaborators based on their regularity charac-
teristics. As measure of regularity, we use Markov trajectory
entropy [19], which allows COSINE to overcome the main
limitations of existing collaboration selection approaches: (i)
incapability to adapt to varying mobility patterns; and (ii)
incapability to account for different task and collaboration
characteristics. Indeed, as shown in the previous section, exist-
ing approaches to collaboration selection are highly sensitive
to the characteristics of collaboration and mobility patterns,
working reasonably in some situations but failing completely
in others. Figure 2 presents an overview of COSINE, which
consists of three phases: (i) signal quantization, (ii) regularity
extraction and (iii) selection of collaborators.

A. Measurements and Signal Quantization

COSINE operates on measurements consisting of times-
tamped device encounters. In the first phase, measurements are
aggregated continuously into a signal, such that its regularity
can be analyzed. Formally, let d = {d, ,|0 < d,,; 2,y € D}
denote the set of possible duration values for encounters where
d; , is an encounter between device x and y, and D denotes
the possible devices that can be encountered. We quantize
the duration values into one of finite number of states S =
{sm € S : 1 < m < M}. Modeling the signal using a
fixed number of states S allows us to consider it as a dis-
crete trajectory and to quantify regularity through transitions
between states of the trajectory; see Figure 2a. Naturally, the
transformation of ¢ into its quantized counterpart d' results
in some information loss as the signal is represented with
fewer number of states. However, as long as the relative
properties of the discrete signal are preserved when compared
to the original, this loss of information does not have any
significant impact for the extraction of regularity. COSINE
also supports augmenting the measurements with additional
information that can be used to condition the duration values.
For example, in our experiments, we consider measurements
of the form a = (z,y,t,1,d,,) where ¢ and [ correspond to
the time and location of the encounter. These variables can
be used to condition the duration values and to learn models
that are specific to the time-of-day or spatial region where
the encounter takes place. In our experiments we perform
quantization using k-means clustering where the number of
clusters k£ equals the desired number of quantization levels.
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Fig. 2: Overview of the COSINE approach illustrating the three main phases (a) — (c) of finding suitable collaborator devices.

B. Regularity Extraction

In the second phase, depicted in Figure 2b, we quantify
regularity of encounters. Intuitively, our formulation captures
the consistency of encounters and helps to identify device pairs
that have predictable durations. We perform the quantification
by considering the measurements in ¢ as a realization of a
Markov chain. This can be understood as a model where the
encounter frequency values are interpreted as a random walk
in a finite graph. The vertices of the graph correspond to the
different devices, and the edges to encounter durations. With
this formulation, the regularity of each encounter pair can be
quantified by constructing a Markov trajectory entropy matrix
H where each element h; , corresponds to the entropy of all
encounter durations between devices x and y; see Figure 2b.

To calculate the Markov trajectory entropy matrix H, we
first form a transition probability matrix P. Each element
pi,j € P corresponds to the probability of observing a
transition from state ¢ to state j, where the states correspond
to quantized duration values (i.e., d;y) To estimate P, we
simply calculate the ratio of transitions between cells ¢ and j
compared to all transitions from state ¢. To ensure the resulting
chain is irreducible, we also smooth the probabilities by a
small constant €. Smoothing also provides robustness against
missing data as it allows the chain to reach cells that have
no observations. As we interpolate the measurements to have
consistent spatial and temporal resolution, we need to apply
the smoothing only to grid cells that are adjacent. Once the
transition matrix has been formed, the matrix H of Markov

entropies can be calculated using the following formula [19]:

H=K—K+ Ha. (1)
Here K is the matrix:
K=(I—-P+A) ' (H*— Hp) 2)

where [ is the identity matrix, P is the transition proba-
bility matrix, and A is a matrix containing the stationary
distribution y of the Markov chain, i.e., a;;1 = p;. The
matrix H* corresponds to the single-step state entropies of the
measurement sequences originating from state ¢ and is given
by Hf; = H(P,.) = —XyP, xlogP; . The matrix Ha is a
diagonal matrix where each non-zero element corresponds to
the entropy rate of state i:

(Ha)iyi = H() =

M- -
i.e., the matrix Ha captures the average contribution of each
state to the uncertainty associated with sequences through 1.
Finally, matrix K corresponds to a matrix where the ijth

element is equal to the element k; ; in matrix K.

=X, jpibi jlogP; ; 3)

C. Selection of Collaborators

In the third and final phase, we derive entropy ranges with
upper and lower bounds that depict grouping of entropy values;
see Figure 2c for an illustration. We rank all entropy ranges
based on cardinality, and select the most suitable candidates



according to the frequency of their entropy range, i.e., the ones
with most regular encounters. From these available candidates,
we select the one that has the highest expected proximity
duration. By using the expected duration, our approach can
determine collaborators that are comsistently available for a
long duration instead of recommending users that have high
variation in their availability times. A collaborator is selected
within the entropy range by analyzing its proximity around
the mean of the range.

D. Implementation

We have implemented two prototypes of COSINE, one
performing the necessary computations on a server using a
combination of Python and R scripts, and one running on
smartphones (tested with Samsung S6 smartphones). In the
former, the regularity model that is used to assess suitability
of collaborators is calculated on a server. On the server we use
R. Quantization is performed using the package arules and
the Markov transition matrix is formed using markovchain.
Regularity analysis is implemented in Python using Numpy
and called through the main interface of our program us-
ing rPython. The overall approach contains ~350 LoC. In the
mobile version, we have reduced external dependencies and
implemented simplified versions of the necessary routines. Our
mobile prototype runs as a background service that provides
a query interface to applications to assess the candidates
for collaboration in a particular location. Collaborators data
is stored in a SQLite database on the device. We use a
default number of quantization levels and incrementally learn
a Markov transition matrix from encounters for the default
level. Once sufficient amounts of encounters have been col-
lected, we run k-means on the phone to estimate the optimal
quantization level. If this differs by more than 2 levels, we
fetch all the data stored in the database and perform a one-
off operation where the transition matrix is recalculated for
the given quantization level. Any new encounters are used
to update the matrix incrementally, similarly to the default
model. We have released our code as open source in GitHub
https://github.com/mobile-cloud-computing/Regularity.

IV. EXPERIMENTAL SETUP

We next describe the primary dataset and baselines that we
consider in our experiments. The dataset and baselines are
considered both in the feasibility evaluation described in Sec-
tion II and in our main experimental evaluation presented in
Section V. In all experiments, we evaluate collaborator selector
performance using the duration of discovered collaborations.

A. Datasets

DataSet: As our primary dataset we consider a crowdsensed
dataset that contains real world mobility traces and app usage
patterns. The dataset is collected from a cellular operator
in Shanghai over a one-week period. The use of a large-
scale dataset collected through a cellular operator ensures our
data is representative of real human mobility, and ensures the

collaboration opportunities reflect those that we would expect
to encounter in a real-world deployment.

The dataset we use provides coarse-grained information
about base stations in the metropolitan area, and session
information from users connecting to base stations. Each
sample in the dataset describes the connectivity process of
a device to the network and includes device identifier, the
start and end time of a session, the amount of data transferred
during a session (in bytes), the id of the base station that
handles the connection, and the GPS coordinates of the base
station. Our dataset contains data from 137495 devices and
10363 base stations. For privacy reasons, the identifiers of
devices and base stations are all anonymized.

Pre-Processing: Before our analysis, we filter the dataset to
consider only measurements where devices are in a proximal
communication range through a base station. We refer to this
as co-location of devices. Co-located devices are available
for collaboration whenever they are connected to the same
base station at the same time. By analyzing the duration of
sessions of users connected to the same base station, we
identify pairs of devices which are connected to the same
base station. We then estimate the encounter duration of these
devices. We accomplish this, by first calculating the session
duration of each device in the dataset and subtracting the
starting time from an ending time of a connection sample.
We then model the duration distribution using a percentile
scale and discard sessions below 10th percentile or above 90th
percentile. This is performed to reduce impact of sessions that
have a very small duration or that happen very infrequently. As
our approach focuses on selecting long stable collaborators,
we analyze collaborations that can be harnessed during a time
period > 5 min, which is the minimum time for a sensing
task to beneficial in a collaboration between two devices [1].
We also discard base stations and users with a total amount
of measurements below the 10th percentile. We then perform
temporal alignment of all sessions per device into hourly bin
intervals, and match sessions of devices that share the same
interval. We focus our analysis on the 20 km? area with higher
density of users and the 1,000 users with higher amount of
samples. After this step, the resulting dataset for the analysis
contains 1,000,000 D2D encounters.

Data Representativeness: Previous works on collaboration
have relied on encounters detected directly on the mobile
devices, e.g., by detecting devices that are within the range
of BLE or other short-range networking technology. In our
experiments we consider instead an elastic edge provision-
ing application where devices are available for collaboration
whenever they are connected to the same network base station.
Accordingly, in our case devices are not necessarily physi-
cally co-located in proximal range. To demonstrate that the
characteristics of our dataset are similar to previous works,
Figure 3 compares the proximity characteristics of our dataset
with those in the dataset used by Lee et al. [1]. The distribution
of encounters has the same shape in both datasets, but our
dataset increases more sharply due to higher availability of
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Fig. 3: Data representativity of our dataset when compared
with state-of-the-art findings.

short collaborations. This can be expected as our dataset is
more recent and reflects the wider availability of smart devices.

B. Baselines

We compare COSINE against three baselines. For all ap-
proaches, a parameter « specifies the condition that is used
for selecting collaborators. We evaluate different values of «
to find the most suitable candidates for collaboration.
Familiarity: As the primary baseline, we consider the
familiarity-based collaborator selection algorithm of the
CoMon collaborative monitoring platform [1]. Familiarity
refers to the frequency of encounters between devices, i.e.,
a depicts the number of encounters between devices. For
example, two devices that encounter each other several times
are very familiar whereas two devices that encounter a few
times are less familiar.

Permanency: As our second baseline, we develop a collab-
orator selector that relies on permanency. Permanency refers
to the amount of time in which devices remain in proximal
range. Here o depicts the collaboration time required for a
candidate device. Permanency is important as a successful
collaboration must finish before devices are out of range. We
use « as threshold to analyze different values of permanency
to identify collaborators that can be selected.

Magnitude: Since the benefit of collaborations is to distribute
the cost of a task among multiple devices, we develop a collab-
orator selector that defines the magnitude of the collaboration.
In this case, o depicts the number of devices required to
distribute a task. We analyze different magnitude values of
« to select a group of devices of different sizes.

V. EXPERIMENTAL EVALUATION

We evaluate COSINE through rigorous benchmark using
the dataset described in Section IV-A. In the evaluation we
focus on demonstrating that device encounters have sufficient
regularity for being useful source of identifying collaborations,
and demonstrating that COSINE can find collaborations that
have long duration and that are predictable. Predictability
is essentially a measure of robustness and facilitates task

allocation and system optimization. Indeed, if collaboration
duration fluctuates considerably, scheduling tasks for collab-
oration becomes difficult. We also compare COSINE against
the baselines introduced in Section IV-B.

A. Regularity extraction from candidates

Since the potential of our proposed approach depends
on assessing regularity of candidate devices, we begin our
evaluation by demonstrating that enough regularity can be
extracted from mobility traces depicting encounters with other
devices. Regularity is measured by entropy values, with low
entropy implying consistent encounter duration over time and
high entropy implying highly fluctuating encounter duration.
For our analysis, we select three different representative traces
from users in our dataset that show high, medium, and low
encounter frequency for devices. Through our analysis, we
demonstrate that regularity can be used to model the whole
spectrum of possible collaborations.

Figure 4 shows the results. From the figure, we can identify
different encounters experienced by a user during one week.
We can also observe the average duration of each encounter
per hour. In addition, the figure also includes the entropy
values that can be extracted from the measurements. We can
observe that, for all the cases, regularity as entropy values
can be extracted to characterize different types of candidates
and that the duration of the encounter is characterized into
different entropy ranges. An entropy range consists of an upper
bound and a lower bound entropy values. For instance, from
Figure 4a, we can observe a clear range between 8 — 11
minutes of entropy characterization. Similarly, for Figure 4c,
we can observe a range between 2 — 5 minutes. This suggests
that different duration periods of encounters can be clearly
characterized with regularity. We next demonstrate how these
periods can be used to optimize collaboration between devices.

B. Selection of collaborators

The previous subsection demonstrated that sufficient regu-
larity can be extracted from mobility traces. We next demon-
strate that COSINE is capable of identifying the collaborators
with the longest and stablest periods of proximity.

Figure 5 shows the results of the analysis over our dataset.
As shown in Figure 5a, we can observe that candidates for
collaboration can be characterized and ranked using different
entropy ranges. From the figure, it is possible to see up to
9 ranges of characterization and their respective frequencies.
While some ranges are more frequent than others, each range
depicts the devices that share similar periods of co-located
duration. We then use each entropy range to evaluate the
performance of selecting collaborators. We refer to each
particular entropy range as an «. Figure 5 plots the cumu-
lative distribution function (CDF) for different o values. We
can observe that by using regularity it is possible to select
candidates for collaboration close to the average duration with
low error. Moreover, we can observe that « = 3 provides
the optimal results for selecting collaborators with the largest
duration of co-location. This also can be observe in Figure Sc
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Fig. 4: Regularity extraction from three traces with various frequency of device encounters (a) — (c).

that quantifies the average duration and number of devices
available when selecting collaborators. We can observe that
with the optimal selection of devices, we can obtain devices
up to 22 min for collaborations. In contrast, when using other
« values, we can observe that while the number of devices
remains almost the same, the duration of collaborator reduces
significantly between 17 and 19 min.

C. Comparison with other approaches

We next compare our regularity-based approach with the
baselines described in Section IV-B. Figure 6 plots the CDF
of collaboration opportunities. The distribution closely mirrors
the results of Lee et al. [1], suggesting that the fundamental
principles of collaborations largely have remained the same
over time — which is to be expected due to characteristics
of human mobility. From Figure 6a, we can observe that
the higher the familiarity of devices, the longer the duration
of collaboration opportunities usually is. The likelihood of
finding devices to collaborate is high when familiarity is low
(av = 0) but decreases sharply as familiarity requirement is
increased (from o« = 25 to a = 450). Figure 6d further
characterizes collaboration opportunities with familiarity by
looking at how the number of available devices and the
duration of collaboration varies when familiarity between
devices changes. From the figure we can observe that the
characteristics of collaboration opportunities vary significantly
depending on requirements placed on collaboration. For exam-
ple, when v = 25, it is possible to observe that the likelihood
of the CDF drops to 0.4 (Figure 6a). This suggests from
a quantifiable point of view (Figure 6d) that up to 1000
devices can be harnessed during ~ 20 minutes. However,
when familiarity requirements are high (o« = 450), only 2
devices can be harnessed during 35 minutes with the same
probability. Similarly, it is possible to observe same trends
with Permanency and Magnitude. For both approaches, we
can observe that as « increases, the number of available
collaborators decreases From all the baselines, we can observe
that Permanency selects the collaborators with the longest
periods that are up to 60 min, but the pool of available
collaborators decreases significantly. More importantly, we can
observe that for all the baselines, the results are oscillating and

with high variance when using different « thresholds. This
suggests that the selection of collaborations is unstable and
unreliable. This can be also observed from the CDFs, which
show that data is very spread out from the average.

Figure 7 compares COSINE against the baselines. For each
approach, we select the « that provides the largest number
of available devices with the longest duration. For having a
fair comparison, we also ensure that the number of available
devices does not differ significantly between « values. Thus,
we select alpha values that provides estimates for around 1000
devices. Results of the comparison are shown in Table I. From
the table, we can observe that regularity selects candidates
with up to 22 min, which outperforms the state-of-the-art
familiarity approach. While permanency results in higher
expected collaboration duration, we can observe that its results
fluctuate considerably whereas regularity provides a stable
selection of collaborators. To provide more insights into this
behaviour, the Mean Absolute Deviation (MAD) for regularity
is consistent, reaching 5.66 across all durations. Familiarity
and Permanency provide good estimations for collaborations
up to 20 and 28, min, however, we can observe higher variance
to select collaborators. From the table, we can observe that
the MAD for both, Familiarity and Permanency increases by
a factor of 2.45X, which makes them unreliable for supporting
and identifying long term collaborations.

Selector mechanism | Average duration | MAD
(min)

Regularity 22 5.66

Familiarity 20 13.74

Permanency 28 13.74

Magnitude 9 13.34

TABLE I: Comparison of different approaches.

D. Selection performance in different contexts

We next demonstrate that COSINE can adapt its selection
mechanism to different contexts. We also include the results
of our familiarity baseline for comparison. We select a park as
the location context as it provides the most oscillating mobility
patterns from all our selected locations as shown in Section II.

Figure 8 shows the results of the comparison. We can
observe that the results of COSINE are consistent even when
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Fig. 7: Comparison of approaches to select collaborators

considering specific locations. From our results, we estimate a
MAD of 5.59 for regularity and 13.74 for familiarity. Thus, our
approach provides more stable selection around the average
duration that is found in a location.

VI. COLLABORATIVE USE CASE

As we demonstrate in previous section, COSINE selects
better candidates for long collaborations. In this section, we
quantify the amount of additional energy gains that can be
obtained with COSINE. As our case study, we rely on a
multi-device computing use case based on cross-device app
offloading; similar to the one presented in [20]. In app offload-
ing, devices that share proximal range and execute the same
app, do not distribute the load of app execution, but instead,
they schedule the execution of the app in individual devices,



09
0.8 |
0.7 ]
0.6 | ]
0.5 1
04 1
03t :
02 _ 1
01t Regularity-Park
_ Familiarity-Park

Probability

0 10 20 30 40 50 60

Duration [mins]
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such that a device executes the application at the time while
both devices benefit from the collaborative execution. A device
saves energy based on the duration time of the collaboration.

A. Experimental Setup

Devices and applications: We consider S5 (i19505) and Nexus
(19250) smartphones in our experiments. We used Monsoon
power meter' to obtain ground truth energy measurements of
the applications. We consider three apps from Google Play
store. To generalize our results, apps from different categories,
and compatible with our devices were chosen.

Augment’: is an augmented reality application where one can
manipulate and view virtual objects in the physical environ-
ment. We used the app to display a virtual chair for 5 minutes,
and repeated the experiment 5 times. For S5, the average time
and power were stable, ¢ = 303.24 s and p = 3138.92 mW,
respectively. For Nexus, the average time and power were
stable, t = 306.52 s and p = 2578.55 mW.

Chess®: is a game that implements a minimax algorithm to
challenge users. We ran the application with a new game each
time, keeping the game running for 5 minutes at a time. For
S5, the average time and power were stable, ¢ = 304.11 s and
p = 2067.49 mW, respectively. For Nexus, the average time
and power were stable, t = 306.56 s and p = 2524.39 mW.
Face recognition*: is an application that allows the device to
identify a registered person based on their facial features. We
ran the face detection feature of the application for roughly
5 minutes and repeated the experiment 5 times. For S35, the
average time and power were stable, ¢ = 297.55 s and p =
2509.73 mW, respectively. For Nexus, the average time and
power were stable, t = 297.74 s and p = 2444.11 mW.
Results: We estimate the amount of energy that can be gained
in different collaborations between the two devices in our
setup. We used the 22 min of collaboration estimated from
our regularity approach. As our dataset is collected from real
world interactions, 22 min is a representative duration that

Uhttps://www.msoon.com/
Zhttps://play.google.com/store/apps/details?id=com.ar.augment
3https://github.com/huberflores/CodeOffloadingChess
“https://play.google.com/store/apps/details ?id=ch.zhaw.facerecognition

can be found in the wild. Results are shown in Table II
(Regularity). We also include the energy gains when using
familiarity for comparison (Familiarity). We can observe that
the gains obtained by COSINE account for an additional of
10% of energy improvement across the devices (+Benefit).
Moreover, if we consider that our approach selects the same
average duration regularly for all the selected collaborators,
we can account for further aggregated gains.

Collaboration Familiarity | Regularity | +Benefit
(mW) (mW) (mW)

S5 executes

Nexus saves

Augment 12421.52 13663.68 1242.16

Chess 8158.19 8974.01 815.82

Face recognition 10121.57 11133.73 1021.16

Nexus executes

S5 saves

Augment 10094.80 11104.28 1009.48

Chess 9881.48 10869.63 988.15

Face recognition 9850.64 10835.71 985.07

TABLE II: Comparison of energy gains obtained when using
different approaches to select collaborators.

VII. DISCUSSION

Naturally there is room for further work and improvements.
We discuss a few points here.

Implications for collaborations: While other approaches
to select collaborators are more suitable to spot short term
collaborations that are eligible for networking use cases, in
our work, we demonstrate that it is possible to engage into
long and stable collaborations between multiple devices. This
suggests that it is possible to envision more sophisticated use
cases for collaborations between devices that can involve the
usage of other resources from devices, e.g., storage, and other
resource intensive sensors like thermal cameras. Our approach
can also be used to design new types of duty cycling schemes
that account for collaboration. For example, thermal cameras
heat up when operated, which can reduce their accuracy and
performance [21]. By sharing sampling cycles across different
devices, it becomes possible to allow devices to cool down
between samples, thus mitigating errors.

Room for improvement and limitations: We focused on
finding collaborators with the longest period of duration in
a particular context. While these findings can reduce the in-
tervals of discovery and improve communication negotiations
between devices, our main contribution focuses on enabling
the sharing of resources between devices, e.g., CPU and
sensors. In parallel to this, while we considered different
locations and temporal contexts, we did not track specific
devices during our study. As a result, our results do not account
for influence of transportation or other mobility variations.
Group mobility is very important as scenarios in which a
group of devices traveling together can be stable enough
to execute collaborative tasks on the move. In our previous
work, we have shown that mobility patterns exhibit significant



regularity [22], suggesting that our method would be beneficial
also in mobility scenarios.

Static devices and devices on the move: mobile devices
often employ MAC randomization to mask their actual ad-
dress in an attempt to hide the identity of individuals and
protect their privacy. While this introduces an extra layer of
complexity to select collaborators, there is still several ways
to track specific users [23], [24]. Moreover, mobile platforms,
e.g., Android, implement already transparent mechanisms of
interaction, which allow users to hide the MAC address while
preserving their unchanged identify available to others. Since
our approach characterizes places for optimal selection of
collaborators, a potential candidate can be then selected based
on its relation with a location rather than through its identity.

Other applications: Collaboration between multiple devices
that are stable makes it possible to exploit collaboration in
new types of scenarios. For example, devices can perform
asynchronous tasks, such as training a machine learning model
by transferring model training between multiple devices until
it has been fully learned. As each device only performs
small portion of the learning, devices’ resources can be better
preserved. Another example is edge intelligence where the
level of decision support can be adjusted depending on stability
of devices with more powerful models preserved for situations
where high amount of collaborators are the most stable.
Similarly, small scale data centres powered by smartphones
can benefit from selection of stable collaborators [7]. In such
cases, cloud-like computing tasks can be push to massive
group of devices that are in proximal range for long time.

Data collection in proximity networks: Besides modeling the
frequency of encounters between devices in the wild, the char-
acteristics of our data collection setup also emulate emerging
5G deployments where edge servers or base stations directly
offer short range local connectivity. Our results provide new
insights for multi-device systems and applications that are
enabled though low latency communications. Another inter-
esting opportunity is to combine regularity with opportunistic
crowdsensing [25] and examine how stability characteristics
change when data covers only a subset of the users.

VIII. RELATED WORK

Collaborator selection: Device-to-device communications en-
able opportunistic collaboration where devices’ resources are
interconnected to operate as a whole [4]. Previous work on
collaborator selection has predominantly focused on network-
ing scenarios where the devices are acting toward a common
goal, the characteristics of the tasks do not change over time,
and the topology of the network changes only slowly [26],
[27]. Examples include wireless sensor networks [28], mobile
ad-hoc networks [29], peer-to-peer communications [3], [30],
delay-tolerant network and decentralized social systems [31].
In all of these scenarios, collaboration selection has focused
on finding the device(s) that provide best resource support
for the given task. However, not all devices are suitable as
collaborators as they may be available only for a short time or

not willing to share sufficient resources for collaboration [32].
Unlike others, COSINE addresses how to select the best and
most stable collaborator for any task.

Multi-device sensing: Collaborative sensing approaches share
the cost of sampling a sensor and includes approaches to
schedule and coordinate the sampling of a sensor between
multiple devices. As an example, Rio [4] is an I/O sharing
framework that supports unmodified applications and exposes
I/O resources for sharing with others. Other collaborative
frameworks for sensing includes CoMon [1], CoSense [2],
Remora [18], and CeeSR [5]. Collaborative sensing can be
also supported by offloading techniques. Sensing tasks are
offloaded to external servers (in a fixed location) to reduce
energy consumption and improve quality of sensed data [33],
[34]. While offloading can indeed reduce energy drain, making
optimal offloading decisions is complex [35]. Moreover, ben-
efiting from offloading sensing tasks requires a long stream of
sensor data to be exchanged, which increases energy cost [13],
[14], [16], [36]. Thus, selecting collaborators that share the
same context for the longest period of time is critical for these
systems. Our work addresses this key issue.

Multi-device computing: since the computational capabilities
of devices have increased dramatically, collaborations between
devices have been envisioned as distributed solutions that can
contribute computational resources to edge or fog infrastruc-
ture [37], [38]. Several frameworks to distribute computational
tasks among multiple devices have been proposed over the
years [20], [39], [40]. Smartphones can be harnessed to create
an aggregated computational infrastructure among multiple de-
vices, such as FemtoClouds [8] and Micro-clouds [41]. Smart
and IoT (Internet of Things) devices can also be merged into
a cloudlet-like infrastructure to execute collaborative machine
learning tasks [7], [9]. Cloudlets that rely on multiple devices
have also been proposed [42], [43]. Battery life also has
been quantified to foster the adoption of smartphones as edge
infrastructure [44]. Since the execution of computational tasks
can vary significantly based on multiple contextual factors,
such as type of device, number of devices, quality of the CPU
resource, intensity of the task, among others, the selection
of a collaborator is fundamental. In our work, we focus on
determining the collaborators that are most suitable depending
on the context of the device that is seeking collaborations.

IX. SUMMARY AND CONCLUSIONS

In this paper, we contribute by developing a regularity-
based approach to select optimal collaborators for multi-device
systems. We find that our approach can be used to spot
optimal collaborators with the longest and more stable duration
periods. Moreover, our approach outperforms other state-of-
the-art approaches to select collaborators in different contexts,
providing most stable performance across different locations.
This opens up a new plethora of use cases for collaborations
between devices that can exploit different resources of devices,
such as CPU or sensors. In addition, we also demonstrate
the potential of our approach in a collaborative offloading
use case. We show that COSINE improves energy saving in



collaborative applications, and enhances the performance of
selecting stable collaborators 2.45 times.
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