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Statistical isotropy of primordial perturbations is a common assumption in cosmology, but it is an
assumption that should be tested. To this end, we develop cosmic microwave background statistics for a
primordial power spectrum that depends on the direction, as well as the magnitude, of the Fourier wave
vector. We first consider a simple estimator that searches in a model-independent way for anisotropy in the
square of the temperature (and/or polarization) fluctuation. We then construct the minimum-variance
estimators for the coefficients of a spherical-harmonic expansion of the directional dependence of the
primordial power spectrum. To illustrate, we apply these statistics to an inflation model with a quadrupole
dependence of the primordial power spectrum on direction and find that a power quadrupole as small as
2.0% can be detected with the Planck satellite.
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I. INTRODUCTION

It is well known that the homogeneity and isotropy of the
Universe are only approximate. There are departures from
homogeneity and isotropy that are now well quantified by
measurements of the cosmic microwave background
(CMB) and galaxy surveys. In current cosmological theory,
the notions of homogeneity and isotropy have been super-
seded by the notions of statistical homogeneity and iso-
tropy. The density of matter may differ from one point in
the Universe to another, but the distribution of matter is
described as a realization of a random field with a variance
that is everywhere the same and the same in every direc-
tion. This is generally the prediction of structure-formation
models, and, in particular, of inflationary models.

Still, statistical isotropy and homogeneity are assump-
tions that can be tested quantitatively, and the precision
with which they can be tested is improving rapidly with
the still-accumulating wealth of cosmological data.
Preliminary (and controversial) indications for a preferred
direction in the CMB [1–4] have recently motivated the
study of departures from statistical isotropy. Subsequent
theoretical work has shown that although statistical iso-
tropy is a generic prediction of inflation, inflation models
can in fact be constructed to violate statistical isotropy [5–
14]. Dark-energy models might also accommodate depar-
tures from statistical isotropy [15,16]. These models pro-
vide useful straw men against which the success of the
standard inflationary predictions of statistical isotropy can
be quantified.

The growing interest in such models motivates us to
study generalized tests for statistical isotropy. In a statisti-
cally isotropic Universe, the primordial distribution of
matter is a realization of a random field in which Fourier
modes of the density field have variances, a power spec-
trum P�k�, that depend only on the magnitude k of the
wave vector k. If we drop the assumption of statistical
isotropy, the power spectrum will depend on the direction

k̂ as well. If ��k� is the Fourier amplitude of the fractional
density perturbation, then the power spectrum is defined by

 h��k����k0�i � �D�k� k0�P�k�; (1)

where the angle brackets denote an average over all real-
izations of the random field, and �D is a Dirac delta
function; note that we are still preserving the assumption
that different Fourier modes are uncorrelated. The most
general power spectrum can then be written,

 P�k� � A�k�
�

1�
X
LM

gLM�k�YLM�k̂�
�
; (2)

where YLM�k̂� (with L � 2) are spherical harmonics, and
gLM�k� quantify the departure from statistical isotropy as a
function of wave number k. Since the density field is real,
Fourier modes for k are related to those of �k, in such a
way that the multipole moment Lmust be even. In the limit
gLM�k� ! 0, we recover the usual statistically isotropic
theory with power spectrum A�k�. The implementation,
Eq. (2), of power anisotropy is motivated in part by the
inflationary model of Ref. [10], which predicts
g2M�k� � 0.

Here we consider several CMB tests for statistical iso-
tropy. The first, which we refer to as ‘‘power multipole
moments,’’ is a simple and intuitive estimator that involves
measurement of the multipole moments of the square of the
temperature/polarization fields.1 As an example, we apply
this statistic to an inflationary model [10] that predicts a
quadrupole in the matter power spectrum.

1There has already been some evidence for a dipole in the
CMB power [2,4] that is analogous to the higher multipole
moments that we are considering here, but which cannot be
due to anisotropy in the primordial power spectrum because it
has L � 1. There have also been searches [3] for anisotropy
along the lines considered here, and Refs. [17,18] discuss similar
statistics.
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Although power multipole moments provide a nice
model-independent test for departures from statistical iso-
tropy, more sensitive probes can be developed if the par-
ticular form of the departure is specified. To illustrate, we
thus construct the minimum-variance estimators for the
anisotropy coefficients gLM�k� under the assumption that
they are constants. The naive power multipole moments,
although intuitively simple, co-add a number of modes
with equal weight. The minimum-variance estimator co-
adds modes with weights that depend on their signal to
noise, so that (as the name suggests) the variance of the
estimator is minimized. We show that this statistic provides
a far stronger probe for the gLM’s.

The plan of our paper is as follows: Sec. II reviews some
CMB basics. Section III calculates the correlations of
CMB spherical-harmonic coefficients if there are depar-
tures from statistical isotropy. As we discuss there, the
power spectrum Cl, which describes the two-point CMB
statistics if there is statistical isotropy, is generalized to a
set of moments DLM

ll0 if statistical isotropy is broken. In
Sec. IV, we introduce and calculate the power multipole
moments and calculate the standard errors with which
these moments can be recovered. We apply this statistic
to a quadrupole in the matter power spectrum, calculating
the sensitivities of several CMB experiments to such a
quadrupole. Section V discusses minimum-variance esti-
mators for the quantities DLM

ll0 that parametrize the depar-
tures gLM�k� from statistical isotropy. We then construct
from these the minimum-variance estimators for the quad-
rupole moments of the primordial power spectrum, calcu-
late their variance, and evaluate their sensitivity to
departures from statistical isotropy. We make some con-
cluding remarks in Sec. VI. Throughout the main body of
the paper, we discuss statistics for only a temperature map,
in order to make the presentation clear. The Appendix
generalizes to include the full temperature-polarization
information. Our numerical results are for a full
temperature-polarization map, as well as for temperature
or polarization alone.

II. PRELIMINARIES

A CMB experiment provides the temperature T�n̂� as a
function of position n̂ on the sky. The map T�n̂� can be
expanded in terms of spherical harmonics Ylm�n̂�,

 alm �
1

T0

Z
dn̂Y�lm�n̂�T�n̂�: (3)

The alm’s are Gaussian random variables, and if there is
statistical isotropy, then they are statistically independent
for different l and m: halma�l0m0 i � Cl�ll0�mm0 .

2 The set of
Cl’s is the CMB temperature power spectrum. We will see

that when statistical isotropy is violated, there are correla-
tions induced between alm’s for different l and m [10]. If
there is statistical isotropy, the two-point autocorrelation
function is

 C�n̂; n̂0� � hT�n̂�T�n̂0�i � T2
0

X
l

2l� 1

4�
ClPl�n̂ � n̂0�; (4)

i.e., the correlation function depends only on the separation
between the two points. If statistical isotropy is violated,
this is not necessarily true.

III. OFF-DIAGONAL CORRELATIONS FOR
ANISOTROPIC POWER

Consider a primordial matter power spectrum P�k�
given by Eq. (2). We expand T�n̂� in k space in the form

 

T
T0
�n̂� �

Z
d3k

X
l

��i�l�2l� 1�Pl�k̂ � n̂���k��l�k�; (5)

where �l�k� is the contribution to the lth temperature
moment from wave vector k. With these conventions,
�l�k� is real. With our expression, Eq. (2), we can write
the covariance matrix as

 halma
�
l0m0 i � �ll0�mm0Cl �

X
LM

�LMlml0m0D
LM
ll0 : (6)

Here, the set of Cl’s, given by

 Cl � �4��2
Z 1

0
dkk2A�k�	�l�k�
2; (7)

is the usual CMB power spectrum for the case of statistical
isotropy. Departures from statistical isotropy introduce the
second term, where

 DLM
ll0 � �4��

2��i�l�l
0
Z 1

0
dkk2A�k�gLM�k��l�k��l0 �k�;

(8)

and

 �LMlml0m0 �
Z
dk̂Y�lm�k̂�Yl0m0 �k̂�YLM�k̂�

� ��1�m
0
�GL

ll0 �
1=2CLMlml0;�m0 ; (9)

where CLMlml0m0 are Clebsch-Gordan coefficients, and

 GL
ll0 �

�2l� 1��2l0 � 1�

4��2L� 1�
�CL0

l0l00�
2: (10)

Throughout, we use uppercase indices LM for power
anisotropies, and lowercase indices lm for temperature/
polarization anisotropies. For L even, �lml0m0 are nonvan-
ishing only for l� l0 even, and so the DLM

ll0 are real.
2Strictly speaking, it is not the alm’s that are statistically

independent, but rather their real and imaginary parts.
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Equations (8) and (9) agree with similar results in
Ref. [18], and they recover the results of Ref. [10] for
L � 2.

If primordial perturbations are statistically isotropic and
Gaussian, then the statistics of the CMB temperature map
are specified fully by the power spectrum, the set of Cl’s. If
primordial perturbations have a departure from statistical
isotropy that can be written in terms of spherical harmonics
YLM�k̂�, then the two-point statistics are described addi-
tionally by the set of multipole moments DLM

ll0 . These
quantities are thus the generalization of the Cl’s if there
is statistical anisotropy.

IV. POWER MULTIPOLE MOMENTS

A. Theoretical predictions

It is natural to expect that a spherical-harmonic pattern
of anisotropy in the matter power spectrum manifests itself
in a similar pattern in the CMB power. It is thus natural to
consider a set of ‘‘power multipole moments,’’

 bLM �
1

T2
0

Z
dn̂Y�LM�n̂�hT

2i�n̂�; (11)

where hT2i�n̂� � C�n̂; n̂� is the expectation value of the
square of the temperature at position n̂ in the sky; it is the
autocorrelation function at zero lag. With this statistic, we
simply look for anisotropies in the power. These statistics
have several advantages. In addition to having a form
familiar from similar statistics [e.g., Eq. (3)] for tempera-
ture fluctuations, they have simple analytic expressions in
terms of P�k�. There are also (as we show below), rela-
tively simple expressions for the cosmic-variance-induced
and instrumental-noise-induced errors in the measurement
of these statistics.

The variance hT2i�n̂� as a function of position n̂ is given
by

 

hT2i�n̂�
T2

0

�
X
lml0m0

halma
�
l0m0 iYlm�n̂�Y

�
l0m0 �n̂�: (12)

We put this into Eq. (11) and use

 

X
mm0
CLMlml;�m0C

L0M0
lml0;�m0 � �LL0�MM0 ; (13)

to obtain (for L � 2)

 bLM �
X
ll0
GL
ll0D

LM
ll0 : (14)

B. Statistical noise

We now calculate the standard error, due to cosmic
variance and instrumental noise, with which the power
multipole moments can be measured. To do so, we con-

sider a full-sky map Tmap�n̂� of the temperature in Npix

equal-area pixels. The temperature in each pixel receives
contributions from signal and from noise. Thus, in pixel i,
Tmap � T�n̂i� � Tn

i , where T�n̂i� is the temperature mea-
sured in pixel i, which will be the signal temperature
smoothed by a Gaussian beam of full width half maximum
(FWHM) �FWHM, plus a noise Tn

i . We assume that the noise
is isotropic and that the noises in different pixels are
uncorrelated with variance �2

T : i.e., hTn
i T

n
j i � �2

T�ij. The
power spectrum for the map is thus Cmap

l � jWlj
2Cl � Cn

l ,
whereCn

l � �4�=Npix��2
T is the noise power spectrum, and

Wl is a window function that takes into account the effects
of beam smearing; for a Gaussian beam of FWHM �FWHM,
it is Wl � exp��l2�2

b=2� with �b � �FWHM=
����������
8 ln2
p

�
0:007 42��FWHM=1��.

Since the instrumental noise is isotropic by assumption,
we get an unbiased estimator for bLM (for L � 2) from

 b̂ map
LM �

1

T2
0

Z
dn̂Y�LM�n̂�	T

map�n̂�
2: (15)

Cosmic variance and instrumental noise induce a variance
in the bLM’s, which we define as

 �LM � hb̂LMb̂LMi; (16)

where we have assumed the null hypothesis, gLM � 0. For
this null hypothesis of a statistically isotropic Gaussian
random map,
 

�LM �
2

T4
0

Z
dn̂dn̂0Cmap�n̂; n̂0�Cmap�n̂; n̂0�YLM�n̂�Y�LM�n̂

0�

� 2
X
ll0
GL
ll0C

map
l Cmap

l0 ; (17)

where Cmap�n̂1; n̂2� is the two-point correlation function
for the map, obtained from the expression, Eq. (4), for the
correlation function by replacing Cl by Cmap

l , and we have
used

P
mm0 �C

LM
lml0m0 �

2 � 1. Note that the absence of any M
dependence of �LM

AA0 is as we expected. Moreover, it fol-
lows from Eq. (13) that the estimators for the different
blm’s are uncorrelated: hb̂LMb̂L0M0 i / �LL0�MM0 .

Given a power spectrum of the form Eq. (2), specified by
the functions gLM�k�, predictions for the bmap

LM can be
evaluated with Eq. (14) replacing DLM

ll0 in that equation
by DLM;map

ll0 � DLM
ll0 WlWl0 and evaluating the DLM

ll0 with
Eq. (8). The bmap

LM can then be measured using Eq. (15)
with variances given by Eq. (17).

C. A worked example

As a simple example, suppose the gLM�k� are constants,
independent of k. We can then take gLM outside the integral
in Eq. (8). An estimator for gLM is then ĝLM �
b̂map
lm =�bmap

lm =gLM�. Defining Fll0 � DLM
ll0 =gLM for this

case, the variance with which each gLM can be measured
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is then

 �2
gLM �

2
P
ll0 G

L
ll0C

map
l Cmap

l0

	
P
ll0 G

L
ll0Fll0WlWl0 


2 : (18)

Moreover, the measured gLM are statistically independent
as a consequence of the statistical independence of the
b̂LM.

To illustrate, we apply this result to an inflationary
model [10] that has a power spectrum with a quadrupole
dependence on the angle.3 We use the �l�k� calculated by
CMBFAST [19] to obtain Fll0 . We assume only scalar per-
turbations and the current best-fit cosmological
parameters.

The numerical results are given in Table I, but before
reviewing them, we provide some very rough estimates to
get some feel for the numbers. To do so, ignore instrumen-
tal noise and suppose that Wl � 1 for all l 
 lmax. For L �
2, Fll0 � 0 only for l0 � l or l0 � l� 2. Moreover, for
these combinations of ll0 and for l� 2, we approximate
the numerical results (which we use for the numerical
results in Table I) for Fll0 as Fl;l�2 ’ �0:5Cl. Also,
�C20

l0l0�
2 � �5=8�l�1 for l� 1, and �C20

l0�l�2�0�
2 is 1.5 times

as large. Equation (18) can then be approximated �2
g2M
�

256�	
P
ll�Cl�

2
=	
P
llCl


2. If the power spectrum has the
form Cl / l�2 (a very rough approximation to the tempera-
ture power spectrum for l & 1000), then �2

g2M
�

128�l�2
min	ln�lmax=lmin�


�2. For example, using lmin � 2
and lmax � 1000 yields �g2M

� 1:23.
Of course, there is nothing about the derivation of

Eq. (18) that is specific to a temperature map, and this
result can be applied equally well, e.g., to the E-mode
polarization. If we approximate the polarization power
spectrum by Cl � const, then we find �2

g2M
’ 512�l�2

max,
or �g2M

� 5� 10�2 for lmax ’ 1000.
We now return to the numerical results for �g2M

listed in
Table I for the Wilkinson Anisotropy Probe (WMAP) [20],
which has now collected three years of data, the Planck
satellite [21], to be launched in 2008, and EPIC [22], a

satellite mission currently under study. The parameters
assumed for each model are listed, as well as results
obtained using Eq. (14) assuming only TT is used or EE
only. The Appendix generalizes Eq. (14) to the case where
the full temperature polarization is used (including the TE
correlation), and we present numerical results for this case
in the Table as well. We also list results, labeled ‘‘CVO’’
(cosmic variance only), for a hypothetical experiment that
has perfect angular resolution and no instrumental noise.
These numbers are for hypothetical full-sky experiments,
but a realistic experiment will likely only be able to use
�65% of the sky for cosmology. If so, then each estimate
for �g2M

must be increased by a factor �0:65��1=2, about
25%. We also note that the theory cannot specify the
direction ê of the quadrupole, and so a search for a quad-
rupole would require evaluation of all five g2M’s. A ‘‘3�’’
detection would thus require that the sum of the squares of
the g2M’s needs to exceed �3�g2M

�2, which is independent
of M.

The order of magnitude that we would expect for �g2M
is

�N�1=2
pix , where Npix � l

2
max is the number of resolution

elements on the sky, comparable to the precision with
which one can measure the variance (the monopole) of
the temperature-fluctuation amplitude. The numerical re-
sults listed in Table I for the error to g2M obtained from the
power quadrupole moment b̂2M are not quite as good as
this N�1=2

pix expectation. The origin of this discrepancy can
be traced to two sources. First of all, the two-dimensional
CMB signal is degraded from the three-dimensional power
spectrum; a Fourier mode in the ẑ direction gives rise to
some temperature fluctuation near the north pole, and not
just at the equator. This is manifest in the large coefficients
(e.g., the factor of 512�) in our analytic estimates.

However, another reason that the estimator b̂2M does not
provide a sensitive probe of a quadrupole departure from
statistical isotropy is that it is not an optimal estimator for
g2M. This estimator sums the ‘‘signals’’ DLM

ll0 , but it does
not weight these signals properly. This can be seen by
noting that for a Cl / l�2 power spectrum, for example,
the error obtained from Eq. (18) can be reduced by apply-
ing a low-pass filter: i.e., by increasing the minimum
values of ll0 in the sums. (A simple calculation shows

TABLE I. The standard error �g2M
to the amplitude of a quadrupole anisotropy in the matter power spectrum for different

experiments. The instrumental temperature and polarization noises and beam width are listed for each experiment. We show results
for the power multipole moments (pmm) for TT only, EE only, and the full result. We also show in the last three columns �mv

g2M
from the

minimum-variance estimator for each experiment, for TT only, EE only, and the full result.

Experiment �T��K� �P��K� �FWHM �pmm
g2M (TT) �pmm

g2M (EE) �pmm
g2M (total) �mv

g2M
(TT) �mv

g2M
(EE) �mv

g2M
(total)

WMAP 30.0 42.6 210 1.3 11 1.2 0.024 2.4 0.024
Planck 13.1 26.8 50 1.6 0.16 0.16 0.0052 0.033 0.0050
EPIC 0.021 0.068 520 1.2 0.55 0.42 0.016 0.019 0.011
Cosmic variance 0 0 0 1.8 0.014 0.014

3Note that our g20 is �2=3�
������������
4�=5

p
g�, where g� is the coeffi-

cient in Ref. [10] of �k̂ � ẑ�2 if the preferred direction is taken to
be ẑ.
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that with the properly chosen lower-l limit, �g2M
can be

reduced by a factor of 30.) If the precision of the result is
improved by removing data, then something is suboptimal.

V. MINIMUM-VARIANCE ESTIMATOR

A. Estimator and its variance

The b̂LM estimator is a simple and intuitive quantity that
can be measured to test for statistical isotropy in a model-
independent way. However, if one has a specific theory,
defined by the functions gLM�k� or some quantities that
parametrize the gLM�k�, then there will be estimators that
can be constructed to measure optimally those parameters.
For example, if the gLM’s are all constants, then one can
measure them better than the numerical results for the
power multipole moments bLM would suggest. Below, we
will derive the minimum-variance estimator for gLM.

Before moving on, it is instructive and will be useful
below to rederive the variance to b̂map

LM . We return to
Eq. (14) and note that bmap

LM can be written as a sum over
DLM;map
ll0 � DLM

ll0 WlWl0 . We then return to Eq. (6) to derive
the minimum-variance estimator forDLM;map

ll0 . Given a map
amap
lm , each mm0 pair provides an estimator for DLM;map

ll0 ,
through

 D̂ LM;map
ll0;mm0 �

amap
lm amap;�

l0m0 � Cl�ll0�mm0

�LMlml0m0
; (19)

with variance

 h�D̂LM;map
ll0;mm0 �

2i �
�1� �ll0�mm0 �C

map
l Cmap

l0

��LMlml0m0 �
2 : (20)

The estimators for different mm0 pairs are uncorrelated (if
we use the real and imaginary parts of the alm’s), so the
estimators can be summed over all mm0 pairs, inversely
weighted by the variance, to obtain a minimum-variance
estimator. If l � l0, we sum only over m0 � m to avoid
double-counting pairs. However, the factor �1� �ll0�mm0 �
then weights the m � m0 modes twice as much, if l � l0,
and thus allows us to rewrite the sum over all m and m0.
The result for the estimator can thus be written, for both
l � l0 and l � l0, as

 D̂ LM;map
ll0 �

P
mm0 a

map
lm amap;�

l0m0 �
LM
lml0m0

GL
ll0

: (21)

We recognize these to be the bipolar-spherical-harmonic
coefficients of Ref. [17], with a slightly different weight.
The variance of this estimator is then

 h�D̂LM;map
ll0 �2i �

�1� �ll0 �C
map
l Cmap

l0

GL
ll0

: (22)

The variance, Eq. (18), with which each blm can be mea-
sured simply follows by summing the variances of each
term in Eq. (14).

Now, to construct the minimum-variance estimator, we
simply note that the statistically independent quantities
predicted by the theory are the DLM

ll0 ’s, the generalizations
of the Cl’s for a theory without statistical isotropy. We have
constructed above estimators for these quantities, and we
have their variances. For a theory with constant gLM’s,
each DLM

ll0 provides an estimator through ĝLM;ll0 �
D̂LM
ll0 =Fll0 . We then sum these, inversely weighted by their

variance to obtain the minimum-variance estimator,

 ĝ LM �

P
l0�l Fll0WlWl0D̂

LM;map
ll0 h�D̂LM;map

ll0 �2i�1P
l0�l�Fll0WlWl0 �

2h�D̂LM;map
ll0 �2i�1

; (23)

obtained from the entire map. The variance �2
gLM of this

estimator is then obtained by summing the inverse varian-
ces of all the estimators. Again, the sums are over l0 � l,
but the factor �1� �ll0 � in Eq. (22) allows us to write the
sum over all ll0,

 

1

�2
gLM
�
X
ll0
GL
ll0
�Fll0WlWl0 �

2

2Cmap
l Cmap

l0
: (24)

B. Illustration: The Power Quadrupole

To illustrate, we now evaluate this expression for L � 2.
Again, in this case, the only ll0 combinations that contrib-
ute are l0 � l and l0 � l� 2. We assume l; l0 � 1, approxi-
mate Fl;l�2 ’ �0:5Cl, as above, and evaluate CLMl0l00 as in
Sec. IV C. We can then write,

 

1

�2
g2M

’ 0:035
X
l

lC2
l �Wl�

4

�Cmap
l �

2 ; (25)

which we can further approximate as 0:017l2max, where lmax

is the multipole moment at which Cn
l ’ Cl�Wl�

2. The end
result is then �g2M

’ 7:6=lmax, quite close to what we
would have expected by simply counting the number
Npix ’ l2max of usable pixels. For the WMAP and Planck
temperature maps, lmax is roughly 650 and 2000, respec-
tively, implying �g2M

� 1:2� 10�2 and 3:8� 10�3, re-
spectively, implying very significant improvements in the
sensitivity over the power multipole moments.

Table I lists the exact numerical results, obtained by
evaluating Eq. (24) exactly, for both TT only and EE
only. Again, the Appendix generalizes Eq. (24) for the
full temperature-polarization map, including the TE
cross-correlation, and numerical results for this case are
also included. Table I shows that by weighting the modes
correctly, we get an improvement of a factor of �2 for
WMAP and Planck EE and more than an order-of-
magnitude improvement for WMAP and Planck TT; this
is in accord with our arguments that the signal to noise in
the TT power multipole moments was particularly poorly
chosen. Although EPIC will have vastly improved instru-
mental sensitivity, with its modest angular resolution, it is
not particularly well suited to search for departures from
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statistical isotropy. Again, the minimum-variance numbers
in Table I must be increased by about 25% to account for
partial-sky coverage. And again, since the preferred direc-
tion is not known a priori, the sum of the squares of the
g2M’s must exceed �3�g2M

�2 to claim a ‘‘3�’’ detection of a
departure of statistical isotropy.

VI. CONCLUDING REMARKS

We have considered CMB tests for the statistical iso-
tropy of the primordial power spectrum. The power spec-
trum of Eq. (2) is the most general power spectrum if the
assumption of statistical isotropy is dropped. In the more
general case, the CMB power spectrum Cl is generalized to
a set of moments DLM

ll0 , which are closely analogous to the
bipolar-spherical-harmonic coefficients of Ref. [17]. The
power multipole moments bLM provide simple and intui-
tive statistics that can be used to search in a model-
independent way for departures from statistical isotropy.
If, however, a particular model is introduced by specifying
a particular parametrization of the functions gLM�k�, then
minimum-variance statistics can be introduced to improve
the precision with which these parameters can be con-
strained. For example, we constructed explicitly the
minimum-variance estimators for the coefficients gLM for
the case in which they are k independent. We applied these
results to a model in which there is a quadrupole in the
primordial power spectrum, and the results are shown in
Table I. We see that the best probe of a primordial quad-
rupole moment will come from Planck TT, for which we
anticipate �g2M

� 0:0052. Multiplying this by 1.25 to ac-
count for a 65% sky coverage, and then by the factor of 3
required for a ‘‘3�’’ detection, we find that the smallest
quadrupole amplitude that will be detectable by Planck
will be around 2.0%.

To reduce clutter in the equations and to keep the main
line of reasoning clear, we have derived equations in the
main body of the paper for the case where either the
temperature or the polarization is used, but not both. The
Appendix generalizes the analysis to allow the use of the
full temperature-polarization information, including the
TE cross-correlation.

What about other probes? Consider, for example, the
Sloan Digital Sky Survey [23]. The volume and galaxy
density of the main galaxy survey allows measurement,
roughly speaking, of the amplitudes of Nmodes � 105 inde-
pendent Fourier modes of the density field, in the linear
regime, and these measurements are cosmic-variance lim-
ited. Measurement of the quadrupole of the power spec-
trum can then simply be done by comparing the amplitudes
of Fourier modes in different directions. The standard error
to the power multipole moments will thus be �gLM ��������������������

2=Nmodes

p
� 10�2, comparable in order of magnitude to

what can be achieved with the CMB. Of course, a realistic
search will be hampered by the irregular volume of the

survey, redshift-space distortions, and anisotropies (line-
of-sight versus angular) inherent to the measurement
technique. But then again, there will be degradations (fore-
grounds, sky cuts, etc.) to the idealized CMB measure-
ments we have considered. Of course, if gLM�k� varies with
k, then the constraints provided by the CMB and galaxy
surveys will be complementary, to the extent that the wave
numbers k probed by the CMB and galaxy surveys differ.
Looking forward, there is ultimately the possibility of
accessing with 21-cm fluctuations approximately 1015

modes of the primordial density field [24], allowing values
as small as gLM � 10�7 to be probed, but this is in the very
far future.
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APPENDIX: GENERALIZATION TO A
TEMPERATURE-POLARIZATION MAP

For most experiments, the sensitivity to departures from
statistical isotropy will come primarily from either the
temperature or the polarization. Considering both in tan-
dem will provide some improvement in the result, but
given the temperature-polarization cross-correlation, this
improvement will be weaker than what would be obtained
by simply adding the two results in quadrature.

Still, to be complete, we include expressions for theory
and estimators for a combined temperature-polarization
map. Assuming only primordial density perturbations con-
tribute to the temperature-polarization map, a map of the
sky will now provide the E-mode polarization E�n̂�, con-
structed in the usual fashion [25,26] from the measured
Stokes parameters Q�n̂� and U�n̂�, in addition to the tem-
perature T�n̂�. The map can be written in terms of
spherical-harmonic coefficients aX

lm, for X � fT;Eg, and
Eq. (6) is generalized to

 haX
lma

X0;�
l0m0 i � �ll0�mm0C

XX0
l �

X
LM

�LMlml0m0D
LM;XX0

ll0 : (A1)

The CXX0
l ’s and DLM;XX0

ll0 ’s are obtained as in Eqs. (7) and
(8) by replacing the �l�k��l0 �k� factors in the integrands of
those equations by �X

l �k��
X0
l �k�, where these are obtained

from Eq. (5) by replacing T�n̂� by X�n̂�. Note that for TE
and l � l0, DLM;XX0

ll0 � DLM;XX0

l0l . This will affect the equa-
tions below for the minimum-variance estimator.
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We now have a set of three power multipole moments
bXX0
LM , obtained from Eq. (11) by replacing hT2i by hXX0i,

which is itself obtained from Eq. (12) by using haX
lma

X0;�
l0m0 i

for the expectation value therein. The expression for the
bXX0
LM is the same as Eq. (14) using DLM;XX0

ll0 there.

The power-multipole-moment estimators b̂XX0;map
LM are as

in Eq. (15) with 	Tmap�n̂�
2 replaced by 	Xmap�n̂�X0map�n̂�
.
Things get a bit trickier, though, when we calculate the
variances, as the estimators for different XX0 will now be
correlated, although still uncorrelated for different LM.
The variance in Eq. (16) is now promoted to a 3� 3 matrix
�LM

AA0 , for fA;A0g � fTT;EE;TEg. For fAA0g � XX0 �
fTT;EEg, �LM

AA0 is given by Eq. (17) with Cmap
l1
Cmap
l2

re-

placed by CA;map
l1

CA0;map
l2

. For the diagonal TE-TE term,

 �LM
TE;TE �

X
ll0
GL
ll0 	C

TT;map
l CEE;map

l0 � CTE;map
l CTE;map

l0 
;

(A2)

and for the off-diagonal XX-XX0 terms,

 �LM
XX;XX0 � 2

X
ll0
GL
ll0C

XX;map
l CXX0;map

l0 : (A3)

Equation (18) for the standard error with which a constant
gLM can be recovered with the power multipole moments is
then replaced by [25–27]

 

1

�2
gLM
�
X
AA0

@bALM
@gLM

	��LM��1
AA0
@bA0�

LM

@gLM
: (A4)

This is the equation used to obtain the ‘‘total’’ results listed
in Table I for the power multipole moment.

The minimum-variance estimator for gLM and its vari-
ance are similarly generalized. The estimators D̂LM;A;map

ll0

are still uncorrelated for different ll0 pairs and different
LM, but they are now correlated for different A. The main
subtlety is that sinceDLM;TE

ll0 � DLM;TE
l0l , we must be careful

to keep track of all TE modes for l � l0. This will require
that we split the sum in the generalization of Eq. (24) into
two sums: the first over l � l0, and the second over l0 > l.

(Actually, the sum can in fact be written over all ll0, but at
the cost of much uglier algebraic expressions.)

For l0 � l, there are now three (TT, EE, and TE) esti-
mators to replace that in Eq. (19), and for l0 > l, there are
now four (TT, EE, TE, and ET) estimators to replace that in
Eq. (19). For all ll0, the estimators are as in Eq. (19),
replacing each amap

lm and Cmap
l by the appropriate aX;map

lm

and CXX0;map
l , respectively. The estimator for each ll0, ob-

tained after summing over all mm0, is the same as in
Eq. (21). For l � l0, the variances h�D̂LM;A;map

ll0 �2i are now
promoted to a 3� 3 covariance matrix; and for l0 > l, they
are promoted to a 4� 4 covariance matrix. In both cases,
the covariance matrix can be written as

 C ll0
AA0 �

GL
ll0

�1� �ll0 �
hD̂LM;A;map

ll0 D̂LM;A0;map
ll0 i: (A5)

For any ll0 pair, the diagonal entries, for A � fTT;EEg, are
Cll

0

AA � CA;map
l CA;map

l0 , and the TT-EE off-diagonal entry is
Cll

0

TT;EE � CTE;map
l CTE;map

l0 . For l � l0, the diagonal TE-TE
entry is

 C ll0
TE;TE � 	C

TT;map
l CEE;map

l � �CTE;map
l �2
=2: (A6)

For l0 > l, we have Cll
0

TE;TE � CTT
l C

EE
l0 , Cll

0

ET;ET � CTT
l0 C

EE
l ,

and Cll
0

TE;ET � CTE
l C

TE
l0 . For any ll0, we have Cll

0

TT;TE �

CTT
l C

TE
l0 and Cll

0

EE;TE � CEE
l0 C

TE
l . For l0 > l, we also have

Cll
0

TT;ET � CTT
l0 C

TE
l and Cll

0

EE;ET � CEE
l C

TE
l0 .

The generalization of Eq. (24) is then

 

1

�2
gLM
�

1

2

X
l

GL
ll

X
AA0
CA
l C

A0
l �Wl�

4	�Cll��1
AA0

�
X
l0>l

GL
ll0

X
AA0
FA
ll0F

A0

ll0 �WlWl0 �
2	�Cll

0
��1
AA0 ; (A7)

where the matrix inversion is in the 3� 3 AA0 space in the
first sum and in the 4� 4 AA0 space in the second sum. We
use Eq. (A7) to evaluate the standard errors for the total
minimum-variance estimators listed in Table I.
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