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Abstract. Observations of interstellar scintillations, general theoretical considerations and comparison of interstel-
lar radiative cooling in HII-regions, and in the diffuse interstellar medium, with linear Landau damping estimates
for fast-mode decay, all strongly imply that the power spectrum of fast-mode wave turbulence in the interstellar
medium must be highly anisotropic. It is not clear from the observations whether the turbulence spectrum is
oriented mainly parallel or mainly perpendicular to the ambient magnetic field, either will satisfy the needs of
balancing wave damping energy input against radiative cooling. This anisotropy must be included when trans-
port of high energy cosmic rays in the Galaxy is discussed. Here we evaluate the relevant cosmic ray transport
parameters in the presence of anisotropic wave turbulence. Using the estimates of the anisotropy parameter in
the strongly parallel and perpendicular regimes, based on linear Landau damping balancing radiative loss in the
diffuse interstellar medium, we show that in nearly all situations the pitch-angle scattering of relativistic cosmic
rays by fast magnetosonic waves at pitch-angle cosines |µ| ≥ VA/c is dominated by the transit-time damping
interaction. The momentum diffusion coefficient of cosmic ray particles is calculated by averaging the respective
Fokker-Planck coefficient over the particle pitch-angle for the relevant anisotropy parameters within values of
10−8 ≤ Λ ≤ 1011. For strongly perpendicular turbulence (Λ� 1) the cosmic ray momentum diffusion coefficient
is enhanced with respect to the case of isotropic (Λ = 1) turbulence by the large factor Λ−1/2. For strongly parallel
turbulence (Λ � 1) the momentum diffusion coefficient is reduced with respect to isotropic turbulence by the
large factor 2Λs/2/s.
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1. Introduction

Observations of interstellar scintillations (Rickett 1990;
Spangler 1991), general theoretical considerations
(Goldreich & Sridhar 1995), and comparison of inter-
stellar radiative cooling in HII-regions and in the diffuse
interstellar medium with linear Landau damping esti-
mates for fast-mode decay (Lerche & Schlickeiser 2001),
all strongly imply that the power spectrum of fast-mode
wave turbulence in the interstellar medium must be highly
anisotropic. It is not clear from the observations whether
the turbulence spectrum is oriented mainly parallel or
mainly perpendicular to the ambient magnetic field,
either will satisfy the needs of balancing wave damping
energy input against radiative cooling. Theoretically,
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Goldreich & Sridhar (1995) prefer turbulence organized
in ribbon-like stuctures paralleling the ambient field.
But, whichever way the turbulence is organized (and
one expects that observations over the next decade or
so should resolve the current ambiguity), there is little
question that it is highly anisotropic.

This anisotropy must be included when transport of
high energy cosmic rays in the Galaxy is discussed. So
far, with the noteworthy exception of Jaekel & Schlickeiser
(1992), in all the literature concerning the determina-
tion of cosmic ray transport parameters, there appears
to be consideration given only to turbulence which has
a power spectrum either slab-like along the ordered mag-
netic field or isotropically distributed in wavenumber (e.g.,
Schlickeiser & Miller 1998, hereafter referred to as SM).
The purpose of the present paper is to remedy this de-
fect to some extent by evaluating the relevant cosmic ray

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20011080

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20011080


280 I. Lerche and R. Schlickeiser: Cosmic rays in anisotropic turbulence. I.

transport parameters in the presence of anisotropic wave
turbulence.

2. Turbulence spectrum

A synthesis of current observations would indicate that a
plasma wave power spectrum of the form

I(k) = I0 [k2
‖ + Λk2

⊥]−(2+s)/2 (1)

satisfies the needs of the interstellar scintillation ob-
servations, the balance of wave energy dissipation and
radiative cooling in HII-regions and in the diffuse in-
terstellar medium, and is in accord with the general
theoretical arguments advanced by Goldreich & Sridhar
(1995). According to Rickett (1990) and Spangler (1991)
Eq. (1) is valid for |k|(≡ (k2

‖ + k2
⊥)1/2) larger than a min-

imum wavenumber, kmin, and less than a maximum kmax.
Spangler (1991) identifies these wavenumbers as due to
an inner scale length, lmin(≡ 2π/kmax), and an outer scale
length lmax(≡ 2π/kmin). Observations indicate that the
power spectral index, s, is around 5/3, while normaliza-
tion of the power spectrum requires

(δB)2 =
∫

d3k I(k) = 2πI0

×
∫ 1

−1

dη[η2 + Λ(1− η2)]−(2+s)/2

∫ kmax

kmin

dk k−s

(2)

where k‖ = kη, k⊥ = k(1−η2)1/2, with η being the cosine
of the propagation angle of a plasma wave with respect to
the ambient magnetic field. Moreover, (δB)2 is the fluc-
tuation strenth in the magnetic field, and the constant Λ
accounts for the turbulence anisotropy.

Note that if the turbulence is isotropic(Λ = 1) then

I0(Λ = 1) =
(δB)2

4π
/

∫ kmax

kmin

dk k−s (3)

while for non-isotropic turbulence

I0(Λ) = I0(Λ = 1)/J(Λ) (4)

with the integral

J(Λ) ≡
∫ 1

0

dη[η2 + Λ(1− η2)]−(2+s)/2

= 2F1(1 +
s

2
, 1;

3
2

; 1− Λ) (5)

which can be expressed in terms of the hypergeometric
function.

3. Cosmic ray Fokker-Planck coefficients

On the basis of quasilinear transport theory the general
form of the Fokker-Planck coefficients has been given by
SM for cosmic ray particles with speeds v � VA, where
VA = B0/

√
4πρ is the Alfvén speed in terms of the ambi-

ent magnetic field strength, B0, and the ionized mass den-
sity, ρ. Equations (17)–(19) of SM are the relevant factors

to examine, representing the Fokker-Planck-coefficients
Dµµ, Dpµ and Dpp. Here µ = p‖/p is the cosine of the
pitch angle of a cosmic ray particle of total momentum p.

Quasilinear transport equations for magnetohydrody-
namic plasma waves were formulated originally by Kennel
& Engelmann (1966), Hall & Sturrock (1967) and Lerche
(1968). The quasilinear approach to the interaction of en-
ergetic charged particles with partially random electro-
magnetic fields (B0 + δB, δE) is a first-order perturba-
tion calculation in the ratio qL = (δB/B0)2 and requires
smallness of this ratio with respect to unity. In most cos-
mic plasmas this requirement is well satisfied as has been
established by direct in-situ measurements in interplane-
tary plasmas, or due to saturation effects in the growth
of fluctuating fields. Comparison with Monte Carlo sim-
ulations of the transport of charged particles with differ-
ent plasma wave fields (e.g., Michalek & Ostrowski 1996)
demonstrates that the quasilinear theory provides an accu-
rate description of cosmic ray transport for ratios qL ≤ 2.

Due to the high conductivity of most cosmic plas-
mas, large-scale steady electric fields are absent, so that
the interest concentrates on magnetized plasma. By linear
stability calculations it has been established that these
systems contain low-frequency magnetohydrodynamic
turbulence such as shear Alfvén waves and fast and slow
magnetosonic waves. For these plasma waves the magnetic
part of the Lorentz force is much larger than the elec-
tric part of the Lorentz force, so that the time scale for
rapid pitch angle scattering of energetic charged particles
is much shorter than the time scale for energy changes.
In this case the particle’s gyrotropic distribution func-
tion adjusts rapidly to quasi-equilibrium, which is close
to the isotropic distribution function, in excellent agree-
ment with the observational fact of the isotropy of cosmic
ray particles. For nonrelativistic (u � c) bulk speed of
the turbulence-carrying background plasma the diffusion-
convection transport equation for the isotropic part of the
phase space density F (z, p, t) can be derived by a well-
known approximation scheme (Jokipii 1966; Hasselmann
& Wibberenz 1968; Earl 1973; Schlickeiser 1989) from the
quasilinear Fokker-Planck equation

∂F

∂t
− S0 =

∂

∂z

[
κ
∂F

∂z

]
− V

∂F

∂z
+
p

3
∂V

∂z

∂F

∂p

+
1
p2

∂

∂p

[
p2A

∂F

∂p
− p2ṗLossF

]
− F

Tc
(6)

where the spatial diffusion coefficient κ, the cosmic ray
bulk speed V and the momentum diffusion coefficient A
are determined by pitch-angle averages of three Fokker-
Planck coefficients

κ =
v2

8

∫ 1

−1

dµ
(1− µ2)2

Dµµ(µ)
(7)

V =u+
1

3p2

∂

∂p
(p3D), D=

3v
4p

∫ 1

−1

dµ(1−µ2)
Dµp(µ)
Dµµ(µ)

(8)
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A =
1
2

∫ 1

−1

dµ

[
Dpp(µ) −

D2
µp(µ)

Dµµ(µ)

]
· (9)

In Eq. (6) S0 is the source term, and ṗloss and Tc describe
continous and catastrophic momentum loss processes.

The three Fokker-Planck coefficients, describ-
ing particle-wave interaction processes and entering
Eqs. (7), (8), (9) are calculated (Hall & Sturrock 1967;
Krommes 1984; Achatz et al. 1991) from ensemble-
averaged first-order corrections to the particle orbit.
Therefore they depend on the tensor components of the
plasma wave power spectrum <δBl(k)δBm(k)>. For a
magnetic turbulence tensor with no preferred direction,
Batchelor (1953) notes that <δBl(k)δBm(k)> can be
written in the general form

<δBl(k)δBm(k)>=
G(k)
8πk2

[δlm−
klkm

k2
]+ ı

H(k)
8πk2

εlmkkk.

(10)

Application of Cramer’s theorem requires G(k) ≥ 0 for
all k, and −G(k) ≤ kH(k) ≤ G(k) for all k. Then

(δB)2 =
∫

d3k
G(k)
4πk2

=
1
2

∫
dk
∫ 1

−1

dηG(k, η) (11)

where η = k ·B0/|k||B0|.
For fast-mode waves propagating either forward (phase

velocity ω/k = jVA, j = +1) or backward (phase veloc-
ity ω/k = jVA, j = −1) to the ambient magnetic field
an index j is used to track the wave direction (SM) and,
in principle, the magnetic helicity H(k) can also be in-
cluded in the evaluation of the Fokker-Planck coefficients.
However, little is known about any magnetic helicity term
in the interstellar turbulence so, in this first investigation
of the effects of wave turbulence anisotropy on the cosmic
ray transport parameters, we restrict our attention to the
anisotropy factor G(k)/(8πk2).

With the identification

G(k)
8πk2

=
I0k
−(2+s)

[η2 + Λ(1− η2)](2+s)/2
(12)

it follows that the anisotropic variants of Eqs. (27)–(29)
of SM take the form

Dµµ =
2π2Ω2(1− µ2)

B2
0

∑
j=±1

Ij0

∞∑
n=−∞

×
∫ 1

−1

dη(1 + η2)[η2 + Λ(1− η2)]−(2+s)/2

×
∫ kmax

kmin

dk k−sδ[kvµη − jVAk + nΩ]

×
(
J
′

n

(
kv(1− µ2)1/2(1− η2)1/2

|Ω|

))2

(13)

Dpp =
p2V 2

A

v2
Dµµ (14)

Dµp =
4π2Ω2pVA

vB2
0

∑
j=±1

jIj0

∞∑
n=−∞

×
∫ 1

−1

dη[η2 + Λ(1− η2)]−(2+s)/2

×
∫ kmax

kmin

dk k−sδ[kvµη − jVAk + nΩ]
n|Ω|
kv

×J2
n

(
kv(1− µ2)1/2(1− η2)1/2

|Ω|

)[
µ

2
− n|Ω|η
kv(1− η2)

]
(15)

where Ij0 reflects the two intensity components of turbu-
lence forward and backward to the ambient magnetic field,
and we have taken both to have the same spectral shape
to be in accord with observations. Then I+

0 + I−0 = I0,
where I0 is given by Eq. (4).

The general Fokker-Planck coefficients represented
through Eqs. (13)–(15) can be split into two parts: compo-
nents with n = 0 (customarily referred to as transit-time
contributions), and components with n 6= 0 (customarily
referred to as gyroresonant contributions). We consider
each in turn.

3.1. Transit-time contributions (n = 0)

In this case the argument of the δ-functions is just
δ[k(vµη − jVA)] = k−1δ[vµη − jVA] so that one has

DT
µp = 0 (16)

DT
µµ =

2π2Ω2(1− µ2)I0(Λ)
v|µ|B2

0

H[|µ− ε]
(

1 +
ε2

µ2

)
×
[
ε2

µ2
+ Λ

(
1− ε2

µ2

)]−(2+s)/2

×
∫ kmax

kmin

dk k−(1+s)J2
1

(
kv

|Ω|

√
(1−µ2)

(
1− ε

2

µ2

))
(17)

DT
pp = p2ε2DT

µµ (18)

where ε = VA/v and where H[x] denotes the Heaviside
step function. The superscript T refers to the transit-time
component.

Using Eqs. (3) and (4) for I0(Λ) Eq. (17) can be written

DT
µµ =

π

2

(
δB

B0

)2 Ω2(1− µ2)
v|µ| H[|µ− ε]

(
1 +

ε2

µ2

)

×
[
ε2

µ2
+ Λ

(
1− ε2

µ2

)]−(2+s)/2
[∫ kmax

kmin

dk k−s
]−1

×
(∫ 1

0

dη[η2 + Λ(1− η2)]−(2+s)/2

)−1

×
∫ kmax

kmin

dk k−(1+s)J2
1

(
kv

|Ω|

√
(1−µ2)

(
1− ε

2

µ2

))
·

(19)
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Relative to the isotropic (Λ = 1) situation one can write

DT
µµ(Λ) = DT

µµ(Λ = 1)
[
ε2

µ2
+ Λ

(
1− ε2

µ2

)]−(2+s)/2

×
(∫ 1

0

dη[η2 + Λ(1− η2)]−(2+s)/2

)−1

(20)

DT
pp(Λ) = p2ε2DT

µµ(Λ). (21)

3.2. Gyroresonance contributions (n 6= 0)

In this case the contributions are more complex, as also
noted in the isotropic case by SM, due to the fact that the
argument of the δ-function now involves the wavenum-
ber k explicitly. Following the same sense of argument as
given by SM, after some algebra, one can write the gy-
roresonance contributions as

DG
µµ =

2π2Rs−2
L v(1− µ2)|µ|s−1

B2
0

∑
j=±1

Ij0

×
∫ 1

−1

dη
(1 + η2)|η − jε

µ |s−1

[η2 + Λ(1− η2)](2+s)/2

×
∞∑
n=1

n−s
(
J
′

n

(
n

(1− µ2)1/2(1− η2)1/2

|µη − jε|

))2

×
[
H

[
sgn(Ω)
jε− µη

]
+H

[
sgn(Ω)
µη − jε

]]
(22)

together with

kmin ≤
n

RL|µη − jε|
≤ kmax (23)

where we introduced the cosmic ray particle gyroradius
RL = v/|Ω|.

Likewise we obtain

DG
pp = p2ε2DG

µµ (24)

and

DG
µp =

4π2Rs−2
L pVA|µ|s
B2

0

∑
j=±1

jIj0

×
∫ 1

−1

dη
(1 + η2)|η − jε

µ |s

[η2+Λ(1−η2)](2+s)/2

[
µ

2
−η|µη − jε|

1−η2

]
×
∞∑
n=1

n−sJ2
n

(
n

(1− µ2)1/2(1− η2)1/2

|µη − jε|

)
×
[
H

[
sgn(Ω)
jε− µη

]
+H

[
sgn(Ω)
µη − jε

]]
(25)

again together with the restriction (23).
Without further information on the relative strengths

of I−0 to I+
0 it is not possible to take the gyroreso-

nance contributions much further. In Sect. 5 we treat with
the symmetric case where I−0 = I+

0 , to illuminate the
changes in the Fokker-Planck coefficients brought about
by the anisotropic nature of the plasma wave turbulence.

However, for the transit-time contributions (Eqs. (19)–
(21)) it is possible to evaluate the effects of anisotropy di-
rectly without needing to make any further assumptions
on I−0 and I+

0 . This aspect is discussed next.

4. Anisotropic transit-time effects

Introducing the ratio

ATT(Λ)≡DT
µµ(Λ)/DT

µµ(Λ = 1) =DT
pp(Λ)/DT

pp(Λ = 1) (26)

we obtain from Eq. (20)

ATT(Λ) =
[ ε

2

µ2 + Λ(1− ε2

µ2 )]−(2+s)/2

J(Λ)
(27)

in ε < |µ|.
Three cases provide insight into the anisotropic effects:

(i) weak anisotropy Λ = 1− r, |r| � 1;
(ii) strongly ribbon-like anisotropy Λ� 1;
(iii) strongly perpendicular anisotropy Λ� 1.

Consider each in turn.

4.1. Weak anisotropy (Λ = 1 − r , |r | � 1)

Here

ATT(Λ) '
[
1 + r

(
1 +

s

2

)(
1− ε2

µ2

)]
/

[
1 + r

s+ 2
3

]
' 1 + r

(
1 +

s

2

)(1
3
− ε2

µ2

)
(28)

in ε < |µ| so that the anisotropy component changes sign
as µ crosses ±

√
3ε.

4.2. Strongly ribbon-like anisotropy (Λ� 1)

According to Eq. (43) of Lerche & Schlickeiser (2001) the
integral (5) for Λ � 1 is approximately J(Λ � 1) '
(sΛ)−1. Moreover, in this case ε2/µ2 � Λ(1− ε2/µ2) ex-
cept from the small range of µ in ε ≤ |µ| ≤ ε(1 + 1

2Λ).
Then

ATT(Λ) '

×


sΛ
(
|µ|
ε

)2+s

for ε ≤ |µ| ≤ ε(1 + 1
2Λ)

sΛ−s/2
[
1− ε2

µ2

]−(2+s)/2

for ε(1 + 1
2Λ ) < |µ| ≤ 1

.

(29)

Thus, in most of the range of µ, ATT = O(Λs/2)� 1 and
only in a very narrow range |µ| ∼= ε, is ATT = O(Λ)� 1.
Consequently, in ε(1 + 1

2Λ ) < |µ| ≤ 1

DT
µµ(Λ) ' sΛ−s/2DT

µµ(Λ = 1)� DT
µµ(Λ = 1). (30)

Thus the pitch angle transit-time Fokker-Planck com-
ponent is massively reduced as is DT

pp, for most parti-
cles. Only the small fraction of particles occupying the
range ε(1 + 1

2Λ ) < |µ| ≤ 1 have an enhanced transit-time
contribution.
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4.3. Strongly perpendicular anisotropy (Λ� 1)

Correcting Eq. (30) of Lerche & Schlickeiser (2001) the
integral (5) for Λ � 1 is approximately J(Λ � 1) '
(s+ 2)Λ−(s+1)/2/(s+ 1).

With respect to the first factor in Eq. (27), in this case
Λ � 1 the factor ε2/µ2 dominates Λ(1 − ε2/µ2) except
when 1 ≥ |µ| ≥ εΛ−1/2. The outer pair of inequalities
require Λ > ε2 to be obeyed. So two limits exist: either
(α) 1� ε2 � Λ, in which case the factor ε2/µ2 dominates
Λ(1 − ε2/µ2) everywhere; or (β) 1 � Λ ≥ ε2, in which
case the factor ε2/µ2 dominates Λ(1− ε2/µ2) in ε ≤ |µ| ≤
εΛ−1/2 ≤ 1 while Λ(1 − ε2/µ2) dominates in εΛ−1/2 ≤
|µ| ≤ 1. Consider each case in turn.

4.3.1. Λ� ε2 � 1

Here for all values of |µ| > ε

ATT(Λ) ' s+ 1
s+ 2

|µ|
ε

[
µ2Λ
ε2

](1+s)/2

� 1 (31)

which is much smaller unity.

4.3.2. ε2 ≤ Λ� 1

In this case Eq. (31) holds in the range ε ≤ |µ| ≤ εΛ−1/2

whereas in the range εΛ−1/2 < |µ| ≤ 1

ATT(Λ)' s+1
s+2

Λ−1/2[1− ε
2

µ2
]−(2+s)/2'Λ−1/2 s+1

s+2
(32)

which is larger unity.

5. Anisotropic gyroresonance effects

Because the individual wave intensity components I+
0 and

I−0 do not enter the expressions for DG
µµ and DG

µp as the
simple sum I+

0 +I−0 , occurring for the transit-time compo-
nents, one has to assume further simplifications in order to
evaluate the respective contributions to the Fokker-Planck
coefficients. SM argued that the most important situation
to evaluate was that of symmetric wave intensities when
I+
0 = I−0 = Itot/2. We follow that prescription here so

that the direct effects of the anisotropic power spectrum
are illustrated relative to a conventional scenario.

5.1. Rate of adiabatic deceleration

From Eq. (25) we obtain

DG
µp =

4π2Rs−2
L pεv|µ|s+1Itot

B2
0

∞∑
n=1

n−s

×
∫ 1

−1

dη
η(1 + η2)

(1− η2)[η2 + Λ(1− η2)](2+s)/2

×
(
|η+

ε

µ
|s+1J2

n

(
n

(1−µ2)1/2(1−η2)1/2

|µη+ε|

)
Hmin,−Hmax,

−|η− ε
µ
|s+1 J2

n

(
n

(1−µ2)1/2(1−η2)1/2

|µη−ε|

)
Hmin,+Hmax,+

)
(33)

Hmin,± = H

[
n

RL|µη ∓ ε|
− kmin

]
(34)

and

Hmax,± = H

[
kmax −

n

RL|µη ∓ ε|

]
· (35)

Note that DG
µp(−µ) = −DG

µp(µ) is antisymmetric in µ, so
that the rate of adiabatic acceleration D in Eq. (8)

D=
3v
4p

∫ 1

−1

dµ(1−µ2)
Dµp

Dµµ
=

3v
4p

∫ 1

−1

dµ(1−µ2)
DG
µp

Dµµ
=0

(36)

is identically zero in the symmetric wave intensity case
I+
0 = I−0 = Itot/2. In deriving this result we have used

Eq. (16) that there is no transit-time contribution toDµp.
Note that as ε→ 0, the integral over η in Eq. (33) also

tends to zero, so that DG
µp is small compared to DG

µµ.

5.2. Pitch-angle Fokker-Planck coefficient

From Eq. (22)

DG
µµ =

2π2Rs−2
L v(1− µ2)|µ|s−1Itot

B2
0

∞∑
n=1

n−s

×
∫ 1

0

dη
(1 + η2)

[η2 + Λ(1− η2)](2+s)/2

×
(
|η− ε

µ
|s−1

[
J
′

n

(
n

(1−µ2)1/2(1−η2)1/2

|µη−ε|

)]2

Hmin,+Hmax,+

+|η+
ε

µ
|s−1

[
J
′

n

(
n

(1−µ2)1/2(1−η2)1/2

|µη+ ε|

)]2

Hmin,−Hmax,−

)
.

(37)

We further reduce Eq. (37) by changing variables in the
first term of the bracket to w = (ηµ − ε)/n with −ε/n ≤
w ≤ (µ − ε)/n while in the second term one writes q =
(ηµ+ ε)/n with ε/n ≤ w ≤ (µ+ ε)/n. We obtain

DG
µµ =

2π2Rs−2
L v(1− µ2)Itot

µB2
0

×
∞∑
n=1

[∫ (µ−ε)/n

− ε
n

dq
(1+η2

+)
[η2

++Λ(1−η2
+)](2+s)/2

|q|s−1

×
[
J
′

n

(
(1− µ2)1/2(1− η2

+)1/2

|q|

)]2

×H
[

1
RL|q|

− kmin

]
H

[
kmax −

1
RL|q|

]
+
∫ (µ+ε)/n

ε
n

dq
(1 + η2

−)
[η2
− + Λ(1− η2

−)](2+s)/2
|q|s−1

×
[
J
′

n

(
(1− µ2)1/2(1− η2

−)1/2

|q|

)]2

×H
[

1
RL|q|

− kmin

]
H

[
kmax −

1
RL|q|

]]
(38)
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where η+(q) = (nq+ε)/µ and η−(q) = (nq−ε)/µ. Eq. (38)
is discussed in Appendix A.

5.2.1. Small values |µ| ≤ ε
As shown in Appendix A, for small pitch angle cosines
|µ| ≤ ε we obtain

DG
µµ(|µ| ≤ ε) ' (δB)2

B2
0

AG1(Λ)Rs−2
L vεs

[∫ kmax

kmin

dk k−s
]−1

H[E−Emin]H[Emax−E]
∞∑
n=1

n−(1+s)[1−(−1)n sin(2n/ε)]

(39)

with

Emin ≡
Zmpc

2

2π
lminωp,i

c
; Emax =

lmax

lmax
Emin (40)

involving the inner and outer scale of the turbulence spec-
trum and the interstellar ion skin length, respectively. We
introduced the gyroresonance anisotropy ratio for small
pitch angle cosines

AG1(Λ) =
[
Λ(2+s)/2J(Λ)

]−1

(41)

in terms of the integral (5). Obviously

DG
µµ(Λ, |µ| ≤ ε) = AG1(Λ)DG

µµ(Λ = 1, |µ| ≤ ε) (42)

the ratio AG1 relates the respective Fokker-Planck coef-
ficients for general anisotropy (Λ 6= 1) to the isotropic
(Λ = 1) one.

For isotropic turbulence (Λ = 1) Eq. (39) (apart from
the factor 3π/2) agrees with Eqs. (44) and (58a) of SM.

5.2.2. Large values |µ| > ε

For large pitch angles |µ| > ε we restrict our analysis
to cosmic ray particles with gyroradii less than RL <
lmax/2π. In this case from Appendix A we obtain from
Eq. (108)

DG
µµ(Λ, ε < |µ| ≤ 2−1/2) =

AG2(Λ)DG
µµ(Λ = 1, ε < |µ| ≤ 2−1/2) (43)

and

DG
µµ(Λ, |µ| > 2−1/2) =AG3(Λ)DG

µµ(Λ = 1, |µ| > 2−1/2)
(44)

with

DG
µµ(Λ = 1, ε < |µ| ≤ 2−1/2) =

ζ(s + 1)g(s)
2

(δB)2

B2
0

Rs−2
L v|µ|s+1

[∫ kmax

kmin

dk k−s
]−1

(45)

where

g(s) = π1/2 Γ[1+s
2 ]

Γ[2+s
2 ]

+2−s/2

×
[

2F1

(
1+

s

2
, 1;

5+s
2

;
1
2

)
+ 2F1

(
1+

s

2
, 1;

3
2

;
1
2

)]
(46)

and

DG
µµ(Λ = 1, |µ| > 2−1/2) =

π

4s
(δB)2

B2
0

Rs−2
L v(1− µ2)|µ|s−1

[∫ kmax

kmin

dk k−s
]−1

, (47)

respectively. The two gyroresonance anisotropy ratios are
given by

AG2(Λ) = [g(s)J(Λ)]−1

[
π1/2

Λ1/2

Γ[1+s
2 ]

Γ[2+s
2 ]

+ 2[1 + Λ]−(2+s)/2

×
[

2F1

(
1+

s

2
, 1;

5+s
2

;
1

1+Λ

)
+ 2F1

(
1+

s

2
, 1;

3
2

;
Λ

1+Λ

)]]
(48)

and

AG3(Λ) = [ΛJ(Λ)]−1. (49)

It is remarkable that the three gyroresonance anisotropy
ratios (Eqs. (41), (48) and (49)) are independent of cos-
mic ray particle properties and solely determined by the
turbulence parameters s and Λ.

With the asymptotic behaviour of J(Λ) for small and
large arguments we immediately find for the asymptotic
behaviour of the two gyroresonance anisotropy factors

AG1(Λ) '
{

s+1
s+2 Λ−1/2 for Λ� 1

sΛ−s/2 for Λ� 1
(50)

AG3(Λ) '
{

s+1
s+2 Λ(s−1)/2 for Λ� 1

s for Λ� 1
. (51)

The asymptotics of the anisotropy factor AG2 is more in-
volved. For Λ � 1 the two hypergeometric functions in
Eq. (48) can be approximated as

2F1

(
1+

s

2
, 1;

5+s
2

;
1

1+Λ

)
' 2F1

(
1+

s

2
, 1;

5+s
2

; 1
)

= 3+s

and

2F1

(
1 +

s

2
, 1;

3
2

;
Λ

1 + Λ

)
' 2F1

(
1 +

s

2
, 1;

3
2

; 0
)

= 1

so that the second factor in the bracket of Eq. (48) can be
neglected, leaving

AG2(Λ� 1) ' π1/2

g(s)
Γ[3+s

2 ]
Γ[4+s

2 ]
Λs/2. (52)
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In the opposite case Λ� 1 the first hypergeometric func-
tion in Eq. (48) is approximated as

2F1

(
1+

s

2
, 1;

5+s
2

;
1

1+Λ

)
' 2F1

(
1+

s

2
, 1;

5+s
2

; 0
)

=1

whereas the second is written as the integral

2F1

(
1+

s

2
, 1;

3
2

; z
)

=
1
2

∫ 1

0

dt(1−t)−1/2(1−zt)−(2+s)/2 (53)

with z = 1 − ξ where ξ = (1 + Λ)−1 � 1. Substituting
x = z(1− t)/(1− z) in Eq. (53) we derive

2F1(1 +
s

2
, 1;

3
2

; 1− ξ) =
ξ−(1+s)/2

2(1− ξ)1/2

×
∫ (1−ξ)/ξ

0

dxx−1/2(1 + x)−(2+s)/2 ' ξ−(1+s)/2

2(1− ξ)1/2

×
∫ ∞

0

dxx−1/2(1 + x)−(2+s)/2 ' π1/2

2
Γ[1+s

2 ]
Γ[2+s

2 ]
ξ−(1+s)/2.

(54)

The replacement of the upper integration boundary with
∞ is allowed because ξ � 1. Accordingly, we obtain

AG2(Λ� 1) ' 2sπ1/2

g(s)
Γ[1+s

2 ]
Γ[2+s

2 ]
Λ1/2. (55)

In summary then

AG2(Λ) ' π1/2

g(s)
Γ[1+s

2 ]
Γ[2+s

2 ]

{
s+1
s+2Λs/2 for Λ� 1

2sΛ1/2 for Λ� 1
(56)

complementing Eqs. (50) and (51).
We are now in the position to discuss the influence of

the turbulence anisotropy Λ on the ratio of the contri-
butions from transit-time damping and gyroresonances in
the pitch-angle interval |µ| > ε.

6. Comparison of transit-time damping
and gyroresonance contributions to particle
scattering

Transit-time damping does not contribute to the scatter-
ing of particles in the interval |µ| < ε where the scatter-
ing relies solely on the gyroresonant contribution (SM).
Outside this interval we can calculate the ratio of the
contributions from transit-time damping and gyroreso-
nances as

R2,3(Λ) ≡
DT
µµ(Λ)

DG
µµ(Λ)

= r2,3(µ)
ATT(Λ)
AG2,3(Λ)

(57)

where the indices 2, 3 refer to the intervals ε ≤ |µ| ≤ 2−1/2

and |µ| > 2−1/2, respectively. The functions

r2,3(Λ) ≡
DT
µµ(Λ = 1)

DG
µµ(Λ = 1)

(58)

refer to the corresponding ratios for isotropic turbulence,
and are obtained from Eqs. (19), (45) and (47) under the
assumptions that have been made as

r2(µ) ' O2

[
1− ε2

µ2

]s/2
µ−(2+s);

r3(µ) ' O3[1− µ2]s/2µ−s (59)

where O2 and O3 are factors of order unity. Whereas r3(µ)
is of order O3 in the whole range |µ| > 2−1/2, the function
r2(µ) attains its maximum value

r2,max = O1ε
−(2+s) � 1 (60)

at |µ0| = ε[2(s+ 1)/(s+ 2)]1/2 where

O1 =
O2(s+ 2)
2(s+ 1)

[
s(s+ 2)
4(s+ 1)2

]s/2

is again of order unity. Eq. (60) reproduces the result
of SM that for isotropic turbulence transit-time damping
provides the dominant contribution to pitch angle scatter-
ing in the interval |µ| > ε.

6.1. Interval ε < |µ| ≤ 2−1/2

Approximating in this interval the variation of the func-
tion r2(µ) by its maximum value (60) we obtain for the
ratio of the contributions from transit-time damping and
gyroresonances

R2(Λ) ' O1ε
−(2+s)ATT(Λ)

AG2(Λ)
(61)

which can be reduced further using the approximations
(29), (31), (32) and (56).

6.1.1. Strongly perpendicular anisotropy (Λ� 1)

For strongly perpendicular anisotropy we obtain

R2(Λ� 1) '
O1g(s)Γ[2+s

2 ]
π1/2Γ[2+s

2 ]

×
{
µ2+sε−2(2+s)Λ1/2 for Λ� ε2 � 1
s+1

2s(s+2)ε
−(2+s)Λ−1/2 for ε2 ≤ Λ� 1

(62)

which is much larger unity unless Λ ≤ ε2(2+s) is extremely
small.

6.1.2. Strongly ribbon-like anisotropy (Λ� 1)

For strongly parallel anisotropy we derive

R2(Λ� 1) '
O1g(s)Γ[2+s

2 ]
2π1/2Γ[2+s

2 ]

×
{
ε−(2+s)Λ1/2 for ε ≤ |µ| ≤ ε(1 + 1

2Λ )

ε−(2+s)Λ−(s+1)/2 for |µ| > ε(1 + 1
2Λ)

(63)

which in the small interval ε ≤ |µ| ≤ ε(1 + 1
2Λ) is always

much larger unity. Outside this interval, i.e. |µ| > ε(1+ 1
2Λ)

the ratio R2(Λ � 1) is much larger unity unless Λ >
ε−2(2+s)/(s+1) becomes extremely large.
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6.2. Interval |µ| > 2−1/2

In this interval we approximate the variation of the func-
tion r3(µ) by its maximum value O3 so that we obtain for
the ratio of the contributions from transit-time damping
and gyroresonances

R3(Λ) ' O3
ATT(Λ)
AG3(Λ)

· (64)

6.2.1. Strongly perpendicular anisotropy (Λ� 1)

For strongly perpendicular anisotropy we obtain

R3(Λ� 1) '
O3g(s)Γ[2+s

2 ]
π1/2Γ[2+s

2 ]

×
{
µ2+sε2+sΛ1/2 for Λ� ε2 � 1
s+1

2s(s+2) Λ−1/2 for ε2 ≤ Λ� 1
(65)

which is much larger unity unless Λ ≤ ε2(2+s) is extremely
small.

6.2.2. Strongly ribbon-like anisotropy (Λ� 1)

For strongly parallel anisotropy we derive

R3(Λ� 1) '
O3g(s)Γ[2+s

2 ]
2π1/2Γ[2+s

2 ]
Λ−(s+1)/2 (66)

which is much smaller unity.

6.3. Interlude

Summarizing our results in short:
(a) For massively parallel (Λ� 1) situations, the ratio of
the transit-time contribution to the gyroresonance contri-
bution to pitch-angle scattering in the interval |µ| > ε of
cosmic ray particles with gyroradii RL < lmax/2π behaves
as follows:
– for large |µ| > 2−1/2 the ratio is smaller than unity
indicating that the gyroresonance contribution dominates
the transit-time damping contribution,
– in the small interval ε ≤ |µ| ≤ ε(1+ 1

2Λ ) the ratio is larger
than unity indicating that the transit-time contribution
dominates the gyroresonance contribution,
– in the interval ε(1+ 1

2Λ) < |µ| ≤ 2−1/2 the ratio is larger
than unity (i.e. dominance of the transit-time damping
contribution) for anisotropy values smaller than 1� Λ ≤
Λl ≡ ε−2(2+s)/(s+1) whereas for extremely large values of
Λ > Λl the ratio is smaller than unity (i.e. dominance of
the gyroresonance contribution).
(b) For massively perpendicular (Λ � 1) situations, the
ratio of the transit-time contribution to the gyroresoance
contribution to pitch-angle scattering in the interval |µ| >
ε of cosmic ray particles with gyroradii RL < lmax/2π
is much larger than unity for anisotropy values larger
than ε2(2+s) ≡ Λs ≤ Λ � 1, indicating that the transit-
time damping contribution dominates the gyroresonance
contribution.

For extremely small anisotropy values Λ < Λs � 1 the
ratio is smaller than unity indicating the dominance of the
gyroresonance contribution over the transit-time damping
contribution.

6.4. Cosmic ray scattering in the interstellar medium

Using the estimates of the Alfven speed in the diffuse in-
terstellar medium of VA ' 3 × 106 cm s−1 (Minter &
Spangler 1997) yields the value ε = VA/v ' VA/c = 10−4

for relativistic cosmic ray particles. With a turbulence
spectral index of s = 5/3 (Rickett 1990) we obtain for
Λl = ε−2(2+s)/(s+1) = ε−11/4 = 1011 and Λs = ε2(2+s) =
ε22/3 = 10−88/3 = 2× 10−29, respectively.

Now, estimates of the anisotropy parameter Λ in the
strongly parallel situation (Λ� 1) based on linear Landau
damping balancing radiative loss in the diffuse interstel-
lar medium, provide the value Λ ' 7400 (Lerche &
Schlickeiser 2001) which is much smaller than Λl. Hence,
it would seem that in the diffuse interstellar medium the
transit-time damping contribution to Dµµ is dominant in
the pitch-angle angle interval ε ≤ |µ| ≤ 2−1/2 whereas
the gyroresonant contribution dominates in the interval
µ| > 2−1/2. The same conclusion holds in HII-regions (the
fluctiferous domain of Spangler 1991), for which Lerche &
Schlickeiser (2001) estimated Λ ' 17.7.

Estimates of the anisotropy parameter Λ in the
strongly perpendicular situation (Λ � 1) based on linear
Landau damping balancing radiative loss in the diffuse
interstellar medium, provide the value Λ ' 10−6 (Lerche
& Schlickeiser 2001) which is much larger than Λs. The
transit-time damping contribution then dominates the
gyroresonance contribution throughout the whole pitch-
angle interval |µ| ≥ ε in the diffuse interstellar medium.
The same conclusion holds in HII-regions, for which
Lerche & Schlickeiser (2001) estimated Λ ' 10−3 in this
case.

These estimates have direct consequences for the cos-
mic ray transport parameters in the interstellar medium,
as the parallel mean free path and the momentum dif-
fusion coeffient. However, before the parallel mean free
path can be calculated, we have to determine the influ-
ence of the anisotropy parameter on the Fokker-Planck
coefficients in case of shear Alfven waves, because inter-
stellar plasma turbulence is a mixture of fast magnetosonic
waves and shear Alfven waves (SM). This analysis will be
the subject of the second paper of this series. Here, we re-
strict our analysis to the momentum diffusion coefficient
which, for the relevant range Λs � Λ � Λl, is solely de-
termined by the transit-time damping contribution.

7. Cosmic ray momentum diffusion
from fast-mode waves

Using Eqs. (26), (19), (21) and (9) we obtain for the mo-
mentum diffusion coefficient of cosmic rays with gyroradii
much less than RL � lmax/2π

A =
π

2
(s− 1)c1(s)

(δB)2

B2
0

(kminRL)s−1 vε
2p2

RL
h(Λ, ε, s) (67)



I. Lerche and R. Schlickeiser: Cosmic rays in anisotropic turbulence. I. 287

with

c1(s) =
∫ ∞

0

du u−(1+s)J2
1 (u) =

21−ss

4− s2

Γ[s]Γ[2− s
2 ]

Γ3[1 + s
2 ]

and the anisotropy function

h(Λ, ε, s) ≡
∫ 1

ε

dµ ATT(µ,Λ)
1− µ2

µ

[
1 +

ε2

µ2

]
×
[
(1− µ2)

(
1− ε2

µ2

)]s/2
· (68)

We calculate the anisotropy function Eq. (68) using the
respective approximations of the ratio ATT from Sect. 4
in the relevant anisotropy range ε2 ≤ Λ ≤ Λl.

7.1. Isotropic turbulence Λ = 1

This case ATT = 1 has been considered before by SM who
derived

h(Λ = 1) ' ln ε−1. (69)

7.2. Strongly parallel turbulence 1� Λ� Λl

Here we use Eq. (29) to obtain

h(1� Λ� Λl, ε, s) ' sΛε−(2+s)M1 +
s

2
Λ−s/2M2 (70)

with the two integrals

M1 =
∫ ε(1+ 1

2Λ )

ε

dµ µ1+s(1− µ2)
[
1 +

ε2

µ2

]
×
[
(1− µ2)

(
1− ε2

µ2

)]s/2
(71)

and

M2 =
∫ 1

ε(1+ 1
2Λ )

dµ
1
µ

(1− µ2)(2+s)/2
1 + ε2

µ2

1− ε2

µ2

=
1
2

∫ 1

ε2(1+ 1
Λ )

dz
1
z

z + ε2

z − ε2 (1− z)(2+s)/2 (72)

with the substitution z = µ2.
We note that the µ-integration interval in Eq. (71) is

very small so that we approximate the integrand by its
value at µ = ε(1 + 1

2Λ) to obtain approximately

M1 ' ε2+sΛ−(2+s)/2. (73)

For the integral (72) we substitute z = (1 − ε2)t + ε2 to
derive

M2 =
1
2

(1− ε2)(2+s)/2

[
2
∫ 1

ε2

Λ(1−ε2)

dt t−1(1− t)(2+s)/2

−
∫ 1

ε2

Λ(1−ε2)

dt
[
t+

ε2

1− ε2
]−1

(1− t)(2+s)/2

]
(74)

which after the substitution t = 1− [1− ε2

Λ(1−ε2) ]y can be
expressed in terms of hypergeometric functions,

M2 =
2

4 + s
(1− ε2)(2+s)/2

[
1− ε2

Λ(1− ε2)

](4+s)/2

×
[

2F1

(
1, 2+

s

2
; 3+

s

2
; 1− ε2

Λ(1−ε2)

)
− (1−ε2)

2

× 2F1

(
1, 2 +

s

2
; 3 +

s

2
; 1− ε2

(
1 +

1
Λ

))]
. (75)

According to Eq. (15.3.10) of Abramowitz & Stegun
(1972) we use

2F1(1, 2 +
s

2
; 3 +

s

2
; z) =

4 + s

2

∞∑
n=0

Γ[n+ 2 + s
2 ]

Γ[2 + s
2 ]n!

×
(
ψ(n+ 1)− ψ(n+ 2 +

s

2
) + ln(1− z)

)
(1− z)n (76)

to approximate the two hypergeometric functions in
Eq. (75) as

2F1

(
1, 2+

s

2
; 3+

s

2
; 1− ε2

Λ(1−ε2)

)
' −4+s

2
ln

ε2

Λ(1−ε2)
·

and

2F1

(
1, 2+

s

2
; 3+

s

2
; 1−ε2

(
1+

1
Λ

))
' −4+s

2
ln ε2

(
1+

1
Λ

)
.

We then find

M2 ' (1− ε2)(2+s)/2

[
1− ε2

Λ(1− ε2)

](4+s)/2

×
[
− ln

ε2

Λ(1− ε2)
+

(1− ε2)
2

ln ε2
(

1 +
1
Λ

)]
' ln ε−1 +

1
2Λ
· (77)

Collecting terms in Eq. (70) we find

h(1� Λ� Λl, ε, s) ' sΛ−s/2[1 +
1
2

ln ε−1]

' s

2
Λ−s/2 ln ε−1 (78)

which is strongly reduced compared to the isotropic value.

7.3. Strongly perpendicular turbulence ε2 � Λ� 1

Here we use Eqs. (31) and (32) to obtain

h(ε2 � Λ� 1, ε, s) =
s+ 1
s+ 2

Λ−1/2

×
[

(εΛ−1/2)−(2+s)

∫ εΛ−1/2

ε

dµ µ1+s(1− µ2)

×
[
1 +

ε2

µ2

] [
(1− µ2)

(
1− ε2

µ2

)]s/2
+
∫ 1

εΛ−1/2
dµ

(1− µ2)(2+s)/2

µ

1 + ε2

µ2

1− ε2

µ2

]
· (79)
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Substituting in the first integral µ = εx1/2 yields

h(ε2 � Λ� 1, ε, s)=
s+ 1
s+ 2

Λ−1/2

[
Λ(2+s)/2

2
M3+M4

]
(80)

where

M3 =
∫ Λ−1

1

dx (x− 1)s/2
(

1 +
1
x

)
(1− ε2x)(2+s)/2 (81)

and

M4 =
∫ 1

εΛ−1/2
dµ

(1− µ2)(2+s)/2

µ

1 + ε2

µ2

1− ε2

µ2

· (82)

Because ε2 � Λ the integral (81) is well approximated by

M3 '
∫ Λ−1

1

dx (x−1)s/2
(

1 +
1
x

)
≤ 2

×
∫ Λ−1

1

dx (x−1)s/2 =
4

2 + s
(Λ−1−1)(2+s)/2. (83)

Apart from the minor difference in the lower integration
boundary the integral (82) is identical to the integral (72).
According to Eq. (75) we obtain

M4 =
2

4 + s
(1− ε2)(2+s)/2

[
1− ε2(Λ−1 − 1)

(1− ε2)

](4+s)/2

×
[

2F1

(
1, 2 +

s

2
; 3 +

s

2
; 1− ε2(Λ−1 − 1)

(1− ε2)

)
− (1− ε2)

2 2F1

(
1, 2+

s

2
; 3+

s

2
; 1−ε

2

Λ

)]
· (84)

Using again Eq. (76) we find

M4 ' (1− ε2)(2+s)/2

[
1− ε2(Λ−1 − 1)

(1− ε2)

](4+s)/2

×
[
− ln

ε2(Λ−1 − 1)
(1−ε2)

+
(1−ε2)

2
ln
ε2

Λ

]
'1

2
ln

Λ
ε2
·

(85)

Collecting terms in Eq. (80) we obtain

h(ε2 � Λ� 1, ε, s) =
s+ 1
s+ 2

Λ−1/2

×
[

2
2 + s

(1− Λ)(2+s)/2 +
1
2

ln
Λ
ε2

]
' s+ 1

(s+ 2)
Λ−1/2[ln ε−1 + ln Λ1/2] (86)

which is enhanced compared to the isotropic value.
We summarize the asymptotic behaviour of the

anisotropy function h(Λ, ε, s) in Table 1.

8. Summary and conclusions

Observations of interstellar scintillations, general theoret-
ical considerations and comparison of interstellar radia-
tive cooling in HII-regions and in the diffuse interstellar

Table 1. Anisotropy function h for different anisotropy
parameters.

Anisotropy parameter Λ h(Λ, ε, s)

Λ = 1 ln ε−1

ε2 � Λ� 1 s+1
s+2Λ−1/2[ln ε−1 + ln Λ1/2]

1� Λ� ε−2(2+s)/(s+1) s
2Λ−s/2 ln ε−1

medium with linear Landau damping estimates for fast-
mode decay, all strongly imply that the power spectrum
of fast-mode wave turbulence in the interstellar medium
must be highly anisotropic. It is not clear from the ob-
servations whether the turbulence spectrum is oriented
mainly parallel or mainly perpendicular to the ambient
magnetic field, either will satisfy the needs of balancing
wave damping energy input against radiative cooling. This
anisotropy must be included when transport of high en-
ergy cosmic rays in the Galaxy is discussed.

With this first paper we have started to evaluate the
relevant cosmic ray transport parameters in the presence
of anisotropic fast magnetosonic plasma wave turbulence.
All technical details of the calculation of Fokker-Planck co-
efficients in this case are presented, in particular the devi-
ations from the case of isotropic turbulence are identified.
Using the estimates of the anisotropy parameter in the
strongly parallel and perpendicular regimes, based on lin-
ear Landau damping balancing radiative loss in the diffuse
interstellar medium, we have calculated the Fokker-Planck
coefficients needed to infer the parallel mean free path,
the rate of adiabatic deceleration and the momentum dif-
fusion coefficient of cosmic ray particles. We show that in
nearly all situations the pitch-angle scattering of relativis-
tic cosmic rays by fast magnetosonic waves at pitch-angle
cosines |µ| ≥ VA/c is dominated by the transit-time damp-
ing interaction.

These results have direct consequences for the cosmic
ray transport parameters in the interstellar medium, as
the parallel mean free path and the momentum diffusion
coefficient. In order to calculate the parallel mean free
path, we have to determine the influence of the anisotropy
parameter on the Fokker-Planck coefficients in case of
shear Alfven waves, because interstellar plasma turbulence
is a mixture of fast magnetosonic waves and shear Alfven
waves. This analysis will be the subject of the second pa-
per of this series.

Without considering the influence of the anisotropy pa-
rameter on the Fokker-Planck coefficients in case of shear
Alfven waves, we are able to calculate the momentum dif-
fusion coefficient a2 of cosmic ray particles by averaging
the respective Fokker-Planck coefficient over the particle
pitch-angle for the relevant anisotropy parameters within
values of 10−8 ≤ Λ ≤ 1011. For strongly perpendicular
turbulence (Λ � 1) the cosmic ray momentum diffusion
coefficient is enhanced with respect to isotropic (Λ = 1)
turbulence by the large factor ' Λ−1/2. For strongly
parallel turbulence (Λ � 1) the momentum diffusion
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coefficient is reduced with respect to isotropic turbulence
by the large factor 2Λs/2/s. This implies that the accel-
eration time scale of cosmic ray particles by momentum
diffusion for anisotropic turbulence is shorter (strongly
perpendicular turbulence) or longer (strongly parallel tur-
bulence) by the same factors with respect to the case of
isotropic turbulence. Hence, depending on small or large
enough anisotropy factors Λ, reacceleration effects in the
transport of galactic cosmic rays become much stronger
(Λ� 1) or weaker (Λ� 1), respectively.
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9. Appendix A: Analysis of the gyroresonant
pitch-angle Fokker-Planck coefficient (38)

9.1. Small values |µ| ≤ ε
For small pitch angles |µ| ≤ ε we note that the
q-integration intervals in Eq. (38) are very small so that
we approximate the two integrands by their values at q =
−ε/n and q = ε/n, respectively, implying η+ = η− = 1.
Equation (38) then reduces to

DG
µµ(|µ| ≤ ε) ' 4π2Rs−2

L vεs−1Itot

B2
0Λ(2+s)/2

×
∞∑
n=1

n−s
[
J
′

n(
n

ε
)
]2
H

[
1
RLε
−kmin

]
H

[
kmax−

1
RLε

]
·(87)

For fast cosmic ray particles ε = VA/v � 1 so that we
may use the approximation of Bessel functions for large
arguments (Abramowitz & Stegun 1972)

Jn(nz, z > 1) '
√

2
πnz

cos
[
nz − (2n+ 1)π

4

]
(88)

implying

[J
′

n(nz, z > 1)]2 ' 2
πnz

sin2

[
nz − (2n+ 1)π

4

]
=

1
πnz

[
1− cos

[
2nz − (2n+ 1)π

2

]]
=

1
πnz

[
1− sin(2nz) sin

(
(2n+1)π

2

)]
=

1
πnz

[1− (−1)n sin(2nz)] (89)

for the argument z = 1/ε� 1. We then obtain

DG
µµ(|µ| ≤ ε) ' 4πRs−2

L vεsItot

B2
0Λ(2+s)/2

×
∞∑
n=1

n−(1+s) [1− (−1)n sin(2n/ε)]

×H
[

1
RLε

− kmin

]
H

[
kmax −

1
RLε

]
· (90)

With Eqs. (3)–(4) for Itot we find

DG
µµ(|µ| ≤ ε)' (δB)2

B2
0

AG1(Λ)Rs−2
L vεs

[∫ kmax

kmin

dk k−s
]−1

×
∞∑
n=1

n−(1+s)[1− (−1)n sin(2n/ε)]

×H
[

1
RLε

− kmin

]
H

[
kmax −

1
RLε

]
(91)

where we introduced the gyroresonance anisotropy ratio
for small pitch angle cosines

AG1(Λ) =
[
Λ(2+s)/2J(Λ)

]−1

(92)

in terms of the integral (5). Finally,we note that

1
RLε

=
|Ω0|
γVA

=
Zmp

γm
ωp,i/c (93)

can be expressed in terms of the ion skin length c/ωp,i. The
two Heaviside step functions in Eq. (91) then imply the
restriction on the value of the cosmic ray particle energy

Emin ≤ E ≤ Emax (94)

with

Emin ≡
Zmpc

2

2π
lminωp,i

c
; Emax =

lmax

lmax
Emin (95)

involving the inner and outer scale of the turbulence spec-
trum and the interstellar ion skin length, respectively.
Equation (91) then takes the form

DG
µµ(|µ| ≤ ε) ' (δB)2

B2
0

AG1(Λ)Rs−2
L vεs

[∫ kmax

kmin

dk k−s
]−1

×H[E −Emin]H[Emax −E]

×
∞∑
n=1

n−(1+s)[1− (−1)n sin(2n/ε)].

(96)

9.2. Large values |µ| > ε

For large pitch angles |µ| > ε we use again the fact that for
fast cosmic ray particles ε = VA/v � 1. Thus the lowest
order approximation in powers of ε to Eq. (38) is

DG
µµ '

4π2Rs−2
L v(1− µ2)Itot

µB2
0

×
∞∑
n=1

∫ µ/n

0

dq
(1 + η2

0)
[η2

0 + Λ(1− η2
0)](2+s)/2

|q|s−1

×
[
J
′

n

(
(1− µ2)1/2(1− η2

0)1/2

|q|

)]2

×H
[

1
RL|q|

− kmin

]
H

[
kmax −

1
RL|q|

]
(97)
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where η0 = nq/µ. We first note the symmetry in Eq. (97).

DG
µµ(−µ) = DG

µµ(µ) (98)

so that we can restrict our discussion on positive values
of µ.

Next, the two step functions tell us that the integration
range of q is limited to

U ≤ q ≤ lmax

lmin
U ; with U = (RLkmax)−1 =

lmin

2πRL
· (99)

Comparing these boundaries with the upper integration
limit µ/n in Eq. (97) restricts the possible values of n and
yields

DG
µµ '

4π2Rs−2
L v(1− µ2)Itot

µB2
0

×
( lminµ

lmaxU∑
n=1

∫ lmaxU
lmin

U

dq
(1 + η2

0)
[η2

0 + Λ(1− η2
0)](2+s)/2

qs−1

×
[
J
′

n

(
(1− µ2)1/2(1− η2

0)1/2

|q|

)]2

+
µ/U∑

n=
lminµ
lmaxU

∫ µ/n

U

dq
(1 + η2

0)
[η2

0 + Λ(1− η2
0)](2+s)/2

qs−1

×
[
J
′

n

(
(1− µ2)1/2(1− η2

0)1/2

|q|

)]2
)
· (100)

Changing from the integration variable q to η = nq/µ we
derive

DG
µµ '

2π2Rs−2
L v(1− µ2)|µ|s−1Itot

B2
0

W (Λ, µ, s, n, U) (101)

with the integral

W (Λ, µ, s, n, U)≡2


lminµ
lmaxU∑
n=1

n−s
∫ nlmaxU

µlmin

nU/µ

dηf1(η)

+
µ/U∑

n=
lminµ
lmaxU

n−s
∫ 1

nU/µ

dηf1(η)

 (102)

where

f1(η) =
(1 + η2)

[η2 + Λ(1− η2)](2+s)/2
|η|s−1

×
[
J
′

n

(
n

(1− µ2)1/2(1− η2)1/2

|µ|η

)]2

· (103)

Now it is convenient to introduce the tangent of the wave
propagation angle T =

√
1− η2/η and the absolute value

of the tangent of the pitch angle M =
√

1− µ2/|µ|, re-
spectively. With x = T 2 the integral (102) becomes

W (Λ,M, s, U)=

lminµ
lmaxU∑
n=1

n−s
∫ ( µ

nU )2−1

(
µlmin
nUlmax

)2−1

dxf(x,M,Λ, s, n)

+
µ/U∑

n=
lminµ
lmaxU

n−s
∫ ( µ

nU )2−1

0

dxf(x,M,Λ, s, n) (104)

with

f(x) =
2 + x

1 + x
[1 + Λx]−(2+s)/2[J

′

n(nMx1/2)]2. (105)

The expressionW (Λ,M, s, U) is evaluated in Appendix B.
The general calculation is very involved, but for energetic
particles with super-Alfvenic (v � VA) velocities and gy-
roradii smaller than RL < lmax/2π, which is of order 1 pc,
we obtain approximations for small (ε < |µ| ≤ 1/

√
2) and

large (1/
√

2 < |µ| ≤ 1) pitch-angle cosines. In the former
region we obtain

Ws = W (Λ, s, V > 1, ε < |µ| ≤ 1/
√

2) ' ζ(s+ 1)
πM

×
(
π1/2

Λ1/2

Γ[1+s
2 ]

Γ[2+s
2 ]

+2[1+Λ]−(2+s)/2

×
[

2F1

(
1+

s

2
, 1;

5+s
2

;
1

1+Λ

)
+ 2F1

(
1+

s

2
, 1;

3
2

;
Λ

1+Λ

)])
(106)

where we introduced the Riemann zeta-function ζ(x) =∑∞
n=1 n

−x. For large µ we find the constant value

Wl = W (Λ, s, V > 1, 1/
√

2 < |µ| ≤ 1) ' (2sΛ)−1 (107)

9.3. Gyroradii RL < lmax/2π

For cosmic ray particle with gyrodii less than RL <
lmax/2π we obtain with Eqs. (3)–(4) for Itot

DG
µµ(|µ| > ε) ' π

2
(δB)2

B2
0

Rs−2
L v(1− µ2)|µ|s−1

×
[∫ kmax

kmin

dk k−s
]−1{ Ws

J(Λ) for ε < |µ| ≤ 2−1/2

(2sΛJ(Λ))−1 for |µ| > 2−1/2

(108)

with Ws given in Eq. (106). For isotropic turbulence
(Λ = 1) Eq. (108) is in accord with the approximations
(58b) and (58c) of SM, in particular the dependences on
cosmic ray particle properties (µ, v,RL) are identical.

10. Appendix B: Calculation of expression
W(Λ,M, s,U)

Obviously, Eq. (104) is equal to

W (Λ,M, s, U) =
µ/U∑
n=1

n−sj1 −

lminµ
lmaxU∑
n=1

n−sj2 (109)

with

j1 =
∫ ( µ

nU )2−1

0

dxf(x,M,Λ, s, n) (110)

and

j2 =
∫ (

µlmin
nUlmax

)2−1

0

dxf(x,M,Λ, s, n). (111)
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To evaluate these two integrals approximately, we will use
the approximation (89) for values of M2x ≥ 1, while for
small values of M2x < 1 we use

Jn(nz, z < 1) ' nnzn

2nΓ(n+ 1)
(112)

implying

[J ′n(nz, z < 1)]2 '
[

nnzn−1

2nΓ(n+ 1)

]2

· (113)

We consider both integrals in turn.

10.1. Integral j1

Here we have to compare the value of M−2 with the upper
integration boundary of the integral (110). If

M−2 >
( µ

nU

)2

− 1 (114)

we can use approximation (113) throughout to obtain

j1 '
[
n2nM2n−2

22nΓ2(n+ 1)

] ∫ ( µ
nU )2−1

0

×dxxn−1 2 + x

1 + x
[1 + Λx]−(2+s)/2. (115)

In the opposite case M−2 < ( µ
nU )2 − 1 we use approxi-

mation (113) in the range 0 ≤ x ≤ M−2 and approxima-
tion (89) in the range M−2 < x ≤ ( µ

nU )2 − 1 with the
result

j1 '
[
n2nM2n−2

22nΓ2(n+ 1)

]∫ M−2

0

dxxn−1 2 + x

1 + x
[1 + Λx]−(2+s)/2

+
1

πnM

∫ ( µ
nU )2−1

M−2
dxx−1/2 2 + x

1 + x
[1 + Λx]−(2+s)/2

×[1− (−1)n sin(2nMx1/2)]. (116)

The condition (114) translates into

µ2(1− µ2) < (nU)2. (117)

Since the maximum value of the left hand side of this
inequality is less than 1/4 the inequality is always fulfilled
for values of nU ≥ 1/2 implying

j1(nU ≥ 1/2) '
[
n2nM2n−2

22nΓ2(n+ 1)

]
×
∫ ( µ

nU )2−1

0

dxxn−1 2+x
1+x

[1+Λx]−(2+s)/2. (118)

If nU < 1/2 the inequality (117) is fulfilled in the pitch
angle ranges

0 ≤ µ2 ≤ 1
2

[
1−

√
1− 4n2U2

]
;

and
1
2

[
1 +

√
1− 4n2U2

]
≤ µ2 ≤ 1 (119)

implying again Eq. (118) in this range.
In the intermediate pitch angle range 1

2

[
1 −√

1− 4n2U2
]
< µ2 < 1

2

[
1 +
√

1− 4n2U2
]

approxima-
tion (116) holds.

10.2. Integral j2

Here we have to compare the value of M−2 with the upper
integration boundary of the integral (111). If

M−2 >

(
µlmin

nUlmax

)2

− 1 (120)

we can use approximation (113) throughout to obtain

j2 '
[
n2nM2n−2

22nΓ2(n+ 1)

]∫ (
µlmin
nUlmax

)2−1

0

dxxn−1 2 + x

1 + x

×[1 + Λx]−(2+s)/2. (121)

In the opposite case M−2 < ( µlmin
nUlmax

)2− 1 we use approx-

imation (113) in the range 0 ≤ x ≤M−2 and approxima-

tion (89) in the range M−2 < x ≤
(

µlmin
nUlmax

)2

−1 with the
result

j2 '
[
n2nM2n−2

22nΓ2(n+1)

]∫ M−2

0

dxxn−1 2+x
1+x

[1+Λx]−(2+s)/2

+
1

πnM

∫ (
µlmin
nUlmax

)2−1

M−2
dxx−1/2 2+x

1+x
[1+Λx]−(2+s)/2

×[1− (−1)n sin(2nMx1/2)]. (122)

The condition (120) translates into

µ2(1− µ2) < (nUlmin/lmax)2. (123)

Again the maximum value of the left hand side of this
inequality is less than 1/4, so that the inequality is always
fulfilled for values of nUlmin/lmax ≥ 1/2 implying

j2(nUlmin/lmax ≥ 1/2) '
[
n2nM2n−2

22nΓ2(n+ 1)

]
×
∫ (

µlmin
nUlmax

)2−1

0

dxxn−1 2 + x

1 + x
[1 + Λx]−(2+s)/2. (124)

If nUlmin/lmax < 1/2 the inequality (123) is fulfilled in

the pitch angle ranges

0 ≤ µ2 ≤ 1
2

[
1−

√
1− (2nUlmin/lmax)2

]
;

and

1
2

[
1 +

√
1− (2nUlmin/lmax)2

]
≤ µ2 ≤ 1 (125)

implying again Eq. (124) in this range.

In the intermediate pitch angle range
1
2

[
1 −

√
1− (2nUlmin/lmax)2

]
< µ2 < 1

2

[
1 +√

1− (2nUlmin/lmax)2
]

approximation (122) holds.
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10.3. Case of kmax =∞
Because we are concerned with the transport of very en-
ergetic particles v � VA we do not lose much generality
if we extend the turbulence power spectrum to infinitely
large wavenumbers, i.e. kmax = l−1

min = ∞. In this case
U = 0 according to Eq. (99) and

lmax

lmin
U = V = (kminRL)−1. (126)

As a consequence, the general expression (109) simplifies
enormously to

W (Λ,M, s, V ) =
∞∑
n=1

n−sh1 −
|µ|/V∑
n=1

n−sh2 (127)

with

h1 =
∫ ∞

0

dxf(x,M,Λ, s, n) (128)

and

h2 =
∫ (

|µ|
nV )2−1

0

dxf(x,M,Λ, s, n). (129)

Restricting the analysis to cosmic ray particles with gy-
roradii RL < k−1

min = lmax/2π which is of order 1 pc, the
second sum in Eq. (127) vanishes, and we obtain

W (Λ,M, s, V > 1) =
∞∑
n=1

n−sh1

=
∞∑
n=1

n−s
∫ ∞

0

dxf(x,M,Λ, s, n)

=
∞∑
n=1

n−s
∫ ∞

0

dx
2+x
1+x

[1+Λx]−(2+s)/2[J
′

n(nMx1/2)]2.

(130)

Obviously, we obtain with the approximations (89)
and (113)

h1 '
[
n2nM2n−2

22nΓ2(n+ 1)

]
K1 +

1
nπM

K2 (131)

with

K1 =
∫ M−2

0

dx xn−1 2 + x

1 + x
[1 + Λx]−(2+s)/2 (132)

and

K2 =
∫ ∞
M−2

dx x−1/2 2 + x

1 + x
[1 + Λx]−(2+s)/2 (133)

where we neglected the oscillating part in approxima-
tion (113). We consider the cases M ≥ 1 and M < 1
corresponding to |µ| ≤ 1/

√
2 and |µ| > 1/

√
2, respectively.

10.3.1. Small values of |µ| ≤ 1/
√

2

In this case M−2 � 1 is a small quantity, and the inte-
gral (132) is approximately

K1 ' 2
∫ M−2

0

dxxn−1[1 + Λx]−(2+s)/2

= 2M−2n

∫ 1

0

dy
yn−1

(1 + ΛM−2y)(2+s)/2

=
2

nM2n
[1 + ΛM−2]−(2+s)/2

× 2F1

(
1 +

s

2
, 1;n+ 1;

Λ
Λ +M2

)
(134)

in terms of the hypergeometric function. In deriving
Eq. (134) we have used the transformation formula

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
· (135)

Likewise, the integral (133) can be approximated as

K2 '
∫ ∞

0

dxx−1/2 2 + x

1 + x
[1 + Λx]−(2+s)/2 − 2

×
∫ M−2

0

dxx−1/2[1 + Λx]−(2+s)/2

=
∫ ∞

0
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+
∫ ∞

0

dx
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[1 + Λx]−(2+s)/2

− 4
M

[1+ΛM−2]−(2+s)/2
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(
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s

2
, 1;

3
2

;
Λ

Λ+M2

)
' π1/2

Λ1/2

Γ[1+s
2 ]

Γ[2+s
2 ]
− 4
M

[1 + ΛM−2]−(2+s)/2

× 2F1

(
1 +

s

2
, 1;

3
2

;
Λ

Λ +M2

)
+
∫ 1

0

dxx−1/2

×[1 + Λx]−(2+s)/2 +
∫ ∞

1

dxx−3/2[1 + Λx]−(2+s)/2

=
π1/2

Λ1/2

Γ[1+s
2 ]

Γ[2+s
2 ]
− 4
M
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× 2F1

(
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s

2
, 1;

3
2

;
Λ
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)
+ 2[1 + Λ]−(2+s)/2

×
(

2F1

(
1 +

s

2
, 1;

5 + s

2
;

1
1 + Λ

)
+ 2F1

(
1 +

s

2
, 1;

3
2

;
Λ

1 + Λ

))
· (136)

Collecting terms in Eq. (131) we obtain to lowest order in
the small quanitity M−1 � 1

h1 '
1

πnM

(
π1/2

Λ1/2

Γ[1+s
2 ]

Γ[2+s
2 ]

+ 2[1 + Λ]−(2+s)/2

×
[

2F1

(
1 +

s

2
, 1;

5 + s

2
;

1
1 + Λ

)

+ 2F1

(
1 +

s

2
, 1;

3
2

;
Λ

1 + Λ

)])
· (137)
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10.3.2. Large values of |µ| > 1/
√

2

Here M−2 � 1 is large, so that the integral (133) is
approximately

K2 '
∫ ∞
M−2

dx x−1/2[1 + Λx]−(2+s)/2

= M−1

∫ 1

0

dt t(s−1)/2[t+ ΛM−2]−(2+s)/2 (138)

where we substituted x = (M2t)−1. In terms of hyperge-

ometric functions we obtain

K2 '
2

s+ 1
M−1[

M2

Λ +M2
](2+s)/2

× 2F1

(
1 +

s

2
, 1;

s+ 3
2

;
M2

Λ +M2

)
· (139)

Likewise, the integral (132) can be approximated as

K1 '
∫ M−2

0

dx xn−1[1 + Λx]−(2+s)/2

−
∫ ∞
M−2

dx xn−2[1 + Λx]−(2+s)/2

+
∫ 1

0

dx xn−1[1 + Λx]−(2+s)/2

+
∫ ∞

1

dx xn−2[1 + Λx]−(2+s)/2

= M−2n

∫ 1

0

dt tn−1[1 + ΛM−2t]−(2+s)/2

−M4+s−2nΛ−(2+s)/2

∫ 1

0

dtt(s+2−2n)/2

×[1+Λ−1M2t]−(2+s)/2+
1
n

[1+Λ]−(2+s)/2

× 2F1

(
1 +

s

2
, 1;n+ 1;

Λ
Λ + 1

)
+ Λ−(2+s)/2

×
∫ 1

0

dt t(s+2−2n)/2[1 + Λ−1t]−(2+s)/2. (140)

In terms of hypergeometric functions we obtain

K1 '
1
n
M2+s−2n[Λ+M2]−(2+s)/2

×2F1

(
1+

s

2
, 1;n+1;

Λ
Λ+M2

)
+

1
n

[1+Λ]−(2+s)/2

× 2F1

(
1 +

s

2
, 1;n+ 1;

Λ
1 + Λ

)
+

2
s+ 4− 2n

×[1+Λ]−(2+s)/2
2F1

(
1+

s

2
, 1;

s

2
+3− n;

1
1+Λ

)
− 2
s+ 4− 2n

M4+s−2n[Λ +M2]−(2+s)/2

× 2F1

(
1 +

s

2
, 1;

s

2
+ 3− n;

M2

Λ +M2

)
· (141)

Collecting terms in Eq. (131) we obtain

h1 '
2

(s+1)nπM2

[
M2

Λ+M2

](2+s)/2

× 2F1

(
1 +

s

2
, 1;

s+ 3
2

;
M2

Λ +M2

)
+

n2n

22nΓ2[n+ 1]M2

×
(

1
n

[[
M2

Λ+M2

](2+s)/2

2F1

(
1+

s

2
, 1;n+1;

Λ
Λ+M2

)

+M2n[1 + Λ]−(2+s)/2
2F1

(
1 +

s

2
, 1;n+ 1;

Λ
1 + Λ

)]

+
2

s+ 4− 2n

[
M2n[1 + Λ]−(2+s)/2

× 2F1

(
1 +

s

2
, 1;

s

2
+ 3− n;

1
1 + Λ

)
−M4+s

×[Λ+M2]−(2+s)/2
2F1

(
1+

s

2
, 1;

s

2
+3−n;

M2

Λ+M2

)])
·

(142)

Because M2 � 1 the leading terms of Eq. (142) are

h1 '
1

nM2

[
M2

Λ +M2

](2+s)/2
[

2
(s+ 1)π

× 2F1

(
1 +

s

2
, 1;

s+ 3
2

;
M2

Λ +M2

)
+

n2n

22nΓ2[n+ 1]

× 2F1

(
1 +

s

2
, 1;n+ 1;

Λ
Λ +M2

)]
· (143)

For M2 � 1 the two hypergeometric functions in
Eq. (143) can be approximated by

2F1

(
1 +

s

2
, 1;

s+ 3
2

;
M2

Λ +M2

)
' 2F1

(
1 +

s

2
, 1;

s+ 3
2

; 0
)

= 1 (144)

and for n ≥ 2

2F1

(
1 +

s

2
, 1;n+ 1;

Λ
Λ +M2

)
' 2F1(1 +

s

2
, 1;n+ 1; 1) =

2n
2n− 2− s (145)

yielding factors of order unity, whereas for n = 1

2F1

(
1+

s

2
, 1; 2;

Λ
Λ+M2

)
=
∫ 1

0

dt
[
1− Λ

Λ+M2
t

]−(2+s)/2

=
2
s

Λ +M2

Λ

[(
Λ +M2

M2

)s/2
− 1

]
'2
s

(Λ +M2)(2+s)/2

ΛMs

(146)

which, because of the ∝M−s � 1 dependence, dominates
the bracket of Eq. (143). Consequently, we obtain

h1 ' (2sΛ)−1. (147)
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