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1 Introduction

It is now commonly believed that there is an inflationary epoch of the early stage of

the evolution of our universe [1–6].1 This has been confirmed by the observation of the

density fluctuation of the universe [8–14]. There is also a strong evidence that the present

universe exhibits accelerating expansion. These facts prompt us to build cosmological

models with accelerating phases. One may achieve this goal by introducing inflation with

suitable potential. However it is more desirable if we can derive such models from the first

principle or fundamental theory of particle physics without artificial assumptions. The

most promising candidate of such a fundamental theory is the ten-dimensional superstring

or eleven-dimensional M theory. However, it has been well known that an accelerating

universe is difficult to realize for such theories, because there exists the so-called “no-go

theorem” [15, 16], which forbids accelerated expanding spacetime solutions if an internal

space is a time-independent nonsingular compact manifold without boundary.

Breaking some of the assumptions in the theorem, we can look for a natural inflation-

ary scenario. One possibility is the brane inflation models [17–20],2 in which we assume

1See also [7] for a compact review.
2See also the following review article [21].
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test branes and do not take into account the back reactions. Another is the S-brane so-

lutions [22, 23], in which temporal acceleration is possible but unfortunately big enough

e-folding and/or long enough expansion was not obtained [24–27].

This suggests that the low-energy effective theory which is given by supergravity should

have some modification of either the gravity side or matter side of the Einstein equation. A

simple extension would be to introduce the cosmological constant, which must be extremely

tiny to account for the current observation. From the supergravity point of view, this is not

desirable because it is not natural to introduce such a tiny cosmological constant. Fortu-

nately it is known that there are higher-order modifications to the low-energy gravitational

action in superstrings. The leading corrections are given by the Gauss-Bonnet (GB) terms

in heterotic string [28]–[31]. The effects of such terms have been studied in several papers,

and interesting results are obtained that the inflationary universe is possible [32, 33], but

some refinement was necessary to achieve enough inflation. Constraints on such models

are also discussed in [34], where it was shown for flux compactification it is not possible to

obtain de Sitter solutions. Earlier references on related subjects include [35]–[65].

In these works, no cosmological constant was considered. Recently it has been argued

that when the curvature of the extra dimensional space is negative and there is a cosmolog-

ical constant, one obtains solutions in which both the volume of the extra dimension and

expansion rate of the four-dimensional spacetime tends to a constant [66]. Stability of the

obtained solutions is also examined. Naively we expect that there is no cosmological con-

stant in the effective low-energy theories of superstrings, but its existence is not excluded.

For example, it is known that type IIA theories have a 10-form whose expectation value

may give rise to such a cosmological constant [67]. Other possible sources include genera-

tion of such a term at one-loop in non-supersymmetric heterotic string [68]. There are also

various forms in superstrings which could produce similar terms. So this is an interesting

possibility and the search for cosmological solutions in the theory deserves further study.

When these forms get expectation values in superstring theories, they typically produce

negative cosmological constant. This is also compatible with supersymmetry. As we discuss

below, it is precisely when we have the negative cosmological constant that we find stable

(de Sitter spacetime) × (maximally symmetric space of constant size). So our following

solutions would be naturally realized in superstring theories. However, we should note

that though the theories we consider are well motivated by heterotic string, there are

some differences like neglecting dilaton field for simplicity. Also in any higher-dimensional

theories including superstrings, it is always an important issue how to stabilize the moduli

after compactification. We do not address this difficult question in this paper though we

examine the stability of the obtained solutions against small perturbations in the overall

sizes of four-dimensional spacetime and extra dimensions. Thus our stability does not

guarantee that the solutions are stable in all directions, but if they are unstable in our

analysis, they do not give interesting solutions.

In this paper we study whether it is possible to obtain solutions with de Sitter expansion

of the four-dimensional spacetime and static internal space within the theories with such

higher-order terms and a cosmological constant. It was stated in [66] that for a wide range

of parameters (cosmological constant, Einstein and GB term coefficients) it is verified

numerically that there are solutions of this type, but the details are not clear including
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the question of for what range of parameters this type of solutions are possible. We

intend to extend this work to include a comprehensive scan of the parameter space as

well as higher order Lovelock terms: we exhaust all possible such solutions for arbitrary

signs of cosmological constant and signatures of the (constant) curvatures of the internal

spaces. We do this first for theories with GB term, but extend the analysis to the effects

of further higher-order Lovelock gravity. We also examine the stability of the obtained

solutions. What is most interesting is that we find that such solutions exist even for negative

cosmological constant provided that the curvature of the internal space is negative. Moreover

we can also have such solutions for positive cosmological constant but they are unstable

in general, and those solutions for negative cosmological constant give stable solutions. We

also find that this tendency of the existence of the solutions and stability persist in the

presence of the higher order terms. Note that these solutions are quite different from those

in the Einstein theory with a cosmological constant, where such solutions exist only for

positive cosmological constant and they are unstable.

We should note that there are similar claims that modified gravity with a negative

cosmological constant can have a positive effective cosmological constant [69] based on [70].

In the latter paper [70], in order to avoid eternal acceleration, a negative cosmological

constant is introduced together with quintessence scalar field which has positive potential

and gives positive contribution to the cosmological constant. This scalar degrees of freedom

is interpreted as arising from the f(R) gravity, which produces such scalar with exponential

“cosmological term” in [69]. In this view, the negative cosmological constant is cancelled

by the scalar potential even though it appears that one considers modified gravity. Our

mechanism is different from this in that we do not introduce a positive potential (or terms

which can be rewritten as a potential). In another work [71], Wheeler-De Wit equation

was studied semiclassically with a similar result.

This paper is organized as follows: in section 2, we begin with the Einstein-Gauss-

Bonnet theory with a cosmological constant. First we present our basic equations in this

theory. For comparison, we summarize solutions of accelerating universe of the form (de

Sitter spacetime) × (maximally symmetric space) in the Einstein gravity with a cosmo-

logical constant. Then in the present theory with GB term, we find solutions and study

their stability. We then proceed to the study of the effects of higher Lovelock gravity

in section 3. We give the basic equations for the above spacetime in subsection 3.1, the

equations for perturbation in subsection 3.2, and give solutions with the de Sitter space-

time being Minkowski in subsection 3.3. We then examine the stability of the solutions,

and determine the region of parameters α3 and α4 for the stable Minkowski solutions in

subsection 3.4. In section 4, we discuss the solutions of the form (de Sitter spacetime) ×
(maximally symmetric space of constant size) including the effects of higher-order Lovelock

gravity. Section 5 is devoted to our conclusion.

– 3 –



J
H
E
P
0
6
(
2
0
1
4
)
0
9
5

2 Einstein-Gauss-Bonnet system with a cosmological constant

2.1 Field equations

We consider the following low-energy effective action for the heterotic string with a cosmo-

logical constant Λ:

S =
1

2κ2D

∫

dDx
√−g

[

R− 2Λ + α2R
2
GB

]

, (2.1)

where κ2D is a D-dimensional gravitational constant, α2 = α′/8 is a numerical coefficient

given in terms of the Regge slope parameter, and R2
GB = RµνρσR

µνρσ − 4RµνR
µν + R2 is

the GB correction. Here the two-form and gauge fields (and their higher order terms) are

dropped because setting them to zero is consistent with field equations. We also neglect

dilaton for simplicity.

Let us consider the metric in D-dimensional space,

ds2D = −e2u0(t)dt2 + e2u1(t)ds2p + e2u2(t)ds2q , (2.2)

whereD = 1+p+q. The external p-dimensional and internal q-dimensional spaces (ds2p and

ds2q) are chosen to be maximally symmetric, with the signature of the curvature given by

σp and σq, respectively. Though we are mainly concerned with flat external space (σp = 0)

in this paper, it may be useful to give field equations for more general case.

The Ricci scalar and the GB correction term are given by

R = e
−2u0

[

p1Ap + q1Aq − 2
(

p1u̇
2
1 + pqu̇1u̇2 + q1u̇

2
2

)

]

(2.3)

R
2
GB = e

−4u0

{

p3A
2
p + 2p1q1ApAq + q3A

2
q + 4u̇1u̇2(p2qAp + pq2Aq) + 4p1q1u̇

2
1u̇

2
2

+4pX [(p−1)2Ap + q1Aq + 2(p− 1)qu̇1u̇2] + 4qY [p1Ap + (q − 1)2Aq + 2p(q − 1)u̇1u̇2]
}

, (2.4)

where

Ap := u̇21 + σpe
2(u0−u1), Aq := u̇22 + σqe

2(u0−u2),

X := ü1 − u̇0u̇1 + u̇21, Y := ü2 − u̇0u̇2 + u̇22 . (2.5)

We have also used the following abbreviation:

(k − ℓ)m := (k − ℓ)(k − ℓ− 1)(k − ℓ− 2) · · · (k −m) , (2.6)

where k, ℓ,m are integer numbers with k > ℓ, k > m and ℓ < m.

Now the field equations are [32]

F := F1 + F2 = 0 , (2.7)

F (p) := f
(p)
1 + f

(p)
2 +X

(

g
(p)
1 + g

(p)
2

)

+ Y
(

h
(p)
1 + h

(p)
2

)

= 0 , (2.8)

F (q) := f
(q)
1 + f

(q)
2 + Y

(

g
(q)
1 + g

(q)
2

)

+X
(

h
(q)
1 + h

(q)
2

)

= 0 , (2.9)

where

F1 = p1Ap + q1Aq + 2pqu̇1u̇2 − 2Λe2u0 ,

f
(p)
1 = (p−1)2Ap+q1Aq+2(p−1)qu̇1u̇2−2Λe2u0 , f

(q)
1 =p1Ap+(q−1)2Aq+2p(q−1)u̇1u̇2−2Λe2u0 ,
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g
(p)
1 = 2(p− 1) , g

(q)
1 = 2(q − 1) , h

(p)
1 = 2q , h

(q)
1 = 2p , (2.10)

and

F2 = α2e
−2u0

{

p3A
2
p + 2p1q1ApAq + q3A

2
q + 4(p2qAp + pq2Aq + p1q1u̇1u̇2)u̇1u̇2

}

,

f
(p)
2 = α2e

−2u0

{

(p−1)4A
2
p+2(p−1)2q1ApAq+q3A

2
q+4

[

(p−1)3qAp+(p−1)q2Aq+(p−1)2q1u̇1u̇2

]

u̇1u̇2

}

,

f
(q)
2 = α2e

−2u0

{

p3A
2
p+2p1(q−1)2ApAq+(q−1)4A

2
q+4

[

p2(q−1)Ap+p(q−1)3Aq+p1(q−1)2u̇1u̇2

]

u̇1u̇2

}

,

g
(p)
2 = 4(p− 1)α2e

−2u0

[

(p− 2)3Ap + q1Aq + 2(p− 2)qu̇1u̇2

]

,

g
(q)
2 = 4(q − 1)α2e

−2u0

[

p1Ap + (q − 2)3Aq + 2p(q − 2)u̇1u̇2

]

,

h
(p)
2 = 4qα2e

−2u0

[

(p− 1)2Ap + (q − 1)2Aq + 2(p− 1)(q − 1)u̇1u̇2

]

,

h
(q)
2 = 4pα2e

−2u0

[

(p− 1)2Ap + (q − 1)2Aq + 2(p− 1)(q − 1)u̇1u̇2

]

. (2.11)

The basic relations, eqs. (2.7)–(2.9), are not all independent as they satisfy

Ḟ + (pu̇1 + qu̇2 − 2u̇0)F = pu̇1F
(p) + qu̇2F

(q) . (2.12)

Here we normalize the variables by α2 such that Ãq = α2Aq, Λ̃ = α2Λ and t̃ = t/
√
α2.

In what follows, we drop a tilde for brevity.

2.2 Solutions of accelerating universe

In this section, we solve the equations and provide an accelerating universe with a constant

internal space. Thus we assume

u̇1 = H , u̇2 = 0 . (2.13)

We choose the time coordinate as u0 = 0 and take the Hubble parameter H to be constant

and the curvature of external space to be zero (σp = 0). The latter condition in (2.13)

means that Aq is also constant. Then the basic equations turn to be algebraic:

−2Λ + p1H
2 + q1Aq + p3H

4 + 2p1q1H
2Aq + q3A

2
q = 0 ,

−2Λ+p(p+1)H2+(q−1)2Aq+(p+1)2H
4+2p(p+1)(q−1)2H

2Aq+(q−1)4A
2
q = 0 . (2.14)

Usually, for a given cosmological constant Λ, we obtain H2 and Aq by solving these

coupled quadratic equations. There is a simpler way to find solutions in our case: we can

solve the equations for H2 and Λ for given Aq, which are just a single quadratic (or linear)

equation in H2 and a linear equation in Λ:

2p2H
4 + pH2[1− 2(q − 1)(p− q + 1)Aq]− (q − 1)Aq[1 + 2(q − 2)3Aq] = 0, (2.15)

2Λ = p3H
4 + p1H

2(1 + 2q1Aq) + q1Aq[1 + (q − 2)3Aq] . (2.16)

Before going into the discussions of the solutions in the present model, we summarize

the results in the case without GB term. When we have only the Einstein-Hilbert term

with a cosmological constant, after compactification, we find [a (p + 1)-dimensional de

– 5 –
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Sitter spacetime] × [a constant internal space with a positive curvature], if a cosmological

constant is positive. The solution is given by

H =

√

2Λ

p(p+ q − 1)

Aq =
2Λ

(q − 1)(p+ q − 1)
. (2.17)

The stability analysis, which we will show the detail later, gives two eigenvalues of pertur-

bations:

ω± =
H

2

[

−(p+ q − 1)±
√

(p+ q − 1)2 + 8p
]

, (2.18)

one of which is always positive, giving an instability of this solution. There is no stable de

Sitter solution.

Now let us discuss our model with the GB term. When q = 1, H = 0 is a trivial

solution. Since σq = 0, it is locally a Minkowski spacetime. To have a real solution for H,

H2 has to be real and positive. For q ≥ 2, the possibly positive solution is

H2 =
1

4p2

{

− p[1− 2(q − 1)(p− q + 1)Aq]

+
[

p2[1− 2(q − 1)(p− q + 1)Aq]
2 + 8p2(q − 1)Aq[1 + 2(q − 2)3Aq]

]1/2}

. (2.19)

It is now easy to see that the condition for the existence of the real positive solutions of

H2 is Aq[1 + 2(q − 2)3Aq] ≥ 0, which gives either Aq ≥ 0, or

Aq ≤ A(M)
q := − 1

2(q − 2)3
, (2.20)

when q ≥ 4. We call the former and latter cases the branch (1) and the branch (2),

respectively. For q = 2 or 3, we have only the branch (1) with Aq ≥ 0.

The cosmological constant is given by eq. (2.16). This is one parameter (Aq) family of

solutions.

Let us show some example in the case of p = 3, q = 6 in figures 1 and 2. Figure 1

shows the Hubble expansion parameter square H2 in terms of A6, which is the solution of

eq. (2.19), while figure 2 givesH2 andA6 in terms of a cosmological constant given by (2.16).

The cosmological constant is always positive for the branch (1) solutions with Aq ≥ 0.

On the other hand, for the branch (2) solutions with Aq < 0, we find

Λ ≤ Λ(M) := − q1
8(q − 2)3

, (2.21)

which is always negative. Here the equality corresponds to the Minkowski spacetime (H =

0) with negative A
(M)
q . It is remarkable that we have de Sitter solution even for a negative

cosmological constant. We emphasize that this becomes possible due to the negative Aq

and the existence of the GB term.

– 6 –
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A6

2
H

(1)

(2)

Figure 1. The Hubble parameter of de Sitter solution H2 in terms of A6 for p = 3, q = 6. There

are two branches (1) and (2).

A6

A6

H
2

H
2

(1)
(2)

Figure 2. The Hubble parameter H2 (sold curve) and the curvature of the internal space A6

(dashed curve) in terms of Λ. The enlarged figure near the origin is shown at the bottom.

2.3 Stability of accelerating universe

Next we study the stability of the above solutions against small perturbations in the size

of the spaces. Unless they are stable in these directions, they do not give interesting

solutions. Choosing the time coordinate as u0 = 0 and perturbing the variables around the

background solution (H,Aq) with Λ, given by eqs. (2.15) and (2.16), as

u1(t) = Ht+ ξ(t) ,

u2(t) = u
(0)
2 + η(t) , (2.22)

where u
(0)
2 is a constant and satisfies Aq = σqe

−2u
(0)
2 , we obtain the perturbation equations

from our basic equations (2.7)–(2.9):

P ξ̇ +Qη̇ +Rη = 0 , (2.23)

Jξ̈ +Kη̈ + Lξ̇ +Mη̇ +Nη = 0 , (2.24)

Sξ̈ + T η̈ + Uξ̇ + V η̇ +Wη = 0 , (2.25)

where

P : = p1HX ,

– 7 –
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Q : = pqHY ,

R : = −pqH2Y ,

J : = (p− 1)X ,

K : = qY ,

L : = p1HX ,

M : = (p− 1)qHY ,

N : = −pqH2Y ,

S : = pY ,

T : =
pH2

Aq
Y ,

U : = (p+ 1)0HY ,

V : =
p2H3

Aq
Y

W : = −(q − 1)2 AqZ ,

with

X : = 1 + 2[(p− 2)3H
2 + q1Aq] , (2.26)

Y : = 1 + 2[(p− 1)2H
2 + (q − 1)2Aq] , (2.27)

Z : = 1 + 2[p(p+ 1)H2 + (q − 3)4Aq] . (2.28)

Here we have used the equation for the background solution (2.15).

Eq. (2.24) is derived from eq. (2.23), which is guaranteed by the Bianchi identity (2.12).

Hence the independent equations are eqs. (2.23) and (2.25). Eliminating ξ̇ by use of

eq. (2.23), we find the equation for η as

η̈ + pHη̇ + C = 0 , (2.29)

where

C :=
PW −RU

PT − SQ

=
Aq

[

(p+ 1)0qH
2Y 2 − (p− 1)(q − 1)2AqXZ

]

pY [(p− 1)H2X − qAqY ]
. (2.30)

To analyze the stability, we set

η = η0e
ωt , (2.31)

to find a quadratic equation for the eigenvalue ω:

ω2 + pHω + C = 0 , (2.32)

whose solutions are given by

ω = ω± :=
1

2

(

−pH ±
√

p2H2 − 4C
)

(2.33)

– 8 –
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A6

−−

Figure 3. The eigenvalues ω± and Re (ω) in terms of A6. The stable solution (A6 < −1/24) has

two real negative or a positive real part of two complex conjugate eigenvalues, which are shown by

the green solid or dashed curves, respectively. The unstable solution (A6 > 0) has one real positive

and one negative eigenvalues, which are shown by the red and blue solid curves, respectively.

If both eigenvalues ω± are negative, i.e.,

p2H2 − 4C ≥ 0 and C > 0 , (2.34)

or they are complex conjugates of each other with negative real part (guaranteed by pH >

0), i.e.,

p2H2 − 4C < 0 , (2.35)

the solution for the expanding universe (H > 0) is stable. Hence we conclude the expanding

universe is stable if C > 0.

Using the background solutions, we have studied their stability. For q = 1, we have

only Minkowski spacetime. No perturbation is possible. So we proceed to the case of q ≥ 2.

First, we show one example of the eigenvalues ω for the case of p = 3 and q = 6 in

figure 3.

For other dimensions, we also find similar results. The solution H2 with positive Aq is

unstable because the perturbations have always one positive eigenvalue ω+. On the other

hand, the solution H2 with negative Aq(≤ A
(M)
q ) is stable.

Since the results in figure 3 is obtained by numerical calculation only for p = 3, q = 6,

it is worth showing the results for general p and q in some simple limit. The Minkowski

spacetime (H = 0) gives the boundary of a set of the solutions. Hence it may be important

to analyze solutions near the Minkowski spacetime, which are given by

H2 ≈











q − 1

p
Aq for branch(1)(Aq ≥ 0)

− (q − 1)3
p [(q − 1)(p− q + 1) + (q − 2)3]

(

Aq −A(M)
q

)

for branch(2)(Aq ≤ A(M)
q )

,

assuming H2 ≪ 1.

Using these solutions, we find

C =











−2pH2 +O
(

H4
)

for branch(1) ,
(p− 1)(q − 1)(2q − 3)

2pq(q − 2)2
+O

(

H2
)

for branch(2) ,
(2.36)
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q branch Aq Λ stability

q = 1 - No No -

q = 2, 3 (1) Aq ≥ 0 Λ ≥ 0 unstable

q ≥ 4 (1) Aq ≥ 0 Λ ≥ 0 unstable

(2) Aq ≤ A(M)
q = − 1

2(q − 2)3
Λ ≤ Λ(M) = − q1

8(q − 2)3
stable

Table 1. The range of Aq where de Sitter solutions (2.19) (H2 > 0) exist.

which gives the eigenvalue as

ω=ω± :=















1

2

[

−p±
√

p(8 + p)
]

H +O
(

H2
)

for branch(1)

−pH

2
± i

q − 2

√

(p−1)(q−1)(2q−3)

2pq
+O

(

H2
)

for branch(2)
(2.37)

For the branch (1), the mode ω− is negative but the other mode ω+ is positive. Hence

the solution is unstable. On the other hand, for the branch (2), both modes ω± have a

negative real part for H > 0. So the solution is stable. We conclude that the branch (2)

solutions with negative Aq are always stable, while the branch (1) solutions with positive

Aq are unstable in all dimensions we studied. As a result, we obtain the very interesting

result that the solutions with a negative cosmological constant is always stable while those

with a positive cosmological constant is unstable.

We summarize the existence conditions for de Sitter solutions in the present model

and their stability in table 1.

3 Lovelock gravity

The preceding sections discussed the case only with α2, which is known as the next leading

contribution in heterotic string theory. Here we consider the effects of further higher-order

Lovelock gravity.

3.1 Basic equations

We consider the following action:

S =
1

2κ2D

∫

dDx
√−g

nmax
∑

n=0

αnLn , (3.1)

where n-th order Lovelock terms Ln are given by

Ln :=
1

2n
δi1···i2nj1···j2n

Rj1j2
i1i2 · · ·Rj2n−1j2n

i2n−1i2n , (3.2)

αn’s are their coupling constants with α1 = 1, and L0 = 1, L1 = R and L2 = R2
GB. We set

α0 = −2Λ, where Λ is a cosmological constant. Note that n ≤ nmax := [(D−1)/2], beyond

which no dynamical contributions by Lovelock terms exist.
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Assuming our spacetime is (de Sitter spacetime)×(a static maximally symmetric

space), we find the field equations with n-th order Lovelock gravity terms [72]:

−2Λ +

nmax
∑

n=1

αn

n
∑

k=0

nCk
(p+ 1)!

(p+ 1− 2n+ 2k)!

(q − 1)!

(q − 1− 2k)!
H2(n−k)Ak

q = 0 , (3.3)

−2Λ +

nmax
∑

n=1

αn

n
∑

k=0

nCk
p!

(p− 2n+ 2k)!

q!

(q − 2k)!
H2(n−k)Ak

q = 0 . (3.4)

In eqs. (3.3) and (3.4), nontrivial terms exist for n − [(p + 1)/2] ≤ k ≤ [(q − 1)/2] and

n − [p/2] ≤ k ≤ [q/2], respectively. Hence, the power exponents of H2 and Aq satisfy

(n − k) ≤ [(p + 1)/2] and k ≤ [(q − 1)/2] in eq. (3.3) and (n − k) ≤ [p/2] and k ≤ [q/2]

in eq. (3.4). As a result, eqs. (3.3) and (3.4) are quadratic equations for H2 if p ≤ 4 and

those for Aq if q ≤ 5, respectively. Eliminating Λ from eqs. (3.3) and (3.4), we find

H4

[

nmax
∑

n=2

αn
n(n− 1)

2

p2 [2D − n(p+ 1)] (q − 1)!

(q − 2n+ 4)!
An−2

q

]

+H2

[

nmax
∑

n=1

αn
np [D − n(p+ 1)] (q − 1)!

(q − 2n+ 2)!
An−1

q

]

−
nmax
∑

n=1

αn
n(q − 1)!

(q − 2n)!
An

q = 0 (3.5)

if p ≤ 4, and

A2
q

[

nmax
∑

n=2

αn
n(n− 1)

2

(q − 1)3(nq − 2D) p!

(p− 2n+ 5)!
H2(n−2)

]

+Aq

[

nmax
∑

n=1

αn
n(q − 1)(nq −D) p!

(p− 2n+ 3)!
H2(n−1)

]

+

nmax
∑

n=1

αn
n p!

(p− 2n+ 1)!
H2n = 0 (3.6)

if q ≤ 5. We can easily solve these quadratic equations. For the obtained solution of H2

in terms of Aq (p ≤ 4), or that of Aq in terms of H2 (q ≤ 5), the cosmological constant is

explicitly given by one variable as

2Λ =

nmax
∑

n=1

αn

n
∑

k=0

nCk
p!

(p− 2n+ 2k)!

q!

(q − 2k)!
H2(n−k)Ak

q . (3.7)

We then obtain one parameter family of analytic solutions: H2(Aq) and Λ(Aq) for p ≤ 4,

or Aq(H
2) and Λ(H2) for q ≤ 5.

Note that the above ansatz of p ≤ 4 or q ≤ 5 is not so strong restriction. Superstring

theory and M-theory predict D=10 and 11, respectively, for which dimensions we find

either p ≤ 4 or q ≤ 5 because p + q = D − 1 ≤ 10. Hence, for such fundamental theories,

we always find one parameter family of analytic solutions.

In what follows, we discuss the first case with p ≤ 4 because it includes the realistic

dimension p = 3. We also consider only cubic and quartic Lovelock terms. It is the most

general case for ten-dimensional superstring theory because nmax = 4 forD = 10. Although

we should include further higher-order Lovelock terms for the theories in dimension higher
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than ten such as M-theory, we may ignore those higher-order terms if the Lovelock terms

originate from quantum corrections.

The quadratic equation (3.5) and the cosmological constant (3.7) are explicitly given

as follows:

p2H
4 [2α2 − 3α3(q − 1)(p− 2q + 1)Aq − 12α4(q − 1)3(p− q + 1)A2

q

]

+pH
2 [1−2α2(q−1)(p−q+1)Aq−3α3(q−1)3(2p−q+2)A2

q−4α4(q−1)5(3p−q+3)A3
q

]

−(q − 1)Aq

[

1 + 2α2(q − 2)3Aq + 3α3(q − 2)5A
2
q + 4α4(q − 2)7A

3
q

]

= 0 . (3.8)

2Λ = p3H
4[α2 + 3α3q1Aq + 6α4q3A

2
q] + p1H

2[1 + 2α2q1Aq + 3α3q3A
2
q + 4α4q5A

3
q]

+q1Aq[1 + α2(q − 2)3Aq + α3(q − 2)5A
2
q + α4(q − 2)7A

3
q] . (3.9)

When we include the GB term, the coefficient α2 must be positive in order to avoid a

ghost. Hence we normalize the variables and coupling constants by α2 as

H̃ =
√
α2H , Ãq = α2Aq , Λ̃ = α2Λ ,

α̃3 =
α3

α2
2

, α̃4 =
α4

α3
2

. (3.10)

In what follows, we drop a tilde for brevity.

3.2 Perturbation equations

In order to analyze stability, we perturb the basic equations. Here we consider general case

with n ≤ 4. We find two independent perturbation equations:

P ξ̇ +Qη̇ +Rη = 0 , (3.11)

Sξ̈ + T η̈ + Uξ̇ + V η̇ +Wη = 0 , (3.12)

where the coefficients are defined by

P := p1HX,

Q := pqHY,

R := −pqH2Y,

S := pY,

T :=
pH2

Aq
Y,

U := (p+ 1)0HY,

V :=
p2H3

Aq
Y,

W := −(q − 1)2AqZ , (3.13)

with

X := 1 + 2
(

(p− 2)3H
2 + q1Aq

)

+ 3α3

(

(p− 2)5H
4 + 2(p− 2)3q1H

2
Aq + q3A

2
q

)

+4α4

(

(p− 2)7H
6 + 3(p− 2)5q1H

4
Aq + 3(p− 2)3q3H

2
A

2
q + q5A

3
q

)

,

Y := 1 + 2
(

(p− 1)2H
2 + (q − 1)2Aq

)

+ 3α3

(

(p− 1)4H
4 + 2(p− 1)2(q − 1)2H

2
Aq + (q − 1)4A

2
q

)
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+4α4

(

(p− 1)6H
6 + 3(p− 1)4(q − 1)2H

4
Aq + 3(p− 1)2(q − 1)4H

2
A

2
q + (q − 1)6A

3
q

)

,

Z := 1+2
(

(p+1)0H
2+(q−3)4Aq

)

+3α3

(

(p+1)2H
4+2(p+1)0(q − 3)4H

2
Aq+(q−3)6A

2
q

)

+4α4

(

(p+ 1)4H
6 + 3(p+ 1)2(q − 3)4H

4
Aq + 3(p+ 1)0(q − 3)6H

2
A

2
q + (q − 3)8A

3
q

)

. (3.14)

Eliminating ξ, we find a single equation:

η̈ + pHη̇ + Cη = 0 , (3.15)

where

C :=
PW −RU

PT − SQ
=

Aq

[

(p+ 1)0qH
2Y 2 − (p− 1)(q − 1)2AqXZ

]

pY [(p− 1)H2X − qAqY ]
. (3.16)

Setting η = η0e
ωt, we obtain the equation for the eigenvalue ω as

ω2 + pHω + C = 0 . (3.17)

If ω > 0 (or ℜω > 0), then the perturbation is unstable. Hence we find the stability

condition for the expanding universe (H > 0) as

(1) both eigenvalues are negative, i.e.,

p2H2 − 4C ≥ 0 , C > 0 (3.18)

or

(2) the eigenvalues are complex conjugate numbers with negative real part (for pH > 0),

i.e.,

p2H2 − 4C < 0 . (3.19)

Altogether we find the stability condition is just C > 0.

The difference from the case only with the GB term is the definition of X,Y and Z.

3.3 Minkowski spacetime

Although we are interested in a self-accelerating de Sitter spacetime, it is worth to study

Minkowski spacetime, which is given by H = 0. Eq. (3.5) or (3.8) gives

−(q − 1)A(M)
q

[

1 + 2(q − 2)3A
(M)
q + 3α3(q − 2)5(A

(M)
q )2

+ 4α4(q − 2)7(A
(M)
q )3

]

= 0 . (3.20)

There are two branches: one is a trivial solution A
(M)
q = 0 and the other is given by the

roots of the cubic (quadratic, or linear) equation

1 + 2(q − 2)3A
(M)
q + 3α3(q − 2)5(A

(M)
q )2

+ 4α4(q − 2)7(A
(M)
q )3 = 0 . (3.21)

A trivial solution A
(M)
q = 0 corresponds to σq = 0, which is a torus compactification.

This Minkowski spacetime with A
(M)
q = 0 is always a solution.

So, in what follows, we mainly discuss the case of A
(M)
q 6= 0. We can classify the

solutions as follows:

– 13 –
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(a) q = 2, 3: no solution.

(b) q = 4, 5: there exists one negative solution:

A(M)
q = − 1

2(q − 2)3
. (3.22)

(c) q = 6, 7: here α4 term is absent. If α3 6= 0, there exist two solutions:

A(M)
q =

1

3α3(q − 4)5

[

−1±
√

1− 3α3(q − 4)5
(q − 2)3

]

, (3.23)

if

α3 ≤
(q − 2)3
3(q − 4)5

. (3.24)

For α3 > 0, both solutions are negative, while for α3 < 0, one with plus sign is

negative and the other with minus sign is positive. No solution exists for

α3 >
(q − 2)3
3(q − 4)5

, (3.25)

When α3 = 0, there exists one negative solution (3.22).

(d) q ≥ 8: three real solutions exist if

α
(−)
4,cr ≤ α4 ≤ α

(+)
4,cr , (3.26)

where

α
(±)
4,cr =

4((q − 2)3)
2

27(q − 4)7

[

−
(

1− 27α3(q − 4)5
8(q − 2)3

)

±
(

1− 9α3(q − 4)5
4(q − 2)3

)3/2
]

, (3.27)

with

α3 ≤
4(q − 2)3
9(q − 4)5

. (3.28)

For q = 8, we show the existence range by the light-red shaded region in figure 4.

If the condition (3.26) is not satisfied, there exists only one real solution (shown by

the white region in figure 4). It is negative for α4 > 0 while positive for α4 < 0.

When α4 = 0, we find the same solutions as in the case (c). For q = 8, it is also

shown by the red solid (two solutions) and dashed lines (no solution) in figure 4.

3.4 Stability of near-Minkowski spacetime

To analyze stability, we first consider spacetimes near Minkowski spacetime. It may be

important because the realistic inflation predicts that the Hubble expansion rate H must

be much smaller than the Planck scale (a natural scale of vacuum expectation value of

fundamental fields, which acts as a cosmological constant).
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Figure 4. Three solutions exist in the light-red shaded region for q = 8, while there exists only

one solution in the white region. On the red solid and dashed lines, two solutions and no solution

exist, respectively.

Near a trivial Minkowski spacetime with A
(M)
q = 0, we have

Aq =
p

q − 1
H2 +O(H4) (3.29)

Λ =
p(p+ q − 1)

2
H2 +O(H4) . (3.30)

Using this approximate solution, we find the equation for ω (3.17) as

ω2 + pHω − 2pH2 = 0 , (3.31)

which has one positive and one negative roots for H 6= 0. Hence the solution is always

unstable.

Next we analyze another branch with A
(M)
q 6= 0. Expanding Aq as

Aq = A(M)
q +A(2)

q H2 +O(H4) , (3.32)

where A
(M)
q is given by the solution of eq. (3.21), we find the solutions near Minkowski

by (3.32) with

A
(2)
q =−

p

[

(pq−p−3q+5)+3α3(pq−p−3q+9)(q−2)3A
(M)
q +6α4(pq−p−3q+13)(q−2)4

(

A
(M)
q

)2
]

(q − 1)3

[

1 + 3α3(q − 4)5A
(M)
q + 6α4(q − 4)7

(

A
(M)
q

)2
] .

The cosmological constant is given by

Λ = Λ(M) +
p1
2
X(M)H2 +O(H4) , (3.33)

where

Λ(M) :=
q1
2
Aq

[

1 + (q − 2)3A
(M)
q + α3(q − 2)5(A

(M)
q )2]

]

X(M) := X(H = 0, Aq = A(M)
q ) .
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Figure 5. Stable (light-blue, light-green and meshed light-green) regions of Minkowski spacetime

for D = 10 (q = 6). The numbers denote how many solutions are stable. The blue and green regions

correspond to negative and positive cosmological constants, respectively, whereas the meshed and

un-meshed regions to A
(M)
q > 0 and A

(M)
q < 0, respectively. There is no stable solution in the white

region with α3 ≤ 2. No solution exists beyond α3 = 2 (the red line).

Assuming H2 ≪ 1, the coefficients C in (3.17) is rewritten as

C =
(p− 1)(q − 1)2A

(M)
q X(M)Z(M)

pq(Y (M))2
+O(H2) , (3.34)

where

Y (M) = Y (H = 0, Aq = A(M)
q )

Z(M) = Z(H = 0, Aq = A(M)
q ) . (3.35)

We find the eigenvalues

ω± =
1

2

(

−pH ±
√
−4C

)

+O(H2) .

If C ≥ 0, the expanding de Sitter spacetime is stable.

For q = 4, 5, the stability condition amounts to

α3 ≤
8(2q − 3)

3q1
. (3.36)

Note that A
(M)
q is always negative just as the case only with the GB term.

For q = 6, 7, we give one example for the case ofD = 10 (q = 6) in figure 5. We show the

parameter ranges according to how many stable Minkowski solutions exist by the light-blue,

light-green and meshed light-green shaded regions in the α3-α4 plane. The numbers denote

how many stable solutions exist. In the light-blue regions, Λ(M) < 0 as well as A
(M)
q < 0,

which is the same as the case only with the GB term. On the other hand, the light-green

region corresponds to the solutions with Λ(M) > 0 as well as A
(M)
q < 0, and the meshed light-

green regions does those with Λ(M) > 0 but A
(M)
q < 0, respectively. Those green regions

with a positive cosmological constant appear in the minus branch of the solution (3.23).
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Figure 6. Stable (light-blue, meshed light-blue, light-green and meshed light-green) regions of

Minkowski spacetime for D = 12 (q = 8). The numbers denote how many solutions are stable.

The blue and green regions give a negative and positive cosmological constant, respectively. The

meshed and un-meshed regions correspond to A
(M)
q > 0 and A

(M)
q < 0, respectively. There is no

stable solution in the white region.

We can show that Λ(M) < 0 and A
(M)
q < 0 for the plus branch of the solution (3.23),

while in the minus branch,

Λ(M) < 0 for
(q − 2)3
4(q − 4)5

< α3 <
(q − 2)3
3(q − 4)5

Λ(M) > 0 for α3 <
(q − 2)3
4(q − 4)5

. (3.37)

Hence, unlike the case only with the GB term, we obtain stable de Sitter solutions near

Minkowski spacetime not only for a negative cosmological constant but also for a positive

one.

We also show the parameter region of stable Minkowski solutions for D = 12 (q = 8)

in figure 6. The numbers denote how many solutions are stable. The blue and green

regions give a negative and positive cosmological constant, respectively. The meshed and

un-meshed regions correspond to A
(M)
q > 0 and A

(M)
q < 0, respectively. Although the figure

is complicated, the result is similar to the case of D = 10.

In the next section, we study de Sitter solutions and their stabilities for the case with

cubic and quartic Lovelock gravity terms.

4 De Sitter spacetimes with higher-order Lovelock terms and their sta-

bility

As we discussed in sections 2.1, 2.2 and 2.3, in the theory with GB term and a cosmological

constant, we find two branches: the branch (1) gives (de Sitter spacetime) × (an internal

space with a positive curvature), which is unstable, and the branch (2) is (de Sitter space-

time) × (an internal space with a negative curvature), which is stable. In this section,

including higher-order Lovelock terms, we discuss the effect of higher-order terms. Follow-

ing the previous discussion about near-Minkowski spacetime, we consider three cases: (1)
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D = 8 (p = 3, q = 4), (2) D = 10 (p = 3, q = 6), and (3) D = 12 (p = 3, q = 8). Note that

D = 10 is predicted by superstring theory.

Solving the quadratic equation (3.8), we find the Hubble expansion parameter H as

H
2 = H

2
± :=

−3
[

1 + 2(q − 4)(q − 1)Aq + 3α3(q − 8)(q − 1)3A
2
q + 4α4(q − 12)(q − 1)5A

3
q

]

±
√
D

24 [1 + 3α3(q − 1)2Aq + 6α4(q − 1)4Aq2]
(4.1)

with

D := 48(q−1)Aq

[

1+2(q−2)3Aq+3α3(q−2)5A
2
q

] [

1+3α3(q−1)2Aq+6α4(q−1)4A
2
q

]

+9
[

1+2Aq(q−4)(−1+q)+3α3A
2
q(q−8)(q−1)3+4α4A

3
q(q−12)(q−1)5

]2
. (4.2)

H2
± as well as D must be positive to find a real Hubble parameter. These conditions restrict

the existence of the de Sitter solution. The cosmological constant is given in terms of Aq

by the solution (4.1) as

Λ=Λ± :=3H2
±

[

1+2q1Aq+3α3q3A
2
q+4α4q5A

3
q

]

+
q1
2
Aq

[

1+(q−2)3Aq+α3(q−2)5A
2
q

]

.

(4.3)

The coefficient C in eq. (3.17) for perturbation equations is given by

C =
2Aq

[

6qH2Y 2 − (q − 1)2AqXZ
]

3Y [2H2X − qAqY ]
. (4.4)

with

X := 1 + 2q1Aq + 3α3q3A
2
q + 4α4q5A

3
q , (4.5)

Y := 1 + 2
(

2H2 + (q − 1)2Aq

)

+3α3(q − 1)2

(

4H2 + (q − 3)4Aq

)

Aq

+4α4(q − 1)4

(

6H2 + (q − 5)6Aq

)

A2
q , (4.6)

Z := 1 + 2
(

12H2 + (q − 3)4Aq

)

+3α3

(

24H4 + 24(q − 3)4H
2Aq + (q − 3)6A

2
q

)

+144α4(q − 3)4

(

2H2 + (q − 5)6Aq

)

H2Aq. (4.7)

The stability condition for an expanding universe is C ≥ 0, which is the same as the

case only with the GB term. The difference is the definition of X,Y , and Z.

In the followings, we show numerical results. We analyze two limited cases: A. α3 = 0,

and B. α4 = 0, and discuss more general cases in C.

4.1 The effect of the quartic Lovelock term with α4 (α3 = 0)

In this subsection, we discuss the effect of the quartic Lovelock term with the coupling

constant α4. For D = 8, no quartic Lovelock term appears. Then we first discuss the case

of D = 10. In figure 7, we summarize our result on the α4-A6 plane. The reason why we

choose the value of A6 to describe the solutions is because just the Hubble parameters H2
±
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Figure 7. The de Sitter solution exists in the colored region on the α4-A6 plane for D = 10

(α3 = 0). The meshed blue and meshed dotted green regions give the stable dS solutions with a

negative and positive cosmological constants, respectively. The dS solution in the light-red shaded

region is unstable. The red lines at A6 = 0 and at A6 = − 1
24 denote Minkowski spacetimes. The

left small figure is the enlarged one of the part of the right figure.

A
6

H
2

Λ

A
6

H
2

Λ

(a) branch (1) (b) branch (2)

Figure 8. The de Sitter solutions (H2:Solid curves) with a static extra dimensions (A6: dashed

curves) in terms of a cosmological constant Λ for two branches (branch (1) and branch (2) ) in the

case of α4 = 1. The stable solutions are denoted by the green curves, while the unstable ones are

by the red ones.

and the cosmological constant Λ± are uniquely determined by giving the value of A6. The

de Sitter solution exists in the colored regions: the meshed blue and meshed dotted green

regions give the stable dS solutions with a negative and positive cosmological constants,

respectively. The dS solution in the light-red shaded region is unstable.

From this figure, we can classify the solutions into the following four cases (A)–(D):

(A) α4 > 0. There exists stable de Sitter solutions with a negative cosmological constant

for a finite negative range of A6. The solutions with positive A6 or with large negative A6

are unstable. There exists one stable Minkowski spacetime for A6 = −1/24. In figure 8,

we show one example for α4 = 1. For the branch (2), A6 is always negative as the case

only with GB term, but a cosmological constant becomes positive for the large negative
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−
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Figure 9. The eigenvalues ω in terms of A6 for α4 = 1. For a given value of A6, the green solid

and dashed curves give two negative and negative real part of two complex conjugate eigenvalues,

respectively, while the red and blue curves are positive and negative eigenvalues, respectively. The

solutions given by the green curves in the branch (2) are stable, otherwise unstable.

value of A6. On the other hand, for the branch (1), we find A6 ≥ 0 and Λ ≥ 0, which are

the same as the case only with GB term.

We show the eigenvalues in figure 9 to see the stability of the solutions. The green

curves give two stable modes, i.e. two negative eigenvalues or negative real part of two

complex conjugate eigenvalues. These solutions are stable. On the other hand, the red and

blue curves denote the unstable and stable modes, respectively. Hence such solutions are

unstable. This result means that the solutions in the branch (1) are unstable and those

in the branch (2) are stable for near-Minkowski spacetime. It shows the same behaviour

as those in the theory only with GB term. However, the solutions in the branch (2) turn

to be unstable when the curvature scale of the extra dimensions (|A6|) increases beyond a

critical value (compare with figure 3).

For the other positive values of α4, we find similar results, i.e., there exists one stable

branch of de Sitter solutions, for which A6 and Λ are always negative.

(B) −196/45 < α4 < 0. There exists de Sitter solution with a negative cosmological

constant for a finite negative region of A6. For the positive value of A6, there are two de

Sitter solutions: one is unstable and the other is stable, for which a cosmological constant

is positive. Only one stable Minkowski spacetime is possible for A6 = −1/24.

(C) −36/5 < α4 < −196/45. This region is rather complicated. Changing the value

of A6, the stability and the sign of the cosmological constant changes frequently. We show

one complex example with α4 = −6 in figure 10. There are three branches: (1) which

includes a trivial Minkowski spacetime with A6 = 0, (2) which include a stable Minkowski

spacetime with A6 = −1/24, and (3) which newly appears and does not involve a Minkowski

spacetime. The eigenvalues are shown in figure 11, from which we find the stability of the

solutions.

There exists one stable de Sitter solution with a negative cosmological constant. The

cosmological constant should be in a finite range of negative values. In addition, we find

three stable de Sitter solutions, which belong to each branch, for large positive value of the

– 20 –



J
H
E
P
0
6
(
2
0
1
4
)
0
9
5

(2)

(1)

(3)

Λ

(2)

(1)

(3)

(2)

Α
6

Λ

(a) Λ-log10H
2 (b) Λ-A6

Figure 10. The de Sitter solutions (H2) with a constant internal space (A6) in terms of a cosmo-

logical constant Λ for α4 = −6. There are three branches (the branch (1), branch (2) and branch

(3), which newly appears and does not involve a Minkowski spacetime). The stable solutions are

denoted by the green curves, while the unstable ones are by the red ones.

(2) (1)

(1)

(2)

(3)

(3)

(3)

(2)

(a) The eigenvalues in three branches (1), (2) and (3) (b) The enlarged figure of the branch (2)

Figure 11. The eigenvalues in three branches (1), (2) and (3) in terms of a cosmological constant Λ

for α4 = −6. The green solid and dotted curves denote two negative eigenvalues and a positive real

part of two complex conjugates, respectively, which means those are stable solutions. The red and

blue curves denote positive and negative eigenvalues, respectively. Those solutions are unstable.

cosmological constant. These solutions are interesting because some solutions provide us

the possibility of rather small Hubble parameter in spite of large value of a cosmological

constant, which may explain the discrepancy between a preferred scale of inflation (GUT

scale) and the Planck scale. For a given cosmological constant with the Planck scale, it is

possible that the Hubble expansion scale can be much lower.

(D) α4 < −36/5. The behaviour of the solutions is almost the same as the case [3], but

de Sitter solution near Minkowski spacetime becomes unstable.

We also show the case of D = 12 in figure 12. The detail structure is very complicated,

but the global feature does not change so much. The features are as follows: for α4 >

– 21 –



J
H
E
P
0
6
(
2
0
1
4
)
0
9
5

α
4

Α
8

Figure 12. The de Sitter solution exists in the colored region on the α4-A8 plane for D = 12

(α3 = 0). The meshed blue and meshed dotted green regions give the stable dS solutions with a

negative and positive cosmological constants, respectively. The dS solution in the light-red shaded

region is unstable. The red curves denote Minkowski spacetime. The left small figure is the enlarged

one of the part of the right figure.

0, there exists a stable de Sitter solution with a negative cosmological constant for any

negative A8. If α4 < 0, we also find stable de Sitter solutions with negative values of A8,

but the cosmological constant must be positive.

4.2 The effect of the cubic Lovelock term with α3 (α4 = 0)

For the case with the cubic Lovelock term (α3 6= 0) but without the quartic term (α4 = 0),

we summarize our result on the α4-Aq plane for D = 8, 10 and 12 in figures 13 (a)–(c),

respectively.

In the case of D = 8, for A4 < 0, there exist stable de Sitter solutions (including

Minkowski spacetime) with Λ < 0 if α3 < 10
9 . On the other hand, for A4 > 0, although

there are a few stable de Sitter solutions with Λ > 0, most de Sitter solutions are unstable.

For the cases ofD = 10 andD = 12, apart from the small fine structures, the global features

of figures 13 (b) and (c) are very similar. The de Sitter solutions with Aq < 0 are mostly

stable, and Λ < 0 for α3 < 0, while Λ > 0 for α3 > 0. On the other hand, the solutions with

Aq > 0 are unstable except for a few tuned solutions. Minkowski spacetime with a negative

Aq are mostly stable except for a small range of parameters (a part of the red curve next to

the unstable light-red region), which is found in the enlarged figures of figures 13 (b) and (c).

From these figures, we can draw the following conclusions:

(1) There exist stable de Sitter solutions with a negative Aq and a negative cosmological

constant for α3 < 0.

(2) There exist stable de Sitter solutions with a negative Aq and a positive cosmological

constant for α3 > 0 if D ≥ 10.
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(c) D = 12

Figure 13. The de Sitter solution exists in the colored regions on the α3-Aq plane for (a) D = 8

(b) D = 10 and (c) D = 12. The meshed blue and meshed dotted green regions give the stable

dS solutions with a negative and positive cosmological constants, respectively. The dS solution in

the light-red shaded region is unstable. The red curves denote Minkowski spacetime. The left and

right small figures are the enlarged ones of the corresponding parts of the main figures.

(3) There exist a few stable de Sitter solutions with a positive Aq. Most solutions are

unstable.

From figures 13, we can find the sign of Λ, but do not know the precise values. Since

we are interested in the discrepancy between H and Λ in an inflationary scenario, we also

show typical solutions for D = 10 in figure 14 and 15 for some given coupling constant α3.

For the case with α3 = 2 in figure 14, the branches (2) and (2)′ have stable de Sitter

spacetimes with negative Aq. The cosmological constants can be negative, but they are

continuously extended to positive values up to +∞. Hence although de Sitter solution

is possible for a negative cosmological constant, we also find that with a positive cosmo-

logical constant, the branch (2) may give us small Hubble parameter for a Planck scale

cosmological constant, which is preferred inflation.

On the other hand, for the case with α3 = −2 in figure 15, one branch (2) gives a

stable de Sitter solution with negative Aq and a negative cosmological constant, which

is unbounded from below. The Hubble expansion scale can be small compared with the
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Λ

(1)

(2)’

Aq

(2)

(a) H2 (b) Aq

Figure 14. The solution for α3 = 2. There are two branches of solutions (1) and (2), as shown

in the figure. We also find the branch (2)′ similar to the branch (2), but it includes an unstable

Minkowski spacetime. The solutions denoted by the green solid and dotted curves are stable, while

the red ones are unstable.

Λ

(3)

(1)
(2)

²H

(1)

Λ

(1)

(3)

Aq

(2)

(1)

(a) H2 (b) Aq

Figure 15. The solution for α3 = −2. There are three branches of solutions (1), (2) and (3), as

shown in the figures. The branch (3) has no Minkowski spacetime. The solutions denoted by the

green solid and dotted curves are stable, while the red ones are unstable.

negative cosmological constant. There also exists one new branch (3), which has a stable de

Sitter solution with positive Aq and a positive cosmological constant, which is unbounded

from above. The possibility of small Hubble parameter for inflation may not be found in

the branch (3), because H diverges as Λ → ∞.

To summarize, we have stable de Sitter solutions with a negative cosmological constant

when α3 is negative.

4.3 The effect of generic Lovelock terms (α3, α4 6= 0)

To confirm the above results on the effects of the cubic and quartic Lovelock gravity terms,

we perform calculations for the generic case with D = 10. We show the results in figure 16

for given α4 and in figure 17 for given α3.

In figure 16, setting α4 = −10,−1, 0, 1, 10, we present the existence region of de Sitter

solutions and their stabilities on the α3-A6 plane. The meshed blue and meshed dotted

green regions give the stable dS solutions with a negative and positive cosmological con-
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Figure 16. For given α4 [(a) α4 = −10, (b) α4 = −1 , (c) α4 = 0, (d) α4 = 1, (e) α4 = 10], the

existence of de Sitter solutions and their stabilities are shown on the α3-A6 plane. The meshed

blue and meshed dotted green regions give the stable dS solutions with a negative and positive

cosmological constants, respectively. The dS solution in the light-red shaded region is unstable.

The red curves denote Minkowski spacetime.

stants, respectively. The dS solution in the light-red shaded region is unstable. Note that

the red curves denote Minkowski spacetime. The stability structure is very complicated,

but we find the following overall features. We find a stable de Sitter solution with a neg-

ative cosmological constant (meshed blue region) when α3 < 0. In this case, A6 is always

negative, but the existence region is restricted for α4 < 0. On the other hand, there exists

a stable de Sitter solution with a positive cosmological constant (meshed green region)

when α3 > 0. A6 is always negative, but the existence region is restricted for α4 > 0. The

solutions with A6 > 0 are mostly unstable.

In figure 17, setting α3 = −10,−1, 0, 1, 10, we present the similar figures on the α4-A6

plane. The stability structure is again very complicated, but we also find the following

global features. We find a stable de Sitter solution with a negative cosmological constant

(meshed blue region) when α3 < 0. In this case, A6 is mostly negative, but the restricted

region appears for α4 < 0. On the other hand, there exists a stable de Sitter solution with a

positive cosmological constant (meshed green region) when α3 > 0. A6 is mostly negative,

but the restricted region is found for α4 > 0. The solutions with A6 > 0 are mostly unstable.

From those figures, we can conclude that a stable de Sitter solution with a negative

cosmological constant is obtained if α3 < 0, although the existence region of negative A6 is

constrained for α4 > 0. Conversely, a stable de Sitter solution with a positive cosmological

constant is obtained if α3 > 0, although the existence region of negative A6 is constrained

for α4 > 0. The solutions with A6 > 0 are mostly unstable.
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(a) (c)(b)

(d) (e)

Figure 17. For given α3 [ (a) α3 = −10, (b) α3 = −1 , (c) α3 = 0, (d) α3 = 1, (e) α3 = 10],

the existence of de Sitter solutions and their stabilities are shown on the α4-A6 plane. The meshed

blue and meshed dotted green regions give the stable dS solutions with a negative and positive

cosmological constants, respectively. The dS solution in the light-red shaded region is unstable.

The red curves denote Minkowski spacetime.

Next, setting α3 = ±1 and α4 = ±1, we show the explicit solutions in terms of Λ

in figure 18. The green and red curves correspond to the stable and unstable solutions,

respectively. From these figures, we can confirm that a stable de Sitter solution with a

negative cosmological constant (branch (2) solution) exists for α3 = −1, while a stable de

Sitter solution with a positive cosmological constant (branch (2) and (2)′) appears for α3 =

1. For the branch (1), a stable de Sitter spacetime appears for larger values of positive Λ.

One interesting observation is that there exist stable de Sitter solutions with large

(negative or positive) cosmological constants for any coupling constants (See the branch

(2) and (1) in figure 18(a), the branch (2) and (3) in figure 18(b), the branch (2) and (2)′

in figures 18(c), and (d)). This may explain the discrepancy between an inflation scale and

the Planck scale.

5 Concluding remarks

We have studied gravitational theories with a cosmological constant and the Gauss-Bonnet

curvature squared term. We find that there are two branches of the de Sitter solutions:

both the curvature of the internal space and the cosmological constant are (1) positive

and (2) negative. By the stability analysis, we have shown that the de Sitter solution of

the branch (1) is unstable, while that in the branch (2) is stable. It is remarkable that

we have de Sitter solutions even for a negative cosmological constant, which are the only
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Figure 18. The de Sitter solutions for (a) α3 = −1, α4 = −1, (b) α3 = −1, α4 = 1, (c) α3 =

1, α4 = −1, and (d) α3 = 1, α4 = 1. The stable solutions are shown by the green curves, while the

unstable ones are by the red curves.

stable ones. We again note that we have not studied the stability of other possible moduli

in extra dimensions, but the above stability is an important property for useful solutions.

We have also extended our analysis to the gravitational theories with further higher-

order Lovelock curvature terms. Although the existence and the stability of the de Sitter

solutions are very complicated and highly depend on the coupling constants α3 and α4,

there exist stable de Sitter solutions similar to the branch (2) for α3 < 0. We also find stable

de Sitter solutions with positive cosmological constants if α3 > 0. For most stable de Sitter

solutions, the Hubble scale can be much smaller than the scale of a cosmological constant,

which may explain a discrepancy between an inflation energy scale and the Planck scale.

Although the existence of a stable de Sitter spacetime with a negative cosmological

constant is interesting, it is important to find a realistic cosmological model for the early

universe, in which de Sitter exponential expansion must end at some stage. It means that

de Sitter solution should be a marginally unstable state instead of an absolute stable state.

After more than 60 e-foldings, inflation must end and the universe must be reheated, finding

a big bang initial state. Hence we have to find a graceful exist in the present model. Only

after such a mechanism is found, we can discuss density perturbations and observational

consequences.

There is another point to be discussed. We have shown that there are two (or more)

branches of the de Sitter solutions. One branch (the branch (1)) is connected to the

solutions of general relativity (GR) in the limit of α2 → 0. We call it GR-branch. The

other branches (the branch (2), (2)′ and (3)) are called non-GR branches, because there is

no GR limit for any values of the coupling constants [73–75]. Since the present universe is

well described by GR, it may be plausible that the realistic cosmological solutions belong

to the GR branch. This may mean either that we should find an interesting solution in the

branch (1) [for example, there exists a stable de Sitter spacetime with Λ < 0 and Aq < 0

in the branch (1) for α3 = 0, α4 = −6 in figure 10], or that we should construct a realistic

cosmological model including a low-energy scale universe in the other branches. These are

under investigation.
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The present model may be too simple from the viewpoint of a unified theory of fun-

damental interactions. It may be desirable to analyze more realistic models based on

supergravity or superstring theory including a dilaton field.
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