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ABSTRACT: The cosine integral transform method is applied to find the expressions for 

spatial variations of displacements and stresses in the Westergaard continuum under vertical 

concentrated loading, and distributed loadings acting over lines and geometric areas on the 

surface. The half-space is considered to be horizontally inextensible and the displacement 

field reduces to the vertical displacement component. The paper derives a displacement 

formulation of the equation of equilibrium in the vertical direction. Cosine integral 

transformation is applied to the formulated equation and the Boundary Value Problem (BVP) 

is found to simplify to Ordinary Differential Equation (ODE). The general solution of the 

ODE is obtained in the cosine integral transform space. The requirement of bounded 

solutions is used to obtain one integration constant. Inversion of the bounded solution gave 

the solution in the real problem domain space. The stress fields are obtained using the stress-

displacement equations. The requirement of equilibrium of the vertical stress fields and the 

vertical point loading at the origin is used to determine the remaining integration constant, 

and thus the vertical deflections and the stresses. The solutions obtained are kernel functions 

employed to derive the expressions for solutions for line, and uniformly distributed loads 

applied over given geometric areas such as rectangular and circular areas. The vertical 

stresses are expressed in terms of dimensionless vertical stress influence factors and 

tabulated. The vertical displacements and stresses obtained are identical with Westergaard 

solutions obtained by stress function method. The solutions agree with results obtained by 

Ike using Hankel transform method. 

 

Keywords: Cosine Integral Transform Method, Elastic Half-Space, Inverse Cosine Integral 

Transform, Stress Fields, Westergaard Problem. 

 

 

THE ELASTIC HALF-SPACE 

PROBLEM 

 

This problem is a classical subject in the 

mathematical theory of elasticity which is 

concerned with finding spatial variations of 

stresses and displacements caused by vertical 

load concentrated at a point, and loads 

distributed over a known geometric area on 

the boundary (x3=0 plane) of the half-space. 

The elastic half-space occupies the region of 

space defined mathematically by: 

1 ,x     2 ,x     30 x    x1, 

x2 and x3 are the three right handed coordinate 



Ike, C.C. 

    

314 

 

axes used to describe the three-dimensional 

(3D) elasticity problem. x1 and x2 are the 

coordinate axes for the horizontal plane with 

x1 pointing in the positive direction of the 

conventional x-Cartesian coordinate axis and 

x2 pointing in the positive direction of the 

conventional y-Cartesian coordinate axis. 

x1x2 coincides with the surface and boundary 

of the medium. x3 is the coordinate axis used 

to describe the vertical axis, and is pointing 

downwards from the x1x2 coordinate plane. x3 

points in the same direction as the z-Cartesian 

coordinate axis in a right handed xyz-

Cartesian coordinate system. Elastic half-

space problems are commonly encountered in 

the advanced theory of materials and solids, 

advanced mechanics of soils and structures, 

foundation engineering and geotechnical 

engineering. Specifically, they arise in 

problems concerned with the determination 

of the spatial variations of displacements and 

stresses and attendant deformations in soil 

due to boundary foundation loads 

(Westergaard, 1938; Ike, 2018a,b, 2019a; 

Fadum, 1948). 

The formulation framework guiding such 

problems are the simultaneous use of the 

generalized three-dimensional material 

constitutive relations, the geometrical 

relations of strains and displacements and the 

equations of equilibrium in the x1, x2,  and x3 

Cartesian coordinate axes for a differential 

element of the half-space.  (Ike, 2019a). The 

resulting equations in 3D problems are fifteen 

in number, in terms of three unknown 

displacements, six stress and six strain 

components. The set of governing equations 

are usually solved such that the resulting 

expressions for the unknown spatial 

variations of stresses and displacements in the 

3D medium would satisfy all boundary 

conditions imposed by applied vertical point 

and/or distributed boundary loads and also 

satisfy the conditions of deformations of the 

half-space. 

Solving the system of equations becomes 

further complicated by considerations of 

heterogeneity and anisotropy of the half-

space material (Ike, 2019a; Liao and Wang, 

1998; Tarn and Wang, 1987; Barden, 1963). 

Even for homogeneous, isotropic cases the 

system of fifteen equations of elasticity is 

quite unwieldy to solve in mathematically 

closed form. 

Two basic models of the half-space 

problems for loads applied on the boundary 

are the Boussinesq and the Westergaard half-

space problems.  The Boussinesq half-space 

problem involves the determination of the 

spatial variations of stresses and 

displacements caused by vertical 

concentrated load at a point on the boundary. 

The Boussinesq half-space is assumed to 

have material elastic properties that do not 

exhibit spatial and/or directional variation at 

any point in the half-space. The assumption 

that the material elastic properties of the 

Boussinesq half-space do not have directional 

variation at any point is the property of 

isotropy. The assumption that the material 

properties do not have spatial variation from 

one point to another in the half-space is called 

homogeneity. The Boussinesq half-space is 

also assumed to be semi-infinite in extent; 

and defined mathematically using 

inequalities as: 1x     2x     

30 x    The problem is a significant 

theme in the classical theory of elasticity of 

three-dimensional (3D) media because the 

solutions are fundamental or Kernel functions 

(or Green functions) which are very 

important in the derivation of mathematical 

expressions for the spatial variations of the 

normal, shear stresses and displacements in 

the half-space medium caused by loads that 

have known distributions over geometric 

areas on the surface. The geometric areas can 

be one-dimensional lines of finite or infinite 

length or two-dimensional surfaces which 

can be rectangular, circular, elliptical in shape 

or combinations of such regular geometric 

shapes. 
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In the Westargaard problem, the stress and 

displacement fields are to be determined in an 

elastic half-space that is considered to be 

internally reinforced by several layers of 

negligibly small thickness but are infinitely 

rigid. This thus prevents the medium from 

undergoing displacement in all the horizontal 

directions where the x3-Cartesian coordinate 

direction points downwards from the soil 

surface (VSUT, 2018). 

The basic assumptions in the Westergaard 

half-space formulation are as follows: (Ike, 

2018a,b, 2019a, Rocscience, 2018): 

i) The infinitely rigid strata are so closely 

spread that the aggregate elastic and physical 

properties are approximately assumed to 

exhibit no directional and spatial variation. 

ii) The thicknesses of the infinitely rigid 

layers are negligibly small when compared to 

the thicknesses of the alternating weaker 

layers. 

iii)  The infinitely rigid layers are horizontally 

not capable of extension and horizontally 

rigid in the x1 and x2 coordinate axes. 

Consequent to the non-extensibility and 

rigidity, in the x1 and x2 coordinates, the x1 

and x2-Cartesian components of the 

displacement field would both vanish. 

Mathematically, u1=u2=0 in which u1 is the 

x1 – displacement field component and u2 is 

the x2 – displacement field component. 

iv) The horizontally non-extensible (or 

horizontally rigid) infinitely rigid layers 

prevent the development of normal strains in 

the x1 and x2 coordinate axes in the soft and 

infinitely rigid layers. Consequently, strain 

components in both the x1 and x2 coordinate 

axes would vanish. Thus 11=22=0 where 11 

is the normal strain in the x1 direction and 22 

is the normal strain in the x2 direction. The 

shear strain field 12 at any point in the half-

space would consequently vanish, and this 

conclusion follows from the shear strain-

displacement equation for infinitesimal 

displacement elasticity theory 

(Anyaegbunam et al., 2011; Ike, 2019a).  

Soils that are classified as sedimentary 

soils of which natural clay is an example are 

generally anisotropic in nature (Bowles, 

1997; Ike, 2019a). The Westergaard half-

space model appears in some instances to be 

a better model of the soil mass represented as 

a semi-infinite medium (Rocscience, 2018). 

Simplified formulations of the elastic half-

space problems have been presented using 

three basic methods namely – displacement, 

stress and mixed (hybrid) methods (Sadd, 

2014; Bowles, 1997; Barbar, 2010; Ojedokun 

and Olutego, 2012; Ike, 2019a; Chau, 2013). 

The displacement method which is used to 

formulate the Westergaard problem of 

elasticity in this work is originally due to 

Navier and Lamé. The displacement 

formulation of the problem entails expressing 

the set of fifteen governing equations of the 

half-space using three Cartesian components 

of the displacement field as the primary 

unknowns (Kachanov et al., 2003; Sitharam 

and GovindaRaju, 2017; Palaniappan, 2011; 

Hazel, 2015; Ike, 2019a). 

One merit of the Navier – Lamé 

displacement technique is that the governing 

equations are reduced from fifteen in a 3D 

problem to three. The remaining unknowns in 

a displacement formulation which are the 

Cauchy stresses and strains are obtained from 

the displacements (once solved) using the 

kinematic relations, and the material 

constitutive equations. The main advantage 

of the displacement method in solving elastic 

half-space problems is thus the reduction in 

the analytical rigour offered by the 

considerable decrease in the governing 

equations to be solved for 3D problems; in 

both numbers and complexities. 

Stress based methods, originally due to 

Michell and Beltrami, are based  on  

reformulating the set of fifteen governing 

equations of the elastic half-space using the 

six Cauchy stress field components for a three 

dimensional problem (Ike, 2019a, 2018a,b,c; 

Ojedokun and Olutoge, 2012; Barbar, 2010; 
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Green and Zerna, 1954). The merit is the 

decrease in the equations for solution from 

fifteen to six for a 3D problem. The system of 

coupled Beltrami-Michell partial differential 

equations expressed using normal and shear 

stresses are integrated to obtain stress field 

components. The normal and shear strains are 

then obtained from the generalized Hooke’s 

law relating stresses and strains. The 

displacements are determined using the 

kinematic relations. The stress functions are 

scalar potential functions of the space 

coordinates that satisfy the stress formulation 

of the differential equations of equilibrium 

(Ike, 2018c). The stress fields in the elasticity 

problem could be derived in terms of spatial 

derivatives of the stress function. 

Advantages of the scalar stress function 

method include:  

i) The stress function is usually a biharmonic 

function and could readily be obtained from a 

catalogue of biharmonic functions in 

advanced mathematics.  

ii) The stress function could be obtained as a 

polynomial that is biharmomic.  

iii)  Stress fields satisfy the requirements of 

equilibrium and compatibility of strain fields.  

v) Additionally, the scalar stress function 

method has the merit that scalars are much 

easier to handle than vectors, and are easily 

amenable to coordinate transformations. 

The mixed method of formulation, though 

rarely applied for finding solutions of elastic 

half-space problems, involve reformulating 

the governing equations in such a way that the 

equations are expressed using some stresses 

and displacements as unknowns to be 

determined for solution (Ike, 2019a). 

Analytical expressions that satisfy the 

Navier-Lamé displacement equations of 

static equilibrium at all points in an elastic 

half-space have been developed and 

presented respectively as displacement 

functions and stress functions. The mixed 

method can be considered a hybrid of the 

stress-based and the displacement-based 

methods (Nwoji et al., 2017a; Nwoji et al., 

2017b; Ike, 2017; Ike et al., 2017a,b; Apostol, 

2017; Lurie and Vasilev, 1995; Chau, 2013; 

Teodorescu, 2013; Abeyaratne, 2012; Davis 

and Selvadurai, 1996; Podio-Guidugli and 

Favata, 2014). Displacement potential 

functions found to have been previously used 

by researchers include: Boussinesq, 

Papkovich-Neuber, Trefftz, Green and Zerna, 

and Cerrutti functions. 

Some of the stress functions used in the 

stress-based methods were derived by: Airy, 

Morera, Maxwell, Love, Boussinesq, 

Papkovich-Neuber, and are respectively 

named after them. 

Miroshnikov (2018) presented an 

analytical and numerical solution to the 

theory of elasticity problem where stresses 

are known on a boundary for a homogeneous 

half-space with several cylindrical cavities 

parallel to each other and the boundary of the 

half-space. The specified boundary stresses 

are assumed to rapidly decay to zero at great 

distances from the origin of coordinates on 

the boundaries of the cavities and on the 

boundary of the half-space. Miroshnikov 

(2018) used the generalized Fourier method 

in relation to the system of Lamé equations in 

the cylindrical coordinates system. The 

resulting infinite number of system of linear 

algebraic equations was solved by finite 

truncation to obtain the displacements and 

stresses in the elastic body. 

Zhou and Gao (2013) used the Papkovich-

Neuber harmonic functions, Fourier 

transformation technique and the cylindrical 

functions for formulating elastic half-space 

and half-plane problems. They then derived 

mathematical solutions for such problems for 

the case of vertically applied load with known 

distribution over a geometric area. They 

obtained solutions that reduced to the solution 

for half-space and half-plane contact 

problems of classical linear elasticity if the 

surface effects are disregarded. 

Dobrovolsky (2015) considered the 
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inhomogeneous isotropic elastic half-space 

problem with one-dimensional continuous 

heterogeneity; and obtained solutions using 

two-dimensional Fourier transformation. 

Hayati et al. (2013) used new scalar 

harmonic functions to derive the dynamic 

Green’s functions for the axially symmetric 

problem formulated using Biot’s theory. The 

harmonic potential function used uncoupled 

the equation of the thermoelastic half-space 

resulting to a sixth-order PDE expressed 

using cylindrical polar coordinates. They 

applied Fourier–Bessel transformation with 

respect to the radial coordinate to obtain an 

ODE of the sixth order. They proceeded to 

solve the ODE to satisfy the boundary 

conditions thus obtaining displacements, 

spatial variations of stresses and temperature 

fields in the Fourier–Bessel transformed 

space. They used inverse Fourier–Bessel 

transformation for obtaining solutions for the 

real actual problem which were validated by 

showing agreement with previously obtained 

solutions in the literature. 

Other research papers that recorded 

significant contributions to the theme of 

elastic half-space theory for isotropic, 

orthotropic, transversely isotropic, 

homogeneous, inhomogeneous elastostatics 

and elasto-dynamic cases include: Naeeni 

and Eskandari-Ghadi (2016); Eskandari- 

Ghadi et al. (2014); Ardeshir-Behrestaghi et 

al. (2013); Godara et al. (2017) and 

Miroshnikov (2017). 

Integral transform methods that have been 

used to solve elasticity problems in 2D and 

3D include: Hankel (Fourier–Bessel) 

transform, Fourier transform, Mellin 

transform and Elzaki transform methods. 

Hankel transformation methodology was 

used for obtaining solutions for the spatial 

distribution of normal and shear stresses and 

displacement fields for the Westergaard 

problem for various boundary loads by Ike 

(2019a). He used the Hankel transform 

method, which is an integral transform 

technique that has the Bessel function as the 

integral kernel for obtaining general solutions 

to the spatial variations of displacement and 

stresses in a Westergaard half-space carrying 

vertically applied concentrated load on the 

boundary surface. He then used the resulting 

solution as fundamental kernel functions to 

obtain solutions for the spatial distribution of 

vertical stresses caused by uniformly 

distributed line loads of finite length applied 

on the boundary and acting parallel to the y 

axis. 

Ike (2019a) similarly used the 

fundamental solutions of the vertical point 

load to obtain vertical stresses due to 

uniformly distributed loads applied over 

given rectangular areas on the boundary of 

the Westergaard half-space. He calculated 

and presented tabulations of influence values 

for easy calculation of spatial distributions of 

vertical stresses caused by vertical 

concentrated loads applied at a reference 

point on the boundary surface of the half-

space. The Hankel transform methodology is 

especially suitable for boundary value 

problems formulated in cylindrical polar 

coordinates. The Hankel (Fourier–Bessel) 

transform method is also suitable for BVP of 

mathematics that are symmetric about the z-

coordinate axis for problems described using 

rz coordinates (Piessons, 2000; Yokoyama, 

2014; Tuteja et al., 2014; Voegtle, 2017; 

Andrews and Shivamoggi, 1999; Naeeni et 

al., 2015). 

Sneddon (1992, 2010) presented the 

mathematics of Fourier transformation 

methods and explained how the method could 

be applied to the solution of problems in 

mathematical physics, including some 

problems in elasticity.  

Ike (2020a) used the Elzaki transformation 

methodology for obtaining the mathematical 

expressions for the spatial variations of 

normal and shear stresses and displacements 

caused by loads applied to the boundary 

surface. He considered two-dimensional 
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elasticity problems formulated in the plane 

polar coordinates system. He solved the 

Flamant problem and problem of strip loads 

of infinite extent on the half-plane and 

obtained expressions for stresses that were 

identical to those in the literature, thus 

validating the work.  

In a related work, Ike (2020b) used the 

Fourier Cosine integral transform method for 

obtaining the analytical expressions for the 

spatial distributions of normal and shear 

stresses and displacements caused by a 

vertical concentrated force applied to a 

reference point on the bounding surface of an 

elastic half-plane.  The half-plane was 

considered isotropic and homogeneous and 

the problem assumed to be two-dimensional. 

Ike (2019b) used the Mellin transform 

method to solve the two-dimensional 

elasticity problem expressed in plane polar 

coordinates. He considered a vertically 

applied force at a reference point on an 

isotropic, homogeneous semi-infinite plane. 

He obtained solutions for the Flamant 

problem that were identical with previous 

solutions in the literature, thus validating the 

study. 

However, to the best of the author’s 

knowledge there is no previous presentation 

of any application of the cosine 

transformation method in the rigorous way 

done here for the analysis of the Westergaard 

problem, which is the subject matter of this 

research. 

In this work, the Westergaard problem in 

the theory of elasticity of horizontally 

inextensible elastic half-space is presented 

using displacement formulation method. 

The formulated partial differential 

equation is solved by cosine integral 

transformation method. 

 

Purpose and Objectives of Study 

The fundamental purpose is to present the 

application of the cosine integral transform 

method for solving the Westergaard problem 

of vertical concentrated force of known 

magnitude at a reference point on the 

boundary of a Westergaard half-space that is 

assumed to be homogeneous, isotropic and 

linear elastic 1( ;x     2 ;x     

30 x    The specific objectives are as 

follows: 

i) To derive the equation for static 

equilibrium using the Cauchy-Navier 

displacement formulation that accounts for 

the assumptions of the Westergaard half-

space model. The objective is to obtain the 

Cauchy-Navier displacement equation of 

equilibrium in the vertical direction for a 

vertical concentrated force of magnitude 

denoted by P0 applied at a reference point O, 

on the horizontal boundary surface (x1x2 

plane) of the half-space. The half-space is 

occupying the three dimensional region R3 

defined mathematically by 1 ;x     

2 ;x     30 x    

ii) To apply the cosine integral 

transformation to the governing equation, and 

thus obtain by solving the resulting integral 

equation, bounded general solutions in the 

transformed space for the spatial distributions 

of vertical displacement caused by the 

vertical concentrated force acting at a 

reference point on the boundary surface (x1x2 

plane). 

iii)  To apply the cosine integral transformed 

vertical stress boundary condition for 

determining the integration constant in the 

bounded general solution for the spatial 

distributions of vertical displacement caused 

by vertical concentrated force acting at a 

reference point on the boundary surface (x1x2 

plane). 

iv)  To obtain spatial distributions of normal 

and shear stresses for the Westergaard 

problem by use of the kinematic relations; 

and then determine the vertical stress fields in 

terms of dimensionless factors. 

v)  To use the expressions for spatial 

distribution of stresses and displacements due 
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to a vertical concentrated force applied at a 

reference point on the surface (x1x2 plane) of 

the Westergaard half-space as Green 

(fundamental or Kernel) functions; and find 

by employment of the superposition theory 

for linear elastic bodies, the expressions for 

spatial distribution of stresses and 

displacements in the Westergaard half-space 

resulting from uniformly distributed loads 

over lines and geometric areas on the x1x2 

plane. 

vi)  To use the expressions for the spatial 

distribution of stresses caused by a vertical 

concentrated force applied at a reference 

point on the boundary surface (x1x2 plane) as 

Green (fundamental or Kernel) function and 

determine by employment of the 

superposition theory for linear elasticity 

expression for the variation of vertical 

stresses with depth under a corner of a 

rectangular foundation area of plan 

dimensions LB subjected to uniform 

distribution of load of known intensity, p0. 

vii) To use the expressions for the spatial 

distribution of vertical stress caused by a 

vertical concentrated force acting at a 

reference point on the boundary (x1x2 plane) 

of the Westergaard half-space as a 

fundamental function for obtaining using 

superposition principles the vertical stress 

field for points under the center of circular 

foundation carrying uniform load. 
 

THEORETICAL FRAMEWORK 
 

Displacement Formulation of the 

Westergaard Problem 

A displacement formulation is presented 

for the Westergaard problem by considering 

the foundational equations of 3D elasticity 

theory. 
 

Equations of Three-Dimensional (3D) 

Elasticity Theory 

The equations of 3D elasticity theory for 

static loads are the differential equations of 

static equilibrium, the generalised Hooke’s 

laws, and the kinematic relations. The three 

basic set of equations are solved such that all 

boundary conditions are satisfied. 

 

Differential Equations of Static 

Equilibrium 

The differential equations of static 

equilibrium for elastostatic problems are 

given by (Ike et al., 2017b; Nwoji et al., 

2017a,b): 

 

1311 12
1

1 2 3

0f
x x x

 
   
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 (1) 

2321 22
2

1 2 3

0f
x x x

 
   
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 (2) 

31 32 33
3

1 2 3

0f
x x x

  
   

  
 (3) 

 

in which 11, 22, 33: are normal stresses, 

12, 21, 23, 32, 31, 13: are shear stresses. 

f1, f2 and f3: are body force components in the 

x1, x2 and x3 coordinate directions. 

 

Generalised Hooke’s Laws 
The generalised Hooke’s laws for 

homogeneous, isotropic, linear elastic 

problems are given by the set of six equations 

(Ike, 2018a; Nwoji et al., 2017a,b): 

 

11 112 vG      (4) 

22 222 vG      (5) 

33 332 vG      (6) 

13 31 13G      (7) 

12 21 12G      (8) 

23 32 23G      (9) 

where 11 22 33v          (10) 

 

where v: is the volumetric strain, 11, 22, 33: 

are normal strains, 12, 13, 23: are shear 

strains, G: is the shear modulus and : is the 

Lamé coefficient or modulus. 

The shear modulus, also called the rigidity 

modulus, G, is expressed in terms of the 
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Young’s modulus, E and the Poisson’s ratio 

 by Eq. (11): 

 

2 1( )

E
G 

 
 (11) 

 

Kinematic Equations for Infinitesimal 

Displacement Elasticity 

For small displacement assumptions, the 

strain-displacement relations are given by 

(Ike et al., 2017b; Nwoji et al., 2017a,b; Ike, 

2018b): 

 

1
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1

u
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2
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2
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
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2 1
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32
23
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x x
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  
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31
13

3 1

uu

x x
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  

 
 (17) 

 

in which u1, u2 and u3: are the components of 

the displacement field in the x1, x2 and x3 

Cartesian coordinate directions, respectively. 

 

Governing Equations of the Westergaard 

Problem 

The Westergaard problem shown in Figure 

1 involves finding the normal and shear 

stresses and displacement field component in 

an elastic half-space with horizontal 

inextensibility due to boundary vertical 

concentrated force acting vertically 

downward at a reference point on the x1x2 

plane of the half-space 1 ,x     

2 ,x     30 x    

 
Fig. 1. Vertical concentrated load P0 at the origin of a 

Westergaard half-space 

 

In the Westergaard problem there are no 

displacement components in the x1 and x2 

coordinate axes. The non-zero displacement 

component is the vertical displacement 

component (x3 coordinate component of 

displacement). 

The displacement field components for the 

Westergaard problem are: 
 

1 0u  , 2 0u   (18) 

3 1 2 3 0( , , )u x x x   (19) 

 

Using Eq. (18) in the strain – displacement 

relations the strains are obtained as follows: 
 

1
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u
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x x

 
   

 
 (23) 

3
13

1

u

x


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
 (24) 

3
23

2

u

x


 


 (25) 

 

The stresses are obtained in terms of 

displacements by using Eqs. (20-25) in the 

stress-strain relations. The stress-

displacement equations are: 
 

3
11

3

u

x


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
 (26) 
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3
22

3

u

x


  


 (27) 

3
33

3

2( )
u

G
x


   


 (28) 

12 0   (29) 

3
13

1

u
G

x


 


 (30) 

3
23

2

u
G

x


 


 (31) 

 

The Cauchy-Navier displacement 

formulation for equilibrium in the vertical 

direction is given by substitution of Eqs. (26-

31) in the differential equation of equilibrium 

in the x3 coordinate direction when body 

forces are absent or neglected to obtain Eq. 

(32): 

 
2 2 2

3 3 3
2 2 2
1 2 3

2 0( )
u u u

G G
x x x

   
     

   
 (32) 

or 
2 2 2

3 3 3
2 2 2
1 2 3

0
2

u u uG

G x x x

    
    

      
 

(33) 

or 
2 2 2

2 3 3 3
2 2 2
1 2 3

0
u u u

x x x

   
    

   
 (34) 

where 2 1 2

2 2 1( )

G

G

 
  

   
 (35) 

 

Hence Eq. (32) is given in compact form 

as Eq. (36): 

 
2 2 2

3 3 3
2 2 2 2
1 2 3

1
0

u u u

x x x

  
  

   
 (36) 

 

METHODOLOGY 

 

Cosine Integral Transformation of the 

Governing Domain Equation 

The cosine integral transform is taken of 

the governing domain equation, Eq. (36) to 

obtain the integral equation in Eq. (37): 

2 2 2
3 3 3

2 2 2 2
1 2 3

1u u u

x x x

 

 

   
   

    
 

1 1 2 2 1 2 0cos( )cos( )x x dx dx    

(37) 

 

where 1 and 2: are the cosine integral 

transform parameters. 

By the linearity property of the cosine 

integral transformation and the application of 

the Leibnitz rule, we obtain after 

simplification, of Eq. (37), the following 

equation: 

 
2

3 1 2 3 1 1 2 22 2
3

1
( , , )cos( )cos( )

d
u x x x x x

dx

 

 

 


 

2 2
1 2 1 2 3 1 2 3 1 1( ) ( , , )cos( )dx dx u x x x x

 

 

    
  2 2 1 2 0cos( )x dx dx     

 (38) 

Let 

3 1 2 3 1 1 2 2 1 2( , , )cos( )cos( )u x x x x x dx dx

 

 

    

 3 1 2 3( , , )U x    

 (39) 

 

3 1 2 3( , , )U x  : is the cosine integral 

transform of the vertical displacement 

3 1 2 3( , , ).u x x x   

Then, the second order ordinary 

differential equation (ODE) is obtained by 

Eq. (40). 

 
2

2 2
3 1 2 3 1 2 32 2

3

1
( , , ) ( )

d
U x U

dx
     


  

 1 2 3 0( , , )x      

 (40) 

or 
2

2 2 2
3 1 2 3 1 2 32

3

( , , ) ( )
d

U x U
dx

       

   1 2 3 0( , , )x     

(41) 
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Using the method of trial functions, or 

differential operator techniques, the general 

solution to Eq. (41) is obtained as Eq. (42): 
 

 2 2
3 1 2 3 1 1 2 3( , , ) exp ( )U x c x      

     2 2
2 1 2 3`exp ( )c x     

      (42)    

 

where c1 and c2: are the two constants of 

integration. 

For finite values of the vertical 

displacement 3 1 2 3( , , )u x x x  as 3 ,x   

3 1 2 3( , , )U x   is expected to be finite and 

bounded as 3x   

For finite, bounded solutions, 
 

2 0c   (43) 

 

The bounded solution in the cosine 

integral transform space is: 
 

 2 2
3 1 2 3 1 1 2 3( , , ) exp ( )U x c x        

 (44) 

 

By inversion, the bounded solution for the 

vertical displacement is given by Eq. (45): 
 

3 1 2 3 3 1 2 32

1

2
( , , ) ( , , )

( )
u x x x U x

 

 

   

   

  1 1 2 2 1 2cos( )cos( )x x d d     

 (45) 

 

Hence, substitution of Eq. (44) in Eq. (45) 

gives Eq. (46): 
 

3 1 2 3 12

1

2
( , , ) exp

( )
u x x x c

 

 


      

  2 2
1 2 3( ) x   

 1 1 2 2 1 2cos( )cos( )x x d d     

(46) 

 

The double cosine integral transform 

inverse given in Eq. (46) involves a very 

complicated integration problem. The 

integration problem in Eq. (46) could be 

solved by expressing it as a single Hankel 

transform inversion integral by the aid of 

coordinate transformation (Sneddon, 2010; 

1992) and calculating the resulting Hankel 

inversion integral. However, the solution of 

the transform inverse adopted in this work is 

based on Eq. (36) which is a Laplacian in 

terms of x1, x2, and x3. 

From, Eq. (36) we simplify to express as 

the following Laplacian in Eq. (47): 
 
2 2 2 2 2

3 3 3 3 3
2 2 2 2 2 2
1 2 3 1 2

1u u u u u

x x x x x

    
   

     
  

    
2

23
3 1 2 32

3

0( , , )
( )

u
u x x x

x


    
 

 

 (47) 

 

The general solution to Eq. (47) which 

should coincide with the solution for Eq. (46) 

is given by Eq. (48) where 1ĉ : is a constant 

that is related to c1. The relationship between 

1ĉ  and c1 could be the subject of further 

research for mathematics scholars. 
 

3 1 2 3 1 1 2 2 2 2 1 2
1 2 3

1 1
/

ˆ ˆ( , , )
( )

u x x x c c
R x x x

 
  

 

 (48) 

 

RESULTS 
 

Solution for Vertical Concentrated Load 

P0 Applied At a Reference Point on the 

Westergaard Half-Space 

For the case of a vertical point load P0 

applied at a reference point on the bounding 

surface of the Westergaard half-space as 

illustrated in Figure 1, the vertical stress field 

is obtained by substitution of Eq. (48) in Eq. 

(28) to obtain Eq. (49) which follows: 
 

3
33 1 2 3

3 3

2 2( , , ) ( ) ( )
u

x x x G G
x x

 
    

 
 

   
2 2 2 2 1 2

1 1 2 3
/ˆ ( )c x x x     

 (49) 
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Thus, performing the partial 

differentiation problem in Eq. (49) and 

simplifying gives the following Eq. (50): 

 
2

33 1 2 3 1 32 ˆ( , , ) ( )x x x G c x        

     
2 2 2 2 3 2
1 2 3

/( )x x x     
(50) 

 

The vertical stress field is obtained in 

terms of an unknown constant of integration

1ĉ , which is determined by enforcing 

boundary conditions. The boundary 

conditions used to determine 1ĉ  is the 

requirement of equilibrium of resultant 

vertical stress fields and the applied vertical 

point loading. 

Thus, we have the equation of equilibrium 

in the x3 direction as the following Eq. (51): 

 

33 1 2 3 1 2 0 0( , , )x x x dx dx P

 

 

     (51) 

 

Substituting the expression for 

33 1 2 3( , , )x x x  into Eq. (51) we obtain the 

following Eq. (52): 

 

2 2 2 2 2 3 2
1 3 1 2 32 /ˆ( ) ( )G c x x x x

 


 

        

    1 2 0 0dx dx P   

 (52) 

 

Re-arranging Eq. (52) we have Eq. (53) as 

follows: 

 

2 2 2
0 1 3 1 22 ˆ( ) (P G c x x x

 

 

        

      
2 2 3 2

3 1 2
/)x dx dx  

(53) 

 

Factoring out the constants, a 

simplification of Eq. (53) is obtained as 

follows: 
 

2 2 2
0 1 3 1 22 ˆ( ) (P G c x x x

 

 

       

    2 2 3 2
3 1 2

/)x dx dx  

(54) 

 

The integration problem presented in Eq. 

(54) is evaluated by the method of change of 

variables from the Cartesian to the cylindrical 

polar coordinates. The transformation 

equations are given by Eqs. (55-57) as 

follows: 

 

1 cosx r   (55) 

2 sinx r   (56) 

3x z  (57) 

and 0 0 0 2, ,r z            

then, 1 2dx dx J drd   
(58) 

where, 

1 1

1 2

2 2

( , )

( , )

x x

x x rJ
x xr

r

 

   
  

 

 (59a) 

cos sin

sin cos

r
J r

r

  
 

 
    (59b) 

 

J : is the Jacobian of the coordinate 

transformation from 3D Cartesian to 3D polar 

coordinates system. 

Then, the integration problem in Eq. (54) 

is expressed using the cylindrical polar 

coordinates system (Eq. (60)) as follows: 

 
2

2 2 2 2 3 2
0 1

0 0

2 /ˆ( ) ( )P G c z r z rdrd


       

 (60) 

 

Simplifying, Eq. (60) by performing the 

integration with respect to , the simple Eq. 

(61) is obtained as follows: 

 

2 2 2 2 3 2
0 1

0

2 2 /ˆ( ) ( )P G c z r z rdr


         

 (61) 
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The integral in Eq. (61) is evaluated again 

by the change of variables from r to a0(r) 

where 

 
2 2 2

0( )a r r z       (62) 

then, 0

2

da
rdr     (63) 

and, 

2 3 2 0
0 1 0

0

2 2
2

/ ( )
ˆ( ) ( ( ))

r

r

da r
P G c z a r






     
 

 (64) 

 

By integration of Eq. (64), Eq. (65) is 

obtained: 

 

1 22
01

0
0

2 2

2 1/2

/ˆ ( ( ))( )
r

r

a rG c z
P





    
  

 
 

 (65) 

 

By simplifying Eq. (65), Eq. (66) is 

obtained: 

 

 2 2 2 2 1 2
0 1 02 2 /ˆ( ) ( )P G c z r z

         

 (66) 

 

By solving Eq. (66), the unknown 

integration constant is obtained as given by 

Eq. (67): 

 

0
1

2 2
ˆ

( )

P
c

G


   
 (67) 

 

Hence, the vertical displacement is 

obtained as expressed by Eq. (68): 

 

0
3 1 2 3

2 2
( , , )

( )

P
u x x x

G


  
   

  
2 2 2 2 1 2
1 2 3

/( )x x x     

(68) 

 

Alternatively, Eq. (68) could be expressed 

as Eqs. (69a), (69b) or (69c): 
 

2 2 2 2 1 20 0
1 2 3 1 2 3

2 2
/( , , ) ( )

P P
u x x x x x x

GR G

 
    

 
 

 (69a) 

0 0
3 1 2 3

2 1 1

2

( ) ( )
( , , )

P P
u x x x

ER E R

   
 

 
 (69b) 

Thus,           

2 2 2 2 1 20
3 1 3 3 1 2 3

1 /( )
( , , ) ( )

P
u x x x x x x

E

  
  


  

 (69c) 

 

Stress Fields 

The vertical stress field in the Westergaard 

half-space is obtained as: 

 

23 3
33 1 2 3

3 3

2( , , ) ( )
u u

x x x G G
x x

 
     

 
 

 (70) 

 

Substitution of Eq. (69) for 3 1 2 3( , , )u x x x

gives: 

 
2 2 2 2 1 2

0 1 2 3
33 1 2 3

2 2

/( )
( , , )

( )

P x x x
x x x

G

  
 
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 (71) 

 

Hence, 

 

2 2 2 2 1 20
33 1 2 3 1 2 3

32
/( , , ) ( )

P
x x x x x x

x


   
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 (72) 

 

Evaluation gives: 

 

2 2 2 2 3 20 3
33 1 2 3 1 2 3

2
/( , , ) ( )

P x
x x x x x x  
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

 

 (73) 

 

Hence, 
 

3 22
20 3 0

33 1 2 3 3 2 222

/

( , , )
P x P r

x x x
R z z


    

     
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 (74) 

 

Alternatively, 



Civil Engineering Infrastructures Journal, 53(2): 313 – 339, December 2020 

 

325 

 

0
2

( , , ( ))zz w

P
I r z

z


     (75) 

 

where ( , , )wI r z  : is the Westergaard vertical 

stress influence factor for vertical 

concentrated load acting at the origin of a 

Westergaard half-space. 

The normal stresses in the x1 and x2 

Cartesian directions are obtained as: 

 

33
11 22 0 33

1
k


     

 
 (76) 

 

where k0: is the coefficient of lateral stress at 

rest, 0 / 1( ).k     

 

or, 0 3
11 22 31 2

P x

R


   

  
   (77) 

 

The shear stresses 32 are obtained as Eq. 

(29): 

 

3 0
32

2 2 2

u P
G G

x x GR

 
  

  
 (78) 

2 2 2 2 1 20
32 1 2 3

22
/( )

GP
x x x

G x

 
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 
 (79) 

 

Hence, 

 

2 2 2 2 3 20 2 0 2
32 1 2 3 32 2

/( )
P x P x

x x x
R

   
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 (80) 

3 0
31

1 1 2

u P
G G

x x GR

 
  
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 (81) 

31 2 2 2 2 1 20
1 2 3

12
/( )

P
x x x

x

 
   

 
 (82) 

2 2 2 2 3 20 1 0 1
31 1 2 3 32 2

/( )
P x P x

x x x
R

   
    

 
 

 (83) 

 

Values for ( , , )wI r z   calculated for 

varying r/z values are presented in Table 1 for 

=0. Values of ( , , )wI r z   are similarly 

calculated for varying values of r/z and shown 

in Table 2 for values of Poisson’s ratio =0 

and =0.40. 

Values of the dimensionless vertical stress 

influence factors for the Westergaard 

problem, 0 5( , , . )wI r z    for varying 

values of r/z are determined and shown in 

Table 1. Table of values of the non-

dimensional vertical stress influence 

coefficient for the Westergaard half-space for 

=0 for varying r/z is given in Table 1. The 

results are identical with results previously 

presented by Fadum (1948). Table 1 presents 

identical results obtained and presented by 

Ike (2019a) who used the Hankel (Fourier-

Bessel) transform method for the same 

problem. The vertical stress influence factors 

are also determined for varying Poisson’s 

ratio  and r/z and shown in Table 2. This 

table similarly presents identical solutions 

obtained by Ike (2019a) using the Hankel 

(Fourier-Bessel) transform method to solve 

the problem. 

 

Solution for the Case of Finite Line Load 

with Uniform Intensity q0 

The case of a uniformly distributed finite 

length line load of intensity q0 on a 

Westergaard half-space illustrated in Figure 2 

was considered. The vertical stress field for a 

finite length line load of intensity q0 is 

obtained by using the solution for a vertical 

concentrated force at a reference point on the 

boundary as a Green function, and evaluation 

of the resulting integral over the finite length 

of the loaded line as: 

 

33 1 2 3 2
30

1

2
( , , )

L

x x x
x


  

   

3 22 2
2 1 2

0 22
3

/
x x

q dx
x


 
   
 

 

(84) 

1x B  and, 20 x L    (85) 
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Table 1. Influence coefficients for finding spatial variation of vertical stresses caused by vertical concentrated force 

applied at a reference point on the horizontal boundary of a Westergaard half-space 
r/z Iw r/z Iw r/z Iw r/z Iw r/z Iw 

0.00 0.3183 0.50 0.1733 1.00 0.0613 1.50 0.0247 2.00 0.0118 

0.01 0.3182 0.51 0.1698 1.01 0.0601 1.51 0.0243 2.01 0.0116 

0.02 0.3179 0.52 0.1664 1.02 0.0589 1.52 0.0239 2.02 0.0115 

0.03 0.3175 0.53 0.1631 1.03 0.0577 1.53 0.0235 2.03 0.0113 

0.04 0.3168 0.54 0.1598 1.04 0.0566 1.54 0.0231 2.04 0.0112 

0.05 0.3159 0.55 0.1566 1.05 0.0555 1.55 0.0228 2.05 0.0110 

0.06 0.3149 0.56 0.1534 1.06 0.0544 1.56 0.0224 2.06 0.0109 

0.07 0.3137 0.57 0.1502 1.07 0.0534 1.57 0.0220 2.07 0.0108 

0.08 0.3123 0.58 0.1471 1.08 0.0523 1.58 0.0217 2.08 0.0106 

0.09 0.3107 0.59 0.1441 1.09 0.0513 1.59 0.0214 2.09 0.0105 

0.10 0.3090 0.60 0.1411 1.10 0.0503 1.60 0.0210 2.10 0.0103 

0.11 0.3071 0.61 0.1382 1.11 0.0494 1.61 0.0207 2.11 0.0102 

0.12 0.3050 0.62 0.1353 1.12 0.0484 1.62 0.0204 2.12 0.0101 

0.13 0.3028 0.63 0.1325 1.13 0.0475 1.63 0.0201 2.13 0.0100 

0.14 0.3005 0.64 0.1297 1.14 0.0466 1.64 0.0198 2.14 0.0098 

0.15 0.2980 0.65 0.1270 1.15 0.0458 1.65 0.0195 2.15 0.0097 

0.16 0.2953 0.66 0.1244 1.16 0.0449 1.66 0.0192 2.16 0.0096 

0.17 0.2926 0.67 0.1218 1.17 0.0441 1.67 0.0189 2.17 0.0095 

0.18 0.2897 0.68 0.1192 1.18 0.0432 1.68 0.0186 2.18 0.0094 

0.19 0.2867 0.69 0.1167 1.19 0.0424 1.69 0.0183 2.19 0.0092 

0.20 0.2836 0.70 0.1143 1.20 0.0417 1.70 0.0180 2.20 0.0091 

0.21 0.2804 0.71 0.1119 1.21 0.0409 1.71 0.0178 2.21 0.0090 

0.22 0.2771 0.72 0.1095 1.22 0.0401 1.72 0.0175 2.22 0.0089 

0.23 0.2737 0.73 0.1072 1.23 0.0394 1.73 0.0172 2.23 0.0088 

0.24 0.2703 0.74 0.1050 1.24 0.0387 1.74 0.0170 2.24 0.0087 

0.25 0.2668 0.75 0.1028 1.25 0.0380 1.75 0.0167 2.25 0.0086 

0.26 0.2632 0.76 0.1006 1.26 0.0373 1.76 0.0165 2.26 0.0085 

0.27 0.2595 0.77 0.0985 1.27 0.0366 1.77 0.0163 2.27 0.0084 

0.28 0.2558 0.78 0.0964 1.28 0.0360 1.78 0.0160 2.28 0.0083 

0.29 0.2521 0.79 0.0944 1.29 0.0354 1.79 0.0158 2.29 0.0082 

0.30 0.2483 0.80 0.0925 1.30 0.0347 1.80 0.0156 2.30 0.0081 

0.31 0.2445 0.81 0.0905 1.31 0.0341 1.81 0.0153 2.31 0.0080 

0.32 0.2407 0.82 0.0887 1.32 0.0335 1.82 0.0151 2.32 0.0079 

0.33 0.2369 0.83 0.0868 1.33 0.0329 1.83 0.0149 2.33 0.0078 

0.34 0.2330 0.84 0.0850 1.34 0.0324 1.84 0.0147 2.34 0.0077 

0.35 0.2291 0.85 0.0833 1.35 0.0318 1.85 0.0145 2.35 0.0076 

0.36 0.2253 0.86 0.0815 1.36 0.0313 1.86 0.0143 2.36 0.0075 

0.37 0.2214 0.87 0.0799 1.37 0.0307 1.87 0.0141 2.37 0.0074 

0.38 0.2176 0.88 0.0782 1.38 0.0302 1.88 0.0139 2.38 0.0074 

0.39 0.2137 0.89 0.0766 1.39 0.0297 1.89 0.0137 2.39 0.0073 

0.40 0.2099 0.90 0.0751 1.40 0.0292 1.90 0.0135 2.40 0.0072 

0.41 0.2061 0.91 0.0735 1.41 0.0287 1.91 0.0133 2.41 0.0071 

0.42 0.2023 0.92 0.0720 1.42 0.0282 1.92 0.0131 2.42 0.0070 

0.43 0.1986 0.93 0.0706 1.43 0.0277 1.93 0.0130 2.43 0.0069 

0.44 0.1948 0.94 0.0692 1.44 0.0273 1.94 0.0128 2.44 0.0069 

0.45 0.1911 0.95 0.0678 1.45 0.0268 1.95 0.0126 2.45 0.0068 

0.46 0.1875 0.96 0.0664 1.46 0.0264 1.96 0.0124 2.46 0.0067 

0.47 0.1839 0.97 0.0651 1.47 0.0259 1.97 0.0123 2.47 0.0066 

0.48 0.1803 0.98 0.0638 1.48 0.0255 1.98 0.0121 2.48 0.0066 

0.49 0.1768 0.99 0.0665 1.49 0.0251 1.99 0.0120 2.49 0.0065 

2.50 0.0064 2.70 0.0052 2.90 0.0042 3.20 0.0032 4.00 0.0017 

2.51 0.0064 2.71 0.0051 2.91 0.0042 3.22 0.0031 4.10 0.0016 

2.52 0.0063 2.72 0.0051 2.92 0.0042 3.24 0.0031 4.20 0.0015 
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2.53 0.0062 2.73 0.0050 2.93 0.0041 3.26 0.0030 4.30 0.0014 

2.54 0.0061 2.74 0.0050 2.94 0.0041 3.28 0.0030 4.40 0.0013 

2.55 0.0061 2.75 0.0049 2.95 0.0040 3.30 0.0029 4.50 0.0012 

2.56 0.0060 2.76 0.0049 2.96 0.0040 3.32 0.0029 4.60 0.0011 

2.57 0.0059 2.77 0.0048 2.97 0.0040 3.34 0.0028 4.70 0.0011 

2.58 0.0059 2.78 0.0048 2.98 0.0039 3.36 0.0028 4.80 0.0010 

2.59 0.0058 2.79 0.0047 2.99 0.0039 3.38 0.0027 4.90 0.0009 

2.60 0.0058 2.80 0.0047 3.00 0.0038 3.40 0.0027 5.00 0.0009 

2.61 0.0057 2.81 0.0046 3.02 0.0038 3.42 0.0026 5.20 0.0008 

2.62 0.0056 2.82 0.0046 3.04 0.0037 3.44 0.0026 5.40 0.0007 

2.63 0.0056 2.83 0.0045 3.06 0.0036 3.46 0.0026 5.50 0.0007 

2.64 0.0055 2.84 0.0045 3.08 0.0036 3.48 0.0025 5.60 0.0006 

2.65 0.0054 2.85 0.0045 3.10 0.0035 3.50 0.0025 5.80 0.0006 

2.66 0.0054 2.86 0.0044 3.12 0.0034 3.52 0.0023   

2.67 0.0053 2.87 0.0044 3.14 0.0034 3.54 0.0021 6.00 0.0005 

2.68 0.0053 2.88 0.0043 3.16 0.0033 3.56 0.0020 7.00 0.0003 

2.69 0.0052 2.89 0.0043 3.18 0.0033 3.58 0.0018 8.00 0.0002 

        9.00 0.0002 

        10.00 0.0001 

         0.0000 

Note: Solution obtained by cosine integral transform method, present work. This is identical with results obtained by 

Ike (2019a) using Hankel transformation method 0 0
33 3 2 2

3

( , ) ( , , ( ))w wP I P I
r x r z

z x


       (for 0)  . 

  

Table 2. Westergaard vertical stress influence coefficient for point load applied at the origin on the surface of an 

elastic half-space for various values of Poisson ratio  and (r/z).  
r/z  = 0  = 0.4 

0 0.3183 0.9549 

0.1 0.3090 0.8750 

0.2 0.2836 0.6916 

0.5 0.1733 0.2416 

0.8 0.0925 0.0897 

1.0 0.0613 0.0516 

1.5 0.0247 0.0173 

2 0.0118 0.0076 

2.5 0.0064 0.0040 

3 0.0038 0.0023 

3.5 0.0025 0.0015 

4 0.0017 0.0010 

Note: This results is identical with solutions given by Ike (2019a) using the Hankel transformation method. 
  

 
Fig. 2. Uniformly distributed line load of finite length 

and intensity q0 acting on the surface of a 

Westergaard half-space 
 

Then, 
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Integration yields: 
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where 
3

B
m

x
    (88) 

3

L
n

x
  (89) 

So, 0
33 1 2 3 2

3

( , , ) ( , , )
q

x x x I m n
x


    (90) 

where, 

2 2 2 2 2 1 22 /
( , , )

( )( )

n
I m n

m m n

  
       

 

 (91) 

 

Spatial Distribution of Vertical Stresses 

under a Corner for a Rectangular Area on 

the Westergaard Half-Space: Case of 

Distributed Loading with Uniform 

Intensity 

Here the rectangular area considered lies 

on the surface of a Westergaard half-space as 

illustrated in Figure 3. 

 

 
Fig. 3. Uniformly distributed load on a rectangular 

area on the Westergaard half-space 

 

The spatial variation of vertical stresses in 

a Westergaard half-space problem caused by 

uniform distribution of loading with 

intensity, p0 on the boundary surface is 

obtained by using the vertical concentrated 

force solution as a Kernel function thus: 
 

0 1 2
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L B
p dx dx
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3 22 2
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32
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(92) 

 

Factoring out the constants, we have: 

3 2
2 2 2 2

0 3 1 2
1 22 2

3 30 0
2

/L B
p x x x

dx dx
x x



     
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   (93) 

 

Integrating, we have: 
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(94) 

 

The vertical stress is presented in non-

dimensional values, m and n defined as: 

Let 
3

,
B

m
x

  
3

,
L

n
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 (95) 

 

Alternatively, 
 

10
33 1 2 3

2
( , , ) tan

p
x x x 

 


   

   
 

2
3 1 22 2 2 2

3 3

1
/

( )

mn
x

x m n x

 
      

 

(96) 

 

or, 
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(97) 

 

After simplifying, 
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Hence, 
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33 1 2 3 0( , , ) ( , , )wx x x p I m n    (99) 

 

where, 
 

1
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       

 

 (100) 

 

The vertical stress influence coefficient 

( , , )wI m n   obtained from Equation (100) for 

0,   0 5.   for uniform distribution of 

loading on the area L  B on Westergaard 

half-space for points at arbitrary depths x3 

below the corners of the rectangular area are 

presented in Table 3. 

 

Solution for Vertical Stress Field under 

the Centre of Uniformly Loaded Circular 

Area on Westergaard Half-Space 

A distributed loading of uniform intensity, 

p over a circular area lying on the 

Westergaard half-space, illustrated in Figure 

4 is similarly considered. 
 

 
Fig. 4. Uniformly distributed load on a circular area 

lying on the surface of Westergaard half-space 

 

Using the solution for vertical stress field 

due to a vertical concentrated loading applied 

at a reference point of a Westergaard half-

space as Green function, the vertical stress 

field under the centre of a circular area on the 

Westergaard half-space is expressed as 

follows: 
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where 
2
*R : is the two dimensional domain of 

the circular area given by the limits on the r 

and  variables: 10 ,r R   0 2 ;     R1 

is the radius of the circular area. 

Then, 
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This integration in Eq. (102) is more 

conveniently evaluated by transformation to 

the cylindrical polar coordinates system. The 

transformation equations from the 3D 

Cartesian to the cylindrical polar coordinates 

system are given by Eqs. (55-57). 

Then, 
1 3 22 2
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 (103) 

where 
2 2 2

1 2r x x   (104) 

 

and J : denotes the Jacobian of the 

transformation from Cartesian coordinates to 

cylindrical polar coordinates system. 

Hence, 
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After rearranging, 
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By further simplifying, 
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Hence, 
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This simplifies equation to an ordinary 

integral which is evaluated by the method of 

substitution of new integration variables a1(r) 

defined as: 
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And the problem becomes: 
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After simplifying, 
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Substitution of integration limits yields: 
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where, 
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or, 
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 (115) 

 

where D: is the diameter of the circular 

foundation, 1 /( , )cI R z : is the Westergaard 

vertical stress influence coefficient/factor for 

vertical stress field at any arbitrary depth z 

below the center of a circular foundation of 

radius R1 carrying uniformly distributed load 

of known intensity p.  

Table 4 which agrees with results 

presented by Fadum (1948), shows values of 

tabulated vertical stress influence 

coefficients 1 /( , )cI R z  for various values of 

R1/z ranging from 0 to  for points at 

arbitrary depth z under the centre of a 

uniformly loaded circular area on a 

Westergaard half-space, and the 

corresponding values from an analytical 

extension of the Boussinesq point load 

solution. Table 5 presents a comparison of 

vertical stress influence coefficients for 

vertical point load applied at the origin of an 

elastic half-space for both the Boussinesq 

half-space and the Westergaard half-space 

models (for =0). 

 

DISCUSSION 

 

In this paper, the governing equation of the 

Westergaard problem has been derived from 

first principles consideration of the strain – 

displacement relations, the generalised 

Hooke’s equations, relating stresses to strains 

and the differential equations of static 

equilibrium. Disregarding body forces and 

assuming horizontal inextensibility the 

governing equation is a partial differential 

equation expressed mathematically using the 

vertical displacement by Eq. (36). The 

governing equation is required to satisfy 

boundary conditions imposed by 

deformations and loading.  
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Table 3. Vertical stress influence coefficients ( , , )wI m n   for uniformly distributed load on rectangular foundation 

area with plan dimensions LB on Westergaard half-space (for points at depth x3 under a corner of the rectangular 

area for 0,   2 1/2  ) 

 L/x3 

B/x3 
0.1 0.2 0.4 0.6 0.8 1.0 2  

0.1 0.003 0.006 0.011 0.014 0.017 0.018 0.021 0.022 

0.2 0.006 0.012 0.021 0.028 0.033 0.036 0.041 0.044 

0.4 0.011 0.021 0.03897 0.0516 0.060 0.066 0.077 0.082 

0.6 0.014 0.023 0.0516 0.069 0.081 0.089 0.104 0.112 

0.8 0.017 0.033 0.060 0.081 0.095 0.105 0.125 0.135 

1.0 0.018 0.036 0.066 0.089 0.105 0.11614 0.140 0.152 

2 0.021 0.041 0.077 0.104 0.125 0.140 0.174 0.196 

 0.022 0.044 0.082 0.112 0.135 0.152 0.196 0.250 

 

Table 4. Vertical stress influence coefficients Ic for vertical stress fields at an arbitrary depth z below the centre of a 

uniformly loaded circular area on a Westergaard half-space (for  = 0) 

R1/z ˆ
BI  IC R1/z ˆ

BI  IC R1/z ˆ
BI  IC R1/z ˆ

BI  IC 

0.00 0.0000 0.0000 0.38 0.1832 0.1191 0.76 0.4953 0.3188 1.14 0.7132 0.4729 

 0.01 0.0002 0.0001 0.39 0.1913 0.1244 0.77 0.5026 0.3236 1.15 0.7175 0.4762 

 0.02 0.0006 0.0004 0.40 0.1996 0.1296 0.78 0.5098 0.3284 1.16 0.7216 0.4795 

 0.03 0.0014 0.0009 0.41 0.2070 0.1349 0.79 0.5169 0.3331 1.17 0.7257 0.4828 

 0.04 0.0024 0.0016 0.42 0.2163 0.1402 0.80 0.5239 0.3377 1.18 0.7298 0.4860 

0.05 0.0037 0.0025 0.43 0.2247 0.1456 0.81 0.5308 0.3424 1.19 0.7337 0.4892 

0.06 0.0054 0.0036 0.44 0.2332 0.1510 0.82 0.5376 0.3470 1.20 0.7376 0.4923 

0.07 0.0073 0.0049 0.45 0.2417 0.1564 0.83 0.5444 0.3515 1.21 0.7415 0.4955 

0.08 0.0095 0.0063 0.46 0.2502 0.1616 0.84 0.5511 0.3560 1.22 0.7453 0.4985 

0.09 0.0120 0.0080 0.47 0.2587 0.1672 0.85 0.5577 0.3605 1.23 0.7490 0.5016 

0.10 0.0148 0.0099 0.48 0.2673 0.1726 0.86 0.5642 0.3649 1.24 0.7526 0.5046 

0.11 0.0179 0.0119 0.49 0.2759 0.1781 0.87 0.5706 0.3695 1.25 0.7562 0.5076 

 0.12 0.0212 0.0141 0.50 0.2845 0.1835 0.88 0.5769 0.3736 1.26 0.7598 0.5106 

0.13 0.0248 0.0165 0.51 0.2930 0.1890 0.89 0.5832 0.3779 1.27 0.7632 0.5135 

0.14 0.0287 0.0190 0.52 0.3016 0.1944 0.90 0.5893 0.3822 1.28 0.7667 0.5165 

0.15 0.0328 0.0218 0.53 0.3102 0.1998 0.91 0.5954 0.3864 1.29 0.7700 0.5193 

0.16 0.0372 0.0247 0.54 0.3188 0.2053 0.92 0.6014 0.3906 1.30 0.7733 0.5222 

0.17 0.0418 0.0277 0.55 0.3273 0.2107 0.93 0.6073 0.3948 1.31 0.7766 0.5250 

0.18 0.0467 0.0309 0.56 0.3358 0.2161 0.94 0.6132 0.3989 1.32 0.7798 0.5278 

0.19 0.0518 0.0343 0.57 0.3443 0.2215 0.95 0.6189 0.4029 1.33 0.7830 0.5306 

0.20 0.0571 0.0378 0.58 0.3527 0.2268 0.96 0.6246 0.4069 1.34 0.7861 0.5333 

0.21 0.0627 0.0414 0.59 0.3611 0.2322 0.97 0.6302 0.4109 1.35 0.7891 0.5360 

0.22 0.0684 0.0452 0.60 0.3695 0.2375 0.98 0.6357 0.4149 1.36 0.7921 0.5387 

0.23 0.0744 0.0490 0.61 0.3778 0.2428 0.99 0.6411 0.4188 1.37 0.7951 0.5414 

0.24 0.0806 0.0531 0.62 0.3861 0.2481 1.00 0.6465 0.4227 1.38 0.7980 0.5440 

0.25 0.0869 0.0572 0.63 0.3943 0.2534 1.01 0.6517 0.4265 1.39 0.8008 0.5466 

0.26 0.0935 0.0614 0.64 0.4025 0.2586 1.02 0.6569 0.4303 1.40 0.8036 0.5492 

0.27 0.1002 0.0658 0.65 0.4106 0.2638 1.03 0.6620 0.4340  1.41 0.8064 0.5517 

0.28 0.1070 0.0702 0.66 0.4186 0.2690 1.04 0.6670 0.4377 1.42 0.8091 0.5543 

0.29 0.1141 0.0748 0.67 0.4266 0.2741 1.05 0.6720 0.4414 1.43 0.8118 0.5568 

0.30 0.1213 0.0794 0.68 0.4345 0.2792 1.06 0.6769 0.4451 1.44 0.8144 0.5592 

0.31 0.1286 0.0842 0.69 0.4424 0.2843 1.07 0.6817 0.4487 1.45 0.8170 0.5617 

0.32 0.1361 0.0890 0.70 0.4502 0.2893 1.08 0.6864 0.4522 1.46 0.8196 0.5641 

0.33 0.1436 0.0938 0.71 0.4579 0.2943 1.09 0.6910 0.4558 1.47 0.8221 0.5665 

0.34 0.1513 0.0988 0.72 0.4655 0.2995 1.10 0.6956 0.4593 1.48 0.8245 0.5689 

0.35 0.1592 0.1038 0.73 0.4731 0.3043 1.11 0.7001 0.4627 1.49 0.8269 0.5713 

0.36 0.1671 0.1089 0.74 0.4806 0.3091 1.12 0.7046 0.4662 1.50 0.8293 0.5736 
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0.37 0.1751 0.1140 0.75 0.4880 0.3140 1.13 0.7089 0.4695 1.51 0.8317 0.5759 

1.52 0.8340 0.5782 1.79 0.8840 0.6326 2.15 0.9250 0.6876 4.00 0.9857 0.8259 

1.53 0.8362 0.5805 1.80 0.8855 0.6344 2.20 0.9291 0.6940 4.20 0.9876 0.8340 

1.54 0.8385 0.5827 1.81 0.8869 0.6361 2.25 0.9330 0.7002 4.40 0.9891 0.8413 

1.55 0.8407 0.5850 1.82 0.8883 0.6379 2.30 0.9366 0.7061 4.60 0.9904 0.8481 

1.56 0.8428 0.5872 1.83 0.8897 0.6396 2.35 0.9400 0.7119 4.80 0.9915 0.8543 

1.57 0.8450 0.5893 1.84 0.8911 0.6413 2.40 0.9431 0.7174 5.00 0.9925 0.8600 

1.58 0.8470 0.5915 1.85 0.8925 0.6430 2.45 0.9460 0.7227 5.20 0.9933 0.8653 

1.59 0.8491 0.5937 1.86 0.8938 0.6447 2.50 0.9488 0.7278 5.40 0.9940 0.8702 

1.60 0.8511 0.5958 1.87 0.8951 0.6463 2.55 0.9513 0.7328 5.60 0.9946 0.8747 

1.61 0.8531 0.5979 1.88 0.8964 0.6480 2.60 0.9537 0.7376 5.80 0.9951 0.8790 

1.62 0.8551 0.6000 1.89 0.8977 0.6496 2.65 0.9560 0.7422 6.00 0.9956 0.8830 

1.63 0.8570 0.6020 1.90 0.8990 0.6512 2.70 0.9581 0.7467 6.50 0.9965 0.8919 

1.64 0.8589 0.6041 1.91 0.9002 0.6528 2.75 0.9601 0.7510 7.00 0.9972 0.8995 

1.65 0.8608 0.6061 1.92 0.9014 0.6544 2.80 0.9620 0.7552 7.50 0.9977 0.9061 

1.66 0.8626 0.6081 1.93 0.9026 0.6560 2.85 0.9637 0.7592 8.00 0.9981 0.9120 

1.67 0.8644 0.6101 1.94 0.9038 0.6576 2.90 0.9654 0.7631 9.00 0.9987 0.9217 

1.68 0.8662 0.6121 1.95 0.9050 0.6591 2.95 0.9669 0.7669 10.00 0.9990 0.9295 

1.69 0.8679 0.6140 1.96 0.9061 0.6606 3.00 0.9684 0.7706 12.00 0.9994 0.9412 

1.70 0.8697 0.6160 1.97 0.9073 0.6622 3.10 0.9711 0.7776 14.00 0.9996 0.9496 

1.71 0.8714 0.6179 1.98 0.9084 0.6637 3.20 0.9735 0.7842 16.00 0.9998 0.9559 

1.72 0.8730 0.6198 1.99 0.9095 0.6652 3.30 0.9756 0.7905 18.00 0.9998 0.9608 

1.73 0.8747 0.6217 2.00 0.9106 0.6667 3.40 0.9775 0.7964 20.00 0.9999 0.9647 

1.74 0.8763 0.6235 2.02 0.9127 0.6696 3.50 0.9793 0.8020 25.00 0.9999 0.9717 

1.75 0.8779 0.6254 2.04 0.9147 0.6725 3.60 0.9808 0.8073 30.00 1.0000 0.9764 

1.76 0.8794 0.6272 2.06 0.9167 0.6753 3.70 0.9822 0.8123 40.00 1.0000 0.9823 

1.77 0.8810 0.6290 2.08 0.9187 0.6781 3.80 0.9835 0.8171 50.00 1.0000 0.9859 

1.78 0.8825 0.6308 2.10 0.9205 0.6809 3.90 0.9847 0.8216 100.00 1.0000 0.9929 

          1.0000 1.0000 

Note: R1: is radius of the circular area.  

 

Table 5. Vertical stress influence coefficients for vertical normal stresses due to vertical point load applied at the origin of 

an elastic half-space, Boussinesq half-space: 
33 2

3
B

P
I

x
   and Westergaard half-space ( = 0): 

33 2
3

W

P
I

x
   

r/z IB IW r/z IB IW r/z IB IW r/z IB IW 

0.00 0.4775 0.3183 0.16 0.4482 0.2953 0.32 0.3742 0.2407 0.48 0.2843 0.1803 

0.01 0.4773 0.3182 0.17 0.4446 0.2926 0.33 0.3687 0.2369 0.49 0.2788 0.1768 

0.02 0.4770 0.3179 0.18 0.4409 0.2897 0.34 0.3632 0.2330 0.50 0.2733 0.1733 

0.03 0.4764 0.3175 0.19 0.4370 0.2867 0.35 0.3577 0.2291 0.51 0.2679 0.1698 

0.04 0.4756 0.3168 0.20 0.4329 0.2836 0.36 0.3521 0.2253 0.52 0.2625 0.1664 

0.05 0.4745 0.3159 0.21 0.4286 0.2804 0.37 0.3465 0.2214 0.53 0.2571 0.1631 

0.06 0.4732 0.3149 0.22 0.4242 0.2771 0.38 0.3408 0.2176 0.54 0.2518 0.1598 

0.07 0.4717 0.3137 0.23 0.4197 0.2737 0.39 0.3351 0.2137 0.55 0.2466 0.1566 

0.08 0.4699 0.3123 0.24 0.4151 0.2703 0.40 0.3294 0.2099 0.56 0.2414 0.1534 

0.09 0.4679 0.3107 0.25 0.4103 0.2668 0.41 0.3238 0.2061 0.57 0.2363 0.1502 

0.10 0.4657 0.3090 0.26 0.4054 0.2632 0.42 0.3181 0.2023 0.58 0.2313 0.1471 

0.11 0.4633 0.3071 0.27 0.4004 0.2595 0.43 0.3124 0.1986 0.59 0.2263 0.1441 

0.12 0.4607 0.3050 0.28 0.3954 0.2558 0.44 0.3068 0.1948 0.60 0.2214 0.1411 

0.13 0.4579 0.3028 0.29 0.3902 0.2521 0.45 0.3011 0.1911 0.61 0.2165 0.1382 

0.14 0.4548 0.3005 0.30 0.3849 0.2483 0.46 0.2955 0.1875 0.62 0.2117 0.1353 

0.15 0.4516 0.2980 0.31 0.3796 0.2445 0.47 0.2899 0.1839 0.63 0.2070 0.1325 

0.64 0.2024 0.1297 1.16 0.0567 0.0449 1.68 0.0167 0.0186 2.20 0.0058 0.0091 

0.65 0.1978 0.1270 1.17 0.0553 0.0441 1.69 0.0163 0.0183 2.21 0.0057 0.0090 

0.66 0.1934 0.1244 1.18 0.0539 0.0432 1.70 0.0160 0.0180 2.22 0.0056 0.0089 

0.67 0.1889 0.1218 1.19 0.0526 0.0424 1.71 0.0157 0.0178 2.23 0.0055 0.0088 
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0.68 0.1864 0.1192 1.20 0.0513 0.0417 1.72 0.0153 0.0175 2.24 0.0054 0.0087 

0.69 0.1804 0.1167 1.21 0.0501 0.0409 1.73 0.0150 0.0172 2.25 0.0053 0.0086 

0.70 0.1762 0.1143 1.22 0.0489 0.0401 1.74 0.0147 0.0170 2.26 0.0052 0.0085 

0.71 0.1721 0.1119 1.23 0.0477 0.0394 1.75 0.0144 0.0167 2.27 0.0051 0.0084 

0.72 0.1681 0.1095 1.24 0.0466 0.0387 1.76 0.0141 0.0165 2.28 0.0050 0.0083 

0.73 0.1641 0.1072 1.25 0.0454 0.0380 1.77 0.0138 0.0163 2.29 0.0049 0.0082 

0.74 0.1603 0.1050 1.26 0.0443 0.0373 1.78 0.0135 0.0160 2.30 0.0048 0.0081 

0.75 0.1565 0.1028 1.27 0.0433 0.0366 1.79 0.0132 0.0158 2.31 0.0047 0.0080 

0.76 0.1527 0.1006 1.28 0.0422 0.0360 1.80 0.0129 0.0156 2.32 0.0047 0.0079 

0.77 0.1491 0.0985 1.29 0.0412 0.0354 1.81 0.0126 0.0153 2.33 0.0046 0.0078 

0.78 0.1455 0.0964 1.30 0.0402 0.0347 1.82 0.0124 0.0151 2.34 0.0045 0.0077 

0.79 0.1420 0.0944 1.31 0.0393 0.0341 1.83 0.0121 0.0149 2.35 0.0044 0.0076 

0.80 0.1386 0.0925 1.32 0.0384 0.0335 1.84 0.0119 0.0147 2.36 0.0043 0.0075 

0.81 0.1353 0.0905 1.33 0.0374 0.0329 1.85 0.0116 0.0145 2.37 0.0043 0.0074 

0.82 0.1320 0.0887 1.34 0.0365 0.0324 1.86 0.0114 0.0143 2.38 0.0042 0.0074 

0.83 0.1288 0.0868 1.35 0.0357 0.0318 1.87 0.0112 0.0141 2.39 0.0041 0.0073 

0.84 0.1257 0.0850 1.36 0.0348 0.0313 1.88 0.0109 0.0139 2.40 0.0040 0.0072 

0.85 0.1226 0.0833 1.37 0.0340 0.0307 1.89 0.0107 0.0137 2.41 0.0040 0.0071 

0.86 0.1196 0.0815 1.38 0.0332 0.0302 1.90 0.0105 0.0135 2.42 0.0039 0.0070 

0.87 0.1166 0.0799 1.39 0.0324 0.0297 1.91 0.0103 0.0133 2.43 0.0038 0.0069 

0.88 0.1138 0.0782 1.40 0.0317 0.0292 1.92 0.0101 0.0131 2.44 0.0038 0.0069 

0.89 0.1110 0.0766 1.41 0.0309 0.0287 1.93 0.0099 0.0130 2.45 0.0037 0.0068 

0.90 0.1083 0.0751 1.42 0.0302 0.0282 1.94 0.0097 0.0128 2.46 0.0036 0.0067 

0.91 0.1057 0.0735 1.43 0.0295 0.0277 1.95 0.0095 0.0126 2.47 0.0036 0.0066 

0.92 0.1031 0.0720 1.44 0.0288 0.0273 1.96 0.0093 0.0124 2.48 0.0035 0.0066 

0.93 0.1005 0.0706 1.45 0.0282 0.0268 1.97 0.0091 0.0123 2.49 0.0034 0.0065 

0.94 0.0981 0.0692 1.46 0.0275 0.0264 1.98 0.0089 0.0121 2.50 0.0034 0.0064 

0.95 0.0956 0.0678 1.47 0.0269 0.0259 1.99 0.0087 0.0120 2.51 0.0033 0.0064 

0.96 0.0933 0.0664 1.48 0.0263 0.0255 2.00 0.0085 0.0118 2.52 0.0033 0.0063 

0.97 0.0910 0.0651 1.49 0.0257 0.0251 2.01 0.0084 0.0116 2.53 0.0032 0.0062 

0.98 0.0887 0.0638 1.50 0.0251 0.0247 2.02 0.0082 0.0115 2.54 0.0032 0.0061 

0.99 0.0865 0.0625 1.51 0.0245 0.0243 2.03 0.0081 0.0113 2.55 0.0031 0.0061 

1.00 0.0844 0.0613 1.52 0.0240 0.0239 2.04 0.0079 0.0112 2.56 0.0031 0.0060 

1.01 0.0823 0.0601 1.53 0.0234 0.0235 2.05 0.0078 0.0110 2.57 0.0030 0.0059 

1.02 0.0803 0.0589 1.54 0.0229 0.0231 2.06 0.0076 0.0109 2.58 0.0030 0.0059 

1.03 0.0783 0.0577 1.55 0.0224 0.0228 2.07 0.0075 0.0108 2.59 0.0029 0.0058 

1.04 0.0764 0.0566 1.56 0.0219 0.0224 2.08 0.0073 0.0106 2.60 0.0029 0.0058 

1.05 0.0744 0.0555 1.57 0.0214 0.0220 2.09 0.0072 0.0105 2.61 0.0028 0.0057 

1.06 0.0727 0.0544 1.58 0.0209 0.0217 2.10 0.0070 0.0103 2.62 0.0028 0.0056 

1.07 0.0709 0.0534 1.59 0.0204 0.0214 2.11 0.0069 0.0102 2.63 0.0027 0.0056 

1.08 0.0691 0.0523 1.60 0.0200 0.0210 2.12 0.0068 0.0101 2.64 0.0027 0.0055 

1.09 0.0674 0.0513 1.61 0.0195 0.0207 2.13 0.0066 0.0100 2.65 0.0026 0.0054 

1.10 0.0658 0.0503 1.62 0.0191 0.0204 2.14 0.0065 0.0098 2.66 0.0026 0.0054 

1.11 0.0641 0.0494 1.63 0.0187 0.0201 2.15 0.0064 0.0097 2.67 0.0025 0.0053 

1.12 0.0626 0.0484 1.64 0.0183 0.0198 2.16 0.0063 0.0096 2.68 0.0025 0.0053 

1.13 0.0610 0.0475 1.65 0.0179 0.0195 2.17 0.0062 0.0095 2.69 0.0025 0.0052 

1.14 0.0595 0.0466 1.66 0.0175 0.0192 2.18 0.0060 0.0094 2.70 0.0024 0.0052 

1.15 0.0581 0.0458 1.67 0.0171 0.0189 2.19 0.0059 0.0092 2.71 0.0024 0.0051 

2.72 0.0023 0.0051 2.92 0.0017 0.0042 3.24 0.0011 0.0031 4.20 0.0003 0.0015 

2.73 0.0023 0.0050 2.93 0.0017 0.0041 3.26 0.0010 0.0030 4.30 0.0003 0.0014 

2.74 0.0023 0.0050 2.94 0.0017 0.0041 3.28 0.0010 0.0030 4.40 0.0003 0.0013 

2.75 0.0022 0.0049 2.95 0.0016 0.0040 3.30 0.0010 0.0029 4.50 0.0002 0.0012 

2.76 0.0022 0.0049 2.96 0.0016 0.0040 3.32 0.0009 0.0029 4.60 0.0002 0.0011 

2.77 0.0022 0.0048 2.97 0.0016 0.0040 3.34 0.0009 0.0028 4.70 0.0002 0.0011 

2.78 0.0021 0.0048 2.98 0.0016 0.0039 3.36 0.0009 0.0028 4.80 0.0002 0.0010 

2.79 0.0021 0.0047 2.99 0.0015 0.0039 3.38 0.0009 0.0027 4.90 0.0002 0.0009 
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2.80 0.0021 0.0047 3.00 0.0015 0.0038 3.40 0.0009 0.0027 5.00 0.0001 0.0009 

2.81 0.0020 0.0046 3.02 0.0015 0.0038 3.42 0.0008 0.0026 5.20 0.0001 0.0008 

2.82 0.0020 0.0046 3.04 0.0014 0.0037 3.44 0.0008 0.0026 5.40 0.0001 0.0007 

2.83 0.0020 0.0045 3.06 0.0014 0.0036 3.46 0.0008 0.0026 5.50 0.0001 0.0007 

2.84 0.0019 0.0045 3.08 0.0013 0.0036 3.48 0.0008 0.0025 5.60 0.0001 0.0006 

2.85 0.0019 0.0045 3.10 0.0013 0.0035 3.50 0.0007 0.0025 5.80 0.0001 0.0006 

2.86 0.0019 0.0044 3.12 0.0013 0.0034 3.60 0.0007 0.0023 6.00 0.0001 0.0005 

2.87 0.0019 0.0044 3.14 0.0012 0.0034 3.70 0.0006 0.0021 7.00 0.0000 0.0003 

2.88 0.0018 0.0043 3.16 0.0012 0.0033 3.80 0.0005 0.0020 8.00 0.0000 0.0002 

2.89 0.0018 0.0043 3.18 0.0012 0.0033 3.90 0.0005 0.0018 9.00 0.0000 0.0002 

2.90 0.0018 0.0042 3.20 0.0011 0.0032 4.00 0.0004 0.0017 10.00 0.0000 0.0001 

2.91 0.0017 0.0042 3.22 0.0011 0.0031 4.10 0.0004 0.0016  0.0000 0.0000 

Note: Vertical Stress Influence Factors (Coefficients) obtained from present study for the Boussinesq problem. 

 

The cosine integral transform of the 

domain equation is shown in Eq. (37). The 

linearity properties of the cosine integral 

transformation and the Leibnitz rule were 

used to express the transformed problem as 

ODEs obtained as Eq. (41) in terms of 

3 1 2 3( , , ),U x   the cosine integral transform of 

the vertical displacement 3 1 2 3( , , ).u x x x   

The differential operator method or trial 

function method was used to solve the ODE 

to obtain the general solution for 

3 1 2 3( , , )U x   in the cosine integral transform 

space as the Eq. (42) which contains two 

unknown integration constants c1 and c2. The 

requirement that the vertical displacement be 

finite and bounded as the depth tends to 

infinity is used to obtain one of the constants 

of integration as Eq. (43), yielding the 

bounded vertical displacement in the cosine 

integral transformation parameters as Eq. 

(44). By inversion the bounded vertical 

displacement is found for the physical 

problem as Eq. (48) which contains one 

unknown integration constant. 

The vertical stress field is obtained using 

the vertical stress – displacement equation as 

Eq. (50) which contains one integration 

constant, c1. The value of c1 in the expression 

for both the vertical stress field and the 

vertical displacement is obtained by using the 

stress boundary condition that requires 

equilibrium of the resultant internal vertical 

stresses and the applied vertical concentrated 

force, yielding Eq. (51). The integration 

constant is thus obtained by solving Eq. (51) 

using integration by the method of change of 

coordinates as Eq. (67). Thus, 3 1 2 3( , , )u x x x  is 

completely determined as Eq. (68) or (69). 

The normal and shear stress fields are then 

completely determined by use of the stress – 

displacement relations as Eq. (98) or (99) 

where the expression for dimensionless 

influence factors for corner points of 

uniformly loaded rectangular foundation 

areas is given by Eq. (100). Table of values 

for the influence factors for finding vertical 

stress at corner points of rectangular 

foundation areas under uniform loads on 

Westergaard half-space are presented in 

Table 3 for values of the Poisson ratio,  

given by =0  

The case of uniformly loaded circular 

foundation of radius R1 on the Westergaard 

half-space was similarly considered. The 

solution for vertical concentrated loading at a 

reference point of Westergaard half-space 

was similarly used as a Green (kernel or 

fundamental) function in expressing the 

spatial distribution of vertical stresses at 

depth z under the centre of the foundation as 

Eq. (102).  

Evaluation of the integration problem 

gives the expression for the vertical stresses 

under the centre of a uniformly loaded 

circular foundation as Eq. (113). This 

equation is in terms of influence factors for 

finding vertical stresses, Eq. (115), and 

presented as a function of R1/z in Table 4. 
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Table 4 also compares the solution obtained 

using Westergaard problem with the results 

obtained from an analytical extension of the 

Boussinesq’s point load solution to the same 

problem of vertical stress under the centre of 

circular foundations of same radius R1. For 

line load of finite length L and uniform 

intensity q0 the vertical stress field is obtained 

as Eq. (87) while the influence coefficient is 

given by Eq. (91). Similarly the use of the 

solution for vertical concentrated loading as 

kernel function was adopted to express the 

vertical stress distribution under a corner of a 

rectangular area LB carrying uniformly 

distributed loading as the integral over the 

rectangular domain given by Eq. (92). 

Evaluation of the double integration 

problem yields the vertical stress field for 

points under the corner of uniformly loaded 

rectangular foundation as Eq. (94). The 

solution for vertical concentrated force at the 

reference point on the  Westergaard half-

space was used as a fundamental (Green) 

function to obtain the spatial distribution of 

vertical stresses caused by uniformly 

distributed line load of finite length L and 

intensity q0 as Eq.  (84). Evaluation of the 

integral yields the expression for the vertical 

stress due to the distributed line load as Eq. 

(87). This equation is presented using non-

dimensional vertical stress influence factors 

as Eq. (90) where the dimensionless vertical 

stress influence coefficient for vertical stress 

field for the case of uniformly distributed line 

loading with finite length was found as Eq. 

(91). 
 

CONCLUSIONS 
 

It is concluded that, 

i) The elasticity problem involving 

Westergaard half-space subject to a vertical 

concentrated load applied at the origin has 

been presented as a boundary value problem 

(BVP). 

ii) The BVP is described (given) by a partial 

differential equation expressed in terms of 

vertical displacement component. 

iii) The BVP is obtained by simultaneous 

consideration of the differential equations of 

static equilibrium when the body forces are 

disregarded, the geometric relations of strain, 

and the generalised Hooke’s stress – strain 

relations. 

iv) The cosine integral transform method is 

suitable for finding solutions to the BVP 

(Cauchy – Navier equation) for the unknown 

bounded vertical displacement. The boundary 

condition requirement of equilibrium of 

resultant vertical stresses and the applied 

vertical concentrated loading at the origin has 

been used to find the integration constant, 

thus leading to the full determination of the 

vertical displacement field. 

v) The cosine integral transform of the 

domain equation converted the BVP to an 

integral equation. The integral equation 

further simplified to an ODE solvable by 

differential operator methods, trial function 

methods, variation of parameters and other 

mathematical tools. 

vi) Inversion of the cosine integral transform 

solution of the bounded vertical displacement 

in the cosine integral transform parameters 

yielded  bounded solutions for the vertical 

displacement in terms of one integration 

constant. 

vii) The use of the stress boundary condition 

requirement of the equilibrium of the 

resultant vertical stresses and the applied 

vertical concentrated force at the origin was 

adopted for obtaining the integration 

constant, thus completely determining the 

vertical displacement field. 

viii) The spatial distribution of stresses were 

determined using the kinematic equations on 

the displacement obtained and the stress-

strain equations. 

ix) For the vertical concentrated load on the 

Westergaard medium problem, the 

expression for the spatial variation of the 

vertical displacement is a single valued 

function of the x1, x2, x3 coordinates in the 
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Westergaard medium. The expression is 

singular at the point of application of the 

vertical concentrated load, and at this singular 

point, the vertical displacement cannot be 

determined. 

xi) At the origin (0, 0, 0) the vertical 

displacement field is singular, and thus 

cannot be defined. u3(x1, x2, x3) is 

indeterminate at the origin. 

xii) The normal stresses 33, 11, 22 at any 

point in the Westergaard half-space where 

x3=0 are indeterminate (singular or 

undefined). 

xiii) The value of shear stress 12 on the 

boundary surface (x1x2 plane or x3=0 plane) is 

zero. At all points in the Westergaard elastic 

half-space the shear stress 12 is also zero.  

This is consequent on the foundational 

assumption of horizontal nonextensibility 

which implies that u1=u2=0. The horizontal 

displacement components in the x1 and x2 

directions all vanish. Hence the shear strain 

obtained 12 would consequently be zero 

following from the kinematic relations of 

small displacement elasticity for the 

Westergaard half-space. 

xiv) The shear stresses 32 and 31 are 

indeterminate at the origin of the Westergaard 

elastic half-space, which is a point of 

singularity for stresses and displacements 

 

NOTATIONS/NOMENCLATURE 

 

r,,z: three dimensional polar coordinates. 

x1, x2, x3: three dimensional Cartesian 

coordinates 

(0,0,0): origin of a linear elastic half-space 

: infinity. 

L: length of rectangular foundation 

R1: variable defined in terms of x1, x2 and 

x3 

B: width of rectangular foundation 

R: radius of circular foundation 

p0: intensity of uniformly distributed load on 

a rectangular area 

q0: intensity of uniformly distributed finite 

length line load 

P0: magnitude of vertical point load applied 

at the origin 

zz : vertical stress 

11, 22, 33: normal stresses 

12, 21, 32, 23, 31, 13: shear stresses 

f1, f2, f3: body force components in the x1, x2 

and x3 coordinate directions, respectively 

T: time 

u1, u2, u3: displacement components in the 

x1, x2 and x3: directions respectively 

u3(x1, x2, x3): vertical displacement 

v: volumetric strain 

G: shear modulus 

E: Young’s modulus 

: Lamé constant or Lamé coefficient 

: Poisson’s ratio 

11, 22, 33: normal strains 

12, 13, 23: shear strains 

: elastic parameter defined in terms of the 

Poisson’s ratio,  or in terms of shear 

modulus (G) and Lamé constant  

1, 2: parameters of the two-dimensional 

cosine integral transform 

3 1 2 3( , , )U x  : two-dimensional cosine integral 

transform of the vertical displacement u3(x1, 

x2, x3) 

c1, c2: constants of integration 

1 2ˆ ˆ,c c : constants related to c1 and c2, 

respectively  

2 : Laplacian operator 

J : Jacobian of the coordinate 

transformation from 3D Cartesian to 3D polar 

coordinates system 

a0(r): changed variable of integration defined 

in terms of r and z 

Iw(r, x3, ()) or Iw(r, z, ()): Westergaard 

vertical stress influence coefficient for 

vertical point load applied at the origin of a 

Westergaard half-space 

k0: coefficient of lateral stress at rest, defined 

in terms of  

m: dimensionless parameter defined in terms 

of B and x3 



Civil Engineering Infrastructures Journal, 53(2): 313 – 339, December 2020 

 

337 

 

n: dimensionless parameter defined in terms 

of L and x3 

Iw(m, n, ): vertical stress influence 

coefficient for uniformly distributed load on 

rectangular foundation area with plan 

dimensions LB on Westergaard half-space 

for points at depth x3 under a corner of the 

rectangular area 

I(, m, n): vertical stress influence 

coefficient at (0,0,x3) for uniformly 

distributed line load of finite length, L and 

intensity q0 acting at B from the x2 axis and 

parallel to the x2 axis on the surface of a 

Westergaard half-space 

IC(, R1/z): Westergaard vertical stress 

influence coefficient/factor for vertical stress 

field at any arbitrary depth z below the centre 

of a circular foundation of radius R1 carrying 

uniformly distributed load of known 

intensity, p 

IB: Boussinesq’s vertical stress influence 

coefficient/factor for vertical stress at any 

arbitrary point x3 or z below the Boussinesq 

half-space due to vertical point load applied 

at the origin 
ˆ

BI : vertical stress influence coefficient / 

factor for vertical stress at any arbitrary point 

z below the centre of a circular foundation 

under uniformly distributed load (for 

Boussinesq theory) 
2
*R  : two-dimensional domain of the circular 

area 

R3: three-dimensional region of elastic 

half-space 

3D: three-dimensional 

2D: two-dimensional 

ODE: Ordinary Differential Equation 

ODEs: Ordinary Differential Equations 

BVP: Boundary Value Problem 

PDE Partial Differential Equation 

1x




: partial differential operator (for partial 

differentiation with respect to x1) 

2x




: partial differential operator (for partial 

differentiation with respect to x2) 

3x




: partial differential operator (for partial 

differentiation with respect to x3) 
2 2 2

2 2 2
1 2 3

, ,
x x x

  

  
:  second order partial 

differential operators (with respect to x1, x2 

and x3 respectively) 

: integral 

: double integral 

    : determinant 
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