Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 165654, 16 pages
doi:10.1155/2010/165654

Research Article

Cosine Modulated and Offset QAM Filter Bank
Multicarrier Techniques: A Continuous-Time Prospect

Behrouz Farhang-Boroujeny and Chung Him (George) Yuen

ECE Department, University of Utah, UT 84112, USA

Correspondence should be addressed to Behrouz Farhang-Boroujeny, farhang@ece.utah.edu

Received 11 May 2009; Revised 23 September 2009; Accepted 14 December 2009

Academic Editor: Pierre Siohan

Copyright © 2010 B. Farhang-Boroujeny and C. H. (George) Yuen. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Prior to the discovery of the celebrated orthogonal frequency division multiplexing (OFDM), multicarrier techniques that use
analog filter banks were introduced in the 1960s. Moreover, advancements in the design of perfect reconstruction filter banks have
led to a number developments in the design of prototype digital filters and polyphase structures for efficient implementations of
the filter bank multicarrier (FBMC) systems. The main thrust of this paper is to present a tutorial review of the classical works on
FBMC systems and show that some of the more recent developments are, in fact, reinventions of multicarrier techniques that have
been developed prior of the era of OFDM. We also review the recent novel developments in the design of FBMC systems that are

tuned to cope with fast fading wireless channels.

1. Introduction

Orthogonal frequency division multiplexing (OFDM) is the
most dominant technology that has been researched and
has been deployed for broadband wireless communications.
OFDM is attractive because of a number of advantages
that it offers. First, orthogonality of subcarrier channels
allows trivial equalization; one scalar gain per subcarrier.
Second, closely spaced orthogonal subcarriers partition the
available bandwidth into a collection of narrow subbands.
Adaptive modulation schemes are then applied to sub-bands
to maximize bandwidth efficiency/transmission rate. Third,
the very special structure of OFDM symbols simplifies the
tasks of carrier and symbol synchronizations. These points
are well understood and documented in the literature [1, 2].

More recent works propose extending the use of OFDM
to multiple access applications. Multiple access OFDM, or
orthogonal frequency division multiple access (OFDMA),
has recently been proposed in a number of standards and
proprietary waveforms (e.g., [3]). Some particular forms of
OFDMA have also been proposed for cognitive radio systems
[4]. In OFDMA, a subset of the subcarriers is allocated to
each user node in a network. These users signals must be

synchronized at the receiver input to prevent intercarrier
interference. OFDMA works well in the network downlink
of a base station, since all of the subcarriers are transmitted
from the same base station and, thus, can easily be syn-
chronized. However, synchronization is not trivial in the
network uplink where a number of nodes are transmitting
separately. For OFDMA to work well in this scenario, the
signals from various nodes must be synchronized at the base
station, that is, they should be received as a set of orthogonal
signals. Since, in practice, perfect synchronization may not
be possible, additional signal processing steps have to be
taken to minimize interference among signals from different
nodes. Such steps add significant complexity to an OFDMA
receiver; see [5] and the references therein. The problem
is worse in a cognitive radio setting where both primary
(non-cognitive nodes) and secondary users (cognitive nodes)
transmit independently and may be based on different
standards. Therefore, the existing OFDMA may not be able
to satisfactorily address the needs of efficient use of spectra
in the next generation of communication networks.

Clearly, the above problem could be greatly alleviated
if the filters that synthesize the subcarrier signals had
small side-lobes. An interesting, but apparently not widely
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understood, fact is that the first multicarrier techniques
which were developed before the invention of OFDM used
filter banks for synthesis and analysis of multicarrier signals.
Such filter banks can be designed with small side-lobes,
thus, are ideal choice in multiple access and cognitive radio
applications [6]. The first proposal came from Chang [7],
who presented the conditions required for signaling a parallel
set of pulse amplitude modulated (PAM) symbol sequences
through a bank of overlapping filters within a minimum
bandwidth. To transmit PAM symbols in a bandwidth
efficient manner, Chang’s signaling is based on staggering a
number of overlapping vestigial side-band (VSB) modulated
signal sequences. Saltzberg [8], extended the idea and showed
how the Chang’s method could be modified for transmission
of quadrature amplitude modulated (QAM) symbols, in
a double side-band modulated format. Efficient digital
implementation of Saltzberg’s multicarrier system through
polyphase structures first introduced by Bellanger et al.
[9, 10], was studied by Hirosaki [11, 12], and was further
developed by others [13-21]. Both Chang’s and Saltzberg’s
methods belong to a class of multicarrier techniques that may
be referred to as filter bank multicarrier (FBMC) systems.
The pioneering work of Chang [7], on the other hand,
has received less attention within the signal processing com-
munity. Those who have cited [7], have only acknowledged
its existence without presenting much details, for example
[11, 16, 19, 22]. For instance, Hirosaki who has extensively
studied and developed digital structures for implementation
of Saltzberg’s method, [11, 16], has made a brief reference to
Chang’s method and noted that since it uses VSB modulation
and thus its implementation require a Hilbert transforma-
tion, it is more complex than that of Saltzberg’s method.
He thus proceeds with a detail discussion and development
of multirate structures for the Saltzberg’s method only. On
the other hand, a vast literature in digital signal processing
has studied a class of multicarrier systems that has been
referred to as discrete wavelet multitone (DWMT). The
initial works on DWMT are [23-25]. In the period of 1995
to 2003 a fair number of contributions from various authors
appeared in the literature, for example [26-30]. Reference
[30], in particular, did a thorough study of DWMT and
noted that this method operates based on cosine modulated
filter banks which were extensively developed in the 1980’s
in the context of compression techniques [31]. The fact that
DWMT uses cosine modulated filter banks has also been
acknowledged by other authors, for example [28]. Reference
[30] also greatly simplified the equalizer structure that was
originally proposed in [23-25] and widely adopted by others.
Moreover, [30] noted that a DWMT signal is synthesized by
aggregating a set of VSB modulated PAM signal sequences.
However, most of the works on DWMT (including [30]) have
made no direct reference to Chang’s method. In other words,
the Chang’s multicarrier method was re-invented, with a
strong multirate signal processing flavor, in the 1990’s. Part
of our attempt in this paper is to show this very important
relationship between what has been done over 40 years
ago, and the independent developments on DWMT/cosine
modulated multicarrier techniques that have been developed
in more recent years. We also hope that the tutorial treatment
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of the Chang’s method in this paper will facilitate a more
in-depth understanding of the DWMT/cosine modulated
multicarrier literature. Another important point to note is
that although DWMT was originally developed with DSL
applications in mind, it was never adopted in any of DSL
standards. However, DWMT has recently found its way to
power line communications (PLC) that share a very similar
environment to that of DSL [32].

It is also interesting to note that the researchers who
studied filter banks developed a class of filter banks which
were called modified DFT (MDFT) filter bank [33]. Careful
study of MDFT reveals that this, although done indepen-
dently, is in effect a reformulation of Saltzberg’s filter bank
in discrete-time and with emphasis on compression/coding.
The literature on MDFT begins with the pioneering works
of Fliege [34], and later has been extended by others, for
example [35-38].

As a final note in this introductory section, we wish
to bring the attention of reader to various terminologies
that have appeared in the literature related to Chang’s and
Saltzberg’s MCFB methods and many further extensions
that have been made by others. In the pioneering works of
Chang [7] and Saltzberg [8] no specific name has been given
to the multicarrier modulation types that they introduce,
except that Chang notes PAM symbols are transmitted
via its signaling method and Saltzberg notes that how
QAM symbols can be transmitted with the same bandwidth
efficiency. Even the fact that Chang’s subcarrier modulation
is VSB has not been explicitly noted in his paper [7].
Apparently, the name staggered QAM was used for the
type of modulation suggested in [8], for the first time, in
[39]. Later, Hirosaki [12] used the terminology orthogonally
multiplexed QAM (OQAM). OQAM was later referred to as
OFDM-OQAM by many authors, for example [13-15, 17—
21], with the acronym OQAM standing for offset QAM,
reflecting the fact that the in-phase and quadrature of each
QAM symbol are time offset with respect to each other.
A few others have named it pulse-shaped OFDM [40-
47]. These use of different terminologies in parallel with
the independent introduction of MDFT, which is based on
the same fundamental principles as OQAM, has made the
literature on FBMC techniques somewhat blurred [48], and
thus confusing to any novice who wishes to begin a research
in this area.

The same is true for Chang’s method and the inde-
pendent, but related, works that have been published later.
Among these [25], that received a significant level of
attention (see [30] and the references therein), independently
(but, effectively) presented Chang’s modulation scheme
under the name discrete wavelet multitone (DWMT). The
name DWMT is somewhat confusing here as the proposed
method in fact uses cosine modulated filter banks for which
the use of the terminology wavelet is a misnomer. Cosine
modulated filter banks belong to the class of uniform
filter banks, meaning that all subbands have the same
width. Wavelets, on the other hand, are referred to filter
banks whose subband widths increase exponentially with
the respective carrier/center frequencies. The adjective dyadic
is often used to address this property of wavelets. It is
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also interesting to note that there exists another class of
multicarrier techniques that are based on true wavelets (i.e.,
wavelets with dyadic bandwidths), for example, see [49].
Moreover, it is worth noting that the IEEE P1901 working
group who has adopted a DWMT type modulation for
part of PLC standard, has called it wavelet-OFDM. On
the other hand, some authors have preferred the name
cosine modulated filter bank OFDM (CMFB-OFDM). In
[50], where a more thorough study of DWMT/CMFB-
OFDM to VDSL has been presented, the shorter name
cosine-modulated multitone (CMT) has been proposed,
following the terminology filtered multitone (FMT) [51-
53], another FBMC candidate that was proposed (but was
never adopted) in VDSL standard. In this paper, we use
CMT when reference is made to the Chang’s method (and
its extensions). We also introduce and use the terminology
staggered-modulated multitone (SMT) for the Saltzberg’s
method (and its extensions).

In this paper, we first present a novel tutorial review
of Chang’s and Saltzberg’s FBMC methods with the goal of
making these classical works more accessible to the signal
processing community. These are presented in Sections 2 and
3, respectively. Similarities and differences of CMT and SMT
are discussed in Section 4. In Section 5 further development
that has been made on extensions on Chang’s and Saltzberg’s
methods are discussed. The emphasis in this section is on
the design of prototype filters for CMT and SMT. A brief
review of equalization of CMT and SMT systems is presented
in Section 6. The concluding remarks are made in Section 7.

Even though, any modern implementation of a CMT
or SMT system will be in discrete-time, the derivations
in this paper are in terms of continuous-time signals and
systems. The choice of the continuous-time formulation here
simplifies the derivations and will also provide more insight
to the fundamental properties of both CMT and SMT as well
as their similarities and differences. We believe our approach
also provides a meaningful intuitive understanding of the
extension of CMT and SMT that are discussed in Section 5.

2. Cosine Modulated Multitone (CMT)

In CMT, a number of parallel streams of PAM data symbols
are transmitted through a set of vestigial side-band (VSB)
subcarrier channels. Moreover, the subcarrier channels are
minimally spaced to maximize the bandwidth efficiency of
the system. To explain what constitutes to the minimally
spaced subcarrier channels, we recall that the minimum
bandwidth for a transmission rate of R = 1/T QAM symbols
per second, where T is symbol spacing in seconds, is B =
1/T Hz, [54]. This concept is demonstrated in Figure 1,
where the magnitude response of a Nyquist filter with an
excess bandwidth of &/2T is presented. Clearly, the minimum
bandwidth is achieved when o« = 0. In CMT, where data
symbols are PAM, noting that each PAM symbol is equivalent
to one half of a QAM symbol, one may argue that the
minimum bandwidth for transmission of R = 1/T PAM
symbols per second is B = 1/2T Hz. To further clarify this
point and pave the way for development of a CMT system,
we continue with an introduction to a VSB channel.

IP(f)]
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FIGURE 1: Magnitude response of a Nyquist filter with an excess
bandwidth of a/T. Note that P(f) has the total banwidth (1 +
a)/2T — (—(1+«)/2T) = (1 + «)/T, and the minimum bandwidth
1/T is achieved when « = 0.
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FIGURE 2: Vestigial side-band modulation and demodulation. The
figure depicts the signals spectra.

2.1. Vestigial Side-Band Modulation. Figure2 presents the
process of taking a baseband signal, modulating it to a VSB
channel, and demodulating the modulated signal back to the
baseband. As shown, for modulation, this process divides
the spectrum of the baseband signal in two parts, takes
one part to modulate a complex sine-wave at the positive
frequency f. (i.e., multiply by e/?"%!) and the other part to
modulate a complex sine-wave at the negative frequency — f.
(i.e., multiply by e /27/*). Demodulation is performed by
reversing these steps.

Next, we explain the above steps in a form closely related
to CMT modulation. Consider the communication system
shown in Figure 3(a). The input signal s(¢) is an impulse train
corresponding to a PAM data stream s[n] at the rate of 1/T,
viz.,

Y]

s(t) = Z s[n]8(t — nT). (1)

n=—oo

In Figure 3, h(t) is a lowpass filter whose bandwidth is one
half of the bandwidth of a typical pulse-shaping filter which
one would use for transmission of the data symbols s[n] at
a rate of 1/T. We further assume that h(t) is a zero-phase
filter, that is, satisfies the symmetry condition h(—t) = h(t)
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FIGURE 3: Vestigial side-band modulation and demodulation. (a) Detailed block diagram. (b) Simplified block diagram.

and h(t) is a real function of time. Hence, the same filter is
used at the receiver as a matched pair to the transmit filter
h(t). However, we note that in the original work of Chang,
[7], this restriction is not imposed on h(t). Nevertheless,
in practice, when filters are realized digitally, the use of
zero-phase/symmetric filters may be the most useful case.
Moreover, most of the derivations that follow become trivial
when h(t) is symmetric. We will make some comments
on the more general pulse-shaping filters that have been
proposed in [7] later; see Section 2.3.

The filter h(t)e/?D* in the upper-left branch of
Figure 3(a) is a modulated version of h(t) that is centered at
f 1/4T (note that /2T = 27 x (1/4T)). Similarly, the
filter in the lower-left branch of Figure 3(a) is a modulated
version of h(t) that is centered at f = —1/4T. Accordingly,
the signals s; () and s,(¢) are the upper- and lower-side bands
of a baseband signal. These signals are further modulated to
the carrier frequencies f. and — f to obtain the signals x; (¢)
and x,(t), respectively. The transmit signal x(¢) is obtained
by adding x;(¢) and x,(¢). On the other hand, the received
signal y(t) is demodulated to obtain the upper- and lower-
side baseband signals §(¢) and $,(t), respectively. These
are then added to obtain the output s(¢) whose samples,
when taken at a correct timing phase, are estimates of the
transmitted data symbols s[n]. When channel is ideal, that
is, y(t) x(t), these estimates are accurate. The presence
of channel noise, clearly, results in some unrecoverable error
in the estimates. However, if the channel is flat fading, that
is, is characterized by a flat gain, a single-tap equalizer with
a complex-valued tap-weight equal to the inverse of the
channel gain can be used to combat the channel distortion.
Some general comments on the equalizers in FBMC systems
will be presented later in Section 6.

Next, we note that s(t), h(t), x(t), y(t), and s(¢) are real-
valued signals. We take advantage of this fact to simplify the
transceiver structure of Figure 3(a). The fact that s(¢) is real-
valued implies that x;(f) and x,(f) are complex conjugates
of each other and, thus, x(t) = 293 {x;(¢)}. This means, in
Figure 3(a), the branch that leads to x,(t) may be removed.
This results in the left-half side of the simplified block
diagram presented in Figure 3(b). Similarly, the fact that y(¢)
is real-valued can be used to simplify the demodulation part
of Figure 3(a) as in Figure 3(b).

Next, we take a closer look at h(t) and discuss how it
should be selected in order to result in an intersymbol inter-
ference (ISI) free equivalent baseband channel. Assuming an
ideal channel between the transmit and receive antennas, the
equivalent baseband channel, [54], from s(t) to 5(t) has the
impulse response

gt = %{h(t)ef(ﬂ/ZTﬂ * h(t)ej(n/ZT)t}

= m{ej(n/zmj:h(r)h(t - T)d‘f}, @

where * denotes convolution. Letting [~ h(1)h(t — T)dTr =
p(t), (2) simplifies to

A

£(0) = plr)cos(72:t). 3)

We recall that for ISI free transmission, g(t) has to
be a Nyquist pulse with zero crossings at the points ¢
nT, for all nonzero integer values of n. Hence, here, ISI
free transmission through the VSB channel is achieved, if
g(nT) = 0, when #n is any non-zero integer. To proceed, we
first note that cos((/2T)nT) = 0 for odd values of n. This
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implies that for g(¢) to be a Nyquist pulse, it is sufficient that
p(nT) be equal to zero at non-zero even values of n. This
means p(t) has to be a Nyquist pulse with zero-crossings
at the interval 2T. In other words, p(¢) has to be a Nyquist
pulse that we would use if the data rate was 0.5/T, that is,
one half of the rate of s[n]. This, in turn, implies that h(t)
should be a symmietric square-root Nyquist filter designed for
a data rate of 0.5/T. This result is in line with the fact that the
bandwidth of VSB is one half of that of a double-side band
(DSB) channel.

2.2. Aggregating VSB Subcarrier Channels. A CMT signal is
obtained by adding a number of VSB modulated signals. As
noted earlier, to maximize the bandwidth efficiency of the
system, the VSB subcarrier channels across frequency should
be spaced at 0.5/T. Also, to control and avoid intercarrier
interference (ICI) between different subcarrier channels, it
is assumed that the underlying filter bank is designed such
that only adjacent channels overlap. Then, the ICI among
adjacent channels, as shown below, is resolved by introducing
a /2 phase shift among each pair of adjacent subcarrier
channels.

Figure 4 presents the block diagram of a CMT
transceiver. The data signals so(¢) through sy_;(f) are
data symbol signals that are defined as in (1). The
receiver outputs, Si[n], are the detected PAM symbols.
By inspection of Figure 4, one finds that each subcarrier
channel, say, from the input si(t) to the output $[n], is
similar to the single channel case shown in Figure 3(b).
Thus, ISI free communication is established by choosing
h(t) to be a square-root Nyquist filter that is designed
for a data rate 0.5/T. Also, note that the multiplications
by 1, e/((wDun2) | eiN=D(@/T)ttn/2)  are  effectively
modulators that organize the subcarrier channels at the
center frequencies 0, 77/T,...,n(N — 1)/T. This means the
spacing between the adjacent subcarriers is /T radian per
second or, equivalently 0.5/T Hz.

To study the ICI between a pair of adjacent channels,
consider the impulse response between sy (¢) and the point
prior to the sampler at the kth output of the receiver. This is
obtained by direct inspection of Figure 4, and following the
same derivations that led to (3), as

q(t) = m{h(t)ej(wn/zr)m/z) * h(t)ej(n/ZT)t}

- Eﬁ{ej((n/ZT)t+(ﬂ/2))joo h(T)ej(ﬂ/T)Th(t . T)d‘l'}

= _ sin<%t) J(iowh(‘r)h(t - 1) cos(%r) dr

- cos(%t) Jioooh(r)h(t - 1) sin(%r) dr.

We are interested in the sample values of g(t) at the time
instants nT, for all integer values of .

For an even value of n = 2k, one finds that
sin((7z/2T)2kT) = sin(km) = 0 and, thus, (4) reduces to

(4)

@ (2kT) = (-1)"“[? W(D)h(2KT — T)sin(%‘r)d, (5)

where we have noted that cos(kn) = (—1). Applying a
change of variable 7 to kT + 7 in (5), we get

g1 (2kT) = —Jf kT + DT — 7) sin(%r)d —o,

(6)

where the second identity follows since the expression under
the integral is an odd function of 7. Following a similar
procedure, one also finds that g;(nT) = 0 for odd values of
n. These results show that there is no ICI between a pair of
adjacent subcarrier channels k and k + 1.

2.3. More Relaxed Forms of h(t). To keep the derivations
simple, so far, we have assumed that h(t) is a symmetric (i.e.,
zero-phase) square-root Nyquist filter. The pioneering work
of Chang, [7], derives the necessary and sufficient constraints
that should be imposed on h(t), assuming that at the receiver
the matched pair of h(t), that is, h(—t), is used for the
signal analysis. The Chang’s constraints, if given in terms of
the Fourier transform of h(t), H(f), and assuming an ideal
channel, are the followings:

(1) For practical reasons, it is assumed that h(¢) is a
real function of time. Accordingly, |[H(f)| is an even
function of f and Z(H(f)) is an odd function of f.

(2) To guarantee ISI free transmission over each subcar-
rier channel, p(t) = h(t) * h(—t) must be a Nyquist
pulse with regular zero crossings at the intervals of
2T. In the frequency domain, this is equivalent to

ad k

k_ZmP<f ZT) - 7
and we may notice that P(f) = H(f)H*(f) =
|[H(f)|?. Note that the symmetry assumption h(t) =
h(—t), made previously, implies that H(f) is a real
function of f, that is, it has zero phase across the
frequency. However, since P(f) = H(f)H*(f), the
constraint (7) does not require H(f) to be a zero
phase filter. In fact, if the only concern is ISI free
transmission, H( f) may have any arbitrary phase. In
other words, the symmetry assumption h(t) = h(—t)
is not necessary, even though some designs in the
past have made this assumption for convenience, for
example [55].

(3) To guarantee ICI free transmission across each pair of
adjacent subcarrier channels, Z(H(f)), in addition
to odd symmetry with respect to the point f = 0
(mentioned above), should also be odd symmetric
with respect to the points f = +1/4T. Moreover,
an additional phase shift of 77/2 must be introduced
between each pair of adjacent subcarrier channels.

(4) The derivations in [7], and also what have been
presented so far in this paper, are based on the
assumption that h(t) is band-limited such that only
adjacent subcarrier channels overlap. As is discussed
in Section 5, below, more recent developments on
filter design for FBMC relax on this condition and
assume overlapping can occur beyond adjacent bands
as well.
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FIGURE 4: Block diagram of a CMT transceiver: (a) transmitter; (b) receiver.

The constraints mentioned in items (1) and (2) are
standard results from the single carrier communication
systems. Thus, we proceed with an attempt to clarify the
reasoning behind the constraints mentioned in item (3).
Figure 5(a) presents a pair of typical magnitude and phase
responses of H(f) with the additional phase symmetry
condition mentioned in the constraints (3). Figure 5(b)
presents the amplitude and phase responses of H(f) after
a right shift of f = 3/4T. This is the channel response
corresponding to an adjacent subcarrier to the baseband
channel, after demodulation at the receiver. Figure 5(c)
presents the amplitude and phase responses of the VSB
matched baseband filter at the receiver. Finally, Figure 5(d)
shows the total channel response from an adjacent subcarrier
to a demodulated subcarrier channel at the baseband. This
has the transfer function G,(f) = jH*(f — 1/4T)H(f —
3/4T), where the factor j arises from the phase shift of
n/2 among the adjacent subcarrier channels. As seen, as a
consequence of the phase symmetry of H(f) around f =
1/4T, G1(f) has a phase response of 77/2. Moreover, the even
symmetry of |[H(f)| leads to an even symmetric magnitude

response |G (f)| around the point f = 1/2T. Finally, taking
the inverse Fourier transform of G;(f), at the time instant
t = nT, one finds that g;(nT') is an imaginary number, for
any integer value of n. Moreover, since in VSB demodulation
after matched filtering the imaginary part of the result is
ignored, this result shows that the combination of the phase
symmetry of H(f) around f = 1/4T and the introduced
phase shift of 77/2 between adjacent subcarrier channels lead
to ICI cancellation.

3. Staggered Modulated Multitone (SMT)

Figure 6 presents the block diagram of an SMT transceiver.
The data signals so(t) through sy_;(f) are continuous-time
signals associated with transmit symbol sequences that are
defined as

Y]

sk(t) = > sk[n]d(t — nT),

n=—o0

fork=0,1,...,N — 1,
(8)
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FIGURE 5: Demonstration of ICI cancellation in CMT when H( f) has a relaxed phase response.

where si[n] are complex-valued (e.g., QAM or PSK) data
symbols that may be written as

skln] = si[n] + jsglnl, (9)

where the superscripts “I” and “Q” refer to the in-phase and
quadrature parts, respectively. Note that at each subcarrier
channel, the real and imaginary parts of si[n] are separated
and time staggered by T/2. This is done through the pulse
shaping filter h(¢) which is time shifted to the right on the
quadrature branches. Also, note that the same filter h(t) is
used at both the transmitter and receiver sides. This, clearly,
implies the symmetry condition h(—t) = h(t) to guarantee a
matched filter pair at the two sides. Moreover, we note that
the multiplications by 1, /(G Dttn/2) 1 oi(N=1)(@n/T)t7/2)
are effectively modulators that organize the subcarrier chan-
nels at the center frequencies 0, 272/T,...,2n(N — 1)/T. This
means the spacing between the adjacent subcarriers is 1/T
which is twice of that of the CMT.

The detected data symbols at the receiver output are
denoted as sk [n]. The filter h(t) should be designed such that
when channel is perfect (i.e., there is no multipath and/or

no noise), sg[n] = sg[n]. Next, we proceed and derive the
condition that should be imposed on h(¢) for such a perfect
recovery.

When only adjacent bands overlap and, thus, one
can ignore possible interference from non-adjacent bands,
interference may only happen in the following three different
ways.

(1) Possible ISI across each phase or quadrature subcar-
rier channel, that is, the successive symbol values of
st [n] may interfere with one another, and similarly
for st [n].

(2) (goss interference among the sequences s[n] and

sp [n].

(3) ICI among the adjacent subcarrier signals.

To explore the interferences mentioned in items (1) and
(2), we extract the relevant branches from Figure 6 that

connects sk(t) and s2(t) to §i[n] and §2[n]. In the absence
of channel, these are presented in Figure 7(a). In presenting
this figure, we have noted that the subcarrier modulator
e/K@r/T)t+772) and the demodulator e /K7 T)t4772) "and also
the modulator to RFE, e/27/! and the demodulator from RF,
e 127ft cancel each other. If we further note that the output
of h(t) on the top-left of Figure 7(a) is a real function of time,
and the output of h(t— T/2) on the bottom-left of Figure 7(a)
is an imaginary function of time, one can separate the blocks
in Figure 7(a) in two separate channels as in Figure 7(b).

From Figure 7(b), we observe that there is no cross
interference between the in-phase and quadrature of each
subcarrier channel in SMT. To avoid ISI in the upper branch
of Figure 7(b), it is necessary and sufficient that h(t) be
chosen such that the combined response h(t) * h(t) be
a Nyquist pulse. This requirement also guarantees ISI free
transmission in the lower (i.e., the quadrature) channel in
Figure 7(b), since h(t — T/2) x h(t + T/2) = h(t) * h(t) and
this, in turn, implies that the lower channel also has a Nyquist
response.

Figure 8 presents the relevant branches of the k + 1th
subcarrier channel that may leak signal to the output of the
kth subcarrier channel of an SMT system. Note that, here,
the outputs §}C[n] and §§3[n] are replaced by E}C[n] and §kQ[n]
to signify that they are interference terms. To explore the
interference terms §}<[n] and Ef[n], we study the impulse
responses between each of the inputs and each of the outputs
in Figure 8; a total of four impulse responses.

Let us begin with looking at the impulse response
between the input s, (t) and the output before the sampler
in the upper-right branch of Figure 8. We obtain this by
direct inspection of Figure 8 as

(b = g{{h(t)ej((ZH/TtHn/Z)} * h(t)
. (10)
| n@sin(Fre)nte - nyan
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FI1GURE 6: Block diagram of an SMT transceiver: (a) transmitter; (b) receiver.

Substituting t = nT into (10), we obtain @ (nT) = (_l)nﬂr" h(% N T)h<g B T) sin(z%rr)d‘r
=0.

g (nT) = —f:h(r) sin(zTﬂr)h(nT _ndr. (1) (12)

This, clearly, implies that there is no interference from the

symbol sequence s, [#] to §; [n]. Following the same line of
Applying the change of variable 7 to nT/2 + 7 to this result,  derivations, it is not difficult to show that the same is true for
we get the rest of the paths in Figure 8.
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4, Similarities and Differences of CMT and SMT

From the derivations in Sections 2 and 3, one may find
that the key point which results in ICI cancellation among
adjacent subcarrier channels in both CMT and SMT is the
fact that the same prototype filter h(t) is used at both
the transmitter and receiver sides; see (6) and (12) for
similarities of the final results. It is interesting to note that
ICI cancellation among adjacent subcarrier channels does
not impose any other restriction on the choice of h(t).
The condition that p(t) = h(t) * h(t) be a Nyquist pulse,
thus, h(t) should be an even symmetric square-root Nyquist
filter, is imposed to avoid ISI. Moreover, h(t) was chosen
to be band-limited to minimize ICI among non-adjacent
subcarrier channels; a condition that will be relaxed in the
next section. Also, as discussed in Section 2.3, for CMT,
the even symmetry constraint of h(t) can be relaxed, if the
phase response of H( f) satisfy an additional odd symmetry
condition with respect to the midpoint of its transition band.
It is straightforward to follow the same line of argument and
show that the same is true in the case of SMT. Therefore, the
fundamental concepts based on which both CMT and SMT
have been developed are the same.

The main difference between CMT and SMT is the
modulation type. In SMT, data symbols are QAM and, thus,
the modulation is double side-band (DSB). In CMT, on the
other hand, data symbols are PAM and, thus, in order to
keep the same bandwidth efficiency, VSB modulation is used.
Moreover, if we assume that each DSB subcarrier channel
in SMT has the same width as a VSB subcarrier channel in
CMT, one finds that symbol rate in each subcarrier channel
of CMT will be double that of SMT. Next, we proceed to put
these observations in a mathematical formulation.

From Figure 6, one finds the SMT signal before modula-
tion to RF band is given by

N-1 o

)= S S (s}[n]h(t—nT)+js?[n]h<t—§—nT>)

I=0 n=-o0
« eil@r/T)ttn/2)
(13)

On the other hand, from Figure 4, when T is replaced by T/2
(to equalize the subcarrier bandwidth of CMT with SMT),
the CMT signal before modulation to RF band is obtained as

vemr ()

N-1 oo T
Y sl[n]h(t— %)ej(n/T)(tfnT/Z)ejl((Zn/T)t+n/2)

> T\ . )
S (—j)”sl[n]h(t B %)e](n/T)te]l((Zn/T)Hn/Z).

1=0 n=—o0

(14)

It is instructive to note that both veyr(t) and vemr(t) are
complex-valued baseband signals.

9
Separating the even and odd terms in (14), we obtain
N-1 o
. 2k)T
(=3 3 (<) siokia(t - ZT)
1=0 k=—o0
x el Tt jl(@n/T)t+7/2)
N-1 o
£33 ) a2k (e - L‘“)T)
1=0 k=—oc0 2
% ej(n/T)tejl((zﬂ/T)Hﬂ/z)
N-1 o
= Z Z (—=1)*s;[2k]h(t — kT)el /Dt eil@n/Dt4n/2)
=0 k=—00
N-1 oo T
+ > S =D g2k + 1]h(t— = —kT)
2
1=0 k=—c0
% ej(ﬂ/T)tejl((Zn/T)t+n/2)
N-1 o
=3 3 ((-Drsl2Klht - kT)
=0 k=—00
. k+1 T
+ j(-1) sl[2k+1]h(t—§—kT>>
% ej(ﬂ/T)tejl((Zn/T)t+n/2).
(15)

Now, if we remap the bits such that s}[n] = (—l)ksz[Zk] and
s2[n] = (=1)""'s;[2k + 1], we find that

voumr(t) = vsur(t)el ™1, (16)

Applying Fourier transform to both sides of (16), we obtain

Vemr (f) = Vsrvw(f - %) (17)

These results show that there is a simple relationship
between CMT and SMT. The complex-valued baseband
signal vemr(f) can be constructed by first synthesizing
the corresponding vsmr(#) signal and then modulating the
results with the complex-valued sine-wave /"), Alterna-
tively, one may start with synthesizing a respective vewmr(t)
signal and modulate the result with e /D to obtain a
desired vsyr(t) baseband signal. These also apply to the
respective analysis filter banks. This observation has the
following implications.

(i) SMT and CMT are equally sensitive to channel
impairments, including time and frequency spread,
carrier frequency offset and timing offset. Therefore
any analysis done for one is applicable to the other.

(ii) A few structures have been proposed for efficient
implementation of SMT (often referred to as OFDM-
OQAM), [18, 19]. These structures, with minor
modifications, are readily applicable to CMT.



10

EURASIP Journal on Advances in Signal Processing

sp(t) J
- h(t) R} () —)g il
a
s2(t) Q
k% h(t*%) F{-} }’l(t+§) —)S Sk[l’l]
T
(a)
sL() Siln]
h(t) h(t) _—
s2(1) selnl
— >  h(t-1) h(t+ 1) L N
T
(b)
FIGURE 7: The kth subcarrier channel in an SMT system.
1 t ej((Zn/T)H—ﬂ/Z) ~
A P m l Y S TP WU, SN
Sp1 (1) h(tfg) (-1 h(t+§) _)S&

T

FIGURE 8: The kth subcarrier channel in an SMT system.

A detailed study that evaluates sensitivity of CMT and SMT
to channel impairments, through independent theoretical
derivations for both methods, is presented in [56]. The
results of this analysis formally confirm the accuracy of the
first statement.

5. Doubly Spread Channels and Prototype Filter
Design

The FBMC approaches proposed by Chang [7] and Saltzberg
(8], and the polyphase implementation and equalization
structures developed by Hirosaki [12] emphasize on channels
with spreading in the time domain only. Possible channel
variation in time that leads to spreading in the frequency
domain was ignored. Later developments, starting with the
pioneering work of Le Floch et al. [42], noted that in some
wireless channels both time and frequency spread may be
equally important and thus proposed modifications to the
SMT prototype filters to limit them equally in time and
frequency domains. These may be referred to as designs for
doubly dispersive/spread channels.

Part of this section is devoted to a tutorial presentation
of prototype filters that are designed for doubly spread
channels. However, we note that although such filters are
near optimal in time-frequency localization, that is, they
attempt to equally limit the filter length in both the time and
frequency domain, they are not necessarily the best designs
for an arbitrary time-varying channel scenario. For instance,

if a channel variation is very slow, but its time spread is
significant, a design that emphasizes on confining the filter
response within a minimum bandwidth by using a filter
whose impulse response may spread over a long period of
time can be a much better choice (of course, ignoring other
factors such as complexity and transmission delay). Also,
assuming that the channel statistics are known, the optimal
design presented in [43] is not the one that equalizes the time
and frequency spread of the prototype filter. Nevertheless, the
solutions that equally weigh time and frequency spread are
widely accepted as they provide good compromised designs.

5.1. Time-Frequency Localized Prototype Filters. Given a
time-symmetric signal s(f) and its Fourier transform S(f),
we define the time and frequency standard deviations

o= | _eiswra,
o =] ISy

The Heisenberg-Gabor uncertainty principle states that [57]

(18)

i (19)

O'tO'f >
In (19), the equality holds when s(t) is the Gaussian pulse

s(t) = e, (20)
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Also, the Gaussian pulse s(¢) has the interesting property
that S(f) = s(f), that is, it is the same function in both
time and frequency domains. Thus, any deviation from the
Gaussian pulse, say, to reduce oy, that is, spreading of the
signal in the time domain, will result in an increase of
o, that is, spreading in the frequency domain. Therefore,
the Gaussian pulse (20) is optimal in the sense that it
minimizes the time-frequency product ;0 and also satisfies
the desirable property of equal spreading in both time and
frequency domain. However, unfortunately, the Gaussian
pulse does not satisfy the Nyquist and other properties of
h(t) which were stated in Sections 2 and 3 for ISI and ICI
cancellation in CMT and SMT systems. Noting this, Le Floch
et al. [42] and Haas and Belfiore [44] have proposed two
different methods for designing pulse shapes that satisfy the
conditions necessary for ISI and ICI cancellation in CMT
and SMT and result in a time-frequency product that is only
slightly greater than the lower limit given by (19).

Both design methods in [42, 44] are developed using the
time-frequency ambiguity function

A = [ noher e e

The ambiguity function A(7, f) has the following interpreta-
tion. For f = 0,

A(1,0) = Jw WOt + 1)t = h(z) * h(—-1)  (22)

and the constraints A(nT,0) = 0, for n # 0, imply that h(t)
is a square-root Nyquist filter, hence, a sequence of data
symbols that are T spaced can be received free of ISI. On
the other hand, the constraints A(0,kAf) = 0, for any
k, imply that a pair of modulated filters that are spaced
across frequency by kA f do not introduce ICI on each other.
Accordingly, if an FBMC system is constructed based on a
prototype filter h(t) whose ambiguity function satisfies the
constraints

A(nT,kAf) =0, for n#0, and any k, (23)

where T is the symbol spacing and Af is carrier spacing,
in the absence of channel distortion, ISI and ICI free
transmission is achieved.

It has been noted that to achieve a reasonable time-
frequency localization which results in a value of 0;0¢ close to
the lower limit of 1/4m, TAf should be given a value greater
than 1 [42, 44]. On the other hand, TAf = 2 turns out to
be a good choice as it results in prototype filters with a value
of 00y close to the lower limit 1/4m and also, as discussed
below, is the choice that leads to CMT and SMT systems.

When an FBMC system with a prototype filter that
satisfies the constraints (23) as well as the equality TAf = 2
is implemented, complex-valued (i.e., QAM or PSK) data
symbols that are spread over a grid of points in the time-
frequency phase space at locations nT and 2k/T can be
transmitted free of ISI and ICI (assuming an ideal channel)
[42, 44]. This grid of points are shown in Figure 9, marked as
@. One may also note that this grid of points have a density
of 1/(TAf) = 0.5.
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Ficure 9: Time-frequency phase space for transmission in an
FBMC system with QAM symbols.

The trick in SMT and CMT is that replacing complex-
valued symbols by real-valued (PAM) symbols, it is possible
to double the density of the grid points both along the time
and frequency axes. This increases the density of the grid
points by a factor of 4. However, since each real symbol
is equivalent to half of a complex symbol, this leads to an
effective density of one complex symbol per unit area. The
principle behind ISI and ICI cancellation after adding the
intermediate points lies in the introduction of 7/2 phase
rotations and the fact that only real or imaginary parts of the
analyzed signals are preserved at the receiver outputs. The
mathematical derivations that were presented in Sections 2
and 3, for the case where only adjacent channels overlap,
can be easily extended to any CMT or SMT system whose
prototype filter satisfies the constraints (23).

Figure 10 presents a grid of points in a phase space for
the case of SMT. The points where an even and odd factors of
71/2 phase are applied to the respective symbols are indicated
as @ and O, respectively. A grid of points that corresponds
to a CMT system is presented in Figure 11. As one would
expect, we note that the density of the grid points in both
Figures 10 and 11 are the same. This implies that, as discussed
before, SMT and CMT have the same spectral efficiency.
Moreover, one may note that the time-frequency phase space
shown in Figure 11 is obtained from the one in Figure 10
after stretching the time axis by a factor of 2, compressing
the frequency axis by a factor of 0.5, and moving the grid
points upward by one half of symbol spacing. This, clearly, is
another interpretation of the relationship between CMT and
SMT that was developed in Section 4.

Next, we proceed with a brief discussion of three
common types of prototype filters that have appeared in the
literature.
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5.2. Prototype Filter Design for Time-Invariant Channels.
When the channel is a frequency-selective time-invariant
one, a fair criterion for designing the prototype filter is
minimization of its bandwidth. This results in minimum
variation of the channel gain across each subcarrier band,
and thus an approximation of flat fading for each subcarrier
channel becomes more acceptable. Hence, the use of a single
complex-tap equalizer per subcarrier becomes more accept-
able. If no constraint is applied to the desired prototype filter,
the optimum design will be an ideal filter with the transfer
function

1
1, <,
H(f) = 1= ar (24)

0, otherwise.

This is a square-root Nyquist filter with roll-off factor « = 0,
thus, results in an infinite length and, hence, an unrealizable,
filter. To get a realizable filter, a roll-off factor « > 0 is
introduced. In particular, any square-root raised-cosine filter
with a roll-off factor 0 < a < 1 will result in a realizable
SMT system with perfect ISI and ICI cancellation. In the
pioneering work [8] and also in [42], the choice of

nfT 1
H(f) = COS( 2 ) =7 (25)

0, otherwise,

which is a square-root raised-cosine filter with roll-off factor
a = 1 was suggested. This selection of H(f) provides a
good compromise solution. Because of its relatively relaxed
transition bands, it can be well approximated with a relatively
short filter, and still can achieve a very high attenuation in
the stopband. Design methods that find optimum filters with
finite length and good attenuation in the stopband have been
reported in the literature [55, 58].
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5.3. Isotropic Orthogonal Transform Algorithm (IOTA) Pro-
totype Filter Design. I0TA design/algorithm was first intro-
duced by Alard [59] and was put in archival journals by Le
Floch et al. [42]; see also [60] for further developments. The
algorithm starts with the Gaussian pulse g,(t) = +2ae ™’
and convert it to the orthogonalized pulse

h(x(t) = (DTU?_l(ng?ga(t)) (26)

where the parameters 7o and v, are defined below, F
and F !, respectively, denote Fourier and inverse Fourier
transforms, and (9, is an orthogonalization operator defined
as

x(u)

a>p o lx(u—ka) IZ'

y(u) = \/ (27)

This procedure results in a pulse shape h,(t) which after
applying time scaling to it can be converted to a filter that
satisfies the ambiguity function constraints given in (23); see
[42, 60] for more details.

5.4. Hermite Functions Based Prototype Filter Design. Haas
and Belfiore [44] noted that the set of functions

D,(t) = h,,(@t), for n =0,4,8,..., (28)

where h,(t) = e '/2(d"/dt")e ", satisfy the identity
FD,(t) = Dy(f). They have thus concluded that a pulse
shape h(t) formed by linearly combining D,(t), for n =
0,4,8,... also satisfies the identity F h(t) = h(f). They have
then presented a procedure for combining D, (t) functions
to construct a pulse shape h(t) whose ambiguity function
satisfies the constraints (23).

5.5. Numerical Results and Comparisons. To develop more
insight to the differences of the various prototype filter
designs, in Figures 12 and 13, respectively, the time and
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FIGURE 12: Magnitude of impulse response of three designs of
prototype filter of length 67T

frequency domain responses of a Nyquist design (with roll-
off factor of 1) [58], a Hermite design [44], and an IOTA
design [42, 60] are presented. All filters are designed for
a finite duration time response 67T. As one would expect,
the Nyquist design provides the narrowest response in the
frequency domain, at a cost of a wider response in the time
domain. IOTA and Hermite designs, for most parts, are quite
similar. Hermite design outperforms IOTA design over the
intervals of time and frequency that the magnitude of the
responses are below —40dB. We may also note that while
the pass and transition bands of the Nyquist design is over
the interval —1/T to 1/T, this is much wider in the cases of
Hermite and IOTA designs.

6. Channel Impact and Equalization

The derivations and discussions so far were based on the
assumption that the channel was ideal, that is, a channel
with a constant gain and a constant group delay across the
frequency band that includes all the subcarrier channels.
However, we note that the main reason for using any
multicarrier technique, including CMT and SMT, is to deal
with frequency selective channels, that is, the channels whose
gain vary across the frequency band and thus may suffer
from a significant level of ISI and ICI. On the other hand,
the most important advantage of multicarrier techniques is
that they greatly simplify the task of channel equalization —
a mechanism that is used to combat ISI and ICI. In a single
carrier system, when the channel suffers from a significant
level of ISI, a transveral/FIR filter with many taps have to be
used to generate a response that resembles the inverse of the
channel gain across the transmission band. Such inversion
will result in noise enhancement across the portion of the
frequency band that the channel gain is low [61]. Adaptation
of the equalizer tap weights also may not be a straightforward
task. Wireless multipath channels are always time-varying

13

1

P

,
s
-
4

i i i i o o i T

Amplitude (dB)

—— Nyquist
--- Hermite
...... IOTA

FIGURE 13: Magnitude of frequency response of three designs of
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and thus the equalizer should be adapted to track channel
variations. The speed of tracking decreases as the length
of equalizer increases [62, 63]. Hence, when the channel is
highly frequency selective and as a result a long equalizer has
to be used, an equalizer adaptation algorithm may not be able
to cope with the channel variation.

The above problems are solved or, at least, greatly
moderated when a multicarrier method is adopted. In the
case of OFDM, as long as the duration of the channel impulse
response is shorter than the cyclic prefix length and channel
variation over each OFDM symbol is negligible, a frequency
selective channel converts to a number of subcarrier channels
with flat gains. In CMT and SMT, the assumption of a flat
gain over each subcarrier channel is true only approximately.
However, the accuracy of this approximation improves
as the bandwidth of each subcarrier channel decreases.
Here, the bandwidth is defined as a frequency range that
include the pass and transition bands of each subcarrier
channel. Like OFDM, in FBMC systems also equalization
is performed separately on each subcarrier channel. In [24]
and many subsequent papers on DWMT, for example [26—
29], subcarrier equalization was performed by combining
signals from a center and two adjacent subcarrier bands. This
which results in an equalizer with many taps per subcarrier,
was later proved to be unnecessary and a much simpler
equalizer that effectively needs two real taps per subcarrier
is sufficient [30]. The pioneering work of Hirosaki [12], that
explored polyphase structures for SMT, has introduced an
equalization technique similar to [30]. However, this early
work apparently remained unnoticed to the researchers on
DWMT/CMT, probably because they saw DWMT/CMT as a
method significantly different from SMT.

Horosaki [12] also explored the case where each subcar-
rier band within an SMT system could not be approximated
by a flat gain. He showed, in such cases, to preserve the
orthogonality of each subcarrier channel with its adjacent



14

bands, the equalizer at each subcarrier channel should be
a fractionally spaced one. The sampling at each subcarrier
channel should be equal to the total bandwidth of the
respective subcarrier signal. This in the case of the Nyquist
prototype filter that was presented in the previous section
results in a T/2-spaced equalizer. In the cases of IOTA and
Hermite filters equalizers with more closely spaced taps are
required since these filters have wider bandwidths than their
Nyquist counterpart.

It is also worth noting that equalization is one of the
least explored issues in FBMC systems and thus further
research in this is necessary. In doubly spread channels, in
particular, the use of IOTA and/or Hermite prototype filters
is intuitively sound. However, this is without consideration
of the practical fact that adaptive equalizers with non-
trivial tracking algorithms may change the balance between
a good prototype filter and an increase in the number of
equalizer taps for a given performance—good filters like
IOTA and Hermite may need the use of fractionally spaced
equalizer with more taps than a Nyquist based system and
thus may suffer more from slow convergence and/or tracking
problems.

7. Conclusion

A tutorial overview of two filter bank multicarrier (FBMC)
techniques that were proposed in the early days of develop-
ment of digital communication systems was presented. The
first method constructs a multicarrier signal by aggregating
a number of vestigial side band (VSB) signals that carry a
set of pulse amplitude modulated (PAM) symbol sequences.
The second method, on the other hand, transmits a set of
staggered quadrature amplitude modulated (QAM) symbol
sequences. Both methods achieve maximum bandwidth
efficiency by using subbcarrier signals that are minimally
spaced and designed such that could be perfectly separated
at the receiver side. It was also shown that these two methods
are closely related through a modulation step and a one-
to-one mapping of data symbols. Additional advancements
in further development of FBMC systems, particularly, the
various approaches that have been proposed for designing
the underlying prototype filters were also reviewed and
compared against each other.
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