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ABSTRACT

We use linear estimators to determine the magnitude and direction of the cosmic radio dipole from the NRAO VLA Sky Survey
(NVSS) and the Westerbork Northern Sky Survey (WENSS). We show that special attention has to be given to the issues of bias
due to shot noise, incomplete sky coverage and masking of the Milky Way. We compare several different estimators and show that
conflicting claims in the literature can be attributed to the use of different estimators. We find that the NVSS and WENSS estimates
of the cosmic radio dipole are consistent with each other and with the direction of the cosmic microwave background (CMB) dipole.
We find from the NVSS a dipole amplitude of (1.8 ± 0.6) × 10−2 in direction (RA, dec) = (154◦ ± 19◦,−2◦ ± 19◦). This amplitude
exceeds the one expected from the CMB by a factor of about 4 and is inconsistent with the assumption of a pure kinetic origin of the
radio dipole at 99.6% CL.
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1. Introduction

The assumed isotropy and homogeneity of the Universe at large
scales is fundamental to modern cosmology. The isotropy is best
seen in the cosmic microwave background (CMB) radiation and
holds at the per cent level. The most prominent anisotropy of
the CMB temperature is a dipole signal of ∆T/T ≈ 10−3. It is
commonly assumed that this dipole is largely caused by the mo-
tion of the Solar system through the Universe (Stewart & Sciama
1967). This interpretation seems to be fully consistent with the
concordance model of cosmology.

However, the observation of the microwave sky is not enough
to tell the difference between a motion induced CMB dipole and
dipole contributions form other physical phenomena, i.e.

dcmb = dmotion + dprimordial + dISW + dforegrounds + dnoise. (1)

In our notation a dipole vector d modulates the isotropic sky by
a factor (1 + d · r̂), with r̂ denoting the position on the sky.

Usually it is assumed that the primordial and the integrated
Sachs-Wolfe (ISW) contribution to the CMB dipole are negligi-
bly small and that foregrounds (the Milky Way) are under con-
trol. Within the concordance model we expect a primordial con-
tribution of dprimordial ≈ 2 × 10−5. The ISW contribution could
be as large as 10−4 from the gravitational potentials induced by
local 100 Mpc sized structures, without being in conflict with
the concordance model (Rakic et al. 2006; Francis & Peacock
2010). The noise term can be ignored due to excellent statis-
tics of full sky observations. Thus the measured dcmb is directly
used to infer the velocity of the Solar system w.r.t. the CMB to
be v = 369 ± 0.9 km s−1 (Hinshaw et al. 2009). It is used in
many cosmological studies done in the CMB rest frame, e.g. su-
pernova Hubble diagrams or measurements of large scale bulk
flows.

The effects of motion are not limited to the CMB, but should
actually be detectable at any frequency. In order to test the hy-
pothesis dcmb = dmotion, it would be very interesting to measure

the dipole of another cosmic probe, such as that obtained by ra-
dio point source catalogues. In this case one expects to find

dradio = dmotion + dstructure + dforegrounds + dnoise. (2)

Besides the signal from our proper motion, we expect a signal
from structure in the Universe and we expect a random dipole
from Poisson noise. The dipole from structure is expected to
dominate any catalogue limited to redshift z � 1. Thus we are
interested in surveys with a mean redshift of order unity and a
large enough sky coverage to be sensitive to the dipole. This
makes radio catalogues the preferred probe to look at. Within
the concordance model, the dipole signal induced by the large
scale structure is then a subdominant contribution, as it is for
the CMB. If we had a large enough catalogue, we could com-
pare dradio to dcmb. Any statistically significant deviation would
be exciting, while finding a match would put the concordance
model on firmer grounds.

A first attempt to measure the radio dipole was performed
by Baleisis et al. (1998) using a combination of the Green
Bank 1987 and the Parkes-MIT-NRAO catalogues. Blake & Wall
(2002), Singal (2011) and Gibelyou & Huterer (2012) attempted
to determine the dipole vector in the NRAO VLA Sky Survey
(NVSS), with different conclusions. Blake & Wall (2002) found
a result that is in agreement with a purely kinetic origin of the
cosmic radio dipole, but this was challenged by Singal (2011),
who finds a dipole amplitude four times larger than expected,
but strangely enough pointing in a direction consistent with the
CMB dipole. The analysis of Gibelyou & Huterer (2012) finds
both a different direction and an amplitude six times as large as
the expected one. While Blake & Wall (2002) used a quadratic
estimator, Singal (2011) and Gibelyou & Huterer (2012) used
different linear estimators to find the dipole direction.

The purpose of this work is to discuss the use of linear es-
timators of the cosmic radio dipole and apply several versions
of them on the NVSS (Condon et al. 2002) and the Westerbork
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Northern Sky Survey (WENSS; Rengelink et al. 1997). We re-
solve the conflicts in the literature and extend the analysis to
other linear estimators.

The NVSS survey covers about 10.3 sr of the sky and con-
tains about 2×105 sources per steradian. For this survey the Very
Large Array (VLA) in New Mexico (USA) has been used mea-
suring at a frequency of 1.4 GHz. The survey includes over 80
per cent of the sky, missing only areas with declination δ < −40◦.
The lower flux limit lies at 2.5 mJy for the 5σ detection of point
sources. The NVSS was conducted by means of two different
configurations of the VLA above and below δ = −10◦.

The Westerbork Synthesis Radio Telescope in the
Netherlands was operated at a frequency of 325 MHz to
record the WENSS survey covering about 2.9 sr of the nothern
sky and containing about 2.3 × 105 sources in total. This survey
is made up of a main catalogue for δ ∈ (28◦, 76◦) and a polar
catalogue for δ > 72◦. The 5σ detection limit for this survey
is 18 mJy.

To analyse these surveys, we focus on linear estimators in
this work. We do so for two reasons. Firstly, recent controver-
sial results used linear estimators for the dipole direction (Singal
2011; Gibelyou & Huterer 2012) and in one work also for the
dipole amplitudes (Singal 2011). Secondly, linear estimators are
conceptually simpler. However, it is not expected that they are
optimal (unbiased and minimal variance). The linear estimators
used in our analysis are asymptotically unbiased and their vari-
ance can be easily understood by analytic calculations and by
Monte Carlo simulations.

The paper is organized as follows: first we discuss the ex-
pected kinetic radio dipole. In Sect. 3 we outline previous esti-
mates of the radio dipole. Linear estimators for full sky surveys
are investigated in Sect. 4, followed by a detailed analysis of the
effects of incomplete sky coverage and masking in the next sec-
tion. In Sect. 6 we discuss the expected dipole amplitude from
a flux based estimator. Our estimate of the radio dipole can be
found in Sect. 7 and is followed by a comparison with previous
results. We conclude in Sect. 9.

2. Kinetic radio dipole

2.1. Doppler shift and aberration

Ellis & Baldwin (1984) predicted the kinetic contribution to the
cosmic radio dipole for an isotropic and homogeneous cosmol-
ogy. At redshift of order unity and beyond, we expect this kinetic
contribution to be the dominant one.

The spectrum of a radio source is assumed to be described
by a power law,

S ( f ) ∝ f −α, (3)

where S denotes the flux and f the frequency. Each radio source
can be described by an individual spectral index α. For simplic-
ity we assumed a mean value of α for all radio sources in the
catalogue.

The number of observed radio sources per steradian depends
on the lower flux limit and can be approximated by a power law

dN
dΩ

(>S ) ∝ S −x. (4)

The value of x can be different for each survey. Typically x is
assumed to be about one.

Two effects have to be taken into account. The emitted radio
frequency frest is observed at the Doppler shifted frequency fobs.

The magnitude of this change depends on the angle θ between
the direction to the source and the direction of our motion, with
velocity v. Observed and rest frame frequencies are related by

fobs = frestδ(v, θ), (5)

where δ is given by

δ(v, θ) =
1 + v

c cos(θ)√
1 − ( vc )2

· (6)

Thus the observed flux changes due to our motion, since it de-
pends on the frequency

S obs( fobs) ∝ δ f −αrest ∝ δ
1+α f −αobs ∝ S rest( fobs)δ1+α. (7)

The first factor of δ is due to the fact that the energy of an ob-
served photon is enhanced due to the Doppler effect.

Thus, the Doppler effect will change the number of observed
sources above a given flux limit like(

dN
dΩ

)
obs

=

(
dN
dΩ

)
rest
δx(1+α). (8)

Since the velocity of light is finite, aberration will also modify
the number counts. The position of each source is changed to-
wards the direction of motion. The new angle θ′ (observed from
Earth) between the position of the source and the direction of
motion is given by

tan θ′ =
sin θ

√
1 − v2

c2

v
c + cos θ

· (9)

Therefore, at first order in v/c, dΩ transforms like

dΩ′ = dΩ

(
1 − 2

v

c
cos θ

)
+ O

((
v

c

)2
)
· (10)

This can be combined with the Doppler effect to give the ob-
served number density. After approximating δ(v, θ) to first order
in
v

c
, the result becomes

dN
dΩ obs

=

(
dN
dΩ

)
rest

[
1 + [2 + x(1 + α)]

(
v

c

)
cos(θ)

]
. (11)

The amplitude of the kinetic radio dipole is then given by

d = [2 + x(1 + α)]
(
v

c

)
· (12)

The kinetic radio dipole points towards the direction of our pe-
culiar motion, which in an isotropic and homogeneous Universe
must also agree with the direction defined by the CMB dipole.

2.2. Expected kinetic radio dipole

The measured CMB dipole is ∆T = 3.355 ± 0.008 mK in the
direction (l, b) = (263.99◦ ± 0.14◦, 48.26◦ ± 0.03◦) (Hinshaw
et al. 2009). In equatorial coordinates (epoch J2000) its direction
reads (RA, Dec) = (168◦,−7◦). Compared to the CMB tempera-
ture of T0 = 2.725±0.001 K (Fixsen & Mather 2002). this corre-
sponds to a relative fluctuation of ∆T/T = (1.231±0.003)× 10−3

and thus the velocity of the Solar system has been inferred from
the CMB dipole to be v = 369.0 ± 0.9 km s−1 (Hinshaw et al.
2009).
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Fig. 1. Number counts of the NVSS and WENSS surveys. A function
f (S ) ∝ S −x is fitted to both data sets in the range of 25 mJy < S <
200 mJy. Resulting values of x are 1.10 ± 0.02 for the NVSS survey
and 0.80 ± 0.02 for the WENSS survey.

To find the expected amplitude of the kinetic radio dipole,
we also need estimates for x and α. The typically assumed val-
ues are x = 1 and α = 0.75, which gives together with v =
370 km s−1 a radio dipole amplitude of d = 0.46 × 10−2.
However, we can improve on that as x can be measured with help
of the radio survey. Therefore we need to plot N(>S ) against S
like in Fig. 1.

For the purpose of this work we find xNVSS = 1.10 ± 0.02
and xWENSS = 0.80 ± 0.02. The mean spectral index cannot be
inferred from the catalogues, as they provide data at a single
frequency band only. We thus stick to α = 0.75, but include in
the dipole error an uncertainty of ∆α = 0.25 (Garn et al. 2008).
This results in the expectations:

dexp
NVSS = (0.48 ± 0.04) × 10−2, (13)

dexp
WENSS = (0.42 ± 0.03) × 10−2. (14)

The error is dominated by the uncertainty in the spectral index.

3. Previous results

The first measurement of the radio dipole using the NVSS cat-
alogue was performed by Blake & Wall (2002). In order to re-
move corruption by local structure, all sources within 15◦ vicin-
ity of the Galactic disk have been removed. Additionally the
clustering dipole contribution was reduced by ignoring sources
within 30′′ of nearby known galaxies. The spherical harmonic
coefficients aobs

lm from the remaining NVSS catalogue have been
determined up to l = 3. A model for a dipole distribution with
an isotropic background has been constructed (a00 and a10). Due
to masking, this dipole distribution also influences higher multi-
poles. After applying the same mask as for the NVSS catalogue,
one finds amodel

lm up to l = 3. A quadratic estimator (chi square)
was used to compare the model with the observed coefficients.

The resulting best-fit dipoles can be seen in Table 1. The
results of Blake & Wall (2002) indicate a higher radio dipole
than expected, however without statistical significance.

Singal (2011) used a linear estimator, originally proposed by
Crawford (2009),

R3D =
∑

r̂i, (15)

Table 1. Best-fit dipole parameters from Blake & Wall (2002).

Flux N RA Dec d χ2
red

(mJy) (◦) (◦) (10−2)
>40 125 603 149 ± 49 –45 ± 38 0.7 ± 0.5 1.02
>35 143 524 161 ± 44 –27 ± 39 0.9 ± 0.4 0.74
>30 166 694 156 ± 32 2 ± 33 1.1 ± 0.4 1.01
>25 197 998 158 ± 30 –4 ± 34 1.1 ± 0.3 1.01
>20 242 710 153 ± 27 –3 ± 29 1.1 ± 0.3 1.32
>15 311 037 148 ± 29 31 ± 31 0.8 ± 0.3 1.81
>10 431 990 132 ± 29 65 ± 19 0.5 ± 0.2 4.96

Notes. Coordinate system and amplitude definition are adjusted for
comparison with Singal’s results (see Tables 2 and 3). N denotes the
number of point sources with flux above the indicated limit.

Table 2. Dipole direction and amplitude from the number count estima-
tor (15) from Singal (2011).

Flux N RA Dec d
(mJy) (◦) (◦) (10−2)
≥50 91 597 171 ± 14 −18 ± 14 2.1 ± 0.5
≥40 115 837 158 ± 12 −19 ± 12 1.8 ± 0.4
≥35 132 930 157 ± 11 −12 ± 11 1.9 ± 0.4
≥30 154 996 156 ± 11 −02 ± 10 2.0 ± 0.4
≥25 185 474 158 ± 10 −02 ± 10 1.8 ± 0.4
≥20 229 365 153 ± 10 +02 ± 10 1.8 ± 0.3
≥15 298 048 149 ± 09 +15 ± 09 1.6 ± 0.3

and a variation of it, which we discuss below. For a large number
of sources the isotropic background will clear away. The remain-
ing vector R3D will point towards the main anisotropy in the dis-
tribution of number density over the sky. To get the correct dipole
amplitude d one has to normalize this estimator depending on the
number of sources. In Singal’s analysis sources within 10◦ of the
Galactic plane have been removed. In order to avoid directional
bias (see the more detailed discussion below), he reestablished a
north-south symmetry of the NVSS by cutting all sources with
dec > 40◦. The results of Singal (2011) are shown in Table 2.
The errors of the directional measurements are quite small here.
This is an effect of an unexpectedly large amplitude, which sim-
plifies the measurement. While the direction agrees with the one
found by Blake & Wall (2002), the dipole amplitude seems to be
a factor of about four higher than expected from the CMB dipole
and twice as big as found by Blake & Wall (2002).

Masking the supergalactic plane in order to reduce the con-
tribution of local structure did not resolve the discrepancy. Since
unknown clustering further away from the super Galactic plane
could also have contributed to the measurement, a second test
was performed. A clustering contribution to the dipole would not
give a signal proportional to cos θ. On the other hand, the differ-
ence in number counts of areas that are opposite to each other
should decrease with cos θ (where θ is the angle between an area
and the measured dipole direction), if the measured dipole is due
to our velocity. Singal was able to fit such a behaviour to the data.
Therefore he concludes that the radio dipole amplitude is not due
to local clustering.

Singal (2011) also used a linear estimator for the distribu-
tion of flux over the sky. This estimator is similar to the num-
ber density estimator (15), but weights each radio source by its
flux S i,

Rflux =
∑

S i r̂i. (16)
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Table 3. Dipole direction and amplitude from the flux weighted number
count estimator (16) from Singal (2011).

Flux N RA Dec d
(mJy) (◦) (◦) (10−2)
1000 > S ≥ 50 90 360 163 ± 12 −11 ± 11 2.3 ± 0.7
1000 > S ≥ 40 114 600 159 ± 12 −11 ± 11 2.2 ± 0.6
1000 > S ≥ 35 131 691 159 ± 11 −10 ± 10 2.2 ± 0.6
1000 > S ≥ 30 153 759 159 ± 11 −07 ± 10 2.2 ± 0.6
1000 > S ≥ 25 184 237 159 ± 10 −07 ± 09 2.2 ± 0.6
1000 > S ≥ 20 228 128 158 ± 10 −06 ± 09 2.1 ± 0.5
1000 > S ≥ 15 296 811 157 ± 09 −03 ± 08 2.0 ± 0.5

Like R3D, this estimator finds the main anisotropy and the am-
plitude needs to be normalized. The brightest sources (S >
1000 mJy) are removed, because they would dominate Rflux oth-
erwise. Results of this estimator are shown in Table 3. The es-
timated directions are in agreement with the results of Blake &
Wall (2002) and the number count estimator results of Singal
(2011). However, the normalized dipole amplitudes d are even
higher than those of the number count estimator R3D. In Sect. 6
we resolve this conflict.

Most recently, Gibelyou & Huterer (2012) measured a dipole
amplitude (d = 2.7 ± 0.5) × 10−2 towards (RA, Dec) = (117 ±
20◦, 6 ± 14◦) from the NVSS. This direction is inconsistent with
the studies mentioned above and the dipole amplitude is a fac-
tor of five larger than expected. The authors used separate esti-
mators for the direction and the amplitude. Their direction esti-
mate is based on a linear estimator, originally proposed by Hirata
(2009),

R3DM =

ND∑
i

r̂i −
ND

NR

NR∑
j

r̂ j. (17)

This three-dimensional estimator (3DM) is intended to be unbi-
ased for arbitrary survey geometries and arbitrary masking. The
idea is to achieve that with help of the second sum, which goes
over NR randomly distributed points, subject to the same mask-
ing. Therefore, the authors include all sources of the NVSS sur-
vey, except for those within 10◦ of the Galactic plane. Below we
show that this estimator has a direction bias, which depends on
the real dipole anisotropy.

We summarize, there is no agreement on the amplitude and
direction of the cosmic radio dipole so far.

4. Linear estimators for a full sky

Let us first show that the estimator (15) provides an unbiased
estimate of the dipole direction.

Starting from the distribution of the number of radio sources
per solid angle (11), as seen by a moving observer in an oth-
erwise isotropic Universe, the probability to find a given radio
source within a solid angle dΩ of position r̂ is given by

p(r̂)dΩ =
1

4π
(1 + r̂ · d)dΩ, (18)

where d denotes the dipole vector.
To study the bias of an estimator, we calculate its expectation

value with respect to an ensemble average. We do so below by
means of Monte Carlo studies. For analytic considerations, for

large N we replace the ensemble average by a spatial average,
i.e.

〈1〉 =

∫ N∏
i=1

dΩi p(r̂i)1 = 1, (19)

thus we assume ergodicity. Note that the average is a linear
operator.

Now the expectation value of Crawford’s estimator can be
evaluated for large N,

〈R3D〉 = 〈

N∑
i=1

r̂i〉 =

N∑
i=1

〈r̂i〉 =
N
4π

∫
dΩ (1 + r̂ · d) r̂. (20)

This calculation holds for independent, identically distributed
positions r̂i, thus without clustering effects. Only the second
term survives the integration and thus the expected dipole
estimator is

〈R3D〉 =
1
3

Nd. (21)

Naively, one could now estimate the dipole signal by d3D ≡
3
N R3D.

We conclude that d3D provides us with an unbiased estimate
of the dipole direction d̂ for a full sky sample. However the esti-
mated dipole amplitude |d3D| is biased.

To understand the origin of this bias let us first consider

〈d2
3D〉 =

(
1 −

1
N

)
d2 +

9
N
> d2. (22)

The inequality holds for large N and d < 3 (in case of large
dipole amplitudes [d = O(1)] our ansatz (19) should also take
many-point correlations into account). Thus d2

3D is definitely bi-
ased towards higher amplitudes. However, to prove that |d3D| is
biased, we would need to calculate 〈|d3D|〉. We do this by means
of the random walk/flight method.

4.1. Random flight

Adding up vectors for each point of a survey corresponds to
a random walk with unit step size. To be more precise this is a
random flight, since the problem is three dimensional. Even for a
vanishing dipole, such a random flight is unlikely to return to the
origin after N steps. This describes the noise of any realisation
of an isotropic distribution of N sources.

Following Crawford (2009), we determine the distance r
from the origin after N steps from the probability density of a
random flight process

P̌N(r)dr =

[
54
πN3

]1/2

r2 exp
(
−

3r2

2N

)
dr. (23)

The probability of measuring a dipole signal of an amplitude
bigger than R in a random flight is

PN(R > RpCL) =

∫ ∞

RpCL

drP̌N(r) = 1 − pCL. (24)

A confidence level pCL can be choosen, leading to errorbars
for a measured dipole vector R3D ± RpCL. To estimate the di-
rectional uncertainties of this method, Crawford (2009) made
the following argument: at a given confidence level the random
flight corresponds to a step of length up to RpCL. Adding RpCL
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√
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values A = 0.908 ± 0.002,D = (0.451 ± 0.001) × 10−2. The expected
dipole amplitude (d = 0.0046) is indicated by the horizontal line.

perpendicular to the measured dipole R3D allows us to estimate
the maximal offset in direction. Using trigonometry, one can
relate RpCL to the directional uncertainties expressed as the
angle

δθpCL = arcsin
RpCL

R3D
· (25)

The expected magnitude of the random dipole contribution is
estimated from (23) as

〈Rrandom
3D 〉 =

∫ ∞

0
r
[

54
πN3

]1/2

r2 exp
(
−

3r2

2N

)
dr ≈ 0.92

√
N. (26)

Since the random dipole has no distinguished direction, there is
no direction bias of the linear estimator for a full sky map.

Even for vanishing d, this gives rise to a non-vanishing esti-
mate of the dipole amplitude drandom

3D = 2.8N−1/2 and is thus the
origin of the amplitude bias.

Motivated by (22) we make the following ansatz for the
dipole amplitude and its bias:

〈d3D〉 =

√
d2 +

9
N2 〈R

random
3D 〉2. (27)

To verify this analytic estimate of the biased amplitude, we
simulated full sky maps including a velocity dipole (with v =
370 km s−1). From these simulated catalogues we extracted the
observed amplitude dobs. Figure 2 shows the simulated data, the
true value of the dipole amplitude and a fit of the form f (N) =√

D2 + 9A2/N.
The best-fit values are A = 0.908 ± 0.002 and D = (0.451 ±

0.001) × 10−2 (statistical errors only). These numbers should be
compared to the factor 0.92 from (26) and the simulation input
of d = 0.46×10−2. The reduced chi- square of the fit is 7×10−5.
Thus the Monte Carlo simulations agree with the theoretically
motivated ansatz (27) for the expected dipole amplitude of the
estimator d3D.

We conclude that even for a perfect full sky catalogue (no
masking, complete in flux, perfect flux and position measure-
ments), the amplitude of the linear estimator is biased towards
higher values. Increasing the number of radio sources will re-
duce the bias. The estimator d3D is asymptotically unbiased, but

this is of limited practical use for the analysis of NVSS and
WENSS data. A similar bias of the dipole amplitude is also
found for the other linear estimators introduced above. This find-
ing is in agreement with Gibelyou & Huterer (2012), who use a
linear estimator to find the direction of the dipole.

5. Linear estimators for an incomplete sky

So far we assumed full coverage of the radio sky. More realis-
tic catalogues cover just a fraction of the sky, as all earth based
telescopes are limited to observe at certain declination ranges.
Additionally, the Milky Way is masking parts of the sky. Here we
discuss some of the effects caused by incomplete sky coverage.

The upcoming Low Frequency Array (LOFAR) Tier-1 sur-
vey will cover about half of the sky (2π), thus we first focus on
this situation. As a second step we generalize this to an arbi-
trary axisymmetric survey geometry and include the effects of
masking.

5.1. Random walk

Let us assume a survey geometry that covers all of the Northern
hemisphere and ask how the estimator of the radio dipole (15)
has to be modified. For the first two Cartesian components
of R3D there should be no systematic problem, but the third com-
ponent will definitely be biased. It is necessary to remove the ef-
fect of the incomplete sky from this z component. Consider the
expectation value of R3D for the Northern hemisphere

〈R3D〉hemisphere = 〈

N∑
i=1

r̂i〉 =
N pd

2π

∫
δ>0

dΩ(1 + r̂ · d)r̂, (28)

where pd ≡ 1/[1 + (d/2) cosϑd)] accounts for the proper nor-
malisation of the probability distribution on the hemisphere in
presence of a dipole. 4π in (18) becomes 2π for obvious reasons.
The integral can be evaluated by hand. One finds

〈R3D〉hemisphere = N pd


1
3 d cosϕd sinϑd
1
3 d sinϕd sinϑd
1
2 + 1

3 d cosϑd

 , (29)

where ϑd and ϕd denote the dipole position in spherical coordi-
nates. The z direction is strongly influenced by the incomplete
sky coverage. The total number of observed sources is not inde-
pendent from the amplitude and orientation of the dipole itself.

Nevertheless there is no problem in the evaluation of ϕd be-
cause one can calculate

ϕd = arctan
Ry

Rx
· (30)

Here N as well as sinϑd cancel out. So the 2D estimator is un-
biased with respect to ϕd. Therefore we propose a pure two di-
mensional estimator:

R2D =

N∑
i

 cosϕi sinϑi
sinϕi sinϑi

0

 . (31)

From this one can still use (R2
x + R2

y)
−1/2 for evaluat-

ing d sinϑdN pd/3 and ϕd. Let us take a look at the factor sinϑd.
Sources near the pole will make a smaller contribution than those
further away. If a source near the pole is shifted by a small dis-
tance, the value ϕi of this source could change dramatically.
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So the weighting terms compensate for this artificially big er-
rors, which are just a relic of the coordinate system.

Let us now estimate the uncertainties of the estimator R2D.
The problem corresponds to an isotropic random walk process
with variable step size. The probability density for a displace-
ment of r for such a random walk is

P̌N(r)2Ddr =
3
N

r exp
(
−

3r2

2N

)
dr. (32)

Similar to the random flight we determine RpCL defined by

PN(R2D > RpCL) =

∫ ∞

RpCL

drP̌N(r)2D = 1 − pCL. (33)

Here again pCL is the confidence level. It is possible to solve the
above integral analytically∫ ∞

RpCL

dr
3
N

r exp
(
−

3r2

2N

)
= exp

−3R2
pCL

2N

 · (34)

So RpCL is given by

RpCL =

√
2N
3

ln
(

1
1 − pCL

)
· (35)

Now one can use the same argument as for the random flight to
evaluate the uncertainty of the ϕd estimation

δϕpCL = arcsin
RpCL

R2D
· (36)

In this way one can directly determine error bars for measured
results of ϕd calculated via (30). Using this two dimensional esti-
mator one cannot measure the dipole amplitude d itself but only
the combination d sinϑdN pd/3. Therefore it can only give an
lower limit for d.

Like in the case of the full three dimensional estimator, this
version is also biased in the measurement of the amplitude. The
expectation of the random contribution can be calculated via

〈Rrandom
2D 〉 =

∫ ∞

0
r

3
N

r exp
(
−

3r2

2N

)
dr ≈ 0.72

√
N. (37)

So we expect our estimator to measure a combination of this
random contribution and the true velocity dipole and make the
ansatz

〈d2D〉 =

√
d2 sin2 ϑd +

9
N2 〈R

random
2D 〉2, (38)

where we used pd ≈ 1. Like above, we verify this via
Monte Carlo simulations, shown in Fig. 3.

5.2. Direction bias

For any masked or incomplete map of the sky, we cannot
measure the mean source density N̄/(4π), i.e. the monopole.
Therefore we always have to keep in mind that the observed
mean density is just an approximation. Gibelyou & Huterer
(2012) have used an estimator proposed by Hirata (2009), which
implicitly assumes, that the monopole is known. Based on the
knowledge of the monopole, this estimator would compensate
for masking effects and incomplete sky coverage by substract-
ing a pure random isotropic map from the observed dipole term
via (17). However, we cannot know N̄.
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Fig. 3. Ampliude bias for the estimator d2D on a hemisphere. Data rep-
resent mean and empirical variance of 1000 simulations for each N. A
function dobs(N) =

√
D2 + 9A2/N is fitted to the simulated data, with

best fit values A = 0.712 ± 0.003 and D = (0.444 ± 0.002) × 10−2. The
dipole amplitude (0.0046) is indicated by the horizontal line, the dipole
vector is assumed to lie in the equatorial plane (sinϑd = 1).

For the previous example of a hemisphere, the monopole
density is N̄/(4π) = N pd/(2π), where N = ND in (17). The ran-
dom map can be made up of an arbitrary number of sources NR,
but is reweighted by the observed number of sources ND/NR,
instead of N̄/NR. This introduces a directional bias, in addition
to the previously discussed biased amplitude. One can see this
explicitly by applying (17) on our model of a dipole modified
isotropic hemisphere. We find

〈R3DM〉hemisphere =
N pd

3
d

 cosϕd sinϑd
sinϕd sinϑd

cosϑd

 +
1
2

N

 0
0

pd − 1

 , (39)

which clearly is not parallel to d. For small values of d we can
expand pd and obtain

〈R3DM〉hemisphere =
N
3

d

 cosϕd sinϑd
sinϕd sinϑd

1
4 cosϑd

 + O
(
d2

)
. (40)

The z component of the dipole is underestimated by a factor of 4
for the geometry of a hemisphere. Despite cancelation of the
leading term of the bias of the z direction, the dipole direction
remains biased. Less symmetric survey geometries lead to a bias
of all dipole components for this estimator.

The best strategy to avoid any directional bias for a linear es-
timator is to make the survey geometry point symmetric around
the observer for three dimensional estimators like R3D or point
symmetric around the zenith in case of two dimensional estima-
tors R2D. This implies for the NVSS that one has to cut sym-
metric in declination, such that both polar caps are missing, a
strategy that was used by Singal (2011).

5.3. Masking

The use of a masked sky additionally affects the dipole measure-
ment. In general, the estimated dipole direction and amplitude
depend on the position of the true dipole relative to the mask.
Cutting areas with large dipole contribution will reduce the am-
plitude and vice versa.
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In the following we consider masks that are point symmetric
with respect to the observer for all considered 3-dimensional es-
timators, respectively point symmetric with respect to the zenith
for the 2-dimensional estimators. Constructed in such a way,
masking does not introduce any directional bias. Nevertheless,
we have to consider the effects of masking on the estimated
dipole amplitude.

A simple method to correct for this effect was put forward
by Singal (2011), who introduced a masking factor k,

Rmask
3D =

1
k3D

∑
ri. (41)

Such a factor is expected to be a function of shape and position of
the mask as well as the dipole position. In most cases an analytic
calculation of this factor is impossible. For simple mask geome-
tries some analytic results can be found in Rubart (2012). An al-
ternative approach is to simulate the effects by means of Monte
Carlos and to compare simulations with and without masking.
The ratio of both results after a large number of simulations pro-
vides the masking factor k3D.

Doing so, we found some interesting effects. The masking
factors depend on the number of objects in the simulated maps
as well as on the true dipole amplitude. This can be explained as
follows. The masking will mainly affect the kinetic dipole contri-
bution, while the random dipole will increase due to the decrease
of the number of objects in the masked catalogue. Therefore we
expect the amplitude to be

〈d3D〉mask =

√
k2

3Dd2 +
9

N2 〈R
random
3D 〉2. (42)

k3D should only depend on the properties of the mask and not
on the amplitude of the dipole. To test this, we created simulated
maps for two different dipole amplitudes, with values motivated
by the CMB measurement dCMB = 0.46 × 10−2 and by the mea-
surement of Blake & Wall (2002) at 25 mJy dBW = 1.1 × 10−2.
We used the direction RA = 158◦,Dec = −4◦ in both cases. The
mask agrees with the one used by Singal (2011), i.e. we removed
all sources with |δ| > 40◦ and |b| < 10◦. Resulting amplitudes for
different numbers of sources are shown in Fig. 4.

First of all we can conclude that (42) is a good fit for the
behaviour of the simulated maps in both cases. The measured
amplitudes are larger than those estimated from full sky maps.
We can now calculate k3D. In both cases it turns out to be 1.4,
which could be used to correct the amplitude estimate.

A similar argument holds for the two dimensional estimator.
Here we expect a behaviour of the form:

〈d2D〉mask =

√
k2

2Dd2 sin2 ϑd +
9

N2 〈R
random
2D 〉2. (43)

Using the same assumptions about the dipole term and the same
mask as before, we obtain Fig. 5.

This time, we find k2D = 1.3 for both assumed velocities.
The simulations support our assumption that the masking factor
does not depend on the dipole magnitude d.

5.3.1. Masking correction

Although the masking factor k does not depend on the ampli-
tude d, it may depend on the dipole direction d̂. Therefore it
would be necessary to repeat the analysis of the previous section
for each dipole direction found. To reduce the simulation effort,
we rely on the following method instead.
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Fig. 4. Amplitude bias of the 3-dimensional estimator for the masked
NVSS geometry of Singal (2011). Data represent mean and empiri-
cal variance of 1000 simulations for each N. A function dobs(N) =√

(KD)2 + 9A2/N is fitted to the simulated data, with best-fit values A =
0.883 ± 0.006, KD = (0.642 ± 0.005) × 10−2 and A = 0.847 ± 0.016,
KD = (1.59 ± 0.008) × 10−2 for the expected kinetic radio dipole and
the radio dipole measured by Blake & Wall (2002), respectively. The
simulated dipole amplitudes, without masking, are indicated by the hor-
izontal lines.
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Fig. 5. Amplitude bias of the 2-dimensional estimator for the masked
NVSS geometry of Singal (2011). Data represent mean and empiri-
cal variance of 1000 simulations for each N. A function dobs(N) =√

(KD)2 + 9A2/N is fitted to the simulated data, with best-fit values A =
0.810 ± 0.009, KD = (0.589 ± 0.008) × 10−2 and A = 0.745 ± 0.014,
KD = (1.493 ± 0.006) × 10−2, for the expected kinetic radio dipole
and the dipole measured by Blake & Wall (2002), respectively. The
simulated dipole amplitudes, without masking, are indicated by the
horizontal lines.

For the full, as well as for the masked sky, surveys
with 106 sources were simulated. This choice guarantees that we
investigate masking effects and not effects due to shot noise. The
mean dipole amplitudes are determined for 103 simulated full
and masked sky surveys, respectively. The ratio of the masked
sky mean amplitude to the full sky mean amplitude is denoted k̃.
This ratio provides a first approximation to the masking factor.

k̃ ≡

√
k2d2 + 9

N2 〈Rrandom〉2√
d2 + 9

N2 〈Rrandom〉2
· (44)

The influence of the random dipole tends to bias k̃ towards 1 (as
can be easily seen in the limit of a small number of sources).
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This bias can be compensated by rewriting the above formula
into

k =

√
k̃2 +

9〈Rrandom〉2

d2N2

(
k̃2 − 1

)
. (45)

The values of N and d are input parameters of the simulation.
From the last section we know the values of 〈Rrandom〉 for the
three- as well as for the two-dimensional case. Therefore we can
transform the approximated masking factor k̃ into the unbiased
masking factor k.

6. Dipole from a flux weighted estimator

Let us now turn to a discussion of the flux weighted estima-
tor (16), which was used by Singal (2011).

We first take a closer look at the theoretically expected value
of the flux dipole dflux. For simplicity we assume full sky cover-
age. For a large number of sources,

d̂ ·
N∑

i=1

S iri ≈

∫
4π

dΩ

∫ S max

S min

dS
d2N

dΩdS
S cos θ, (46)

where θ is the angle between a source and the dipole direction d̂.
We now determine the number of sources per flux and solid

angle as a function of the observer velocity. At zeroth order in
velocity, this density n(S ) is isotropic. As for the number counts,
stellar aberration and the Doppler effect have to be taken into
account. Stellar aberration gives rise to

d2N
dΩdS

≈ n(S )
(
1 + 2

v

c
cos θ

)
. (47)

The relativistic Doppler effect alters the observed fluxes. When
we observe a source in the direction of motion, we measure a
higher flux than if we were at rest with respect to the isotropic
and homogeneous Universe. We relate the observed flux S 0 to
the flux that is measured by an observer with vanishing peculiar
motion,

S rest ≈ S 0 − S 0(1 + α)
v

c
cos θ. (48)

We assume the power law n(S ) = aS −x̃ to hold for observers at
rest and Taylor expand around the observed flux

n(S rest) ≈ n(S 0)
[
1 + x̃(1 + α)

v

c
cos θ

]
. (49)

If the assumed power law holds for all sources of a survey,
then x̃ = 1 + x, with x as defined above in (4). Combining the
Doppler effect and the stellar aberration leads to

d2N
dΩdS

= n0(S 0)
[
1 + (2 + x̃(1 + α))

v

c
cos θ

]
+ O

((
v

c

)2
)
· (50)

This result only holds under the assumption of a power law be-
haviour of the number counts. It is crucial to keep this in mind.

6.1. NVSS

Let us now see, if we are allowed to make this assumption for
the analysis of NVSS data. The plot in Fig. 6 demonstrates that
the power law is not valid for the flux range used in the analysis
of Singal (2011), i.e. fluxes up to 1 Jy. Actually the slope steep-
ens for the larger fluxes considered. The best fit power-law gives
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Fig. 6. Differential number counts of the NVSS catalogue, S min =
10 mJy, best fit values for f (s) = a · s−x̃ with 25 mJy < S < 1000 mJy
are a = 2.1 × 107 and x̃ = 1.9.

a reduced chi-squared value of χ2 = 122. That means that the
observed data cannot be fitted by a power law.

Thus Singal’s assumption x̃ ≈ 1 does not hold for two rea-
sons. Firstly, for a pure power law we would expect x̃ = 1+x ≈ 2,
which is close to what we find: x̃ ≈ 1.9. Secondly, the power-law
assumption only applies to about one half of the data.

In conclusion, the result of unexpectedly large amplitudes in
Singal (2011) could partly be explained by this two effects. With
power law behaviour one should use x̃ = 1.9 or larger to also
account for the steepening of the spectral index at high fluxes,
which increases the expectation value by

〈dobs〉|x̃ = 1.9

〈dobs〉|x = 1
> 1.4. (51)

The results of the flux weighted estimator from Singal (2011)
should be reduced by at least a factor of 1.4.

Compared to the estimator of Crawford, the estimator (16)
stresses sources with high flux. To avoid the domination of
a small number of sources, sources with S > 1000 mJy are
not taken into account. Nevertheless, this estimator is stressing
bright sources. These sources are, on average, nearer than the
rest. Hence (16) might be dominated by nearby sources and by
atypically bright ones. This seems to be yet another weakness of
this estimator, since the local universe is anisotropic.

7. Dipole estimates from NVSS and WENSS

7.1. 3D linear estimates

We are now in a position to check the three dimensional esti-
mations of the radio dipole in the NVSS catalogue. As we have
shown above, the estimator used by Gibelyou & Huterer (2012)
(17) gives rise to a biased dipole direction and thus is not fur-
ther considered in this work. The flux weighted estimator (16) is
also of limited use, as the NVSS data cannot be described by a
power-law over all fluxes of interest. We thus focus here on the
simplest linear estimator (15).

In order to obtain an unbiased direction estimate, the cut sky
geometry of Singal (2011) is adopted. The masking factor k is
determined for every measured dipole anisotropy direction, as
described in 5.3.1. The pure estimator results d3D are then cor-
rected for the masking bias and we obtain dcor

3D .
All results for right ascension agree within their error

bars. The same holds true for the dipole amplitudes. This
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Table 4. Dipole direction and amplitude from NVSS.

Flux N RA Dec d3D k dcor
3D

(mJy) (◦) (◦) (10−2) (10−2)
50 91 662 170 ± 23 −17 ± 23 2.78 1.38 2.0 ± 0.8
40 115 917 156 ± 26 −18 ± 26 2.23 1.29 1.7 ± 0.8
35 133 022 156 ± 22 −11 ± 22 2.46 1.32 1.9 ± 0.7
30 155 120 156 ± 19 −2 ± 19 2.63 1.35 1.9 ± 0.7
25 185 649 158 ± 19 −2 ± 19 2.38 1.34 1.8 ± 0.6
20 229 557 153 ± 18 2 ± 18 2.31 1.30 1.8 ± 0.6
15 298 289 149 ± 18 17 ± 18 2.02 1.28 1.6 ± 0.5

Notes. The estimator (15) was used. Excluded are sources with |δ| > 40◦
and |b| < 10◦ (J2000).

self-consistency indicates the absence of significant systematic
errors. Unfortunately, we can not state the same for the dec-
lination results. One observes an significant increase in decli-
nation with respect to deceasing flux limits. This effect is very
likely due to a relic of the NVSS survey procedure. Sources be-
low δ = −10◦ were measured by means of a different alignment
of the Very Large Array. The source density is therefore smaller
in this area. Therefore it is expected that the dipole measurement
will show increasing values of declination at the fainter flux lim-
its. This makes it hard to trust the declination results below a
flux limit of 25 mJy (note that there is no significant difference
between 20 mJy and 30 mJy).

The results of Table 4 can be compared to those in Table 2.
Number of sources and direction results are almost the same.
Deviations could be explained by minor differences in the pre-
cise form of the mask. We used a different method for estimating
uncertainties in the direction and amplitude measurement, than
those used by Singal (2011). Since our method (described above)
is more conservative, we obtain larger errorbars. All dipole am-
plitudes in this table are slightly below those from Table 2. In
Singal (2011) a different method was used to obtain the dipole
amplitude from the estimator (15), which can explain this dis-
crepancy. In principle we can recover the results of Singal (2011)
and confirm an unexpectedly high dipole amplitude.

7.2. 2D linear estimates

A disadvantage of the NVSS catalogue is that the sampling depth
changes at δ = −10◦ (less sensitivity at lower declinations). This
could lead to a directional bias of the NVSS data analysis and
thus it is interesting to also use the two dimensional estimator
presented in this work, as this effect cannot lead to a bias in
this case. For the WENSS analysis, a three dimensional linear
estimator cannot avoid directional bias.

7.2.1. NVSS

A major advantage of the estimator R2D is that it does not re-
quire a north-south symmetry of the catalogue. Therefore, the
declination limit of the NVSS catalogue is no problem.

As the estimator R2D requires a point symmetry around the
north pole, we cannot remove the Galactic plane only. For each
removed point we also need to subtract the point which is 180◦
away. When we do so, a second plane occurs, which we call the
counter Galactic plane (CG). A HEALPix1 map of the remaining
NVSS sources can be seen in Fig. 7. The colour of the pixels
encodes the number of sources per pixel.

1 http://healpix.jpl.nasa.gov

Fig. 7. Map of the number counts in HEALPix pixels from NVSS. The
pixel size corresponds to Nside = 32. Shown are equatorial coordinates
at epoch J2000. The NVSS contains data at δ > −40◦ and the Galactic
plane and a “counter galaxy” are masked (CG mask) in order to avoid
Galactic contamination and to restore point symmetry with respect to
the zenith.

Table 5. Dipole right ascension and amplitude d sin θd from NVSS.

Flux N RA d2D k dcor
2D

(mJy) (◦) (10−2) (10−2)
50 96 337 171 ± 19 2.63 1.42 1.9 ± 0.7
40 121 831 146 ± 20 2.28 1.29 1.8 ± 0.7
35 139 851 152 ± 17 2.49 1.28 1.9 ± 0.6
30 163 208 153 ± 15 2.55 1.28 2.0 ± 0.6
25 195 245 155 ± 14 2.45 1.29 1.9 ± 0.5
20 241 399 150 ± 14 2.25 1.26 1.8 ± 0.5
15 313 724 148 ± 15 1.86 1.21 1.5 ± 0.4
10 447 459 133 ± 14 1.67 1.10 1.5 ± 0.4

Notes. The 2D estimator (31) is used and all sources with δ > −40◦, ex-
cept the Galactic and counter Galactic planes (CG mask), are included.

An alternative would be the mask used by Singal (2011).
That mask is a combination of two great cycles and would there-
fore also work for R2D. However, it turns out that the mask
with the CG removes fewer sources. Thus we decided to use
the CG mask.

The next step is to evaluate the masking correction k of the
CG mask. As this factor depends on the right ascension and on
the declination of the dipole anisotropy, we need some additional
information. From R2D we estimate the right ascension. As the
declination cannot be evaluated with R2D, we use the declina-
tion as provided by the three dimensional estimator in order to
determine k. These values are certainly not exact, since a differ-
ent mask is used now. The influence of a small change in dipole
declination on the evaluated factor k is discussed in Sect. 7.2.2.

We reduce the dipole amplitude of the 2D estimator by
the masking factor k and obtain the masking corrected ampli-
tude dcor

2D . The results of this procedure for the NVSS catalogue
and different flux limits can be found in Table 5.

Obtained right ascensions and amplitudes are stable with re-
spect to different flux limits. For all flux limits ≥15 mJy, the esti-
mated right ascension of the radio dipole is in agreement with the
CMB prediction of RA = 168◦. Only when we include sources
as faint as 10 mJy, we find a 3σ deviation. However, we know
that the catalogue is incomplete at its faint end.

The masking corrected dipole amplitudes dcor
2D are signif-

icantly above the CMB prediction. To some extent this is
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Fig. 8. Map of the number counts in HEALPix pixels from WENSS.
The pixel size corresponds to Nside = 32. Shown are equatorial coordi-
nates at epoch B1950. The WENSS contains data at δ > 30◦ and the
Galactic plane and a “counter galaxy” are masked (CG mask) in or-
der to avoid Galactic contamination and to restore point symmetry with
respect to the zenith.
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Fig. 9. Differential number counts of the WENSS catalogue, S min =
5 mJy, best fit values for f (s) = a · s−x̃ with 25 mJy < S < 1000 mJy
are a = 2.6 × 106 and x̃ = 1.6.

expected due to the discussed amplitude bias. A detailed dis-
cussion is presented in the next section.

7.2.2. WENSS

We finally present the first estimation of the radio dipole from the
WENSS catalogue. We cannot use the three dimensional linear
estimators on this catalogue, since it only contains sources with
Dec > 28◦. The two dimensional estimator on the other hand can
be used here. Again, we need to remove the Galactic plane and
the counter Galactic plane to reestablish a symmetry around the
north pole. The remaining WENSS catalogue is shown in Fig. 8.

To choose the best flux limit, we analyse the differen-
tial number counts between 10 mJy and 1000 mJy. Figure 9
shows that the WENSS catalogue seems to be incomplete be-
low 25 mJy. In Rengelink et al. (1997) the completeness of
the WENSS catalogue is claimed to hold only above a limit of
30 mJy. From Fig. 9 we infer that a simple power law also ap-
plies to the source counts between 25 and 30 mJy and thus we
include sources down to a flux limit of 25 mJy in our analysis.

Table 6. Masking correction k for WENSS with CG mask and a dipole
with RA = 120◦.

Dec 45◦ 30◦ 5◦ 0◦ −5◦ −30◦ −45◦

k 0.50 0.48 0.45 0.44 0.44 0.47 0.51

Table 7. Dipole estimate from WENSS based on 2D estimator using
peak flux values for all sources with δ > 30◦, except those in the
Galactic and counter Galactic planes (CG mask).

Flux N RA d2D k dcor
2D

(mJy) (◦) (10−2) (10−2)
40 67 052 124 ± 51 1.31 0.45 2.9 ± 2.3
35 73 653 123 ± 46 1.36 0.47 2.9 ± 2.1
30 81 863 122 ± 48 1.24 0.45 2.8 ± 2.1
25 92 600 117 ± 40 1.36 0.47 2.9 ± 1.9

Notes. Our WENSS analysis uses positions at epoch B1950.

We cannot obtain information on the declination of the
dipole from the WENSS catalogue by means of the two di-
mensional estimator applied in this work. This could in prin-
ciple be a problem for the determination of the masking factor k.
Therefore, we further investigated the effect of different dipole
declinations. Assuming the WENSS symmetry and a right as-
cension of 120◦ (close to the results given in Table 7), we calcu-
lated k for 7 different values of declination, see Table 6. For this
mask, the dependence of k on the right ascension of the dipole
is relatively small, compared to shot noise uncertainties. We as-
sume dec = 0◦ for the determination of k, based on the expecta-
tion from the CMB dipole and the NVSS radio dipole estimates.

The results of the WENSS analysis are presented in Table 7.
Although the WENSS catalogue covers only one fourth of the
sky, we find that it can be used for the estimation of the ra-
dio dipole. A problem is the limited number of sources that are
left after masking the galaxy and restoring the required symme-
try of the catalogue. This leads to larger error bars, compared
with the NVSS estimates. We can conclude that the observed
dipole anisotropy in the WENSS catalogue is in agreement
with the measurements from NVSS, which is a nontrivial state-
ment, as we are probing radio sources at different frequencies
(325 MHz vs. 1.4 GHz).

8. Comparison of results

We summarize the various results from the literature and this
work in Table 8. The results of this work are highlighted with
bold faced letters. For comparison we focus on the flux limits
of 25 mJy and 15 mJy.

All estimated dipole directions, both from the NVSS and
from WENSS are in good agreement with each other and with
the direction from the CMB dipole, with the exception of the re-
sult from Gibelyou & Huterer (2012). As explained in Sect. 5.2,
their estimator shows a directional bias. We did not investigate
any further, whether this bias invalidates their findings at a rather
low flux limit. Our analysis based on the three dimensional es-
timator applied to NVSS and using the mask defined by Singal
(2011) gives (RA, Dec) = (158◦ ± 19◦,−2◦ ± 19◦).

For the amplitude of the radio dipole, the situation is more
contrived. Here we focussed on the study of linear estimators and
showed that all linear estimators under investigation returned
a biased estimate of the amplitude. The amplitude estimators
of Blake & Wall (2002) and Gibelyou & Huterer (2012) are
unbiased, but the latter one uses a biased direction estimate as an
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Fig. 10. Histogram of dipole amplitudes for 100,000 simulations of the three dimensional (left) and two dimensional (right) estimator, assuming
the CMB expectation and a slope of x = 1.1, with 185 649 (left) and 195 245 (right) sources per simulation and appropriate masks. The black
vertical lines are the NVSS results of this work.

Table 8. Comparison of results.

Source Flux > N RA Dec d
(mJy) (◦) (◦) (10−2)

NVSS
BW 25 197 998 158 ± 30 −4 ± 34 1.1 ± 0.3
SIN 25 185 474 158 ± 10 −2 ± 10 1.8 ± 0.4
SIF 25 184 237 159 ± 10 −7 ± 9 2.2 ± 0.6
SIF* 25 184 237 159 ± 10 −7 ± 9 1.6 ± 0.5
3DS 25 185 649 158 ± 19 −2 ± 19 1.8 ± 0.6
2DCG 25 195 245 155 ± 14 . . . 1.9 ± 0.5
GH 15 211 487 117 ± 20 6 ± 14 2.7 ± 0.5
3DS 15 298 289 149 ± 18 17 ± 18 1.6 ± 0.5
2DCG 15 313 724 148 ± 15 . . . 1.5 ± 0.5
WENSS
2DCG 25 92 600 117 ± 40 . . . 2.9 ± 1.9
expected
NVSS . . . . . . 168 −7 0.48 ± 0.04
WENSS . . . . . . 168 −7 0.42 ± 0.03

Notes. Radio dipole from NVSS: BW (Blake & Wall 2002), SIN (Singal
2011) number counts, SIF (Singal 2011) flux weighted number counts,
SIF* corrects SIF for slope (this work), 3DS three-dimensional es-
timator, mask adopted from Singal (2011) (this work), 2DCG two-
dimensional estimator, CG mask (this work), GH (Gibelyou & Huterer
2012); Radio dipole from WENSS: 2DCG two-dimensional estimator,
CG mask (this work). The expectations for a purely kinetic radio dipole
are given at the bottom of the table.

input and is thus of limited interest. Besides bias, we identified
another effect that reduces the dipole amplitude found by the flux
estimator used in Singal (2011). We reduced the result of this
estimator by a factor of 1.4, due to the fact that the appropriate
exponent of the differential number count is given by x̃ = x + 1
(see Sect. 6). With this correction, the result of the flux weighted
estimator (denoted by SIF* in Table 8) is now in agreement with
the result of Blake & Wall (2002).

Our three dimensional estimate with the masking of Singal
(2011) gives rise to d = (1.8 ± 0.6) × 10−2. One should keep in
mind that this is a biased result, thus one cannot naively compare
it to the expected amplitude. To figure out if our result is consis-
tent with the null hypothesis that the radio sky is statistically
isotropic, modified by the kinetic effects of our proper motion
(measured via the CMB dipole), we performed 100 000 Monte
Carlo simulations. The corresponding histogram is shown in

Fig. 10. We find that only 21 of those realizations contain a
dipole higher than the measured one and thus we can exclude
that the estimated radio dipole is just due to our proper motion
and amplitude bias at 99.6% CL. This is actually very puzzling,
as the direction of the radio dipole agrees with the direction of
the CMB dipole within the measurement error.

We can redo this analysis with the null hypothesis that the
radio dipole was accurately measured by Blake & Wall (2002).
This time we find that 3402 out of 100 000 realisations are higher
than our measured dipole. If we increase the implemented veloc-
ity towards the upper one sigma bound of the dipole amplitude
from Blake & Wall (2002), we observe every sixth simulation to
be above our own measurement (16%). Therefore our result is in
agreement with Blake & Wall (2002).

Before we turn to the discussion of potential explanations,
let us inspect the dipole amplitudes from the two dimensional
estimator. The dipole amplitudes estimated with the two dimen-
sional estimator are also in agreement with the results of Singal
(2011) and Blake & Wall (2002). We find d sinϑd = (1.9±0.5)×
10−2 for the NVSS analysis and d sinϑd = (2.9 ± 1.9) × 10−2

for WENSS, which translate into lower limits on d. Thus, the
results from the WENSS catalogue are in agreement with the
radio dipole found in the NVSS catalogue. This is encouraging
as they are prepared at different instruments and probe different
frequencies.

In Figs. 10 and 11 we present the corresponding results
from 100 000 Monte Carlo simulations for the geometries of the
NVSS and WENSS two dimensional estimators. In both cases
we find that the amplitude bias is not enough to explain the dif-
ference between the observed and the expected amplitude. In
the case of NVSS the null hypothesis (isotropic sky plus proper
motion dipole) is ruled out at 99.6% CL, while for the WENSS
analysis it is inconsistent at 98.1% CL.

The two dimensional estimation (2DCG), using the NVSS
catalogue, is also compared to simulations, assuming the re-
sults from Blake & Wall (2002). We observe 1141 and 7024 out
of 100 000 simulations to give a dipole above our measurement
for the assumptions of dtrue = 1.1 × 10−2 and dtrue = 1.4 × 10−2,
respectively. Therefore, the result of our two dimensional esti-
mator is not in contradiction to Blake & Wall (2002).

9. Conclusion

We conclude that the task to measure the cosmic radio dipole
remains relevant and we expect that interesting information on
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Fig. 11. Histogram of dipole amplitudes from 100 000 simulations for
the dimensional estimator, assuming the CMB expectation, a slope of
x = 0.8, 92,482 sources per simulation and the CG masking form for
the WENSS catalogue. The black vertical line is the WENSS result of
this work.

cosmology can be extracted from this measurement. All mea-
surements so far point towards a higher radio dipole amplitude
than expected, when we assume that the cosmic radio dipole is
just due to our peculiar motion with respect to the rest frame de-
fined by the CMB. This is quite puzzling, as the orientation of
the radio dipole agrees with the orientation of the CMB dipole
within measurement errors. This is the case for the NVSS and
the WENSS analysis, two radio point source catalogues that
cover ∼3π and ∼π of the sky, respectively. They contain informa-
tion at different frequencies (1.4 GHz and 325 MHz) and have
been put together by different instruments and thus provide a
strong constraint on systematic issues.

Our detailed analysis of various linear dipole estimators
(Crawford 2009; Singal 2011; Gibelyou & Huterer 2012) for
three dimensional estimates (αd, δd, d) and a new linear estima-
tor for a two dimensional estimate (αd, d cos δd) had to tackle
several non-trivial issues. We investigated issues of directional
bias, amplitude bias and masking. There is still room to opti-
mize the masking of the galaxy. We did not look into quadratic
estimators, as used by Blake & Wall (2002). Our studies did not
incorporate the uncertainties in point source positions, as we ex-
pect that they are subdominant (their magnitude is well below
the effect of aberration, see e.g. Rengelink et al. 1997). The mea-
surement error of the flux is also expected to be subdominant as
we included sources with flux above 15 mJy only. In the case of
NVSS these are a factor 6 above the 5σ point source detection
limit, in case of WENSS it is a factor of 1.4. The number of point
sources considered in our analysis is about 190 000 for NVSS
and 92 000 for WENSS. Putting all those facts together, we con-
sider the NVSS analysis to be more reliable. Nevertheless, the
results of the WENSS analysis are fully consistent with our re-
sults from NVSS.

Our result (3DS) for the NVSS catalogue is (RA,Dec, d) =
(154◦ ± 19◦,−2◦ ± 19◦, (1.8 ± 0.6) × 10−2). Thus we conclude
that the observed amplitude of the radio dipole exceeds the ex-
pected amplitude by about a factor of four. We could imagine
that this might be due to the structure that causes our proper mo-
tion, which in a simple model of our Hubble patch would cer-
tainly be aligned with the direction of proper motion. However,
all attempts to identify a “great attractor” by means of other ob-
servations (optical, infra-red, X-ray) have failed so far. Of all

those probes, the radio surveys are definitely the deepest probe
of the Universe, as the mean redshift of NVSS sources is esti-
mated to be 1.2 by de Zotti et al. (2010) and 1.5 by Ho et al.
(2008). To explain the observed excess radio dipole by contribu-
tions from local structure, we would need a density contrast of
order 0.05 at scales extending to about z ≈ 0.3, which does not
seem plausible. Without a detailed study of the redshift distribu-
tion of the radio sources it is impossible to judge whether this
finding is actually in agreement with the current standard model
of cosmology.

An example of such a scenario is provided by Wiltshire et al.
(2012). They claim that the spherically averaged Hubble law
on <100/h Mpc scales is significantly closer to uniform in the
Local Group frame as compared to the CMB frame and on this
basis have suggested a non-kinematic contribution to the CMB
dipole. In this case the CMB dipole could differ from the cosmic
radio dipole.

Another reason for the large amplitude of the radio dipole
could be that the linear estimators considered in this work do
not assume the deviation from isotropy to be a pure dipole.
Thus higher multipole moments also contribute to the measured
amplitude.

It has been found from the analysis of the CMB that
quadrupole, octopole and a few more low `-multipoles seem not
to be orientated randomly on the sky, but show some unexpected
alignments (Schwarz et al. 2004; Bennett et al. 2011; Copi et al.
2010) among themselves and with the CMB dipole direction.
Thus it might not be surprising that also the dominant anisotropy
direction of the radio sky lines up.

It is evident that it would be crucial to repeat this investiga-
tion with new and even deeper radio catalogues, which provide
more sources. In the near future there will be three large sky
surveys available (Raccanelli et al. 2012). A multi-wavelength
study will be possible based on the Multifrequency Snapshot
Sky Survery (MSSS) of the International LOFAR Telescope and
with the LOFAR Tier-1 survey. The Australian Square Kilometre
Array (SKA) Pathfinder (ASKAP) will produce the Evolutionary
Map of the Universe (EMU) and the Westerbrok Synthesis Radio
Telescope (WSRT) equipped with the Apertif system will com-
pile the Westerbrok Observations of the Deep Apertif Northern
sky survey (WODAN) catalogue.

The multi-wavelength surveys will also allow us to directly
measure the spectral index α, which has to be known to connect
the measured amplitude to the kinetic dipole. A steepening of
the spectral index for the lowest flux sources would increase the
expected kinetic amplitude. HI surveys will have the advantage
that they will also provide redshift information on top of posi-
tions and fluxes and we will be able to study the evolution of the
radio dipole as a function of redshift out to redshifts of a few.
Beyond that SKA will increase the number of sources in such a
survey by orders of magnitude. All these surveys will reduce the
random dipole contribution, improve on systematics, and allow
us to settle the question: Is the radio dipole in agreement with
the CMB dipole?
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Appendix A: Monte Carlo simulations

We used the pseudorandom number generator Mersenne Twister
for all Monte Carlo simulations. One simulated source consists
of two position coordinates and one flux value. The coordi-
nates will be drawn from an uniform distribution, leading to an
isotropic sky for a catalogue with many sources. To obtain a de-
sired number count power law like (4) with a certain slope x,
we calculate the flux S using a random number A (choosen be-
tween 0 and 1) by

S rest = S L(1 − A)−x, (A.1)

where S L is a flux value 20% below the simulated flux limit.
The simulation also creates sources, which only due to Doppler
shifting are counted in the final catalogue, because this value
of S L lies below the simulated flux limit. Lowering S L further
increases computational time and is not necessary, as long as the
simulated velocity v is below 0.1c.

The two physical effects (Doppler shift and spherical aberra-
tion) will be implemented separately. In cooperating the Doppler
effect is straightforward, since it only affects the flux values of
each source depending on the angle θ between the source and
the velocity direction, i.e.

S obs(νobs) = S rest

1 + v
c cos(θ)√

1 − ( vc )2


1+α

· (A.2)

In the simulation α is fixed to 0.75 for all sources. The velocity
direction and amplitude can by chosen be the user.

To model the relativistic effect of stellar aberration one has
to change the position of each radio source. The aberration
formula is

tan(θ′) =
sin(θ)

√
1 − ( vc )2

v
c + cos(θ)

, (A.3)

where θ′ is the new angle between the velocity direction and
the radio source. Forth, the position of a radio source is trans-
lated into Cartesian coordinates by assuming that it lies on a unit
sphere. Then a straight line from this point (P) to the velocity
direction on the sphere (V) is constructed depending on a pa-
rameter t

r(t) = P(1 − t) + Vt. (A.4)

On this line we choose a t′ in such a way that r(t′) points towards
the new position. The value of t′ can be determined by

r(t′) · V = r′(t′) cos(θ′) (A.5)

→ t′ =
r′(t′) cos(θ′) − cos(θ)

1 − cos(θ)
(A.6)

with r′(t′) =
√

r′2(t′). This equation is solved by

t′1 =
sin(θ − θ′)

sin(θ − θ′) + sin(θ′)
∨ t′2 =

sin(θ + θ′)
sin(θ + θ′) − sin(θ′)

· (A.7)

We know that for θ = θ′ the result of t′ must always be 0.
Therefore the correct solution is t′ = t′1. Now one has to trans-
form r(t′) back into spherical coordinates in order to find the new
position of the radio source. The new declination ϑ′ is then (the
index v stands for the velocity direction):

ϑ′ = arccos
(

1
r′

[(1 − t′) cos(ϑ) + t′ cos(ϑv)]
)

(A.8)

and the new right ascension ϕ′:

ϕ′ = arcsin
(

(1 − t′) sin(ϑ) sin(ϕ) + t′ sin(ϑv) sin(αv)
r′ sin(ϑ′)

)
· (A.9)

This way one obtains a simulated sky, including the effect of
the observers movement. Now one can feed the different estima-
tors with those sky simulations and obtain the resulting dipole
vectors.

References

Baleisis, A., Lahav, O., Loan, A. J., & Wall, J. V. 1998, MNRAS, 297, 545
Bennett, C. L., Hill, R. S., Hinshaw, G., et al. 2011, ApJS, 192, 17
Blake, C., & Wall, J. 2002, Nature, 416, 150
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 2002, VizieR Online Data

Catalog, VIII/065
Copi, C. J., Huterer, D., Schwarz, D. J., & Starkman, G. D. 2010, Adv. Astron.,

2010, id. 847541
Crawford, F. 2009, ApJ, 692, 887
de Zotti, G., Massardi, M., Negrello, M., & Wall, J. 2010, A&A Rev., 18, 1
Ellis, G. F. R., & Baldwin, J. E. 1984, MNRAS, 206, 377
Fixsen, D., & Mather, J. 2002, ApJ, 581, 817
Francis, C., & Peacock, J. 2010, MNRAS, 406, 14
Garn, T., Green, D. A., Riley, J. M., & Alexander, P. 2008, MNRAS, 383, 75
Gibelyou, C., & Huterer, D. 2012, MNRAS, 427, 1994
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Hinshaw, G., Weiland, J. L., Hill, R. S., et al. 2009, ApJS, 180, 225
Hirata, C. M. 2009, , J. Cosmol. Astropart. Phys., 9, 11
Ho, S., Hirata, C., Padmanabhan, N., Seljak, U., & Bahcall, N. 2008,

Phys. Rev. D, 78, 043519
Raccanelli, A., Zhao, G.-B., Bacon, D. J., et al. 2012, MNRAS, 424, 801
Rakic, A., Rasanen, S., & Schwarz, D. J. 2006, MNRAS, 369, L27
Rengelink, R. B., Tang, Y., de Bruyn, A. G., et al. 1997, A&AS, 124, 259
Rubart, M. 2012, Master Thesis, Universität Bielefeld
Schwarz, D. J., Starkman, G. D., Huterer, D., & Copi, C. J. 2004, Phys. Rev.

Lett., 93, 221301
Singal, A. K. 2011, ApJ, 742, L23
Stewart, J. M., & Sciama, D. W. 1967, Nature, 216, 748
Wiltshire, D. L., Smale, P. R., Mattsson, T., & Watkins, R. 2012

[arXiv:1201.5371]

A117, page 13 of 13

http://arxiv.org/abs/1201.5371

	Introduction
	Kinetic radio dipole
	Doppler shift and aberration
	Expected kinetic radio dipole

	Previous results
	Linear estimators for a full sky
	Random flight

	Linear estimators for an incomplete sky
	Random walk
	Direction bias
	Masking
	Masking correction


	Dipole from a flux weighted estimator
	NVSS

	Dipole estimates from NVSS and WENSS
	3D linear estimates
	2D linear estimates
	NVSS
	WENSS


	Comparison of results
	Conclusion
	Monte Carlo simulations
	References

