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ABSTRACT
We use the state-of-the-art data on cosmic chronometers (CCH) and the Pantheon+
compilation of supernovae of Type Ia (SNIa) to test the constancy of the SNIa absolute
magnitude, M , and the robustness of the cosmological principle (CP) at z ≲ 2 with a
model-agnostic approach. We do so by reconstructing M(z) and the curvature param-
eter Ωk(z) using Gaussian Processes. Moreover, we use CCH in combination with data
on baryon acoustic oscillations (BAO) from various galaxy surveys (6dFGS, BOSS,
eBOSS, WiggleZ, DES Y3) to measure the sound horizon at the baryon-drag epoch,
rd, from each BAO data point and check their consistency. Given the precision allowed
by the CCH, we find that M(z), Ωk(z) and rd(z) are fully compatible (at < 68% C.L.)
with constant values. This justifies our final analyses, in which we put constraints
on these constant parameters under the validity of the CP, the metric description
of gravity and standard physics in the vicinity of the stellar objects, but otherwise
in a model-independent way. If we exclude the SNIa contained in the host galaxies
employed by SH0ES, our results read M = (−19.314+0.086

−0.108) mag, rd = (142.3 ± 5.3)

Mpc and Ωk = −0.07+0.12
−0.15, with H0 = (71.5± 3.1) km/s/Mpc (68% C.L.). These val-

ues are independent from the main data sets involved in the H0 tension, namely, the
cosmic microwave background and the first two rungs of the cosmic distance ladder.
If, instead, we also consider the SNIa in the host galaxies, calibrated with Cepheids,
we measure M = (−19.252+0.024

−0.036) mag, rd = (141.9+5.6
−4.9) Mpc, Ωk = −0.10+0.12

−0.15 and
H0 = (74.0+0.9

−1.0) km/s/Mpc.

Key words: cosmological parameters – dark energy – distance scale – cosmology:
observations.

1 INTRODUCTION

The absolute distance and time scales in cosmology are set
by the Hubble-Lemaître constant, H0, which also sets the
energy scale of the universe’s expansion through the Fried-
mann equation. Its accurate determination is therefore of ut-
most importance and has been a long-pursued goal since the
very birth of modern (relativistic) cosmology and the idea
of an expanding universe, almost one century ago (Hubble
1929). Yet, we still do not have a consensus value for this
parameter.

The SH0ES collaboration has measured H0 making use
of the distance ladder method. They employ 42 supernovae
of Type Ia (SNIa) contained in host galaxies with Cepheids
at z < 0.01, i.e. at distances d ≲ 40 Mpc, to calibrate the ab-
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solute magnitude of SNIa, MR22 = (−19.253± 0.027) mag.
By extending the ladder to the Hubble flow, up to z ∼ 0.15,
i.e. d ∼ 600 Mpc, they obtain HR22

0 = (73.04 ± 1.04)
km/s/Mpc (Riess et al. 2022). The distance ladder measure-
ment is basically model-independent, since it only relies on
the Cosmological Principle (CP) and the assumption that
SNIa are good enough standardizable objects, i.e., with a
standardized M which remains constant from our vicinity
to the far end of the Hubble flow.

Cosmic microwave background (CMB) observations, on
the other hand, allow us to measure in a model-independent
way and very precisely the position of the first acoustic
peak of the CMB temperature angular power spectrum or,
equivalently, the angle θ∗ = r∗/DM (z∗), where r∗ is the
comoving sound horizon at recombination and DM (z∗) =
(1 + z∗)DA(z∗) the comoving angular diameter distance to
the last-scattering surface. However, these two quantities, r∗
and DM (z∗), cannot be obtained separately with a model-
agnostic method. Pre-recombination physics, which depends
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of course on the model, fixes r∗ and this, in turn, fixes
DM (z∗) to fulfill the tight constraint on θ∗

1. In the con-
text of the ΛCDM, the fit to the full TT,TE,EE+lensing
CMB likelihood from Planck leads to HP18

0 = (67.36±0.54)
km/s/Mpc (Aghanim et al. 2020). The latter is in ∼ 5σ ten-
sion with SH0ES. This constitutes the well-known H0 ten-
sion, the biggest mismatch between the standard model of
cosmology and current observations, see (Verde et al. 2019;
Perivolaropoulos & Skara 2022b; Abdalla et al. 2022) for
dedicated reviews.

The angle θ∗ is the CMB analogue of the transverse
baryon acoustic oscillations (BAO) scale, rd/DM (z), which
has been measured by several galaxy surveys, with rd the co-
moving sound horizon at the baryon-drag epoch and z being
in this case the characteristic redshift of the survey. As r∗, rd
is also set by the physics in the pre-recombination era. Con-
sidering on top of CMB, data from BAO and uncalibrated
low- and high-redshift SNIa one gets rd = (147.17 ± 0.20)
Mpc and M = (−19.403 ± 0.010) mag in the standard cos-
mological model (Gómez-Valent 2022b). This value of M is
again in ∼ 5σ tension with the one reported by SH0ES, as
expected, since their large determination of H0 is induced
by the large value of M (MR22) obtained from the calibra-
tion in the host galaxies. A prior on rd derived from CMB
analyses or a precise estimate of the primordial deuterium
abundance can be used to calibrate the BAO distances and,
consequently, also other low-redshift observables like SNIa,
by assuming standard physics before decoupling. This, in
turn, can be employed to extract a model-dependent esti-
mate of H0 and is the basis of the so-called inverse distance
ladder, which leads again to a small value of the Hubble
parameter, very close to the Planck/ΛCDM value (Aubourg
et al. 2015; Cuesta et al. 2015; Addison et al. 2018; Ab-
bott et al. 2018; Feeney et al. 2019). We remark that this
method only allows for a model-dependent determination of
H0, even when no specific cosmological model is assumed at
late times by using, for example, cosmography.

In view of the above discussion, it is clear that the H0

tension can be recast in a tension in the calibrators of the
direct and inverse distance ladders, M and rd. These quanti-
ties play a crucial role in the Hubble tension (see e.g. Bernal
et al. 2016; Aylor et al. 2019; Camarena & Marra 2020a,b).
It is therefore very important to measure these distance cal-
ibrators independently from the CMB and the first rungs
of the direct distance ladder, as a means of cross-checking
the results obtained with the standard methods described
above.

Apart from that, it is also interesting to perform these
calibrations in a model-independent way. Many models have
been proposed in the last years to alleviate the H0 tension:
coupled dark energy models (Pettorino 2013; Gómez-Valent
et al. 2020; Agrawal et al. 2021; Archidiacono et al. 2022;
Goh et al. 2023), modified gravity (Solà Peracaula et al.
2019, 2020; Ballesteros et al. 2020; Braglia et al. 2020, 2021;
Benevento et al. 2022), running vacuum models (Solà Per-
acaula et al. 2021), early dark energy (Poulin et al. 2019;
Niedermann & Sloth 2021; Agrawal et al. 2019; Hill et al.

1 The Planck collaboration has measured the CMB acoustic
angular scale to 0.03% precision, 100θ∗ = 1.04110 ± 0.00031

(Aghanim et al. 2020).

2020; Gómez-Valent et al. 2021, 2022), scenarios with vary-
ing atomic constants (Liu et al. 2020a; Sekiguchi & Taka-
hashi 2021; Lee et al. 2023), or models with primordial mag-
netic fields (Jedamzik & Pogosian 2020). See (Di Valentino
et al. 2021a) for a review and a more complete list of refer-
ences. The vast majority of these proposals introduce some
kind of new physics in the last stages of the recombina-
tion epoch, triggering shifts in the value of rd accompanied
also by changes at low redshift to keep the good descrip-
tion of the CMB and BAO data. Other authors have sug-
gested an ultra-late time transition in the effective gravita-
tional coupling and hence in M at zt ≈ 0.01 to loosen the
tension, (Marra & Perivolaropoulos 2021; Perivolaropoulos
2022; Perivolaropoulos & Skara 2022a). We could use the
model-independent estimation of the distance calibrators to
assess the viability of these models beyond ΛCDM. Thus,
it is clear that calibrating the ladders using independent
methods and following model-independent approaches can
be very relevant. The results obtained with these alterna-
tive methods could be employed to shed some light into the
discussion, potentially arbitrating the Hubble tension itself.

In this paper we use the state-of-the-art data on cos-
mic chronometers (CCH) to calibrate the cosmic ladders
and measure the curvature of the universe in a model-
independent framework, employing also the Pantheon+
compilation of SNIa and BAO data from various galaxy
surveys (6dFGS, BOSS, eBOSS, WiggleZ, DES Y3). The
original idea of this calibration technique was presented in
(Sutherland 2012). It was applied for the first time by Heav-
ens et al. (2014) and subsequently employed in several works
in the light of new data and different statistical methods,
see e.g. (Verde et al. 2017; Haridasu et al. 2018; Dhawan
et al. 2021; Gómez-Valent 2022a). It assumes that gravity
can be described by a metric theory, together with the CP
and the validity of CCH as reliable cosmic clocks, and SNIa
and BAO as optimal standard candles and standard rulers,
respectively. Here, we reconstruct the shape of H(z) from
CCH and the one of the apparent magnitude of SNIa m(z)
with Gaussian Processes (GPs) and use them to test some
of these very basic assumptions, which are usually taken for
granted in other works. In particular, we reconstruct Ωk(z)
applying the method proposed by Clarkson et al. (2008) to
test the homogeneity property of the universe by checking
that this function is compatible with a constant for z ≲ 2.
See (Cai et al. 2016; Yu & Wang 2016; Liu et al. 2020b) for
similar studies along this direction. We also reconstruct the
absolute magnitude of SNIa as a function of the redshift,
M(z), and check that no evolution is preferred by current
data. This analysis is on the lines of the one by Benisty et al.
(2023), but we use different data sets, have a better control
of the effect of correlations and get rid of double-counting is-
sues. Finally, we perform a consistency test among the BAO
data points employed in this paper, and show that according
to the low-redshift data sets under consideration, there is no
significant statistical tension between them.

All in all, these preliminary tests legitimize the final
part of this work, in which we obtain model-independent
constraints on Ωk and the calibrators M and rd, which are
also independent of the main drivers of the Hubble ten-
sion. This independent calibration of the ladders is obvi-
ously relevant for the discussion of the H0 tension for the
reasons already explained. Ωk, on the other hand, provides
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us with information about the early universe and the pe-
riod of inflation. It is a pivotal parameter. In the context
of ΛCDM, the CMB data from Planck prefer a closed uni-
verse at ≳ 2σ C.L. for the Planck TT,TE,EE likelihood,
Ωk = −0.044+0.018

−0.015 (68% C.L.), and at a slightly lower level
when also the CMB lensing information is included in the
analysis, Ωk = −0.0106±0.0065 (Aghanim et al. 2020; Han-
dley 2021; Di Valentino et al. 2019). However, when data on
BAO, SNIa, the full-shape galaxy power spectrum or CCH
are added on top of CMB, this deviation from spatial flat-
ness disappears (Aghanim et al. 2020; Efstathiou & Gratton
2020; Vagnozzi et al. 2021a,b). Same conclusions are reached
when CMB data from the Atacama Cosmology Telescope are
employed alone or in combination with WMAP (Aiola et al.
2020). For a review, we refer the reader to (Di Valentino
et al. 2021b). See also the exhaustive work by de Cruz Pérez
et al. (2023) for constraints on the curvature in non-flat
ΛCDM and its extensions under a large variety of data sets,
and (Collett et al. 2019) for a cosmographical measurement
of H0 and Ωk from SNIa and strong lensing data. In this pa-
per we measure the curvature parameter without assuming
any cosmological model.

This manuscript is organized as follows. In Sec. 2 we
describe in detail the low-z data sets employed throughout
the paper, namely CCH, SNIa and BAO. In Sec. 3 we re-
mind the reader what a Gaussian Process is and explain
some of its novel and useful technical aspects, e.g. on how
to select a kernel applying an objective mathematical crite-
rion. We reconstruct the shape of H(z) and m(z), which is
important for the subsequent parts of the paper. In Sec. 4
we perform the preliminary tests already mentioned in the
previous paragraphs, and in Sec. 5 we calibrate the ladders
and measure the curvature of the universe using different
data set combinations. We also discuss how our constraints
improve if we decrease the uncertainties of the CCH data.
In Sec. 6 we finally provide our conclusions.

2 DATA

We dedicate this section to describe the low-redshift data
sets employed in this study.

2.1 Cosmic chronometers

Massive passively evolving galaxies with old stellar popu-
lations and very low star formation rates, i.e. with very
little contamination from young components, can be em-
ployed as cosmic chronometers using the so-called differen-
tial age technique. The idea dates back to the seminal work
by Jimenez & Loeb (2002) and is based on the fact that in
a Friedmann-Lemaître-Robertson-Walker (FLRW) universe
the Hubble function can be written as

H(z) = − 1

1 + z

dz

dt
, (1)

with dt/dz the look-back time differential change with red-
shift. Passively evolving galaxies formed at high redshift
(z ∼ 2 − 3) and over a very short period of time (t ∼ 0.3
Gyr). By comparing two ensembles of galaxies that formed

Table 1. List with the 32 CCH data points on H(z) used in this
work, obtained from the references quoted in the last column.
In the case of Refs. (Moresco et al. 2012, 2016), the central val-
ues of H(z) are computed by performing the arithmetic mean of
the measurements obtained with the BC03 (Bruzual & Charlot
2003) and MaStro (Maraston & Stromback 2011) SPS models.
The covariance matrix is computed using the method presented
in (Moresco et al. 2020), which incorporates both the statistical
and systematic errors. See the main text and the aforesaid refer-
ences for details.

z H(z) [Km/s/Mpc] References
0.07 69.0±19.6 Zhang et al. (2014)
0.09 69.0±12.0 Jimenez et al. (2003)
0.12 68.6±26.2 Zhang et al. (2014)
0.17 83.0±8.0 Simon et al. (2005)
0.1791 78.0±6.2 Moresco et al. (2012)
0.1993 78.0±6.9 Moresco et al. (2012)
0.2 72.9±29.6 Zhang et al. (2014)
0.27 77.0±14.0 Simon et al. (2005)
0.28 88.8±36.6 Zhang et al. (2014)
0.3519 85.5±15.7 Moresco et al. (2012)
0.3802 86.2±14.6 Moresco et al. (2016)
0.4 95.0±17.0 Simon et al. (2005)
0.4004 79.9±11.4 Moresco et al. (2016)
0.4247 90.4±12.8 Moresco et al. (2016)
0.4497 96.3±14.4 Moresco et al. (2016)
0.47 89.0±49.6 Ratsimbazafy et al. (2017)
0.4783 83.8±10.2 Moresco et al. (2016)
0.48 97.0±62.0 Stern et al. (2010)
0.5929 107.0±15.5 Moresco et al. (2012)
0.6797 95.0±10.5 Moresco et al. (2012)
0.75 98.8±33.6 Borghi et al. (2022)
0.7812 96.5±12.5 Moresco et al. (2012)
0.8754 124.5±17.4 Moresco et al. (2012)
0.88 90.0±40.0 Stern et al. (2010)
0.9 117.0±23.0 Simon et al. (2005)
1.037 133.5±17.6 Moresco et al. (2012)
1.3 168.0±17.0 Simon et al. (2005)
1.363 160.0±33.8 Moresco (2015)
1.43 177.0±18.0 Simon et al. (2005)
1.53 140.0±14.0 Simon et al. (2005)
1.75 202.0±40.0 Simon et al. (2005)
1.965 186.5±50.6 Moresco (2015)

at the same time but with different (close enough) red-
shifts, it is possible to estimate the derivative dz/dt us-
ing their spectra and a stellar population synthesis (SPS)
model. This, in turn, allows us to measure H(z), under the
assumption that General Relativity and standard physics
hold in the environment of the stars. Apart from that and
the CP2, the CCH data are free from other cosmological as-
sumptions, what makes these data very suitable to perform
model-independent analyses like those we will carry out in
this work. In addition, direct measurements of H(z) can be
employed to calibrate the ladders, since they set the energy
scale in the universe. In our study, CCH will play an analo-

2 The expression (1) might hold even in the presence of cosmic
backreaction (Koksbang 2021). Cosmic distances, though, would
depart from the FLRW ones, so our analyses of Secs. 4.1, 4.3,
and 5 are strictly valid under the assumption of the CP, i.e. if the
impact of the backreaction is negligible. See the aforesaid sections
for details.

MNRAS 000, 000–000 (0000)



4 A. Favale, A. Gómez-Valent & M. Migliaccio

gous role to the calibrated Cepheids employed by SH0ES in
the direct distance ladder.

We provide the list with the 32 CCH data points em-
ployed in this paper in Table 1, together with the original ref-
erences. They span over the redshift range 0.07 < z < 1.965
and constitute the most updated data set on CCH in the
literature. In the last years important efforts have been ded-
icated to build the error budget of the CCH data, see e.g.
(Moresco et al. 2020). The full (non-diagonal) covariance
matrix of the data is computed as 3:

Cij = Cstat
ij + Csys

ij . (2)

Cstat contains the statistical errors and is diagonal. The sys-
tematic uncertainties contained in Csys account for several
effects related to the estimate of physical properties of the
galaxies, e.g. the stellar metallicity and the possible con-
tamination by a young component, which are uncorrelated
for objects at different redshifts. This is not the case for
other sources of uncertainty, as they are primarily due to the
choice of initial mass function, stellar library, etc., which rely
on the common SPS model used to study the evolution of
galaxies. See again (Moresco et al. 2020) for a more detailed
account of the origin and modeling of systematic errors in
the CCH data.

2.2 Supernovae of Type Ia

We make use of the Pantheon+ compilation of Type Ia su-
pernovae (Scolnic et al. 2022), which includes 1701 light
curves of 1550 unique, spectroscopically confirmed SNIa,
ranging in redshift from z = 0.001 to 2.26 and coming from
18 different surveys 4. The main changes with respect to the
original Pantheon compilation from (Scolnic et al. 2018) are
that in Pantheon+ the sample size (especially at z < 0.01)
and the redshift span are larger, and there has also been an
improved treatment of systematic uncertainties in redshifts,
peculiar velocities, photometric calibration, and intrinsic-
scatter models of SNIa. In particular, we would like to re-
mark that due to some cuts, not all the SNIa contained in
Pantheon are found in the improved Pantheon+ compila-
tion. There are some redshift ranges in which the number of
SNIa is smaller, cf. Fig. 1 of (Scolnic et al. 2022).

In this paper we actually use two different SNIa sam-
ples. In our main analyses we remove the data points from
the SNIa that are contained in the host galaxies of SH0ES
(Riess et al. 2022; Brout et al. 2022) in order to obtain re-
sults independent of them. The remaining sample contains
1624 data points. In Sec. 5.5 we also use the full Pantheon+
compilation together with the distances to the host galaxies
obtained by SH0ES in the first rungs of the distance ladder
to assess their impact in our model-independent measure-
ment of M , rd and Ωk.

The SNIa data are given as follows. For each lightcurve
we have the apparent magnitude as measured on Earth, m̃,
together with the heliocentric and Hubble diagram redshifts,
denoted as zhel and zHD (Carr et al. 2022), respectively. If M
is the standardized absolute magnitude of the SNIa and D̃L

3 https://gitlab.com/mmoresco/CCcovariance
4 https://github.com/PantheonPlusSH0ES/DataRelease

is the luminosity distance inferred from the measurements
for a fixed M , we have the following relation,

m̃(zhel, zHD) = M + 25 + 5 log10

(
D̃L(zhel, zHD)

1Mpc

)
, (3)

with

D̃L(zhel, zHD) =

(
1 + zhel
1 + zHD

)
DL(zHD) , (4)

and

DL(z) =
c(1 + z)√
ΩkH2

0

sinh

(√
ΩkH2

0

∫ z

0

dz′

H(z′)

)
, (5)

where Ωk = −kc2/(R0H0)
2 is the curvature density param-

eter, with k = 0,−1,+1 for a flat, open and closed universe,
respectively. R0 is a constant with units of length that can be
interpreted as the current radius of curvature in a closed uni-
verse. Using these relations, it is possible to rewrite the ex-
pression of the apparent magnitude in the most usual form,
only in terms of the redshift zHD,

m(zHD) = m̃(zhel, zHD)− 5 log10

(
1 + zhel
1 + zHD

)
= M + 25 + 5 log10

(
DL(zHD)

1Mpc

)
. (6)

This is the apparent magnitude that would be measured
in absence of peculiar motions, and is the function we will
reconstruct in Sec. 3 to perform the tests of Secs. 4.1 and 4.2.
We consider in all our analyses the effect of statistical and
systematic uncertainties in the Pantheon+ data through the
corresponding non-diagonal covariance matrix.

2.3 Baryon Acoustic Oscillations

Acoustic sound waves propagated in the tighly coupled
photo-baryon fluid before the decoupling of CMB photons at
z∗ ≃ 1100. They left an imprint in the distribution of galax-
ies that manifests itself as a peak in the two-point galaxy
correlation function, which is located at the maximum dis-
tance traveled by the sound wave, i.e. the sound horizon at
the baryon drag epoch, rd. This peak translates into wiggles
in the matter power spectrum, its Fourier transform. Sev-
eral galaxy surveys have measured these features in the last
twenty years with increasing degree of precision and span-
ning different redshift ranges (Cole et al. 2005; Eisenstein
et al. 2005). They use rd as a standard ruler with respect to
which they measure cosmological distances at various red-
shifts. This can be employed to constrain cosmological mod-
els in a quite robust way (Sherwin & White 2019; Carter
et al. 2020; Bernal et al. 2020; Brieden et al. 2021a,b). Their
constraints are given either in terms of the dilation scale
DV ,

DV (z)

rd
=

1

rd

[
D2

M (z)
cz

H(z)

]1/3
, (7)

or by splitting (when possible) the angular and radial BAO
information, providing data on DA(z)/rd and H(z)rd sepa-
rately, with some degree of correlation.

MNRAS 000, 000–000 (0000)
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Table 2. List with the 11 BAO data points used in this work. The fiducial values of the comoving sound horizon appearing in the third
column are rfidd = 147.5 Mpc for (Carter et al. 2018) and rfidd = 148.6 Mpc for (Kazin et al. 2014). We have duly taken into account
the existing correlations between the data points of WiggleZ, BOSS DR12 and eBOSS DR16. See the quoted references and the text in
Sec. 2.3 for details.

Survey z Observable Measurement References

6dFGS+SDSS MGS 0.122 DV (rfidd /rd) 539± 17 [Mpc] Carter et al. (2018)
WiggleZ 0.44 DV (rfidd /rd) 1716.4± 83.1 [Mpc] Kazin et al. (2014)

0.60 DV (rfidd /rd) 2220.8± 100.6 [Mpc]
0.73 DV (rfidd /rd) 2516.1± 86.1 [Mpc]

BOSS DR12 0.32 rdH/(103km/s) 11.549± 0.385 Gil-Marín et al. (2017)
DA/rd 6.5986± 0.1337

0.57 rdH/(103km/s) 14.021± 0.225

DA/rd 9.389± 0.103

DES Y3 0.835 DM/rd 18.92± 0.51 Abbott et al. (2022)
eBOSS DR16 1.48 DM/rd 30.21± 0.79 Neveux et al. (2020)

c/rdH 13.23± 0.47 Hou et al. (2020)

In any Riemannian metric theory of gravity with pho-
tons traveling on null geodesics and conservation of the pho-
ton number, the Etherington relation (Etherington 1933)
holds,

DA(z) =
DL(z)

(1 + z)2
. (8)

It is very useful, since it can be employed to convert angular
diameter distances into luminosity distances, and vice versa.
Current low-redshift data does not point to any deviation
from this relation (Renzi et al. 2022).

We show the list of BAO data points employed in this
work and their corresponding references in Table 2.

3 GAUSSIAN PROCESSES

3.1 The basics

Data-driven reconstructions of cosmological functions sub-
ject to minimal model assumptions can be obtained with
Gaussian Processes. Based on Bayesian statistics, this ma-
chine learning algorithm has become in recent years one of
the most widely used model-independent regression tech-
niques in cosmology. It requires the data to be Gaussianly
distributed.

A Gaussian Process f(x) ∼ GP(µ(x), D(x, x̃)) is a gen-
eralization of a multivariate Gaussian, and is defined by the
mean function µ(x) and the covariance matrix D(x, x̃), see,
e.g., (Rasmussen & Williams 2006). If we denote the collec-
tion of the n data points that will be employed to train the
GP as Y , being the latter located at points X, the covariance
matrix D takes the following form

D(x, x̃) ≡

{
K(x, x̃) + C(x, x̃) if x and x̃ ∈ X
K(x, x̃) otherwise

, (9)

where C is the covariance matrix of the data and K(x, x̃)
the so-called kernel function. Imagine that we want to re-
construct our function at the locations X⋆ ( ̸= X). By com-
puting the probability of finding a given realization of the
GP under the condition f(X) = Y we find that the resulting
GP is characterized by the mean function

f̄⋆ = µ⋆ +K(X⋆, X)[K(X,X) + C(X,X)]−1(Y − µ) , (10)

and the covariance

cov(f⋆) = K(X⋆, X⋆)−K(X⋆, X)[K(X,X)+C]−1K(X,X⋆) .

(11)

µ⋆ ≡ µ(X⋆) is the a priori assumed mean of the recon-
structed function at X⋆. The kernel, which encodes the as-
sumptions on the covariance between points at which we do
not have data, plays a central role. There are many possible
kernel functions to be employed in a GP, but the simplest
choice falls into the category of stationary kernels, which
depend only on the distance between the input data points,
that is on |x− x̃|, and not on their individual values x and
x̃, being thus invariant to translations in the input space.
Although the GP is regarded as a non-parametric method,
the kernels introduce some hyperparameters that are typi-
cally in charge of controlling the strength of the fluctuations
and the correlation length between two separate points. Be-
fore the reconstruction, these hyperparameters have to be
determined by a proper optimization or marginalization of
the GP. These two processes require the maximization or
the sampling, respectively, of the likelihood

lnL = −1

2
(Y − µ)T [K(X,X) + C]−1(Y − µ)

− 1

2
ln |K(X,X) + C| − n

2
ln(2π) , (12)

which is obtained by marginalizing the GP over the points
that are not contained in the data set. In many cases, this
likelihood is sharply peaked and the optimized result be-
comes a good approximation (Seikel et al. 2012). This is
usually the case when a constant prior mean is employed in
the analysis (Hwang et al. 2023). However, strictly speak-
ing, from a Bayesian perspective, getting the full distribu-
tion of the hyperparameters is the correct way to proceed.
Indeed, if we want to take into account the correlations be-
tween the kernel hyperparameters and their uncertainties,
we need to abandon the assumption that their distribution
is a Dirac delta, see e.g. (Gómez-Valent & Amendola 2018;
Hwang et al. 2023). By doing so, the non-zero uncertain-
ties of the hyperparameters can then be propagated to the
reconstructed function under study. It is important not to
neglect them or, at least, to duly assess their impact on the
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Figure 1. Histograms of the χ̃2
µ obtained for the reconstruction

of H(z) for the six kernels employed in the GP training (see Sec.
3.2 for more details). The vertical dotted lines are located at the
corresponding mean values. Notice that all of them are clearly
below and far away from 1.

results. We will do so in Sec. 3.3, together with a study of
the impact of the prior mean µ.

In this work we make use of the public package Gaus-
sian Processes in Python (GaPP) 5, first developed by Seikel
et al. (2012). One of its modules is prepared to perform the
Monte Carlo Markov Chain (MCMC) sampling of the ker-
nel hyperparameters. It relies on the public package emcee6

(Foreman-Mackey et al. 2013), which is a Python implemen-
tation of the affine invariant MCMC ensemble sampler by
Goodman & Weare (2010).

3.2 A method to select the kernel

We now present a mathematical criterion to select the most
suitable kernel among the available ones. We then apply it
to the reconstruction of the Hubble function, H(z).

There are six available kernels in the GaPP package. The
simplest one is the Squared Exponential, defined as

K(x, x̃) = σ2
f exp

(
− (x− x̃)2

2l2

)
, (13)

where l and σf are two hyperparameters, in charge of con-
trolling the correlation length between points and the am-
plitude of the uncertainties, respectively. The sum of two
Squared Exponentials defines the so-called Double Squared
Exponential kernel. In GaPP there are also four types of ker-
nels contained in the Matérn family. If we define Γ as the
gamma function and Yν as the modified Bessel function of
the second kind, the Matérn covariance between two points
separated by the distance d = |x− x̃| is given by

Kν(d) = σ2
f
21−ν

Γ(ν)

(
√
2ν

d

l

)ν

Yν

(
√
2ν

d

l

)
, (14)

where ν = p + 1/2, p ∈ N+. In the limit ν → ∞ we re-
cover the Squared Exponential kernel. The Matérn covari-

5 https://github.com/carlosandrepaes/GaPP
6 https://emcee.readthedocs.io/en/stable/

Table 3. Results of the test based on the χ̃2
µ analysis to determine

the kernel that performs the best for the reconstruction of H(z).
In the first column we indicate the pairs of kernels under compari-
son, taking in all cases the Squared Exponential (SE) as reference.
We use the following shorthand notation: Double Squared Expo-
nential (DSE), Matérn 32 (M32), Matérn 52 (M52), Matérn 72
(M72), and Matérn 92 (M92). The second column shows the rel-
ative weight of the kernels. The best-performing kernel is Matérn
32, cf. the line in bold and Sec. 3.2 for more details.

Kernels PSE/Pj

SE vs DSE 1.42
SE vs M32 0.62
SE vs M52 0.72
SE vs M72 0.82
SE vs M92 0.83

ance family is m times differentiable in the mean-square
sense, i.e. the derivative ∂2mK(x, x̃)/∂zm∂z̃m exists and is
finite if ν > m. Higher values of ν translate into wider peaks
and smoother reconstructed functions due to the stronger
correlation between points. GaPP contains the Matérn ker-
nels with ν = 3/2, 5/2, 7/2, 9/2, called Matérn 32, 52, 72
and 92, respectively.

We perform the reconstruction of H(z) employing the
32 CCH data points listed in Table 1 with the GP trained
with the six aforementioned kernels in the redshift range 0 ≤
z ≤ 1.965. We show the results obtained from each kernel in
Appendix A, see Fig. 10. Not very significant differences can
be appreciated between them with naked eye. To assess the
performance of the kernels in the reconstruction of H(z),
we proceed as follows. We draw with each kernel Nreal =
104 GP random realizations, Hrecµ(z) with µ = 1, ..., Nreal,
accounting for both the covariance of the data points and of
the reconstruction. For each realization we compute the χ2

statistics, using the following expression,

χ2
µ =

32∑
i,j=1

[H(zi)−Hrec,µ(zi)]C̃
−1
ij [H(zj)−Hrec,µ(zj)] , (15)

where C̃ is the covariance matrix of the CCH data and the
Latin indices label the np = 32 redshifts at which we have
data. Thus, the Nreal realizations of the Hubble function
lead to Nreal values of χ2

µ. More concretely, in order to pe-
nalize the use of additional hyperparameters, we compute
the reduced χ2, χ̃2

µ = χ2
µ/dof, with dof being the number of

degrees of freedom, i.e. the number of data points minus the
number of hyperparameters. We then build a histogram of
χ̃2
µ for each kernel, cf. Fig. 1. Several comments are in order.

First, the figure shows that the mean values of χ̃2 lie below
and quite far from 1, regardless of the kernel. This might be
due to an overestimation of the CCH uncertainties. In Sec.
5.4 we will speculate about this possibility and see how our
results change when we allow the CCH data to take smaller
errors. Secondly, the kernel Matérn 32 is the one with the
lowest mean χ̃2. However, we need to estimate more quan-
titatively the relative ability of the kernels to describe the
data. Let us consider two kernels Ki and Kj . The probabil-
ity that the reduced χ̃2

µ associated to Ki is lower than the
one associated to Kj reads,

Pχ̃2
Ki

<χ̃2
Kj

=
1

1 + Pj/Pi
, (16)
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Figure 2. Upper plot: Reconstructed shape of the Hubble func-
tion H(z) at 1σ, 2σ and 3σ obtained from Gaussian Processes and
the CCH data of Table 1 (in black). Lower plot: The same, but
for the apparent magnitude of SNIa, m(z) Eq. (6). In this case we
use the observational data from the Pantheon+ compilation, as
explained in Sec. 2.2. See Sec. 3 for details about the GP method.

where Pj/Pi in the right-hand side is the ratio of their statis-
tical weights. In practice, if we use a sufficiently large num-
ber of realizations, Nreal, we can estimate Pj/Pi ∼ Nj/Ni,
with Ni being the number of realizations in which χ̃2

Ki
<

χ̃2
Kj

and Nj = Nreal − Ni. As we are computing relative
weights, we can set e.g. j = 1, and compute its relative
performance with respect to the Kernels K2, ..,K6. In the
analysis presented in Table 3 K1 stands for the Squared Ex-
ponential kernel. It is clear from that table that Matérn 32
is the best-performing kernel regarding the reconstruction
of H(z). For completeness, we also check whether this re-
sult is sensitive to the ordering of the vectors containing the
values of χ̃2

µ. The results are very stable. Indeed, the ratios
PSE/Pi differ only by a tiny percentage, which is only due
to numerical noise, i.e. it becomes smaller and smaller for
increasing values of Nreal.

3.3 Reconstruction of H(z) and m(z)

We reconstruct now the shape of the Hubble function H(z)
and the apparent magnitude of SNIa m(z) using Gaussian
Processes and the data described in Secs. 2.1 and 2.2, re-
spectively. As anticipated in the Introduction, the aim of
obtaining these model-independent reconstructions is to use

them (among other things) to reconstruct first the absolute
magnitude of SNIa and the curvature parameter as a func-
tion of the redshift, see Sec. 4.

We obtain H(z) from CCH following the method and
the prescriptions described in Secs. 3.1 and 3.2, i.e. using the
Matérn 32 kernel, a zero mean function µ, and taking into
account the full distribution of the hyperparameters σf and
l. This, in particular, only has a modest impact on the final
reconstruction. The mean in the marginalization procedure
differs by 5% at most from the optimized result and the er-
rors are 8% larger. Moreover, we have explicitly checked that
we obtain very similar results using µ = 0, 10, 100. They dif-
fer only by ≲ 0.1σ. Hence, a full marginalization process that
includes also the marginalization over a constant µ (together
with the hyperparameters) leads essentially to the same fi-
nal reconstructed shape of H(z). In addition, we have also
studied what happens if we assume a prior mean based on
the ΛCDM prediction, marginalizing also over the parame-
ters H0 and Ωm. We find that this introduces very strong
model dependencies, basically yielding the same output as
in a pure ΛCDM fit. This goes against the philosophy of
our work, so we prefer to use a constant mean in our main
analyses.

Due to the large covariance matrix of the Pantheon+
compilation, it is very expensive from the computational
point of view to perform the marginalization over the hy-
perparameters and repeat the analysis of Sec. 3.2 for m(z),
so we opt to use also in this case the Matérn 32 kernel and
the best-fit values obtained from the maximization of the
marginalized likelihood Eq. (12). Using the binned Pantheon
data from (Scolnic et al. 2018), we have checked that the re-
sults are not very sensitive to these choices. In addition, we
employ the reconstruction of m(z) only in some of the tests
of Sec. 4. The conclusions of these tests do not depend on
these subtleties. To obtain the final constraints on the triad
of parameters (M,Ωk, rd) in Sec. 5 we only make use of the
reconstruction of the Hubble rate, which duly incorporates
the uncertainties of the hyperparameters.

We show the reconstructed shapes of H(z) and m(z)
in Fig. 2. The extrapolated value of the Hubble parameter
reads, H0 = (70.7 ± 6.7) km/s/Mpc. For previous recon-
structions of the Hubble rate with GPs and CCH see e.g.
(Busti et al. 2014; Yu et al. 2018; Gómez-Valent & Amen-
dola 2018; Haridasu et al. 2018; Yang et al. 2023; Renzi &
Silvestri 2023), and for previous reconstructions of m(z) or
the distance modulus from SNIa data see e.g. (Seikel et al.
2012; Cai et al. 2016; Yu & Wang 2016; Yang & Gong 2021;
Liang et al. 2022; Renzi & Silvestri 2023).

4 SOME TESTS OF THE CONSISTENCY OF
LOW-Z DATA AND THE THEORETICAL
ASSUMPTIONS BEHIND THE STANDARD
COSMOLOGICAL MODEL

4.1 Testing the constancy of M

In this section we reconstruct the shape of the absolute mag-
nitude of SNIa, M(z), in order to test its constancy through-
out the cosmic expansion, in the redshift range z ≲ 2. In Sec.
3.3 we have obtained the GPs associated to H(z) and m(z).
We can reconstruct M(z) using formula (6). First, we draw
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8 A. Favale, A. Gómez-Valent & M. Migliaccio

Figure 3. Reconstruction of M(z) and its derivative dM/dz at
68% and 95% C.L., obtained by fixing Ωk = 0 and using the
method described in Sec. 4.1. The constant lines appearing in
the plots (in blue and red, respectively) are the corresponding
weighted means, computed with formula (19).

Nreal = 5 · 105 realizations (curves) of the Hubble function
and the apparent magnitude from their corresponding Gaus-
sian Process. In order to compute the reconstructed shape
of the luminosity distance using Eq. (5) we have to employ
a prior for the curvature parameter. For this first analysis
we fix Ωk = 0, while then we will study also other values to
assess the impact of this prior on our result. For each realiza-
tion in the sample, we compute M(zi) at np = 50 equispaced
knots. We present the reconstructed shape of M(z) and its
first derivative, dM/dz, in Fig. 3. From these plots it is ev-
ident that the resulting function is fully compatible with
a constant at ≲ 1σ. We have checked that this statement
actually holds for a wide range of values of the curvature
parameter Ωk ∈ [−1, 1].

In view of these results, it is natural to estimate the
value of the constant M from the reconstructed shape of
M(z). As we have np knots we have np distributions of
M , i.e. one for each knot. These samples are correlated,
of course. Assuming that they are Gaussianly distributed,
we can construct a probability distribution that takes the
following form,

L(M) = N exp

[
−1

2

np∑
i,j=1

(M − M̄i)(M − M̄j)(C
−1)ij

]
,

Figure 4. Constraints at 1σ C.L. on the constant values of M

obtained from the reconstructed shapes of M(z) with different
priors on Ωk. They are taken to be Dirac deltas located at the
points of the x-axis. The shapes of M(z) are in all cases consistent
with constant values (see Fig. 3 and Sec. 4.1), but it is clear from
this plot that these constants are strongly dependent on the prior
we use for the curvature. In order to get consistent constraints for
both, M and Ωk, we need to perform a joint analysis. See Sec. 5.

(17)

with N the normalization constant and M̄i the mean value
in the i-th knot. Let us define now Aij ≡ (C−1)ij to sim-
plify the notation7. It is easy to show that Eq. (17) can be
rewritten as follows

L(M) = Ñ exp

−1

2

( np∑
i,j=1

Aij

)M −

np∑
i,j=1

M̄iAij

np∑
i,j=1

Aij


2 .

(18)

This means that the distribution of M is a Gaussian with
mean and deviance

M̄ =

np∑
i,j=1

M̄iAij

np∑
i,j=1

Aij

; σ2 =
1

np∑
i,j=1

Aij

, (19)

respectively. We estimate the covariance matrix from our
sample as follows,

Cij =
1

Nreal

Nreal∑
µ=1

(Mµ,i − M̄i)(Mµ,j − M̄j) , (20)

where Mµ,i is the value of the absolute magnitude at the
i-th knot for each realization µ = 1, ..., Nreal.

Applying these formulas, we find M̄ = (−19.368±0.092)
mag in the case in which we set Ωk = 0. However, this
result can only be considered as a first approximation for

7 Notice that this covariance matrix C is different to the one
defined in the preceding formula (2).
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two reasons: (i) non-Gaussian features, despite being small,
can introduce some mild changes, which are not captured
by the distribution Eq. (17). However, we have performed
a sanity check to verify that the np distributions of M are
Gaussian in very good approximation. At each redshift point
where we reconstruct M(z), we build a histogram from its
Nreal realizations and check that the skewness of each of
them is compatible with zero. Hence, the bias introduced by
this fact is certainly very small; and (ii) in this calculation
all the redshift range is equally weighted, but in reality the
data points are not uniformly distributed and this might
also have an impact on the estimation of the weighted mean
and its uncertainty.

As mentioned before, the shape of M(z) is compatible
with a constant regardless of the value of Ωk chosen to carry
out the analysis. Nevertheless, it is important to notice that
the value of that constant depends a lot on the prior. In Fig.
4 we show how the constraint on M changes with Ωk, from
values of M ∼ −19.2 mag to M ∼ −19.45 mag when Ωk

varies from −0.8 to +0.5. The range of values of Ωk explored
here is much broader than what is allowed by the ΛCDM
constraints from Planck (Aghanim et al. 2020). This has to
be consistent with our model-independent approach. As we
will see in Sec. 5, large absolute values of the curvature are
not excluded by the low-redshift data sets employed in this
paper.

The test done in this section demonstrates that with
CCH and Pantheon+ data sets, there is no significant sta-
tistical preference for the evolution of M(z). However, if we
want a robust estimate on the constant value of M , we need
to constrain simultaneously both M and Ωk in a joint anal-
ysis. This will become even more evident in Sec. 4.2, where
we reconstruct Ωk(z).

4.2 Testing the Cosmological Principle

Now, we reconstruct Ωk(z). The result can be employed to
test the Cosmological Principle without specifying the en-
ergy content of the universe nor the gravity action. Clarkson
et al. (2008) proposed to use

Ωk(z) =
[H(z)D′

M (z)/c]2 − 1

[H0DM (z)/c]2
, (21)

with the prime denoting a derivative with respect to the
redshift, as a diagnostic of the homogeneity of the universe.
This expression is obtained straightforwardly from Eq. (5).
Deviations of it from a constant value at any redshift can
be considered to be a hint of the breaking of the CP. The
function (21) can be reconstructed from measurements of
H(z) and the luminosity distance. Hence, we can build it
from CCH and calibrated SNIa data.

Here, we reconstruct the curvature parameter as a func-
tion of z, but in an alternative way, which allows us to skip
the numerical computation of the derivatives D′

M (z) appear-
ing in Eq. (21). It works as follows. We use the GP of H(z)
to generate N samples of the Hubble function. On the other
hand, we draw N values of M from the SH0ES Gaussian
prior on the absolute magnitude of SNIa, MR22. With the
latter and N GP-realizations of m(z) we can reconstruct
DL(z) using formula (6), and also the angular diameter dis-
tance through the Etherington relation (8). We employ all

these ingredients to solve Eq. (5) numerically for every red-
shift and find N realizations of Ωk(z). Our results are pre-
sented in Fig. 5. The reconstructed function is compatible
with a constant, so there is no hint of a violation of the
CP. This resonates well with previous results in the litera-
ture obtained with older data sets and applying a different
methodology, see e.g. (Cai et al. 2016; Yu & Wang 2016;
Yang & Gong 2021). We have verified that this finding is
again independent of the prior on M employed in the analy-
sis, although the constraint we get on the constant value of
Ωk does depend on it. This is evident from Fig. 5, see also
the caption. In Sec. 5 we will provide joint constraints on M
and Ωk in order to get rid of the ambiguity introduced by
the subjective choice of the priors.

4.3 Testing the consistency of the BAO data

In this section we test the internal robustness of the BAO
data listed in Table 2 in the light of the CCH data. Given the
reconstructed expansion rate derived from CCH, we would
expect the values of rd obtained from the various BAO data
points to be statistically consistent with each other. Other-
wise, this could signal the presence of uncorrected systematic
effects in the data.

We apply a method that is completely analogous to the
one performed to obtain M(z) and Ωk(z) in Secs. 4.1 and
4.2, respectively. We use the GP for H(z) to generate curves
of the Hubble function. From them we can also reconstruct
DA(z) for a fixed curvature parameter (we first consider the
case of a flat universe, i.e. Ωk = 0). We compute the an-
gular diameter distances and H(z) at the redshifts of the
BAO data points. We then draw Gaussian-distributed vec-
tors of BAO data and combine this information to obtain
11 distributions of rd, i.e. one for each BAO data point.

We present our results in the upper plot of Fig. 6.
For those redshifts with two BAO data points (at z =
0.32, 0.57, 1.48, cf. Table 2) we use the weighted mean and
uncertainty as provided in formula (19) to obtain a single
value of rd. It is clear from that plot that the values of rd
at the various redshift values are consistent with each other.
This result still holds (at 68% C.L.) if we allow the uni-
verse to take closed or open geometries, as we have explicitly
checked by exploring values of Ωk ∈ [−0.8,+0.5].

5 CALIBRATION OF THE COSMIC LADDERS
AND MEASUREMENT OF ΩK

The analyses carried out in Sec. 4 show no evidence for an
evolution of the absolute magnitude of SNIa with redshift
nor a departure from homogeneity at large scales. Moreover,
we have checked that the BAO data employed in this work
are consistent and lead to values of rd that are fully compat-
ible with each other. Hence, we are legitimated to perform
an analysis to jointly constrain the curvature parameter and
the calibrators of the distance ladders by treating them sim-
ply as constants8.

8 We still assume cosmological isotropy, even though this sym-
metry of the CP has not been tested by us. See (Aluri et al. 2023)
for a review of the CP and hints for deviations from it.
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Figure 5. Upper plots: Reconstructed shape of Ωk(z) and dΩk(z)/dz at 1σ and 2σ C.L. obtained as explained in Sec. 4.2, assuming the
SH0ES prior MR22 (Riess et al. 2022). Lower plots: The same, but using the Gaussian prior for M obtained from the analysis presented
in Fig. 3, M = (−19.368 ± 0.092) mag. In all the plots the dot-dashed lines correspond to the mean curves of Ωk(z) and dΩk(z)/dz,
while the constant solid lines are their overall weighted mean, computed again with formula (19). We get the mean values Ω̄k = −0.21
and Ω̄k = −0.17 in the upper and lower plots, respectively.

We obtain constraints in the planes (M,Ωk) and
(rd,Ωk) using CCH+SNIa (in Sec. 5.1) and CCH+BAO
(in Sec. 5.2), respectively, making use of a quite model-
independent approach, which is also independent of the data
sets that drive the H0 tension. Both, uncalibrated SNIa
and BAO, are relative distance indicators. In practice, we
use CCH to calibrate the standard candles and the stan-
dard rulers. Finally, in Sec. 5.3 we combine the three data
sets CCH+SNIa+BAO to constrain the full parameter space
(M, rd,Ωk). The results of these analyses are shown in Fig.
7 and the derived constraints on the various parameters are
presented in Table 4.

In Sec. 5.5 we include the SNIa in the host galaxies and
the information of their distances (inferred from calibrated
Cepheid variable stars) to assess their impact. In Sec. 5.4
we speculate about the possibility that uncertainties on the
CCH have been overestimated. Specifically, we study a case
in which CCH uncertainties have been lowered to get a dis-
tribution of χ̃2

µ with a mean equal to one (see Sec. 3.2).

5.1 Analysis with CCH+SNIa

We employ the CCH and SNIa data sets to obtain joint
constraints in the plane (M,Ωk) making use of a grid-search
method. First, we employ the GP trained with the CCH

Table 4. Constraints on M , Ωk and rd obtained from the joint
analyses of Secs. 5.1-5.3, see also Fig. 7. We remind the reader
that these results are independent from the SNIa calibration with
Cepheids in the first rungs of the cosmic distance ladder, since
we exclude the SNIa contained in the host galaxies employed by
SH0ES in their analysis (Riess et al. 2022; Scolnic et al. 2022).
Notice that the central values for Ωk obtained with CCH+SNIa
and CCH+SNIa+BAO are the same and a bit larger than the
one obtained with CCH+BAO. In reality, the CCH+SNIa+BAO
constraint for Ωk falls somewhere in the middle between the
CCH+SNIa and CCH+BAO results, as expected, but we are lim-
ited by the resolution of our grid, since we use a step ∆Ωk = 0.03.
In any case, this step is much lower than the uncertainty of Ωk,
so this fact has no impact on our conclusions.

CCH+SNIa CCH+BAO CCH+SNIa+BAO

M [mag] −19.344+0.116
−0.090 −19.314+0.086

−0.108

Ωk −0.07+0.27
−0.21 −0.10± 0.18 −0.07+0.12

−0.15

rd [Mpc] 141.9+5.6
−4.9 142.3± 5.3

data to get N = 1.5 ·106 reconstructed curves of H(z), from
which we obtain N reconstructions of I(z) =

∫ z

0
dz′/H(z′),

i.e. the integral that enters the expression of the luminosity
distance Eq. (5). Actually, we only need to keep the values
of this function at the redshifts at which we have the SNIa
data, so we end up with N vectors of values of I(z). Then,
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Figure 6. Upper plot: Result of the consistency test of the BAO
data listed in Table 2, as described in Sec. 4.3. The plot shows
measurements of rd (at 68% and 95% C.L.) as a function of the
redshift, fixing Ωk = 0. The dot-dashed line passes through the
peak values of the individual histograms of rd(z) at each redshift,
while the solid line represents the weighted mean obtained from
formula (19), which reads: r̄d = (142.5 ± 5.3) Mpc. Lower plot:
Dependence of the weighted mean r̄d (at 1σ C.L.) on the prior
value of Ωk employed in the analysis.

we build a rectangular grid in the plane (M,Ωk), with M ∈
[−19.8,−18.9] mag and Ωk ∈ [−1, 1]. The size of the steps
is not uniform, we use smaller steps in those regions of the
plane with a higher probability. This determines the total
number of points that make up our grid. At each point of the
grid, which is characterized by the values of M and Ωk, we
transform the N vectors with I(z) into N vectors with DL(z)
by virtue of Eq. (5) and, subsequently, in N vectors with the
apparent magnitude mrec(z). This enables us to perform
a χ2 analysis using the SNIa data. For each i = 1, .., N
realizations in the µ-th knot, we have

χ2
µ,i =

1624∑
k,l=1

[m(zk)−mrec,µ,i(zk)]C
−1
kl [m(zl)−mrec,µ,i(zl)] ,

(22)

where C is here the covariance matrix of the SNIa.
To evaluate the behaviour of M and Ωk and constrain

these parameters, we can now use an estimator, χ2
eff , which

associates at each knot of the grid a weight wµ proportional

to

wµ ∝ Bµ

N∑
i=1

exp(−χ2
µ,i/2) . (23)

where the factor Bµ = ∆M ·∆Ωk|µ accounts for the size of
the bins at the µ-th knot. We use flat priors for M and Ωk.
We can also rewrite the last expression in a slightly different
way in order to ease its numerical computation,

wµ ∝Bµ exp(−χ̄2
µ/2)

N∑
i=1

exp(−[χ2
µ,i − χ̄2

µ]/2)︸ ︷︷ ︸
≡fµ

,

wµ ∝Bµ exp(−χ̄2
µ/2)fµ , (24)

with χ̄2
µ the mean of the χ2 in that particular knot. Our

estimator reads,

χ2
µ,eff = χ̄2

µ − 2 ln(Bµfµ) . (25)

We associate a weight to each knot wµ ∝ exp(−χ2
µ,eff/2).

The knot at which this quantity is maximum or, equiva-
lently, at which χ2

eff is minimum, is associated to the best-fit
values of (M,Ωk).

The two-dimensional probability for the parameters X
and Y , PXY , can be easily computed as follows,

PXY (x, y) =
wµ→(x,y)∑

β

wβ
(26)

where in the denominator we sum over all the knots, and in
the numerator we only consider the knot associated to the
values x and y of the parameters X and Y , respectively.

We can also compute the one-dimensional posterior
probability for each parameter X, PX , using the analogous
expression

PX(x) =

∑
µ→x

wµ∑
β

wβ
, (27)

where now in the numerator we sum over those knots asso-
ciated to the value x of the parameter X.

The one-dimensional posteriors and the confidence re-
gions at 68% and 95% C.L. in all the planes of parameter
space are provided in Fig. 7. By evaluating for each pa-
rameter the maximum of the probability Eq. (27) and the
68% confidence intervals, we obtain the following results:
M = (−19.344+0.116

−0.090) mag and Ωk = −0.07+0.27
−0.21. The con-

straint on Ωk is similar to the one found by Dhawan et al.
(2021) using the Pantheon compilation of SNIa (instead of
the most updated Pantheon+) and without considering the
correlations between the CCH data nor the data point from
(Borghi et al. 2022), Ωk = −0.03±0.26. In addition, we also
provide a constraint on M , which is not reported by Dhawan
et al. (2021), since they marginalize their result over it.

5.2 Analysis with CCH+BAO

The same methodology described in Sec. 5.1 can be applied
in an analogous way to the plane (Ωk, rd) using the CCH and
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Figure 7. Two-dimensional contour plots in all the planes of the parameter space (M,Ωk, rd) and the corresponding one-dimensional
posterior probability distributions obtained from the joint analyses described in Secs. 5.1-5.4. The 2D contours are evaluated at 68% and
95% C.L. As expected, the combination of the three data sets (CCH+SNIa+BAO) permits to obtain tighter constraints with respect
to the CCH+SNIa and CCH+BAO analyses (see the estimated values in Table 4). This trend is even more remarkable if we allow
uncertainties on the CCH data to decrease by a factor ∼ 3/2 (in red). See Sec. 5.4 for more details.

the BAO data sets. The former is used to calculate N vectors
with the values of H(z) and the angular diameter distance
DA(z) at the BAO redshift points. This information can
then be employed to perform a χ2 analysis and compute the
weights at each point of the grid. In this case the grid ranges
are Ωk ∈ [−1, 1] and rd ∈ [120, 165] Mpc.

The resulting constraints read Ωk = −0.10 ± 0.18 and
rd = (141.9+5.6

−4.9) Mpc. The combination of the CCH data set
with the BAO measurements still favors a negative central
value for the curvature parameter, although it is compat-
ible with a flat geometry within only ∼ 0.6σ. The uncer-
tainty of Ωk is ∼ 25% smaller than in the analysis with
CCH+SNIa. This is clear from the comparison of the green
and yellow one-dimensional posteriors of the curvature pa-
rameter in Fig. 7.

The posterior of rd peaks ∼ 1σ below the preferred
Planck/ΛCDM value, rd = (147.09 ± 0.26) Mpc, closer to
the region preferred by Early Dark Energy and modified

gravity models proposed to alleviate the H0 tension, see e.g.
(Poulin et al. 2019; Solà Peracaula et al. 2020). However,
this deviation is not statistically significant.

5.3 Joint analysis with CCH+SNIa+BAO

The full parameter space can be now explored to get joint
constraints for (M,Ωk, rd) by taking advantage of the results
gathered in Secs. 5.1 and 5.2. We can combine the previous
results to get a total χ2 as follows,

χ2(M,Ωk, rd) = χ2(M,Ωk) + χ2(Ωk, rd) , (28)

since the SNIa and BAO data are independent. We use
again the expression (27) to obtain the individual con-
straints for the three parameters. The final results read:
M = (−19.314+0.086

−0.108) mag, Ωk = −0.07+0.12
−0.15 and rd =

(142.3 ± 5.3) Mpc. As expected, the combination of all the
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Figure 8. As in Fig. 7, but including the information from the SNIa in the host galaxies (Scolnic et al. 2022) and their distances
employed by SH0ES (Riess et al. 2022). See Sec. 5.5 for further comments.

low-z data sets employed in this work leads to smaller uncer-
tainties (see Table 4 and Fig. 7), specially in the case of Ωk,
since this is the only parameter that is constrained from both
the CCH+SNIa and CCH+BAO data sets. If we set Ωk = 0
we find M = (−19.346+0.094

−0.088) mag and rd = (142.6 ± 5.3)
Mpc, which remain extremely close to the main results, but
with slightly smaller errors9.

Our result for the absolute magnitude is independent of
the SNIa distance ladder calibration. It is compatible within
1σ with MR22, but our method cannot achieve the precision
attained by SH0ES (Riess et al. 2022). We study in Sec. 5.5
the impact of considering also the SNIa in the host galaxies
and their distances. Our value of M is also in agreement with
the one in (Gómez-Valent 2022a), obtained using a different
method based on the index of inconsistency by Lin & Ishak
(2017), the Pantheon data set and less CCH data points,
but still making use of the combination CCH+BAO+SNIa.
We find a 1σ-compatibility also with the ΛCDM result M =

9 We take the arithmetic mean of the upper and lower uncertain-
ties to make this comparison.

(−19.403± 0.010) mag (Gómez-Valent 2022b), although we
remark again that our results have been obtained in a model-
independent way.

Our measurement of Ωk points very mildly to a closed
universe, being compatible with the flatness assumption
within only ∼ 0.5σ. In contrast to the previous work
(Gómez-Valent 2022a), which reports Ωk = −0.01 ± 0.1,
here we do not make use of any cosmological prior inspired
by the Planck/ΛCDM results. The latter would dominate
the final constraint on the curvature parameter over the
low-z data sets, something that we wanted to avoid here.
The uncertainty of Ωk is much larger than the one ob-
tained in model-dependent analyses like the one by Aghanim
et al. (2020) or Vagnozzi et al. (2021b). The latter obtain
Ωk = −0.0054±0.0055 in the context of the non-flat ΛCDM
by combining the CMB data from Planck with CCH.

The calibration of the standard ruler with
CCH+SNIa+BAO leads to a value which is ∼ 1σ smaller
than the ΛCDM value preferred by Planck (Aghanim et al.
2020), similar to the one obtained from the CCH+BAO
analysis, and again peaks at values more in accordance
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Table 5. The same as in Table 4, but including the SNIa in the
host galaxies (Scolnic et al. 2022) and their distances to calibrate
the SNIa as SH0ES (Riess et al. 2022). This has a very little
impact on our constraints on Ωk and rd.

CCH+SNIa_host CCH+BAO CCH+SNIa_host+BAO

M [mag] −19.252+0.024
−0.036 −19.252+0.024

−0.036

Ωk −0.13+0.18
−0.21 −0.10± 0.18 −0.10+0.12

−0.15

rd [Mpc] 141.9+5.6
−4.9 141.9+5.6

−4.9

with theoretical scenarios that alleviate the Hubble tension.
Our value of the sound horizon at the drag epoch is also
compatible with other model-independent analyses, as
those by Haridasu et al. (2018), rd = (145.6± 5) Mpc, and
Gómez-Valent (2022a), rd = (146.0+4.2

−5.1) Mpc.
We also measure H0 employing as a prior our

CCH+SNIa+BAO constraint on M and the apparent mag-
nitudes of the SNIa in the Hubble flow (0.023 < z < 0.15).
We make use of the cosmographical expansion

DL(z) =
cz

H0

[
1 +

z

2
(1− q0)

]
+O(z3) . (29)

Curvature corrections are of third order in z and, hence,
we can neglect them in this analysis. We obtain H0 =
(71.5± 3.1) km/s/Mpc, with an uncertainty that is roughly
a factor 1/2 smaller than the one obtained using only CCH,
see Sec. 3.3. As a byproduct, we also constrain the de-
celeration parameter q0 = −0.44 ± 0.19. This result is
fully compatible with the model-independent measurements
extracted from CCH+SNIa+BAO (Haridasu et al. 2018;
Gómez-Valent 2019), but with an uncertainty a factor two
larger, since here q0 is fixed only by the SNIa in the Hubble
flow.

Our results are independent of the direct and inverse
distance ladders, quite model-independent and robust under
the use of alternative GP kernels (cf. Appendix B). This is
interesting per se. However, they cannot arbitrate the H0

tension yet. The low-redshift data sets under consideration
give still room to new physics both in the pre- and post-
recombination eras.

5.4 Considering smaller uncertainties in the CCH
data

The GPs kernel performance test done in Sec. 3.2 shows that
the mean values of the reduced chi-square, χ̃2

µ = χ2
µ/dof

Eq. (15), associated to the reconstruction of H(z) with the
CCH data points listed in Table 1 are all much smaller than
1 (see also Fig. 1). This result is not expected to be due
to an overfitting of the GP, since similar values of the χ̃2

are also found in fitting analyses with a simple straight line
or a parabola, cf. Table 5 of (Gómez-Valent & Amendola
2018). As already mentioned, the small values of χ̃2

µ could
instead be a hint of an overestimation of the errors in the
covariance matrix of the CCH data, C̃ij . In this section, we
want to explore this possibility by studying how the results
in the analyses of Secs. 5.1-5.3 change if we allow for smaller
uncertainties in C̃ij . With this aim we build the new CCH
covariance matrix C̃ij,new = C̃ij/N

2, with N a positive fac-
tor. This is equivalent to decrease all the individual CCH
uncertainties by a common factor N , while leaving the pre-
vious correlation coefficients intact. For this purpose, we first

repeat the test of Sec. 3.2 with the Matérn 32 kernel, but
increasing the values of N > 1 until the mean of the corre-
sponding reduced chi-squared equals one, i.e. until χ̃2

µ = 1.
We find that this happens when the CCH uncertainties de-
crease by a factor N = 1.579 ∼ 3/2. We denote the result-
ing CCH data set with the new covariance matrix simply as
CCHnew to distinguish it from the original one (CCH). We
can now repeat the analyses of Secs. 5.1-5.3 with CCHnew

to study the impact of this change on the data uncertain-
ties, bearing in mind that this is only a first (naive) attempt
to estimate the impact of a possible overestimation of the
uncertainties of the CCH data10. This leads to the follow-
ing CCHnew+SNIa+BAO constraints: M = (−19.326+0.050

−0.068)
mag, Ωk = 0.10+0.12

−0.15 and rd = (142.6+3.9
−3.5) Mpc. The uncer-

tainties of rd and M decrease by a ∼30%-40% with respect
to those found in the CCH+SNIa+BAO analysis (see also
Fig. 7). We do not find, however, the same decrease in the
uncertainty of Ωk. The reason is simple. Let us focus on
the combination CCHnew+SNIa. The low-redshift data at
z ≪ 1 basically constraints M and is insensitive to the cur-
vature parameter. At larger redshifts, though, we can get
constraints on Ωk, which depend on the reconstruction of
the ratio E(z) = H(z)/H0, see formula (5). The point is
that the correlation coefficients employed in the new CCH
data set are exactly the same as those used in the original
analysis, what makes the reconstructed shape of E(z) to re-
main the same. This fact, in turn, explains why we find the
same constraint on Ωk as well.

5.5 Inclusion of the SNIa in the host galaxies and
their distances

In our main analyses of Secs. 5.1-5.3, and also in Sec. 5.4, we
have excluded the SNIa located in the Cepheid host galax-
ies, i.e. those employed by SH0ES to calibrate the SNIa in
the second rung of the cosmic distance ladder (Riess et al.
2022; Scolnic et al. 2022). We do so to obtain results that
are independent of the main drivers of the Hubble ten-
sion. Nevertheless, we may ask ourselves which is the im-
pact of considering this additional information, which ac-
tually is included in the full Pantheon+ compilation. We
call this SNIa data set SNIa_host, in short, and follow
the same procedure applied in Secs. 5.1-5.3. The results
of this analysis are shown in Fig. 8 and listed in Table 5.
The output from the analysis with CCH+BAO is not sensi-
tive to the changes in the SNIa data set, for obvious rea-
sons. As expected, the constraints on M are fully domi-
nated by the calibration of the SNIa at the host galaxies.
In particular, for the CCH+SNIa_host+BAO analysis we
obtain: M = (−19.252+0.024

−0.036) mag, Ωk = −0.10+0.12
−0.15 and

rd = (141.9+5.6
−4.9) Mpc, with H0 = (74.0+1.0

−0.9) km/s/Mpc. No
important differences are found in the curvature parameter
and rd with respect to the results presented in Sec. 5.3.

10 A more refined analysis would probably require a better un-
derstanding of the systematics in the data and/or the application
of an improved statistical method, on the lines of what was done
by Hobson et al. (2002).
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Figure 9. Upper left plot: Model-independent constraint on M obtained from the analysis of Sec. 5.3, compared with the SH0ES
posterior MR22 = (−19.253 ± 0.027) mag (Riess et al. 2022) and the constraint obtained in the ΛCDM from the fitting analysis with
Planck2018+SNIa+BAO data, M = (−19.403 ± 0.010) mag (Gómez-Valent 2022b). Upper right plot: The same, but for rd. Here, our
result is compared with the posterior obtained from the Planck2018+SNIa+BAO analyses in the context of ΛCDM, rd = (147.17±0.20)

Mpc, and the ultra-light axion-like model of early dark energy, rd = (144.4 ± 1.5) Mpc (Gómez-Valent 2022b). Lower plot: Constraint
on H0 obtained from our CCH+SNIa+BAO prior on M (cf. the upper left plot and Table 4) and the apparent magnitudes of the SNIa
in the Hubble flow, cf. Sec. 5.3. This result is compared with the SH0ES (Riess et al. 2022) and Planck/ΛCDM (Aghanim et al. 2020)
values.

6 CONCLUSIONS

In this paper we have first reconstructed the absolute magni-
tude of SNIa and the curvature of the universe as a function
of the redshift up to z ≈ 2 making use of Gaussian Processes
and data on cosmic chronometers and the Pantheon+ com-
pilation of supernovae of Type Ia. We have found that these
low-redshift data sets do not point to a time evolution of the
SNIa intrinsic luminosity nor a breaking of the homogene-
ity of the universe at large scales. Both, M(z) and Ωk(z)
are compatible at 68% C.L. with a constant. In addition, we
have also tested the consistency of the BAO data from the
galaxy surveys 6dFGS, BOSS, eBOSS, WiggleZ and DES
Y3, by checking that they are all compatible with a com-
mon value of rd, at least under the precision offered by the
CCH data. Motivated by these results, we have then con-
strained with CCH, SNIa and BAO the constant values of
Ωk and the calibrators of the direct and inverse distance
ladders, M and rd. We have done so by applying a quite
model-independent method, which is also independent from
the first rungs of the cosmic distance ladder employed by
SH0ES and the CMB data from Planck, i.e. from the main
data sets involved in the Hubble tension. This is in contrast

to other results obtained in the context of the ΛCDM, see
e.g. (Aghanim et al. 2020; Handley 2021; Di Valentino et al.
2019; Gómez-Valent 2022b). We obtain: Ωk = −0.07+0.12

−0.15,
M = (−19.314+0.086

−0.108) mag and rd = (142.3± 5.3) Mpc. We
have checked that the inclusion of the SNIa in the host galax-
ies and their distances only affects the value of M , making
its central value and uncertainties to be very close to those
measured by SH0ES.

Our results improve previous constraints in the litera-
ture obtained also with Gaussian Processes but with slightly
different data sets and methodologies. For instance, Benisty
et al. (2023) obtained M = (−19.42± 0.35) mag from data
on BAO and SNIa together with a Planck prior for rd. We,
instead, have measured M with an uncertainty three times
smaller. In addition, we have extracted joint and model-
independent constraints for Ωk and rd as well, with a more
refined BAO data set, which is free from double-counting
issues and incorporates the effect of correlations. Our deter-
mination of Ωk is 50% more precise than the one carried out
by Dhawan et al. (2021), Ωk = −0.03± 0.26, thanks mainly
to the use of BAO data on top of the CCH and the Pan-
theon+ compilation of SNIa. The same level of improvement
is also obtained compared to the cosmographical analysis of
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Figure 10. Reconstructed shapes of the Hubble function H(z) at 1σ, 2σ and 3σ C.L. obtained from Gaussian Processes and the CCH
data of Table 1 (in black) with the six different GP kernels described in Sec. 3.2.

SNIa and strong lensing data by Collett et al. (2019), who
reported Ωk = 0.12+0.27

−0.25. The present work also improves
the analysis of (Gómez-Valent 2022a), since here we have
not used any external prior for the curvature parameter and
have employed the SNIa contained in the Pantheon+ com-
pilation, instead of those of Pantheon. However, the uncer-
tainties that we have found are still one order of magnitude
larger compared to the model-dependent determinations by
Planck (Aghanim et al. 2020). As discussed by Dhawan et al.
(2021), this could change in the next years, when e.g. SNIa
data from the Vera C. Rubin Observatory’s Legacy Survey of
Space and Time (LSST, Abell et al. 2009; Ivezić et al. 2019)
and BAO data from Euclid (Laureijs et al. 2011) and the
Dark Energy Spectroscopic Instrument (DESI, Aghamousa
et al. 2016) become available. This will not only decrease
the uncertainties of the curvature parameter through the
model-independent analyses of standard candles and large-
scale structure data (Amendola & Quartin 2021; Amendola
et al. 2022), but also improve the constraints we get for the
calibrators M and rd, which is obviously important for the
discussion of the H0 tension. As shown in Fig. 9, in the light
of the current low-redshift data our method does not let
us arbitrate the tension yet (we obtain H0 = (71.5 ± 3.1)
km/s/Mpc with CCH+SNIa+BAO), but we might be able
to do so with the advent of the aforementioned upcoming
telescopes and surveys. We have seen in Sec. 5.4 that a de-
crease by a factor 3/2 of the uncertainties of the CCH data
produces a 30% − 40% decrease of the uncertainties of the
calibrators. Thus, an improvement in the CCH data, either
in terms of quality or quantity, can also have a non-negligible
impact on the outcome of this method. Euclid, for instance,
is expected to provide up to a few thousands passively evolv-
ing galaxies at z ≲ 2, increasing by 2 orders of magnitude
the currently available statistics (Moresco et al. 2022).

The method we propose will then find interesting ap-
plications in the future, when all these new data become a
reality. It will serve as both a discriminator of models be-

yond the ΛCDM and an independent means of testing the
calibration of the direct and inverse cosmic distance ladders.

APPENDIX A: GP-RECONSTRUCTION OF
H(Z) WITH DIFFERENT KERNELS

In Sec. 3.2 we have explained a method to select in an ob-
jective way a GP-kernel among a group of them given a
collection of data points. Here, we just show in Fig. 10 the
reconstructed shapes of the Hubble function obtained from
six different kernels, namely: Squared Exponential, Double
Squared Exponential, Matérn 32, Matérn 52, Matérn 72 and
Matérn 92. As already discussed, the differences are not im-
portant. This resonates well with the results reported in Ta-
ble 3 and the conclusions reached in Sec. 3.2.

APPENDIX B: RESULTS WITH THE
GAUSSIAN KERNEL

In this appendix we briefly study the robustness of the re-
sults presented in Secs. 5.1-5.3 under the choice of a different
GP kernel. To do so, we adopt the Gaussian kernel, which
is defined by Eq. (13). It is the smoothest kernel within
the Matérn family. It is infinitely differentiable, and so is
also the reconstructed function obtained from the GP, see
Sec. 3.2 for details. Using the Gaussian kernel instead of
Matérn 32 we find the following results with the compila-
tion of data CCH+SNIa+BAO: M = −19.314+0.098

−0.079 mag,
Ωk = −0.10+0.12

−0.15 and rd = 141.9+5.3
−4.9 Mpc. By comparing

these results to those provided in Table 4 we see that they
are stable under the choice of the kernel. The shift in the cen-
tral value of Ωk is equal to the bin size of the grid, whereas
we find a 4% decrease in the error bars of rd and a 9% in M ,
and completely compatible results also for the central values
of these parameters. In our main analysis we opt, though,

MNRAS 000, 000–000 (0000)



CCH to calibrate the ladders and measure Ωk 17

to employ Matérn 32, since this is the kernel that leads to
the most conservative results, cf. again Sec. 3.2.
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