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Cosmic recall and the scattering picture of Loop Quantum Cosmology
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The global dynamics of a homogeneous universe in Loop Quantum Cosmology is viewed as a
scattering process of its geometrodynamical equivalent. This picture is applied to build a flexible
(easy to generalize) and not restricted just to exactly solvable models method of verifying the
preservation of the semiclassicality through the bounce. The devised method is next applied to
two simple examples: (i) the isotropic Friedman Robertson Walker universe, and (ii) the isotropic
sector of the Bianchi I model. For both of them we show, that the dispersions in the logarithm of
the volume ln(v) and scalar field momentum ln(pφ) in the distant future and past are related via
strong triangle inequalities. This implies in particular a strict preservation of the semiclassicality
(in considered degrees of freedom) in both the cases (i) and (ii). Derived inequalities are general:
valid for all the physical states within the considered models.

PACS numbers: 04.60.Pp,04.60.Kz,98.80.Qc

I. INTRODUCTION

Loop Quantum Gravity [1, 2] and its symmetry re-
duced analog, known as Loop Quantum Cosmology [3, 4]
have experienced over recent years a dynamical progress.
In particular, an application of the latter to the stud-
ies of a simplest (isotropic) models of an early Universe
have shown that the quantum nature of the geometry
qualitatively modifies the global picture of its evolution.
Namely, the big bang singularity is dynamically resolved
as it is replaced by a so called big bounce [5] which con-
nects the current (expanding) Universe with a contract-
ing one preceding it. The results initially obtained nu-
merically for the flat isotropic model with massless scalar
field [6, 7] were shown to be general features of that model
[8, 9] and next extended to more general matter fields
[10–12] and topologies [13, 14] as well as to less symmet-
ric systems: anisotropic [15–21] and some classes of the
inhomogeneous ones [22]. Also, although the theory orig-
inates from the canonical framework, a connection with
the spin foam [23] models was made through the studies
of the path integral in LQC [24] as well as the analysis
of the cosmological models within the spin foam mod-
els themselves [25]. Another avenue of extensions is the
perturbation theory around the cosmological solutions
[26]. The elements of its mathematical structure of LQC,
which was initially formulated in [27], were investigated
in detail [28–31]. In addition to the studies performed on
the genuine quantum level, there is a fast growing num-
ber of works employing a classical effective formulation of
the dynamics [32, 33], which often provides qualitatively
new predictions [34–36]. The methods of LQC were also
applied, with various levels of rigor, outside of the cosmo-
logical setting, in particular in description of black hole
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solutions [37, 38] and spherically symmetric spacetimes
[39, 40]. There exist also studies of different prescriptions
within the polymeric quantization [41–43] as well as of
the connection between LQC and the noncommutative
geometry [44]. The effects predicted by LQC were also
applied for the regularization of the cosmological models
not originating from the polymer quantization [45].

The prediction of the bounce and the existence of the
branch of the universe evolution preceding it have raised
an interesting question: provided that the expanding
post-bounce branch is semiclassical, what can we deduce
about the pre-bounce one? Does it have to be necessarily
semiclassical or can it be completely dispersed and not
possible to describe by any classical metric? The prelim-
inary studies performed in context of the simplification
of LQC and presented in [46] seemed to favor the latter
possibility. However more detailed analysis performed
in the framework of the so called solvable LQC [8] have
shown, that for the states satisfying quite mild semiclas-
sicality assumptions for one of the branches the possible
growth of the dispersion through the bounce is severely
limited [9]. In consequence, within considered class of the
states the semiclassicality at the distant future implied
the semiclassicality in the distant past [47].

The latter results, although firm, strongly rely on the
analytic solvability of the studied model, thus are difficult
to extend to the original formulation of it [7] as well as
to more general settings, for which one could not a priori
exclude the loss of semiclassicality through the bounce
[48]. Finding a definitive answer to the question posed
above requires construction of the method, which is suf-
ficiently flexible to be adaptable to the situations, where
the analytical studies fail. We introduce such method
in this article, next applying it to two simple examples
of flat models with massless scalar field as the sole mat-
ter content: (i) an isotropic Friedman-Robertson-Walker
universe, and (ii) an isotropic sector of a Bianchi I model
quantized as specified in [20]. In both cases our technique
allows to derive certain (strong) triangle inequalities in-
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volving the dispersions of (the logarithms of) the total
volume and the scalar field momentum. The inequalities
are general, valid for all the physical states admitted by
the model. In the case (i) they imply an exact preserva-
tion of the semiclassicality, whereas in (ii) an analogous
result is only partial, as it does not involve all the degrees
of freedom describing the anisotropic system.

The treatment we introduce here is based on the ob-
servation, that the structure of the evolution operator
in LQC implies that for each physical state (in cer-
tain sense) there exists the geometrodynamical (Wheeler-
DeWitt) one, which is its large scale limit in either strict
[7, 11] or approximate [10, 13] sense. Furthermore in a
large class of the models the structure of the physical
Hilbert space of each geometrodynamical theory describ-
ing the limit admits a decomposition onto equivalents of
Klein-Gordon plane waves either incoming from or out-
going to an infinite volume. Since the WDW limits of
LQC states are formed out of “standing waves” coupling
both the incoming and outgoing ones, one can perceive
the LQC evolution as a scattering process, which trans-
forms the WDW incoming state (contracting universe)
onto the outgoing one (expanding). Known properties
of the limit allow to explicitly determine the scattering
matrix and thus to relate the properties of the incoming
and outgoing states. The procedure is explained in detail
in Section IV through an application to the cases (i) and
(ii) listed above.

The paper is organized as follows: First, in Sec. II
we briefly introduce the main aspects of the LQC frame-
work used to characterize considered models, as well as its
WDW analog. Next, in Sec. III we analyze in detail the
exact WDW limit of LQC states, which is next used in
Sec. IV to construct the scattering picture mentioned in
the previous paragraph. That picture is then employed
in Sec. V to the analysis of the dispersions of the in-
coming/outgoing WDW states, which allows in turn to
derive the triangle inequalities relating them. We also
show there (Sec. V B), that the dispersions of the outgo-
ing/incoming components of the WDW limit equal the
dispersions of a genuine LQC state in the asymptotic fu-
ture and past, thus extending the inequalities to these
quantities. We conclude with Section VI with the dis-
cussion of the main results as well as the possibilities
of their extensions to more general settings. In order to
make the presentation of the studies clearer to the reader,
some details of the mathematical studies as well as the
details of the numerical analysis used in the article are
moved to Appendix A and B respectively.

II. THE FRAMEWORK OF LQC AND ITS

WDW ANALOG

In this section we briefly sketch the specification, quan-
tization program and relevant properties of the models
we are going to study. We discuss only those elements of
the theory, which are relevant for our analysis. For the

detailed description of the quantization and the proper-
ties of the systems the reader is referred to [7, 27] and
[20].

Since the considered systems are constrained ones,
they are quantized via Dirac program, which consists
of the following steps: kinematical quantization ignoring
the constraints, promoting the constraints to quantum
operators and finding the physical Hilbert space built out
of the states annihilated by the quantum constraint. In
accordance to this procedure this section has the follow-
ing structure: First we introduce the classical models,
LQC kinematics and quantization of the constraint for
the FRW and Bianchi I models separately in Sec. II A
and II B respectively. Next we describe the structure of
the physical Hilbert space and relevant observables for
LQC theory (in Sec. II C), as well as its WDW analog
(Sec. II D).

A. Isotropic flat FRW universe

1. Classical theory

On the classical level spacetimes of this class admit
a (parametrized by a time t) foliation by homogeneous
surfaces M = Σ ×R, where Σ is topologically R

3. Their
metric tensor is

g = −N2dt2 + a2(t) oq, (2.1)

where N is a lapse function, a is a scale factor (or equiv-
alently a size of certain selected region V , see the discus-
sion below (2.3)) and oq is a fiducial Cartesian metric.
To describe the system further we apply the canonical
formalism, expressing the geometry in terms of Ashtekar
variables: connections and triads, selecting the gauge fix-
ing in which they can be expressed in terms of the real
connection and triad coefficients c, p

Ai
a = c V

− 1
3

o
oωi

a, Ea
i = p V

− 2
3

o
√

oqœa
i , (2.2)

where œa
i / oωi

a is an orthonormal triad/cotriad corre-
sponding to the fiducial metric oq and Vo is the fidu-
cial volume of V . The variables c, p are canonically con-
jugated with {c, p} = 8πGγ/3 (where γ is a Barbero-
Immirzi parameter, which value has been set following
[49]) and are global degrees of freedom of the geometry.
In particular p = a2.

Within selected gauge all the constraints except the
Hamiltonian one are automatically satisfied. The remain-
ing constraint takes the form C = N(Cgr + Cφ) where

Cgr = − 1

γ2

∫

V
d3x ǫijke

−1EaiEbjF k
ab, (2.3)

with e :=
√

| det(E)| and F being a curvature of a con-
nection A. To deal with the noncompactness of Σ the
integration of a Hamiltonian density was performed only



3

over a chosen cubic cell V constant in comoving coor-
dinates, which is an equivalent to the infrared cut-off.
Despite this, the physical predictions are invariant with
respect to the choice of the cell [7].

The remaining matter part of the constraint equals

Cφ = 8πGp2φ/p
3/2, (2.4)

where φ and pφ are, respectively, the value of the scalar
field and its conjugate momentum with {φ, pφ} = 1.

2. Loop quantization

The classical system specified in Sec. II A 1 is next
quantized via methods of Loop Quantum Gravity. In
particular, the Dirac program is employed to construct
the physical Hilbert space. It consists of the following
steps:
• Quantization on the kinematical level (ignoring the

constraints). Here, the as the basic objects instead of
Ai

a, Ea
i we select the holonomies of Ai

a along the straight
lines and fluxes of Ea

i along the unit square 2-surfaces,
which form a closed algebra. The direct implementation
of the procedure used in LQG [2] leads to the gravita-
tional Hilbert space Hgr = L2(R̄, dµBohr), where R̄ is
the Bohr compactification of the real line. The basic

operators are respectively the holonomies ĥ(λ) along the
edge of the length λ and triad p̂ (corresponding to the
flux across the unit square). The basis of Hgr is built
of the eigenstates of p̂ and parametrized by v such that
p̂|v〉 = (2πγℓ2Pl

√
∆)2/3 sgn(v)|v|2/3|v〉, where the parame-

ter ∆ is the so called area gap specified in the next point.
The inner product on Hgr is given by

〈ψ|χ 〉 =
∑

v∈R

ψ̄(v)χ(v). (2.5)

The matter degrees of freedom are quantized via stan-
dard methods, thus attaining the Schroedinger-like rep-
resentation. In consequence the full kinematical Hilbert
space takes the form

Hkin = Hgr ⊗Hφ, Hφ := L2(R, dφ). (2.6)

The basic operators on Hφ are the field value φ̂ and its
momentum p̂φ = −i~∂φ.
• Promoting the constraint to quantum operator. For

that all the geometric components in (2.3) and (2.4) have
to be expressed first in terms of the holonomies and
fluxes, which is essentially done via methods specified
in [50]. The field strength F k

ab is in particular repre-
sented via holonomies along the closed square loop. The
requirement for our theory to mimic the properties of
LQG and the discreteness of the area operator Âr there
forces us to fix the physical area ∆ of this loop as the 1st
nonzero eigenvalue of Âr, which is the unique physically
consistent choice for that technique [35].

Presently in the literature there exists several pre-
scriptions of constructing the quantum Hamiltonian con-
straint differing by fine details, like the lapse, the factor
ordering and the symmetrization. Here we focus on three
of them, defined in [7], [8] and [18, 51] and denoted, re-
spectively, as the APS, sLQC and MMO prescription. In
all these cases the resulting operator can be brought to
the form

11 ⊗ ∂2φ + Θ ⊗ 11, (2.7)

where an action of the operator Θ equals

−[Θψ](v) = f+(v)ψ(v − 4) − fo(v)ψ(v)

+ f−(v)ψ(v + 4),
(2.8)

with the form of fo,± depending on the particular pre-
scription used and given respectively by

• APS:

f±(v) = [B(v ± 4)]−
1
2 f̃(v ± 2)[B(v)]−

1
2 , (2.9a)

fo(v) = [B(v)]−1[f+(v) + f−(v)], (2.9b)

where [52]

f̃(v) = (3πG/8)|v|
∣

∣|v + 1| − |v − 1|
∣

∣ (2.10a)

B(v) = (27/8)|v|
∣

∣|v + 1|1/3 − |v − 1|1/3
∣

∣

3
(2.10b)

• sLQC:

f±(v) = (3πG/4)
√

v(v ± 4)(v ± 2), (2.11a)

fo(v) = (3πG/2)v2, (2.11b)

• MMO:

f±(v) = Cg(v ± 4)s±(v ± 2)g2(v ± 2)s±(v)g(v),

fo(v) = Cg2(v)[g2(v − 2)s2−(v) + g2(v + 2)s2+(v)],
(2.12)

where

g(v) =
∣

∣|1 + 1/v|1/3 − |1 − 1/v|1/3
∣

∣

−1/2
, (2.13a)

s±(v) = sgn(v ± 2) + sgn(v), (2.13b)

C = πG/12. (2.13c)

The operator Θ is denoted, respectively, by ΘAPS, ΘsLQC

and ΘMMO and is well defined in all the listed prescrip-
tions in particular for ε = 0 (see the detailed discussion
in [31] for APS and [51] for MMO).
• Building a physical space out of states annihilated

by the constraint. Since the operator (2.7) is essentially
self-adjoint [29], this step can be realized via system-
atic procedure of the group averaging [53, 54]. On the
other hand its form selects another natural way of find-
ing the solutions [7, 30] which in this case is equivalent



4

to it, namely the reinterpretation of the constraint as the
Klein-Gordon-like equation

[∂2φΨ](v, φ) = −[ΘΨ](v, φ), (2.14)

defining the evolution of a free system along φ, that is
the mapping between the the spaces of the “initial data”
– restrictions of Ψ to the surfaces of constant φ

R ∋ φ 7→ Ψ(·, φ) ∈ Hgr. (2.15)

The quite simple form of the operator Θ allows to eas-
ily define the physical Hilbert space Hphy via its spectral
decomposition. This step, as well as the notion of evolu-
tion will be described in more detail in Sec. II C.

Before going to it let us note, that the structure of Θ
and (2.7) provides the natural division of the domain of
v onto the subsets (the lattices)

Lε = {ε+ 4n; n ∈ Z}, ε ∈ [0, 4[ (2.16)

preserved by the action of Θ. This division is naturally
transferred to the splitting of Hphy onto the superselec-
tion sectors. In consequence it is enough to fix particular
value of ε and work just with the restriction of the do-
main of Θ to functions supported on Lε only. For the
clarity we will consider just the sector ε = 0, however
the presented treatment and its results generalize easily
(at the qualitative level) to all the sectors.

Further simplification comes from the fact, that the
considered system does not admit parity violating in-
teractions. In consequence the triad orientation reflec-
tion v 7→ −v being the large symmetry provides another
natural division onto superselection sectors, namely the
spaces of symmetric and antisymmetric states. For the
selected sector ε = 0 this particular choice allows to
further restrict the support of the functions to L+

0 :=
L+
0 ∩ R

+.

B. Flat Bianchi I universe

The first step in the generalization of the model pre-
sented in previous Section is an extension to the flat
Bianchi I model, describing the universe with the same
matter content and topology, which however while being
still homogeneous is not necessarily isotropic. Its (pre-
liminary) analysis within LQC has been initiated in [15].
Later more detailed analysis of its kinematics and dy-
namics was performed in [16] and [17] (see also [18, 19]
for a vacuum case), although the quantization prescrip-
tion used there is not applicable to the noncompact cases
[36]. The first description valid also in noncompact sit-
uation was constructed in [20], which we will follow in
this article. In this section we briefly introduce those
elements of the framework, which are needed as a basis
for our analysis. The treatment is in fact an extension
of the one applied to the FRW universe. Therefore, for
shortness, here we will focus just on these aspects of it,
which differ from the description presented in Sec. II A.
For the detailed description the reader is referred to [20].

1. The classical model

Classically the Bianchi I flat spacetime admits the
same foliation by homogeneous surfaces as the FRW one.
The general form of the metric is

g = −N2dt2 + a21(t)dx1
2 + a22(t)dx2

2 + a23(t)dx3
2 (2.17)

where xi are chosen (comoving) coordinates defining the
fiducial Cartesian metric oq := dx1

2+dx2
2+dx3

2 with or-
thonormal (co)triad ( oωi

a) œa
i . To construct the Hamil-

tonian formalism one has to introduce again a fiducial
cell, which here is described by three fiducial (i.e. with
respect to the metric oq) lengths Li and fiducial volume
Vo := L1L2L3. Here it is again possible to fix a gauge
in which the Ashtekar connections and triads are rep-
resented by three pairs of canonically conjugated coeffi-
cients ci, pi

Ai
a = ci L−1

i
oωi

a, Ea
i = pi LiV

−1
o

√
oqœa

i , (2.18)

and all the constraints except the Hamiltonian one are
automatically solved. The Poisson brackets between co-
efficients equal {ci, pj} = 8πGγδij .

Following [20] we choose the lapse N =
√

|p1p2p3|.
The Hamiltonian constraint has the same form as in the
FRW case, and its components are given by (2.3) and
(2.4) (with the basic variables given by (2.18) instead of
(2.2)), where in (2.4) p := |p1p2p3|1/3.

2. Loop quantization

To quantize the system we follow the program spec-
ified in Sect. II A 2, in particular choosing the polymer
representation for the geometry degrees of freedom, while
keeping the Schroedinger one for the scalar field.

In the geometry part the basic operators are
holonomies along straight edges generated by œa

i and
the fluxes across 2-dimensional rectangles spanned by
œa

i . The gravitational kinematical Hilbert space consists
of the product of three copies of Hgr of the FRW sys-
tem, each corresponding to one direction of œa

i Hgr =
⊗3

i=1 L
2(R̄, dµBohr). The basis of this space can be built

out of eigenstates of the triad (or unit flux) operators
p̂i and parametrized by three real variables λi such that
p̂i|λ1, λ2, λ3〉 = sgn(λi)(4πγ

√
∆ℓ3Pl)

2
3 λ2i |λ1, λ2, λ3〉. Al-

ternatively, one of λi can be replaced with the parameter
v := 2λ1λ2λ3. Here for that purpose we select λ3, finally
labeling the basis elements as |λ1, λ2, v〉.

The space Hφ and the set of basic operators corre-
sponding to the matter are the same ones as in the FRW
case. The full kinematical Hilbert space is also a product
Hkin = Hgr ⊗Hφ.

The quantum Hamiltonian constraint is constructed
out of the classical one by, first reexpressing it in terms
of the holonomies and fluxes, and next promoting these
components to operators. In particular the field strength
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F k
ab is again represented via holonomies along closed rect-

angular loops of the physical area equal to ∆. Unlike in
isotropic case however fixing the loop area does not al-
low to uniquely fix the fiducial lengths of its edges. This
apparent “ambiguity” gave rise to several distinct pre-
scriptions present currently in the literature (including
the one of [16]). On the other hand the relation of the
LQC degrees of freedom with the full LQG ones con-
structed in [20] allowed to fix the relation uniquely. The
constraint resulting from this operation (defined on the
dense domain in Hkin⊗Hφ) is of the Klein-Gordon form

Ĉ = 1̂1 ⊗ ∂2φ + 1̂1 ⊗ ΘB1. (2.19)

Similarly to FRW model we can restrict our interest
to just the symmetric sector, that is those states Ψ,
which satisfy Ψ(λ1, λ2, v, φ) = Ψ(|λ1|, |λ2|, |v|, φ). This
allows to restrict the studies just to the positive octant
λ1, λ2, v > 0, on which an action of ΘB1 is given by (quite
complicated) Eqs. (3.35)-(3.37) of [20]. Its important fea-
ture is, that, analogously to the isotropic one, it divides
Hphy onto the superselection sectors built of the states
supported just on the sets {(λ1, λ2, v);λ1, λ2 ∈ R, v ∈
L+
ε } with L+

ε := {v = ε + 4n; n ∈ N}, preserved by an
action of ΘB1. Therefore to extract the physics one can
consider just one of those sectors. Here, for simplicity we
choose ε = 0.

As we show in Appendix A 1 the operator ΘB1 admits
self-adjoint extensions. Knowing its action one can in
principle find the physical Hilbert space(s) corresponding
to the model by analyzing the spectral properties of the
extensions. On the other hand there exists a well defined
procedure of the averaging over anisotropies (defined in
[20] to build an embedding of the isotropic model in the
homogeneous anisotropic one). In this article we will
focus just on the space of averaged states H̄phy and their
physical properties.

3. The isotropic sector

Following [20] and the ideas of [55] we consider a pro-

jection P̂ mapping from the dense domain in Hgr of the
Bianchi I model to the one the isotropic model as follows

ψ(λ1, λ2, v) 7→ ψ(v) = [P̂ψ](v) :=
∑

λ1,λ2

ψ(λ1, λ2, v).

(2.20)
Through the direct inspection one can check that there
exists an operator Θ̄B1 such that

[P̂ΘB1ψ](v) = Θ̄B1[P̂ψ](v). (2.21)

An action of that operator equals exactly the one of
ΘsLQC defined via (2.8, 2.11).

The consequence of the above observation is, that at
least to some extent those of the aspects of the Bianchi
I model, which are related exclusively to the behavior
of the isotropic degrees of freedom, can be investigated

via an isotropic model constructed via averaging over
anisotropies and equivalent to the sLQC one described
in Sect. II A. However, one has to be aware, that some
of the physical states might in principle be in the kernel
of the projection operator P̂ . Thus, certain care needs
to be taken, when relating the properties of the isotropic
sector defined above with the full Bianchi I model. In
particular it is not confirmed, whether the expectation
values and dispersions of the total volume Bianchi I op-
erators agree with the analogous quantities of the volume
operators acting on the averaged states. This issue will
require further studies.

C. Physical Hilbert space, observables

Known form of the Hamiltonian constraint (2.7) and in
particular the evolution operator Θ (2.8) allows to easily
extract the Hilbert structure of the space of states an-
nihilated by the constraint. The exact construction of
Hphy is done via group averaging (see [6] for the details).

To start with, we note, that the spectrum of Θ is for
all the cases considered here absolutely continuous [56],
nondegenerate and equals Sp(Θ) = R

+ ∪ {0} [29]. In
consequence one can build a base of Hgr [57] out of the
eigenfunctions ek corresponding to nonnegative eigenval-
ues

[Θek](v) = ω2(k)ek(v), (2.22)

(where ω(k) =
√

12πGk, k > 0) and normalized such
that 〈ek|ek′〉 = δ(k′−k). In the superselection sectors ε =
0 the remaining freedom of global rotation is furthermore
fixed by the requirement, that

ek(v = 4) ∈ R
+. (2.23)

Applying the simplest form of the group averaging pre-
sented in [6] and above spectral decomposition we arrive
to the following representation of the elements of Hphy

Ψ(v, φ) =

∫

R+

dkΨ̃(k)ek(v)eiω(k)φ, (2.24)

where Ψ̃ ∈ L2(R+, dk) is the spectral profile of Ψ. The
physical inner product is given by

〈Ψ|Φ〉 =

∫

R+

dk ¯̃Ψ(k)Φ̃(k). (2.25)

Since here we are dealing with the constrained system,
there is no natural notion of time and evolution. It can
be provided via the unitary mapping (2.15). An alterna-
tive way to define an evolution is the construction of the
family of partial observables [58], parametrized by one of
the dynamical variables and of the elements related via
unitary transformation. Here we construct family ln |v̂|φ
[6] interpreted as ln |v| at given “time” φ. The systematic
way of constructing such observables is presented in [30].
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For the models considered in the article the expectation
values and dispersions of ln |v̂|φ for the physical state Ψ
equal the analogous quantities of the kinematical observ-
able ln |v̂| acting on the initial data ψφ := Ψ(·, φ) ∈ Hkin

[ln(v)φo
Ψ](v) = ei

√
Θ2(φ−φo) ln(v)Ψ(v, φo). (2.26)

For completeness we introduce one more observable, cor-
responding to the constant of motion ln(ω) – an operator
ln(ω̂) acting as follows

[ln(ω̂/
√
G)Ψ̃](k) = ln(ω(k)/

√
G)Ψ̃(k). (2.27)

This operator will be useful later in the paper as (it will
be shown that) its dispersion bounds the growth of the
spread in ln |v̂|φ.

D. Wheeler-DeWitt analog

The systems studied in this article can be also quan-
tized via methods of the geometrodynamics. Indeed, the
geometric component (2.3) of the Hamiltonian constraint
can be expressed entirely in terms of the coefficients (c, p)
defined in (2.2)

Cgr = − 6

γ2
c2
√
p, (2.28)

and the entire system can be treated just as an abstract
one of the phase space coordinatized by (c, p, φ, pφ) and
quantized via standard methods of quantum mechanics.
As the result the kinematical Hilbert space takes the form
Hkin = Hgr⊗L2(R, dφ), where Hgr := L2(R, dv) with the
inner product between ψ, χ ∈ Hgr

〈ψ|χ 〉 =

∫

R

dv ψ̄(v)χ(v). (2.29)

The quantum Hamiltonian constraint can be expressed
as a differential analog of (2.7)

∂2φΨ(v, φ) = −Θ Ψ(v, φ)

:= 12πG
√

|v|∂v|v|∂v
√

|v|Ψ(v, φ).
(2.30)

To arrive to above equation we selected the factor order-
ing in (2.28) consistent with the one of (2.3) (see [7] for
the detailed explanation).

The physical Hilbert space can be again constructed
via group averaging and it is an almost complete analog
of the one of LQC models, with just slight differences
being a consequences of the two-fold degeneracy of the
eigenspaces of the operator Θ. Here the orthonormal
basis of (the symmetric states on) Hgr consists of the
functions

ek(v) =
1√
2πv

eik ln |v|, k ∈ R, (2.31)

and the physical states (positive frequency solutions to
(2.30)) have the form

Ψ(v, φ) =

∫

R

dkΨ̃(k)ek(v)eiω(k)φ, (2.32)

where Ψ̃ ∈ L2(R, dk) and ω(k) =
√

12πG|k|. The inner
product has the same form as (2.25) but now k runs the
entire R.

To characterize the states and define a physical evo-
lution we use the observables ln(ω̂) and ln |v̂|φ given, re-
spectively, by full analogs of (2.27) and (2.26). The latter
ones can be expressed as quite simple differential opera-
tors acting directly on Hphy

ln |v̂|φΨ̃ = −ieiω(k)φ∂ke
−iω(k)φΨ̃

= [−i∂k − (∂kω(k))φ1̂1]Ψ̃.
(2.33)

This fact will be very useful in the following sections,
where we will use it to derive the relation between the
dispersion of the components of the WDW limits of the
LQC states.

III. WDW LIMIT OF AN LQC STATE

The comparison of the forms of the operators Θ (2.8)
and Θ specified via (2.30) shows that under certain con-
ditions (slowly changing functions) one of the operators
can be approximated by the other. Therefore one may
expect, that the solutions to (2.7) converge in certain re-
gions to some solutions of (2.30). Indeed, it was shown
via numerical methods in [7] that the eigenfunctions ek
converge to certain combinations of ek and e−k. Further-
more the analytic properties (reality) of Θ imply that this
limit has the form of a “standing wave” that is it is com-
posed equally of incoming (k > 0) and outgoing (k < 0)
plane waves (2.31). More precisely [59]

ek(v) = r(k)(eiα(k)ek(v) + e−iα(k)e−k(v))

+O(|ek(v)|(k/v)2)

=: ψ
k
(v) + O(|ek(v)|(k/v)2),

(3.1)

where r(k) ∈ R
+ can be determined analytically via the

relations between norms of the LQC and WDW states
(see Appendix A 2) and α(k) ∈ S1 is a phase shift.

In this section we analyze the WDW limits ψ
k

of the
LQC eigenfunctions ek in detail. First, in Sec. III A we
provide an analytic proof of the convergence for all the
forms of Θ considered in this paper, as well as recall
the arguments allowing to determine the structure of the
limit. Second, in Sec. III B we perform a detailed an-
alytical and numerical analysis of the phase shifts α(k)
defined in (3.1). The properties of these shifts are the
critical components allowing to arrive to the triangle in-
equalities relating the dispersions of the physical state
and being the main result of this paper.
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A. The convergence of the bases

In order to explicitly show the convergence (3.1) we
compare the eigenfunctions ek – solutions to (2.22), with
the solutions (2.31) to the WDW analog of (2.22). To
start with, we note, that the Eq. (2.22) is a 2nd order dif-
ference equation, however, due to the specific properties
of Θ characteristic for each of the prescriptions consid-
ered here, the whole solution is determined just by the
single value ek(v = 4) (see [7, 8, 51] for the details on
respective prescriptions).

To analyze the solution it is more convenient to rewrite
that equation in the 1st order form [60]. For that we
introduce the vector notation, defining

~ek(v) :=

(

ek(v)
ek(v − 4)

)

. (3.2)

Using it we can rewrite (2.22) in the following form

~ek(v + 4) = A(v)~ek(v), (3.3)

where the matrix A can be expressed (with use of the
notation introduced in Eq. (2.8)) as

A(v) =

(

fo(v)−ω2(k)
f+(v) − f−(v)

f+(v)

1 0

)

. (3.4)

To relate ek with e±k we note that the value of ek at
each pair of consecutive points v, v + 4 can be encoded
as values of the (specific for the chosen pair of points)
combination of e±k, that is

~ek(v) = B(v)~χk(v), (3.5)

where the transformation matrix B is defined as follows

B(v) :=

(

ek(v + 4) ek(v + 4)
ek(v) ek(v)

)

. (3.6)

Having at hand the objects defined above we can rewrite
the equation (3.3) as the iterative equation for the vectors
of coefficients ~χk

~χk(v + 4) = B
−1(v)A(v)B(v − 4)~χk(v)

=: M(v)~χk(v).
(3.7)

The exact coefficients of the matrix M(v) can be calcu-
lated explicitly for each of the prescriptions specified in
Sect. II A 2. An important feature (found by direct in-
spection) of it is, that in all three cases they have the
following asymptotic behavior

M(v) = 11 + O(v−3), (3.8)

where O(v−n) denotes the matrix, all the coefficients of
which behave like O(v−n). That convergence implies (via
application of the methods presented in [60] Sec. 4) the
existence of the limit

lim
n→∞

~χk(4n) = ~χk, (3.9)

as well as it confirms the rate of convergence specified
in (3.1). This limit can be expressed in terms of the
coefficients introduced in (3.1) in the following form

~χk = r(k)

(

eiα(k)

e−iα(k)

)

, (3.10)

which is a consequence of the observation, that all the
coefficients fo,±(v) in (2.22) are real, so (by (2.23)) is ek.

The scaling factor r(k) can be easily determined from
the relation between norms in LQC and WDW theory
discussed in Appendix A 2 and equals

r(k) = 2. (3.11)

The behavior of the phase shift function α(k) is however
much less trivial and requires detailed studies.

B. The phase shifts

To extract the properties of the phase shifts α(k) de-
fined in (3.10) we combine the analytical and numerical
methods. We focus on the behavior of the derivative
α′ := ∂kα, as it is exactly the quantity which will be
relevant in the further studies. First we derive analyti-
cally the asymptotic behavior of α(k) for k → ∞ for the
sLQC prescription (Sec. III B 1). The analytical results
are then strengthened and generalized to other prescrip-
tion by means of the numerical methods described in Ap-
pendix B. The results of that analysis are presented in
Sec. III B 2.

1. Asymptotics in sLQC

Among the prescriptions considered here the sLQC one
is somehow distinguished, as the bases ek expressed as
functions of an appropriately defined canonical momen-
tum b of v have a simple analytical form [8]. This allows
for a quite high level of control over their properties, a
fact which we will exploit below. To start with, let us fix
the definition of b, choosing it to equal

b := boc|p|−
1
2 , {v, b} = 2, (3.12)

where c, p are given by (2.2) and the proportionality con-
stant bo is fixed via the righthand side equality. This
quantity can be next used as a configuration variable
on the quantum level. A particularly convenient choice
of the representation of the quantum states using this
variable is provided by the following transformation op-
erators chosen respectively for WDW (F) and LQC (F)
framework

[Fψ](b) =

∫

R

dv |v|− 1
2 e

ivb
2 ψ(v), (3.13a)

[Fψ](b) =
∑

v∈Lε

|v|− 1
2 e

ivb
2 ψ(v), (3.13b)
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where the part of ψ supported on v < 0 is determined
by the symmetry requirement. The form of these trans-
formations implies, that the domain of b is the entire R

in the case of WDW and the circle of the radius 1/2 in
LQC.

The evolution operators Θ and ΘsLQC transformed via
(3.13) take the form

Θ2 = −12πG[b∂b]
2, (3.14a)

Θ2
sLQC = −12πG[sin(b)∂b]

2, (3.14b)

and their (symmetric) eigenfunctions corresponding to
the eigenvalue ω2 = 12πGk2 (and in case of sLQC cor-
responding to the sector ε = 0) are combinations of the
orthonormal basis elements

ek(b) = N(k)e−ik ln |b/2|, (3.15a)

ek(b) = N(k) cos(−k ln(tan |b/2|)), (3.15b)

where N(k), N(k) are the normalization factors deter-
mined by the physical inner product [8] and (3.15b) is
written in the chart b ∈ [−π/2, π/2]. The − sign in the
exponents comes from the comparison of the spectrum
and bases of the operator

√
Θ in v and b representation

(see for example [19]).
To retrieve the large v behavior of the functions (3.15)

one needs to perform the transform inverse to (3.13).
Since the large v correspond to high frequencies in b,
the particular form of the functions implies, that only
the domain near b = 0 will give the relevant contribution
to the asymptotics in v → ∞.

In order to be able to compare the functions ek(b) and
ek(b) one first needs to to deal with the fact, that the
inverse transform of (3.15b), involves an integration over
the domain [−π/2, π/2] whereas for (3.15a) one need to
perform an integration over R.

To do so, let us first consider on [−π/2, π/2] a function
ξ(b)ek(b), where ξ(b) is some smooth function with sup-
port in (−π/2, π/2) and equal to 1 in some neighborhood
of 0. Regarding this function as defined on the entire R

we note that the difference

gk(b) := ek(b) − ξ(b)ek(b) (3.16)

is a smooth function with appropriate behavior at infinity
[61]. Hence its Fourier transform is of the order O(v−N )
for any N ∈ N.

On the other hand, for ξ(b)ek(b) considered as a func-
tion on a circle, the difference

fk(b) := e−ik ln(tan |b/2|) − ξ(b)e−ik ln |b/2|. (3.17)

is of the class C0, thus by Lebesgue-Riemann lemma its
transform F−1fk is of the order o(|ek(v)|). In conse-
quence the function

e′k(b) = ξ(b) cos(k ln |b/2|) + (fk(b) + f−k(b))/2, (3.18)

supported on R has the same WDW limit as ek. Fur-
thermore the components of this limit proportional to

e±k correspond to the respective components e∓ik ln |b/2|

of e′k.
Bringing together this two observations we see, that

to find the desired phase shifts one just needs to find
the transform of the functions ek(b). As they are the
eigenfunctions of Θ, they are proportional to ek(v)

F−1[e∓ik ln |b/2|](v) = Ñ(k)e±k(v) (3.19)

and the factor of proportionality Ñ(k) equals the trans-

form of
√

2πe∓ik ln |b/2| at the points v = ±1. Selecting
for the component proportional to ek(b) the point v = −1
we get

Ñ(k) =
√

2π

∫

R

db e−i(k ln |b/2|−b/2)

=
√

8π k e−ik ln(k)

∫

R

dy e−ik(ln |y|−y),

(3.20)

where to arrive to the latter equality we introduced the
change of variables b = 2ky. The last integral can be
computed in the regime k → ∞ by a stationary phase
method (see Appendix A 3 for the proof of the applica-
bility of the method). The result is

Ñ(k) ≈
√

8π k e−ik ln(k)
√
−2πi

[

yo√
k
e−ik(ln |yo|−yo)

]

yo=1

≈ 4π
√
−i

√
k e−i(k ln(k)−k).

(3.21)

Analogously, one can calculate Ñ(k) for the component
proportional to e−k(b) by selecting the point v = 1.
These two results allow us to extract the phase shift α(k),
which equals

α(k) = −k(ln(k) − 1) − 3
4
π + o(k0). (3.22)

Via the same method one can compute the derivative
∂kÑ =: Ñ ′.

Ñ ′ =
√

2π

∫

R

db [i ln |b/2|]e−i(k ln |b/2|−b/2)

=
√

8π k e−ik ln(k)

∫

R

dy [−i ln |y|]e−ik(ln |y|−y)

−
√

8π ik ln(k) e−ik ln(k)

∫

R

dy e−ik(ln |y|−y)

≈ −i ln(k)Ñ(k),

(3.23)

where the last estimate follows from the fact, that de-
composing Ñ(k) =: A(k)eiα(k) (where A(k) ∈ R

+) one
can express its derivative as

Ñ ′(k) = iα′(k)A(k)eiα(k) +A(k)′eiα(k)

≈ −i
√

8π
√
−i ln(k)

√
k e−i(k ln(k)−k)

+ O(k−1/2 ln(k)).

(3.24)

In consequence the phase shift derivative equals

α′(k) = − ln(k) +O(k−1 ln(k)). (3.25)
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2. Numerical generalization

In the case of the remaining two prescriptions repeat-
ing the analytical calculations preformed for the sLQC
one is not possible, as the eigenfunctions of Θ do not have
manageable analytic form in either of v or b representa-
tions. We note however, that between the prescriptions
the operators Θ differ just by a compact operator. Thus,
it is expected that the asymptotic behavior of both α(k)
and α′(k) corresponding to them is again given by (3.22)
and (3.25) up to the rest terms decaying with k. We ver-
ify this expectation for α′(k), using the numerical meth-
ods which are described in detail in Appendix B. Those
methods allow to determine the values of α′ in quite wide
range of k as well as to verify its asymptotic behavior
(within the limitations of applied numerics). The results
for different prescriptions are presented in Fig. 1. Al-
though the exact form of α′ depends on the prescription,
especially for small k, one can observe the following fea-
tures common for all of the prescriptions considered in
this article:

(i) For large k the derivative α′ converges to the limit
specified in (3.25) with the rate

α′(k) = − ln(k) +O(k−2), (3.26)

(ii) The scaled 2nd order derivative of α is bounded

|[k∂2kα](k)| ≤ 1 (3.27)

for every value of k.

These properties will be crucial for building the relation
between the dispersion growth through the bounce.

IV. THE SCATTERING PICTURE

It was shown in Sec. III that the basis functions span-
ning the LQC physical Hilbert space admit certain WDW
limits. Given that one can define a WDW limit of any
physical state by replacing the basis functions in (2.24)
with the limits ψ

k
defined via (3.1). This operation de-

fines a relation between the LQC physical Hilbert space
and the WDW one, which in terms of the spectral profiles
can be written as follows

Ψ̃(|k|) 7→ Ψ̃(k) = 2ei sgn(k)α(|k|) sgn(k)Ψ̃(|k|), (4.1)

where k spans the entire real line.
That limit consists of two components, the incoming

wave packet (corresponding to k > 0) and the outgoing
one (k < 0). On the physical level they represent the
universe which is, respectively, contracting to big crunch
singularity and expanding from the big bang one. The
entire LQC dynamics can be thus seen as the specific kind
of “transition” between the contracting WDW universe

(represented by |Ψ〉in) to the expanding one (denoted as
|Ψ〉out

|Ψ〉in 7→ |Ψ〉out = ρ̂|Ψ〉in, (4.2)

In consequence, looking at the evolution “from the infin-
ity” (in the configuration space or in cosmic time) one
can interpret the evolution as the process of scattering of
the contracting geometrodynamical universe. The form
of the limit (4.1) immediately allows to write down the
scattering matrix

ρ(k, k′) = (ek|ρ̂|ek′) = e− sgn(k′)α(|k′|)δ(k + k′), (4.3)

which form encodes in particular the fact, that the con-
tracting universe totally “reflects” into the expanding one

Ψ̃(k) 7→ e2 sgn(k′)α(|k′|)Ψ̃(−k). (4.4)

This picture allows to address in a quite natural and intu-
itive way the questions regarding the relation of the prop-
erties of the pre bounce branch (universe in the asymp-
totic past) and the post bounce one (asymptotic future).
In particular, we will apply it in the next section to de-
termine how much the bouncing universe can disperse in
the distant future of the bounce in comparison to the
initial spread in its distant past.

When considering the above picture one has to remem-
ber that, although the LQC basis functions converge to
the combinations of the WDW ones, this is not neces-
sarily the truth for the general physical states, as the
convergence of the bases is not uniform with respect to
k. Nonetheless, once the attention is restricted just to

the states localized with respect to the observable k̂ de-
fined analogously to (2.27) (that is of the finite dispersion
in k) the uniformity is restored and the WDW limit is
defined in the precise sense. This fact is used for example
in Sec. V A where the expectation values and dispersions
of the LQC states are related with the ones of its WDW
limit.

The scattering picture can obviously be constructed in
the context of any LQC model in which the basis func-
tions converge explicitly to the WDW ones, like for ex-
ample the models with the positive cosmological constant
[11] or the Bianchi I ones [19]. The applicability is how-
ever not restricted just to such systems. In particular the
models featuring the classical recollapse, like [10, 13], in
LQC admit a quasi-periodic evolution. For those models
it is also possible to build a correspondence between the
LQC and WDW states, since the basis elements of Hphy

converge to their WDW analogs also there. The new dif-
ficulty in these cases is the fact that, as the spectra of
the LQC evolution operators are discrete while the WDW
ones are continuous, the direct analog of the transforma-
tion (4.1) leads to the WDW states of the zero norm.
This problem can be circumvented by introducing an ap-
propriate interpolation of the discrete spectral profile of
an LQC state. The WDW state constructed this way
represents a single epoch (between the bounces) of the
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evolution of the LQC one. However, since such interpo-
lations are not defined uniquely, there is no direct 1 − 1
correspondence between the loop states and their “lim-
its”. One can however choose the interpolations which
reproduce the expectation values and the dispersions of
the relevant observables at least approximately. This way
it is possible build the WDW states well mimicking one
epoch of the loop universe evolution. It happens however
at the cost of relaxing the relations between the physical
parameters corresponding to them to approximate ones,
without explicit convergence of their values. The reason
for that is two-fold:

(i) nontrivial corrections due to interpolation of the dis-
crete spectral profile, and

(ii) the fact that the basis elements of the LQC physi-
cal Hilbert space converge to their (rescaled) WDW
analogs only asymptotically, thus obviously beyond
the classical recollapse point.

Despite this, such relations can be still quite useful. In
particular this method is well suited to address the ques-
tion, how the parameters (for example dispersions) can
change between the epochs. In particular it can be used
to investigate the issue of the spontaneous coherence of
the LQC state, that is to address the question whether,
given an initial date describing the state which is not
semiclassical, the state will admit in the future evolution
the semiclassical epoch.

V. THE DISPERSION ANALYSIS

This section is dedicated to the main goal of this pa-
per: finding the precise relation between the dispersions
of the physical LQC state representing the universe in the
distant future (post bounce) and past (pre bounce). The
studies are divided onto two steps. First, in Sec. V A we
apply the scattering picture to relate the dispersions of
incoming and outgoing asymptotic WDW states. Found
relation is next translated in Sec. V B to obtain the re-
lation between the dispersions of a genuine LQC state in
the asymptotic past and future.

A. Dispersions of the WDW limit components

Given the WDW limit Ψ (defined by (4.1)) of the LQC

state described by the spectral profile Ψ̃ let us define its
decomposition onto the incoming Ψ+ and outgoing Ψ−

components such that the spectral profiles corresponding
to them equal

Ψ̃
±

(k) := θ(±k)Ψ̃(k), (5.1)

where θ is a Heaviside step function. Denote the sub-
spaces of Hphy formed by these components as H±

phy re-
spectively. On each of these components one can consider

an action of the observables ln |v|φ defined by (2.33).
Their expectation values and dispersions equal respec-
tively

v(φ) := 〈ln |v|φ〉± = ±a φ‖Ψ±‖ + 〈−i∂k〉±, (5.2a)

σ± := 〈∆ ln |v|φ〉± = 〈∆(−i∂k)〉±, (5.2b)

where a :=
√

12πG and for any observable Ô we define
〈Ô〉± := 〈Ψ±|Ô|Ψ±〉.

The main question we would like to address here is
whether there exists the relation between σ− and σ+ and
what is its form. The answer to the former is certainly
true as the transformation (4.4) unitarily maps Ψ+ →
Ψ− in the following way

Ψ̃
−

(k) = [UΨ̃
+

](k) = e−2α(|k|)Ψ̃
+

(−k),

U : H+
phy → H−

phy,
(5.3)

thus the expectation values and dispersions in (5.2) are
related as follows

〈−i∂k〉− = 〈U−1[−i∂k]U〉+, (5.4a)

〈∆[−i∂k]〉− = 〈∆U−1[−i∂k]U〉+, (5.4b)

where

U−1[−i∂k]U = −i∂k − 2α′11. (5.5)

Combining together (5.2b), (5.3), (5.4b), (5.5) and ap-
plying very general bound on the dispersion of the sum
of operators (A24) we obtain the following inequality

σ− ≤ σ+ + 2〈∆α′11〉+. (5.6)

To write it down in the useful form we have to express the
quantity 2〈∆α′11〉+ in terms of dispersions of observables
commonly used to characterize the physical properties of
the state. For that we exploit the properties of the func-
tion α′ found in Sect. III B. Namely, by the definition of
the dispersion we can bound the term under considera-
tion via

〈∆α′11〉2+ = 〈(α′2 − 〈α′〉+)2 11〉+ ≤ 〈(α′2 − α′⋆)2 11〉+,
(5.7)

which is true for any value of α′⋆. Here we choose it to
be

α′⋆ = α′(exp(λ⋆)), λ⋆ := 〈ln(k)〉+. (5.8)

Upon that choice, applying the property (3.27) of α we
can bound the left-hand side of (5.7) as follows

〈∆α′11〉2+ ≤ 〈(ln(k̂) − λ⋆11)2〉+ = 〈∆ ln(k̂)〉2+. (5.9)

Finally, knowing the relation ω(k) we can express the
right-hand side of (5.9) via the dispersion of the WDW
analog of the observable (2.27), which corresponds just
to a logarithmic scalar field momentum ln(pφ/b), where

b := ~
√
G. The result is

σ− ≤ σ+ + 2σ⋆, (5.10)
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where

σ⋆ = 〈∆ ln(p̂φ)/b〉+ = 〈Ψ|∆ ln(p̂φ)/b|Ψ〉. (5.11)

The righthand equality is here a direct consequence of
the form of operator (2.27) (multiplication operator in
k) and the transformation (4.1).

One can easily see, that the role of σ− and σ+ can be
exchanged. The only modification induced by this oper-
ation will be the exchange U ↔ U−1. In consequence,
(5.10) is supplemented by the inequality

σ+ ≤ σ− + 2σ⋆, (5.12)

thus both these inequalities (5.10) and (5.10) can be un-
derstood as the triangle inequalities.

Note that to arrive to above inequalities we have not
assumed any semiclassicality conditions in any epoch of
the state evolution, neither we required the state to be
peaked about any trajectory. The relations hold for every
element of Hphy.

It is also worth noting, that although (5.10), (5.10) are
formulated in terms of the dispersions of the logarithmic
observables ln |v̂|φ and ln(p̂φ/b), for the states semiclas-
sical (sharply peaked) in any epoch of the evolution (pre
or post bounce) these quantities can be approximated via
analogous “linear” ones: |v̂|φ, p̂φ

〈ln |v̂|φ〉 ≈ ln〈|v̂|φ〉, 〈ln(p̂φ/b)〉 ≈ ln(〈p̂φ〉/b),

〈∆ ln |v̂|φ〉 ≈
〈∆|v̂|φ〉
〈|v̂|φ〉

, 〈ln(p̂φ/b)〉 ≈
〈∆p̂φ〉
〈p̂φ〉

. (5.13)

In consequence the inequalities (5.10), (5.12) can be re-
formulated in terms of them at least on the semi-heuristic
level (or in precise sense under certain additional assump-
tions imposed on the form of the state). This is not
however the aim of the article, as we intended to find
a relation which is maximally general while remaining
precise.

At this point one has to be aware of an important
subtlety related to the description method applied hare.
Namely, the considered observables are the geometro-
dynamical observables acting on the asymptotic states
(wave packets), not the exact LQC observables acting on
the LQC states. Therefore one may in principle worry,
that due to some wild behavior of the LQC basis func-
tions near the bounce point there might be some residual
contributions to the results (expectation values, disper-
sions) of the scattering picture essentially invalidating
found inequalities, once applied to exact LQC observ-
ables.

On the other hand, the studies of [8] performed for “lin-
ear” observables |v|φ show, that at least for the sLQC pre-
scription the LQC dispersions indeed approach the ones
of WDW limits. This suggests that the problematic cor-
rections mentioned above are not sufficient to distort the
main results. Indeed, one can confirm this expectations
in quite general setting using the relation of the norms of
LQC state and its WDW limit derived in Appendix A 2.

B. The relation with LQC observables

To show it let us focus our attention to just one limit,
say in the distant past. Due to the symmetry of the sys-
tem the reasoning is immediately applicable also to the
distant future one. Also, since the relation is of physical
interest only when σ± stay finite we restrict our studies
to the states Ψ which are localized in the weak sense,
that is for which the expectation values and dispersions
of the components Ψ± of their WDW limit are finite (for
finite φ).

The forms (2.24), (2.32) of the LQC and WDW states
and the relation between Ψ and its limit given by (3.10)
and (3.11) imply immediately that

‖Ψ+‖ = 2‖Ψ‖. (5.14)

On the other hand, via the mapping (2.15) these physical
norms can be expressed as the appropriate kinematical
norms on the surface φ = φo = const, which are given by
(2.5) and (2.29) respectively. This allows us to define the
partial norms ‖ ·‖±(x,φo)

as the restrictions of (2.5), (2.29)

to those points in the domains which satisfy ln |v| > x
for ’+’ and ln |v| < x for ’-’ respectively.

Consider now an arbitrary small ǫ > 0 and select the
point xo such that ‖Ψ+‖−(xo,φo)

≤ ǫ‖Ψ+‖. Next define

the function

x̃(φ) = xo − (α/2)(φ− φo). (5.15)

Using this function as a separator we can define the par-
tial dispersions σ±

φ of the observables ln |v̂|φ per analogy
to the partial norms, that is restricting the domains of
summation to the sets ln |v| > x̃(φ), ln |v| < x̃(φ) respec-
tively. In the similar way we define the dispersions σ±

φ

of analogous observable acting on the state Ψ+. They
obviously sum up to the complete norms and dispersions

‖Ψ‖2 = (‖Ψ‖+φ )2 + (‖Ψ‖−φ )2, (5.16a)

σ2
φ = (σ+

φ )2 + (σ−
φ )2, (5.16b)

‖Ψ+‖2 = (‖Ψ+‖+φ )2 + (‖Ψ+‖−φ )2, (5.16c)

σ2
+ = (σ+

φ )2 + (σ−
φ )2, (5.16d)

where σφ is the dispersion of an observable (2.26) and
σ+ is defined via (5.2b). Using the known asymptotic
behavior of the basis functions we can compare the limits
of these dispersions as φ→ −∞.

Let us start with σ+
φ . Applying the numerical estimate

(3.1) and taking into account, that the state Ψ is localized
in p̂φ we can write the asymptotic behavior of the wave
function (for large negative φ)

Ψ(v, φ) = Ψ+(v, φ) +O1(v−5/2), (5.17)

where the remnant O1 has the bound independent of φ.
This, together with the fact that the value Ψ+(v, φ) de-
pends only on ln |v|−αφ and the convergence of the sum
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over the relevant part of L+
0 and integral over the domain

ln |v| > x̃(φ) implies

‖Ψ‖+φ = 1
2
‖Ψ+‖+φ +O2(e−x̃(φ)), (5.18a)

σ+
φ = σ+

φ +O3(x̃(φ)e−x̃(φ)). (5.18b)

On the other hand, the localization of Ψ+ in ln |v|φ
and the fact, that

|x̄(φ)−x̃(φ)| ∝ x̃(φ), x̄(φ) :=
〈Ψ+| ln |v|φ|Ψ+〉

‖Ψ+‖2
, (5.19)

implies that

lim
φ→−∞

σ−
φ = 0, lim

φ→−∞
‖Ψ+‖−φ x̃(φ) = 0, (5.20)

where the right-hand side equality is the consequence of
the left-hand side one and (5.19). Furthermore, from that
and (5.16d) follows

lim
φ→−∞

σ+
φ = σ+. (5.21)

Combining together (5.14), (5.16c), (5.18b) and (5.16a),
taking into account, that the part of Ψ contributing to
the norms and dispersions is supported on ln |v| > 0,
estimating the partial dispersion by the partial norm

σ−
φ ≤ ‖Ψ‖−φ sup

v∈L0∩[0,exp(x̃(φ))]

| ln |v| − x̄(φ)| (5.22)

and applying (5.19) we get

lim
φ→−∞

σ−
φ = 0. (5.23)

This result, together with (5.16b), (5.18b), (5.15) and
(5.21) finally implies

lim
φ→−∞

σφ = σ+. (5.24)

Due to symmetry of the system, repeating the above rea-
soning for the limit φ → ∞ and the WDW component
Ψ− we obtain the convergence in the asymptotic future

lim
φ→+∞

σφ = σ−, (5.25)

where σ− is defined via (5.2b). Thus, provided the con-
sidered LQC state Ψ has finite dispersion in p̂φ, the trian-
gle inequalities (5.10), (5.12) apply also to the asymptotic
past and future limits of the dispersions of LQC states.

VI. CONCLUSIONS AND OUTLOOK

In this article we introduced the interpretation of an
evolution of a universe described via Loop Quantum Cos-
mology as the scattering process of the geometrodynam-
ical (Wheeler DeWitt) one. Using this picture we ana-
lyzed certain properties of the bounce in the model of

a flat isotropic universe with the massless scalar field as
well as in the isotropic sector of its generalization to the
homogeneous but anisotropic spacetimes (Bianchi I). In
these cases the LQC evolution is a process of transition
of an ever-contracting (incoming) WDW universe into
an ever-expanding (outgoing) one per analogy with the
Klein-Gordon wave packet coming from the infinity, in-
teracting with the nontrivial potential and being reflected
in a scattering process back to infinity. The process is de-
scribed by a scattering matrix, which explicit form was
found and of which properties were investigated in detail.
These properties were used to compare the dispersions
of the observables ln |v|φ – scaled logarithmic volume at
given “moment” of a scalar field (an internal time) of
the incoming and outgoing states. It was proved that
the dispersions satisfy certain triangle inequalities (5.10,
5.12) involving also the spread of the logarithmic value

of a scalar field momentum ln(pφ/(~
√
G)). The derived

inequalities are: (i) exact and, (ii) general, as they hold
for any physical state admitted by the model.

These results were immediately extended to the infinite
past and future limits of the dispersions of true observ-
ables acting on the genuine LQC states, as it was shown,
that these dispersions converge in the asymptotic past
and future to the appropriate dispersions of the, respec-
tively, incoming and outgoing WDW states considered
in the scattering picture. This convergence happens for
every state on which the dispersion σpφ

of p̂φ is finite.

The result reported above immediately implies that
once the incoming state is semiclassical (that is it is

sharply peaked in ln |v|φ and ln(pφ/(~
√
G))) so is the

outgoing one and vice versa. In consequence any physi-
cal universe of finite σpφ

semiclassical in the infinite past
is also always semiclassical in the infinite future. This
conclusion is a precise confirmation as well a generaliza-
tion of the results of [9] as it (i) holds for any physical
state satisfying just a very reasonable condition of the
finiteness of σpφ

, (ii) is valid also for the prescriptions dif-
ferent that sLQC and which in particular are not exactly
solvable, (iii) extends immediately also to the isotropic
sector of the Bianchi I model quantized in [20].

In addition to confirming the robustness of the recall
picture for the simplest models, the presented work con-
stitutes the development of a new methodology, which
application is not restricted to exactly solvable mod-
els. Our method uses only the structure of the physical
Hilbert space and asymptotic properties of its basis, none
of which have to be controlled analytically. The only
relevant requirement for application is sufficiently good
control over states in the geometrodynamical analog of
the LQC model under study. This allows in particular
to easy extend our studies to more complicated isotropic
models admitting well defined WDW limit, for example
the ones with positive cosmological constant. For such
models by construction our method seems to be better
suitable to investigate asymptotic behavior (very large
size) of the universe than the ones using the Hamburger
decomposition [62], as in this regime they reach the limit
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of their applicability [63].

Presented methodology can be extended also to any
system, in which one, while not having a good control
over the large v limit of the LQC state, one still can ver-
ify the semiclassicality preservation of its WDW analog.
There, instead of comparing the incoming and outgoing
components Ψ± of the WDW limit at v → ∞, one can
compare them in the limit v → 0, where they usually
converge to the plane waves characteristic for the model
we studied in this article. Such comparison alone is not
sufficient to give any useful information about actual dis-
persions in context of LQC, however it provides a con-
trollable bridge between the WDW components. Then,
once we are able to control (bound) the growth of dis-
persions along the evolution of the WDW states, we can
use this bridge to relate the dispersions at large v of Ψ+

and Ψ−. Such method seems to be viable for example
in the case of the universe with massive scalar field (i.e.
the inflaton [12]). There, the WDW model is much easier
to handle as, in opposition to the LQC one, it admits a
good internal clock, evolution along which is generated
by a self-adjoint operator.

In certain, less precise sense an extension can be made
also in the case of the recollapsing models. There how-
ever, as in the physically interesting domain (universe
sizes not bigger than the size at the recollapse) the WDW
limit of the state only approximately approaches the gen-
uine LQC one and the real convergence happens already
for the “tails” of the wave function, the parameters (like
dispersions) of the WDW limits can resemble the analo-
gous ones of LQC state only approximately, without ac-
tual convergence. Therefore any found relation between
the dispersions of the components of the limit can provide
analogous relation for the LQC state only at the approx-
imate level, up to some finite corrections. To get exact
relations, like the triangle inequalities derived here, the
precise estimates on those corrections need to be made.
On the other hand, the presented scattering interpreta-
tion is well fit to investigate in systems featuring quasi-
periodic dynamics the phenomena like spontaneous co-
herence in some epochs of the universe evolution.

The methodology described in this article can be ap-
plied not only to the isotropic models, but also to the less
symmetric ones. Examples of such are Bianchi I models:
vacuum ones or admitting the scalar field. In particular
the analysis of the latter model, quantized via the meth-
ods of [16] and [17] will be presented in [64]. There, the
semiclassicality preservation has a slightly weaker sense,

as, due to nontrivial dispersion relation ω(~k) only the rel-
ative logarithmic observables 〈∆ ln |vi|φ〉/〈ln |vi|φ〉 have
well defined finite limits as φ → ±∞. The results de-
scribing the semiclassicality preservation in the vacuum
case (quantized as in [18]) are already presented in [19].
There, due to subtleties related with the choice of an
emergent time the analogs of triangle inequalities con-
tain additional terms, thus the relations are weaker than
in the case with the scalar field.
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Appendix A: Mathematical aspects of the analysis

In this Appendix we discuss certain aspects of the anal-
ysis, which, while are applied in our studies, are not di-
rectly related to the topic of investigation. We also recall
some general features of quantum mechanics which were
used in the main body of the paper.

1. The existence of self-adjoint extensions of

Bianchi I evolution operator

The evolution operator ΘB1 appearing in (2.19) is a
symmetric operator in the appropriate domain dense in
Hkin. In order to define the physical Hilbert space it
has however to admit at least one self-adjoint extension.
Here, applying the analysis of the deficiency spaces [65]
we show, that this is indeed the case.

The deficiency spaces U± are the spaces of kinemati-
cally normalizable solutions ψ± to the equation

ΘB1ψ
± = ±iψ±. (A1)

The existence of the self-adjoint extensions depends on
the dimensionality of U±: if dim(U+) = dim(U−) the
operator admits the desired extensions. In particular if
both the spaces are trivial, the extension is unique.

At present the complicated structure of ΘB1 makes
finding the solutions to (A1) very difficult, however to
achieve the task at hand one just needs to demonstrate
the equality of dimU±. To show that we construct a
1 − 1 correspondence between the elements of these two
spaces.

Suppose, that ψ+ is the element of U+, that is it sat-
isfies the equation 〈λ1, λ2, v|ΘB1 − i11|ψ+〉 = 0 for every
basis element 〈λ1, λ2, v|. Expanding this set of equations
in terms of ψ+(λ1, λ2, v), acting on it with complex con-
jugate and recomposing again one can see immediately
(by inspection of the Eqs. (3.35)-(3.37) of [20]), that ψ̄+

is the solution to 〈λ1, λ2, v|Θ′2 + i11|ψ̄+〉 = 0, that is it
belongs to U−. Since this reasoning can be also repeated
in the opposite direction, the transformation

R : U+ → U− : [Rψ+](λ1, λ2, v) = ψ̄+(λ1, λ2, v) (A2)
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is a bijection. In consequence the dimensions of U± are
indeed equal.

2. Relation of norms of the LQC states and their

WDW limits

In most LQC quantization prescriptions considered in
the literature the basis functions ek – normalized eigen-
functions of Θ, can be evaluated only numerically. This
is done by solving the difference equation (2.22) for some
chosen initial data ek(v = ε). One does not know how-
ever, for which value of ek(ε) the solution is precisely
normalized. Therefore in numerical studies one usually
calculates the eigenfunctions which are not normalized,
evaluates their norm and rescales them appropriately.
However in many models, like the one considered here,
the basis functions are normalized to Dirac δ, thus the
norm cannot be computed by purely numerical methods.
Fortunately, the self-adjointness of Θ implies quite sim-
ple relation between the norm of any eigenfunction of Θ
and the norm of its WDW limit. Since for given eigen-
function this limit can be calculated numerically (see [7]
and Appendix B), that relation provides sufficient data
to normalize the LQC basis functions. Such method was
implemented for example in [6, 7] and [18]. Although the
discussed relation was applied already in those papers,
due to lack of space its derivation was never presented.
We show it here, since that relation is a key ingredient
applied in the studies of Sec. V B.

The derivation is essentially an estimate of the prod-
uct 〈ek′ |ek〉 by the products 〈e±k′ |e±k〉 via use of the
asymptotic relation (3.1). For simplicity we restrict the
derivation just to the case ε = 0, restricting the support
of the eigenfunction to L+

0 , although it immediately ex-
tends to the remaining superselection sectors. The only
difference in these sectors is the need to take into account
both the limits v → ±∞ in some prescriptions. The in-
termediate relations presented above are well defined in
the distributional sense.

Let us start with the orthonormality condition for the
LQC basis functions

X(k, k′) := 〈ek′ |ek〉 =
∑

L+

0

ek′(v)ek(v) = δ(k − k′). (A3)

She sum in the above equality can be spit as follows

X(k, k′) = F1(k, k′) +
∑

L1

ek′(v)ek(v) (A4)

where L1 := L+
0 |v≥1 and

F1(k, k′) :=
∑

L+

0
∩[0,1]

ek′(v)ek(v) (A5)

vanishes in the sector under consideration and is well de-
fined function in the general situation. Applying the limit
(3.1) and taking into account, that the terms containing

the remnant parts will always sum up to a finite quantity
we get

X(k, k′) = F2(k, k′) + r(k)r(k′)×
×

∑

s,s′=±1

ei(sα(k)−s′α(k′))
∑

L1

es′k′(v)esk(v) (A6)

The sum over L1 can be now estimated via integral
∫∞
1 dv

[66]. The form (2.31) of e±k implies that the correction
due to this estimate is again well defined function of k, k′,
thus

X(k, k′) = F3(k, k′) +
1

4
r(k)r(k′)×

×
∑

s,s′=±1

ei(sα(k)−s′α(k′))

∫ ∞

1

dv es′k′(v) esk(v)
(A7)

Knowing the form of e±k and the relation [67]

∫

R

dx θ(x) eikx =
1

2

(

δ(k) − i

πk

)

(A8)

we can evaluate the integrals in (A7). The result is

X(k, k′) = F4(k, k′) +
1

8
r(k)r(k′)×

×
∑

s,s′=±1

ei(sα(k)−s′α(k′))δ(sk − s′k′) ,
(A9)

where F4 is again a well defined function.
Taking into account, that k, k′ ∈ R

+, thus the test
functions integrated with the distribution have support
only at positive k′ we get the relation

δ(k − k′) = X(k, k′) = F4(k, k′) (A10)

+
1

4
cos(α(k) − α(k′))r(k)r(k′)δ(k − k′) ,

which can satisfied in the distributional sense only if
r(k) = 2. In consequence, given a WDW limit ψ

k
of the

LQC basis function ek as defined in (3.1), the following
holds

‖ψk‖ = 2
√

2‖ek‖. (A11)

3. Applicability of the stationary phase method

In Sec. V A the stationary phase method was applied to
approximate the integral (3.20) determining the propor-

tionality factor Ñ . However, as the integrated function
is singular in b = 0 and the integration is performed over
the real line, the question whether the method can be
applied there, is nontrivial. Here we show, that the con-
tribution from the neighborhood of the singularity can be
neglected and the method selected can be in fact applied.
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Consider now the integral in (3.20). It can be split
onto two parts.

L(k) :=

∫

R

dy e−ik(ln |y|−y)

= L+(k) + L−(k) + L̃(k),

(A12a)

L±(k) :=

∫

R±

dy ξ(y)e−ik(ln |y|−y), (A12b)

L̃(k) :=

∫

R

dy (1 − ξ(y))e−ik(ln |y|−y), (A12c)

where ξ(y) is a smooth function equal to

ξ(y) :=











0, |y − 1| ≤ ρ

∗, ρ < |y − 1| < 2ρ

1, |y − 1| ≥ 2ρ

(A13)

for some chosen small ρ. Stationary phase method can
be safely applied to the term L̃(k). On the other hand
one can show, that the remaining terms are bounded by
the function O(k−1). Indeed, integrating L+(k) by parts
we get [68]

L+(k) =
iǫξ(ǫ)e−ik(ln(ǫ)−ǫ)

k(1 − ǫ)

∣

∣

∣

ǫ=0

−
∫ ∞

0

dy ξ′(y)
iye−ik(ln(y)−y)

k(1 − y)

−
∫ ∞

0

dy
i

k
ξ(y)

∂

∂y

(

y

1 − y

)

e−ik(ln(y)−y),

(A14)

where the integral in the 3rd line (denoted further as
I2(k)) can be rewritten as

I2(k) =

∫ ∞

ǫ

dy ξ(y)
i

k(1 − y)2
e−ik(ln(y)−y). (A15)

The form of both the integrals above and the function
ξ(y) allows us to estimate L+(k) as

|L+(k)| ≤ ξ1
k

+
ξ2
k

(A16)

where ξi are some constants common for all k. In conse-
quence we obtain an estimate for the integral which is of
the order O(1/k). The same technique can be applied to
L−(k), giving the bound of the same order.

The similar estimate can be derived for the integral
(3.23) determining Ñ ′ by introducing the splitting anal-
ogous to (A12). Then the term L′+(k) –an analog of

L+(k)– can be reexpressed as

L′+(k) =

∫ ∞

0

dy ξ(y) ln(y)e−ik(ln(y)−y)

=
iξ(ǫ)ǫ ln(ǫ)

k(1 − ǫ)
e−ik(ln(ǫ)−ǫ)

∣

∣

∣

ǫ=0

−
∫ ∞

0

dy
i

k
ξ(y)

∂

∂y

(

y ln y

1 − y

)

e−ik(ln(y)−y)

−
∫ ∞

0

dy
i

k
ξ′(y)

y ln y

1 − y
e−ik(ln(y)−y),

(A17)

where the first righthand side integral (denoted as I1(k))
equals

I1(k) =

∫ ∞

0

dy ξ(y)
i

k

1 − y + ln(y)

(1 − y)2
e−ik(ln(y)−y)

=

∫ ∞

0

dy ξ(y)
i

k

1

1 − y
e−ik(ln(y)−y)

+

∫ ∞

0

dy ξ(y)
i

k

ln(y)

(1 − y)2
e−ik(ln(y)−y).

(A18)

Applying again the integration by parts to the first inte-
gral, we obtain the following estimate

|I1(k)| ≤ ξ1
k2

+
ξ2
k
. (A19)

As a result, we obtain an estimate on L′+(k)

|L′+(k)| ≤ ξ1
k2

+
ξ2
k

+
ξ3
k
, (A20)

where, as before, one can choose a common values of ξi
for all k. Analogously we arrive to the similar estimate
on L′−(k) – an analog of L−(k).

4. Relations between the dispersions and the

correlations

Here we briefly remind the well known relation between
the correlation of two operators and their dispersions.
That relation is general and holds for any quantum me-
chanical system. While being quite basic, it seems to be
often forgotten in the present literature in LQC, which
sometimes may lead to an impression, that the correla-
tions can grow uncontrollably. That relation is applied
here in the derivation of the bound on the dispersion
of the sum of the operators, which is in turn used in
Sec. V A.

Consider two operators Â, B̂ essentially self-adjoint in
some dense domain in a Hilbert space H. Denote the ex-
pectation values of these operators evaluated on the state
Ψ ∈ H respectively as a and b. Denote also their disper-
sions as σA and σB . The correlation E(A,B) between Â

and B̂ is defined as the expectation value

E(A,B) := 〈(Â − a11)(B̂ − b11)〉 + 〈(B̂ − b11)(Â− a11)〉.
(A21)
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Applying the Schwartz inequality to the states |Φ〉 :=

(Â− a11)|Ψ〉 and |χ〉 := (B̂ − b11)|Ψ〉 we immediately get
the bound

1
2
|E(A,B)| = |〈Φ|χ〉| ≤ ‖Φ‖‖χ‖ = σAσB. (A22)

The use of Schwartz inequalities allows to derive analo-
gous relations between at least some of the higher order
components of the Hamburger decomposition (defined for
example in [62]). Thus, it might provide a useful tool for
the qualitative analysis of the physical evolution of the
states described in terms of those momenta, in particular
allowing for some control over their dispersion growth.

Let us now consider the sum of operators Â and B̂. Its
dispersion on the state Ψ by definition equals

σ2
A+B = σ2

A + E(A,B) + σ2
B . (A23)

Applying the bound (A22) and taking the square root of
the above expression we arrive to the inequality

σA+B ≤ σA + σB , (A24)

which holds for any pair of self-adjoint operators and
any physical state, independently of whether Â and B̂
commute.

Appendix B: Numerical aspects of the analysis

In this appendix we describe the actual numerical tech-
niques used to investigate the properties of the phase
shifts α(k) defined in (3.1), which were presented in
Sect. III B and applied in Sect. V A.

The eigenfunctions ψk = r̃(k)ek can be calculated di-
rectly from (2.22) via iterative methods described in [7].
Since (2.22) is of the 2nd order, to determine the eigen-
function uniquely one in principle needs to provide its
initial values at two consecutive points of Lε. However
for the prescriptions and the superselection sectors con-
sidered in this paper the value ψk(v = 8) is determined
uniquely by ψk(v = 4) (see [7, 8, 51] for the details), thus
the latter one is the single initial datum. A main disad-
vantage of this method is, that at the level of providing
the initial data it is not possible to normalize the func-
tion. It can be done only via application of the relation
(A11), once ψk is calculated on some large domain of v
and its WDW limit is found. Fortunately the phase shifts
α defined in (3.1) are not sensitive to the normalization,
thus in our studies ψk(4) (or equivalently r̃(k)) can be
set arbitrarily. We fix it choosing

ψk(v = 4) = 1. (B1)

Once ψk is evaluated in some domain L+
0 ∩ [0, vM ]

(where vM ≫ |k|), its WDW limit can be found for ex-
ample via an extrapolation to v → ∞ of the coefficients
defined in (3.5). In actual simulations to find α a more
stable and faster converging method was implemented.

Namely the vectors ~χk(v) were decomposed analogously
to (3.10), that is

~χk(v) = r(k, v)

(

eiα(k,v)

e−iα(k,v)

)

(B2)

and the components α(k, v) were calculated only at
the points vn = 4n, where the signs sgn(ψk(vn)) 6=
sgn(ψk(vn − 4)) with use of the observation, that the
function

ψn

k
(v) := r(k, vn)

× [eikα(k,vn)ek(v) + e−ikα(k,vn)e−k(v)]
(B3)

vanishes only if

k ln(v) + α(k, v) = π/2 +mπ, m ∈ Z. (B4)

The position of the roots (denoted further as vo,n =
exp(xo,n)) was identified via the linear approximation in
x = ln(v)

xo,n := ln(vo,n) = ln(vn − 4)

− ln

(

vn
vn − 4

)

· ψk(vn − 4)

ψk(vn) − ψk(vn − 4)
.

(B5)

Once the set of α(k, vo,n) was determined, the limit
α(k) was found via a polynomial extrapolation (Neville
method) with respect to the variable y = exp(−xo) at
y = 0.

Such method has been applied for example in [7] to
evaluate α as a basis for the analytic approximation fur-
ther used for construction of the initial data correspond-
ing to the symmetric states. However, while it allows to
calculate α quite precisely, it cannot be directly applied
to find its derivatives, as it can be differentiated only
numerically, whence

(i) the numerical errors accumulating over the steps in
the computation of α would not allow to derive suf-
ficiently precise differential limit for small displace-
ment of k, and

(ii) for larger displacements of k one could not exclude
the existence of small “large frequency” terms which
in principle, while giving negligible contribution to
α itself, could give a considerable one to its deriva-
tives.

Here, to avoid the above problems, we use a slight mod-
ification of the method under discussion, namely we find
α′ by differentiating (B4) over k

[∂kα](k, v) = −(xo + kx′o), xo = ln(vo), (B6)

where the values x′o,n of the derivative x′o are in turn
determined via differentiating (B5)

x′o,n = ln

(

vn
vn − 4

)

× ψ′
k(vn)ψk(vn − 4) − ψ′

k(vn − 4)ψk(vn)

(ψk(vn) − ψk(vn − 4))2
.

(B7)
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The derivatives ψ′
k(vo,n) appearing in the above expres-

sion can be in turn evaluated via an iterative equation
resulting from a differentiation of (2.22), that is

ψ′
k(v + 4) =

1

f+(v)
[(ω2 + fo(v))ψ′

k(v) + 2
ω

k
ψk(v)

− f−(v)ψ′
k(v − 4)].

(B8)

Up to the inhomogeneous term proportional to ψk(v)
that equation is a complete analog of (2.22), thus the
initial value problem is equivalent as well, once ψk itself
is known. Therefore the initial condition (B1) specifies
uniquely not only ψk but also ψ′

k.
The equations (B1), (B6), (B7) and (B8) allow one to

determine [∂kα](k, vo,n) corresponding to finite vn. Then
the limit [∂kα](k) is found via the polynomial extrapola-
tion in the exactly same way as α(k).

To find [∂2kα](k) one proceeds in the same way, first de-
termining [∂2kα](k, vo,n) analogously to [∂kα](k, vo,n) via
the system of equation build by differentiation of (B1),
(B6), (B7) and (B8) and computing the final limit by the
polynomial extrapolation.

In the actual simulations performed the sequences
{xo,n}i of the roots were searched for in such a way, that

an ith root in the sequence is the maximal root within
the range [0, 2−ivM ]. The bound vM ranged from 106 to
2 · 108. Depending on the number of the roots actually
found the order of the polynomial used to find the final
limits varied from 0 to 2. The range of k investigated
numerically was [10−1, 106].

The results are presented in Figs. 1 to 3. As we can
see in Fig. 1 the chosen methods allow to calculate ∂kα
quite precisely within the entire investigated domain. Its
precise form varies for small k depending on the par-
ticular prescription, whereas for large k the derivative
quickly approaches − ln(k). The rate of approach (3.26)
is confirmed for k < 103 (see Fig. 2a), however due to
the numerical errors the results are no longer reliable for
larger k. Nonetheless the results converge also there as
vM increases, which is shown in Fig. 2b.

The 2nd order derivative could be evaluated reliably
only for k ≤ 10, as it is more sensitive to the numerical
errors. The result is presented in Fig. 3a showing the
rescaled derivative k∂2kα. From there we observe that it
quickly approaches its limiting value k∂2kα→ −1 deduced
from Fig. 1a, never exceeding it [69]. As in the case of
the remnant of ∂kα the numerical results converge as vM
increases, which is presented in Fig. 3b.
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[29] W. Kamiński, and J. Lewandowski, Classical Quantum
Gravity 25, 035001 (2008).
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FIG. 1: The behavior of ∂kα for different quantization prescriptions compared against its large k limit α′(k) = − ln(k). Figure
(a) shows the shape of the derivative in the entire domain investigated numerically, whereas (b) presents the zoom for small
values of k.

(a) (b)

-1

-0.8

-0.6

-0.4

-0.2

 0

10-1 100 101 102 103

k

β(k)

APS
sLQC
MMO

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 10  100  1000  10000

k

β(k)

106

107

108

FIG. 2: The values of the rescaled remnant function β(k) := (α′(k) + ln(k))k2 calculated numerically within the domain of
reliability of the applied method. Figure (a) shows the result for different prescriptions whereas (b) presents the dependence of
calculated β on the choice of vM on the example of the APS prescription. One can see that as vM increases β(k) converges.

(a) (b)

-1.5

-1

-0.5

 0

 0.5

0.1 1 10
k

kα"(k)

APS
sLQC
MMO

-1

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 1  10  100

k

kα"(k)

106

107

108

2*108

-1

FIG. 3: (a) The rescaled derivative k∂2
kα for different quantization prescriptions shown in the domain, where it could be

determined numerically in the reliable manner. (b) The values of k∂2
kα for APS prescription evaluated on different sets of

probing points with the upper bound ranging from 107 to 2 · 108. The numerical solutions converge as the bound increases.



19

gin, Phys. Rev. D 74, 043510 (2006); J. Mielczarek,
T. Stachowiak, and M. Szyd lowski, Phys. Rev. D 77,
123506 (2008); A. Ashtekar, and E. Wilson-Ewing,
Phys. Rev. D 78, 064047 (2008); P. Singh, Classical
Quantum Gravity 26, 125005 (2009); G.J. Olmo and
P. Singh, JCAP 0901, 030 (2009); M. Artymowski,
Z. Lalak, and  L. Szulc, JCAP 0901, 004 (2009); J. Grain
and A. Barrau, Phys. Rev. Lett. 102, 081301 (2009);
J. Grain, arXiv:0911.1625; A. Ashtekar and D. Sloan,
arXiv:0912.4093.

[35] A. Corichi and P. Singh, Phys. Rev. D 78, 024034 (2008).
[36] A. Corichi, and P. Singh, Phys. Rev. D 80, 044024 (2009).
[37] A. Ashtekar, and M. Bojowald, Classical Quantum Grav-

ity 22, 3349-3362 (2005); 23, 391-411 (2006).
[38] R. Gambini, J. Pullin, Phys. Rev. Lett. 101, 161301

(2008).
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