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Abstract. We report a measurement of cosmic shear correlations using an effective area of 6.5 deg2 of the VIRMOS
deep imaging survey in progress at the Canada-France-Hawaii Telescope. We measured various shear correlation
functions, the aperture mass statistic and the top-hat smoothed variance of the shear with a detection significance
exceeding 12 σ. We present results on angular scales from 3 arcsec to half a degree. The lensing origin of the
signal is confirmed through tests that rely on the scalar nature of the gravitational potential. The different
statistical measures give consistent results over the full range of angular scales. These important tests of the
measurements demonstrate that the measured correlations could provide accurate constraints on cosmological
parameters, subject to the systematic uncertainty in the source redshift distribution. The measurement over more
than two decades of scale allows one to evaluate the effect of the shape of the power spectrum on cosmological
parameter estimation. The degeneracy on σ8 − Ω0 can be broken if priors on the shape of the linear power
spectrum (parameterized by Γ) are assumed. For instance, with Γ = 0.21 and at the 95% confidence level, we
obtain 0.65 < σ8 < 1.2 and 0.22 < Ω0 < 0.55 for open models, and σ8 > 0.7 and Ω0 < 0.4 for flat (Λ-CDM)
models. We discuss how these results would scale if the assumed source redshift distribution needed to be modified
with forthcoming measurements of photometric redshifts. From the tangential/radial mode decomposition we can
set an upper limit on the intrinsic shape alignment, which has recently been suggested as a possible contribution
to the lensing signal. Within the error bars, there is no detection of intrinsic shape alignment for scales larger
than 1′.
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1. Introduction

Cosmological gravitational lensing produced by large-scale
structure (or cosmic shear) has been advocated as a power-
ful tool to probe the mass distribution in the universe (see
the reviews from Mellier 1999; Bartelmann & Schneider
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2001 and references therein). The first detections reported
over the past year (Van Waerbeke et al. 2000; Bacon et al.
2000; Kaiser et al. 2000; Wittman et al. 2000; Maoli et al.
2001; Rhodes et al. 2001) confirmed that the amplitude
and the shape of the signal are compatible with theoret-
ical expectations, although the data sets were not large
enough to place strong constraints on cosmological mod-
els. Maoli et al. (2001) combined the results from different
groups to obtain constraints on the power spectrum nor-
malization σ8 and the mean density of the universe Ω0:
Their result is in agreement with the cluster abundance
constraints, but they were not yet able to break the de-
generacy between σ8 and Ω0.
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The physical interpretation of the weak lensing sig-
nal can be made more securely using detections of cos-
mic shear from different statistics and angular scales on
the same data set (as in Van Waerbeke et al. 2000).
Unfortunately, their joint detection of the variance and
the correlation function using the same data was not fully
conclusive: the sample was too small to enable a signif-
icant detection of the cosmic shear from variances with
different weighting schemes and 2-point statistics over a
wide range of scales. The use of independent approaches
is nevertheless necessary and it is an important step to
validate the reliability of cosmic shear, to check the consis-
tency of the measurements against theoretical predictions
and to understand the residual systematics. A relevant ex-
ample is the aperture mass statistic (defined in Schneider
et al. 1998). It is a direct probe of the projected mass
power spectrum, and it is not sensitive to certain type of
systematics (like a uniform PSF anisotropy) which may
corrupt the top-hat smoothed variance, or the shear cor-
relation function. Even the shear correlation function can
be measured in several ways, by splitting for instance the
tangential and radial modes.

In this paper we report the measurement of the top-hat
smoothed variance, the aperture mass, the shear correla-
tion function, and the tangential and radial shear correla-
tion functions on a new homogeneous data set covering an
effective area of 6.5 deg2. The depth and the field of view
are well suited for a comprehensive analysis using various
statistics. We show that the amplitude of residual system-
atics is very low compared to the signal and discuss the
consistency of these measurements against the predictions
of cosmological models.

We also discuss alternative interpretations. It has been
suggested recently that intrinsic alignments of galaxies
caused by tidal fields could contribute to the lensing sig-
nal (Pen et al. 2000; Croft & Metzler 2000; Heavens
et al. 2000; Catelan et al. 2000; Crittenden et al. 2000a;
Crittenden et al. 2000b). This type of systematic is prob-
lematic because its signature on different 2-points statis-
tics mimics the lensing effect. A mode decomposition in
electric and magnetic types (or E and B modes), sim-
ilar to what is performed for the polarization analysis
in the Cosmic Microwave Background, can separate lens-
ing from intrinsic alignment (see Crittenden et al. 2000a;
Crittenden et al. 2000b). The E and B mode analysis
is the subject of a forthcoming paper; the aperture mass
statistic presented in this paper is a similar analysis to
the E and B mode decomposition, and allows us to put
an upper limit on the contamination of our survey by the
intrinsic alignments.

This paper is organized as follow: Sect. 2 describes our
data set, and highlights the differences in the data prepro-
cessing from our previous analysis (Van Waerbeke et al.
2000). The measurement of the shear from this imaging
data is discussed in Sect. 3. Section 4 summarizes the the-
oretical aspects of the different quantities we measure, and
lists the statistical estimators used. The results and com-
parison to a few standard cosmological models are shown

in Sect. 5. In Sect. 6 we perform a maximum likelihood
analysis of cosmological models in the (Ω0, σ8) parameter
space. The results on very small scales are shown sepa-
rately in Sect. 7, and we conclude in Sect. 8.

2. The data set

The DESCART weak lensing project1 is a theoretical and
observational program for cosmological weak lensing in-
vestigations. The cosmic shear survey carried out by the
DESCART team uses the CFH12K data jointly with the
VIRMOS survey2 to produce a large homogeneous pho-
tometric sample which will eventually contain a catalog
of galaxies with redshifts as well as the projected mass
density over the whole field (Le Fèvre et al. 2001). In
contrast to Van Waerbeke et al. (2000), the new sample
presented in this work only uses I-band data taken with
the CFH12K camera and is therefore more homogeneous.
It is worth noting that only half of the data of the previous
CFHT12K sample is reused in our new sample. A compar-
ison of the results will also allow checking the consistency
and the robustness of the cosmic shear analysis.

The CFH12K data was obtained during dark nights
in May 1999, November 1999 and April 2000 follow-
ing the standard observation procedure described in
Van Waerbeke et al. (2000). The fields are spread over
4 independent 2 × 2 deg2 areas of the sky identified as
F02, F10, F14 and F22. Each field is a compact mosaic of
16 CFH12K pointings named P[n] with n = 1−16. Once
the survey is completed, each of them will cover 4 deg2.
Currently, of the final 16 deg2, only 8.38 deg2 is available
for the analysis – most of the pointings are located in three
different fields (F02, F10, F14 listed in Table 1). This to-
tal field of view gets significantly reduced by the masking
and selection procedures described below. A summary of
the data set characteristics are listed in Table 1.

The data reduction was done at the TERAPIX data
center3. More than 1.5 Tbytes of data were processed in
order to produce the final stacked images. The reduction
procedure is the same as in Van Waerbeke et al. (2000), so
we refer the reader to this paper for the details. However,
in order to improve the image quality prior to correction
for the PSF anisotropy and to get a better signal-to-noise
ratio on a larger angular scale than in our previous work,
all CFH12K images were co-added after astrometric cor-
rections.

The astrometric calibration and the co-addition were
done using the MSCRED package in IRAF. Some tasks
have been modified in order to allow a fully automatic
usage of the package. For each pointing, we first started
with the images in the I band. An astrometric solution
was first found for one set of exposures in the dither se-
quence using the USNO-A 2.0 as reference, which pro-
vides the position of ∼ ×108 sources with an RMS ac-
curacy of 0.3 arcsec (that is 300–500 objects per field).

1 http://terapix.iap.fr/Descart
2 http://www.astrsp-mrs.fr/virmos/
3 http://terapix.iap.fr
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Table 1. List of the fields. All observations were done in I band with the CFH12K camera (Cuillandre et al.2000). The number
following the F denotes the field name, and the number following the P denotes the pointing name within the field. The geometry
of the survey is detailed in http://terapix.iap.fr/Descart/. The image quality has been measured on each stacked image
from a standard fitting of a Moffat profile.

Target Used area Exp. time Period Image quality

F02P1 980 arcmin2 9390 s Nov. 1999 0.75′′

F02P2 1078 arcmin2 7200 s Nov. 1999 0.90′′

F02P3 980 arcmin2 7200 s Nov. 1999 0.90′′

F02P4 1078 arcmin2 7200 s Nov. 1999 0.80′′

F10P1 882 arcmin2 3600 s May 1999 0.65′′

F10P2 882 arcmin2 3600 s May 1999 0.75′′

F10P3 490 arcmin2 3600 s May 1999 0.75′′

F10P4 882 arcmin2 3600 s May 1999 0.65′′

F10P5 882 arcmin2 3600 s May 1999 0.75′′

F10P7 1176 arcmin2 3600 s Apr. 2000 0.75′′

F10P8 1176 arcmin2 3600 s Apr. 2000 0.70′′

F10P9 98 arcmin2 3600 s Apr. 2000 0.65′′

F10P10 784 arcmin2 3600 s Nov. 1999 0.80′′

F10P11 294 arcmin2 3600 s Nov. 1999/Apr. 2000 0.90′′

F10P12 1176 arcmin2 3600 s Apr. 2000 0.80′′

F10P15 686 arcmin2 3600 s Apr. 2000 0.85′′

F14P1 882 arcmin2 3600 s May 1999 0.80′′

F14P2 882 arcmin2 3600 s May 1999 0.85′′

F14P3 686 arcmin2 3600 s May 1999 0.75′′

F14P4 1078 arcmin2 3600 s May 1999 0.75′′

F14P5 980 arcmin2 3600 s May 1999 0.70′′

F14P6 686 arcmin2 3600 s May 1999 0.80′′

F14P7 686 arcmin2 3600 s May 1999 0.70′′

F14P8 882 arcmin2 3600 s May 1999 0.85′′

F14P9 1078 arcmin2 3600 s Apr. 2000 0.75′′

F14P10 784 arcmin2 3600 s May 1999 0.85′′

F14P11 882 arcmin2 3600 s Apr. 2000 0.80′′

F14P12 784 arcmin2 3600 s Apr. 2000 0.80′′

F14P13 882 arcmin2 3600 s Apr. 2000 0.85′′

F14P14 882 arcmin2 3600 s May 1999 1.0′′

F14P15 882 arcmin2 3600 s Apr. 2000 0.90′′

F14P16 1176 arcmin2 2880 s Apr. 2000 0.65′′

F22P3 686 arcmin2 3600 s May 1999 0.75′′

F22P4 980 arcmin2 3600 s Nov. 1999 0.75′′

F22P6 588 arcmin2 3600 s Apr. 2000 0.80′′

F22P11 294 arcmin2 2880 s Apr. 2000 0.75′′

The astrometric solution was then transferred to the other
exposures in the sequence. All object catalogs were ob-
tained using SExtractor (Bertin & Arnouts 1996)4 and a
linear correction to the world coordinate system was com-
puted with respect to the initial set. Finally, all images
were resampled using a bi-cubic interpolation and then
stacked together.

At this stage, each stacked image was inspected by eye
and all areas which may potentially influence the later
lensing analysis signal were masked (see Van Waerbeke
et al. 2000 and Maoli et al. 2001). Since we adopted con-
servative masks, this process had a dramatic impact on
the field of view: we lost 20% of the total area and ended
up with a usable area of 6.5 deg2.

The photometric calibrations were done using stan-
dard stars from the Landolt catalog (Landolt 1992) cov-

4 http://terapix.iap.fr/soft/sextractor/index.html

ering a broad sample of magnitude and colors. A full
description of the photometric procedure is beyond the
scope of this work and will be discussed elsewhere (Le
Fèvre et al., in preparation). In summary, we used the
SA110 and SA101 star fields to measure the zero-points
and color equations of each run. From these calibrations,
we produced the magnitude histograms of each field in
order to find out the cut off and a rough limiting magni-
tude. Although few fields have exposure time significantly
larger than 1 hour, the depth of the sample is reasonably
stable from field to field and reaches IAB = 24.5 (this cor-
responds to a 5σ detection within a 3 arcsec aperture).
Up to this magnitude, 1.2 million galaxies were detected
over the total area of 8.4 deg2, and the final number
density of galaxies over the usuable area of 6.5 deg2 is
∼17 galaxies/arcmin2. This is about two times less than
the number of detected galaxies because of the filtering
processes described in the next section.
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3. Shear measurements

3.1. Shape measurement

The details of our shape measurement procedure and
Point Spread Function (hereafter PSF) correction have
been extensively described in two previous papers
(Van Waerbeke et al. 2000; Maoli et al. 2001), and
tested against numerical simulations (Erben et al. 2001).
Therefore we will not reproduce these details here, but
only give a short overview of the procedure. The shape
measurement pipeline uses the IMCAT software (Kaiser
et al. 1995)5 combined with the SExtractor package. The
different steps in the procedure are as follows:

– Object detection with Sextractor;
– The shape parameters defined in Kaiser et al. (1995)

are calculated using IMCAT;
– Stars are identified in the stellar branch of the size-

magnitude diagram. Stars brighter than 1 magni-
tude below the saturation level are excluded. Objects
smaller than the PSF size are discarded as galaxy can-
didates (because a shape correction below the PSF size
is meaningless);

– The PSF is measured from the stars, and interpo-
lated continuously over the CCD’s using a third order
polynomial;

– Galaxy shapes are corrected using the scheme devel-
oped in Kaiser et al. (1995), modified and adapted
to our problem as described in Erben et al. (2001).
The shape correction is a two-step process: first we
remove the anisotropic contribution of the PSF, then
the isotropic contribution is suppressed according to
Luppino & Kaiser (1997);

– A weight w is calculated for each galaxy, which de-
pends on the level of noise in the shape correction (see
Eq. (7) in Van Waerbeke et al. 2000);

– For each galaxy pair with members closer than 15 pix-
els (3 arcsec), one member is removed, in order to
avoid the problem of overlapping isophotes reported
in Van Waerbeke et al. (2000);

– Each CCD is visualized by eye, and the bad areas are
masked (star spikes and ghost images, blank lines or
columns, fringe residuals). After the whole process of
cleaning and object selection, 420 000 galaxies were ef-
fectively used for the weak lensing analysis.

The raw ellipticity e of a galaxy is measured from the
second moments Iij of the surface brightness f(θ):

e =
(
I11 − I22

Tr(I)
;

2I12

Tr(I)

)
, Iij =

∫
d2θW (θ)θiθjf(θ). (1)

The window function W (θ) suppresses the noise at large
distances from the object center. The procedure described
above gives a corrected galaxy ellipticity egal calculated

5 Kindly made available by Nick Kaiser at
http://www.ifa.hawaii.edu/∼kaiser/

Fig. 1. Top and third panels: averaged egal
1 and egal

2 compo-
nent versus the ellipticity of the PSF at the galaxy location,
without the anisotropic PSF correction. Second from top and
bottom panels: averaged egal

1 and egal
2 including the anisotropic

PSF correction. A residual bias is the corrected ellipticity is
present (shown by the two straight solid lines), as in our previ-
ous analysis, whose origin is still unclear. It is a constant bias
which can be easily corrected for.

from the e’s. According to Kaiser et al. (1995), the ensem-
ble average of egal is equal to the shear γ at the galaxy lo-
cation. Figure 1 shows the level of systematics in egal with
and without the anisotropic PSF correction. As quoted in
Van Waerbeke et al. (2000), the galaxy ellipticities show
a small offset (−0.008,−0.003), whose origin is still un-
clear. However as it was demonstrated in Van Waerbeke
et al. (2000), this systematic is independent of size and
magnitude, and therefore it can be easily corrected for by
shifting all ellipticities by the same amount. After cor-
rection, the average galaxy ellipticity is bounded between
−0.005 and 0.005, and the variance of the residual sys-
tematics is less than ∼10−5. It is worth mentioning that
the aperture mass is not sensitive to this offset even if it
were not corrected.

4. Statistical measures of shear correlations

4.1. Theory

We summarize the different statistics we shall measure,
and how they depend on cosmological models. We con-
centrate on 2-point statistics and variances, since higher
order moments are more difficult to measure, and will be
addressed in a forthcoming paper.

Let us assume a normalised source redshift distribution
parameterized as:

n(zs) =
β

z0 Γ
(

1+α
β

) ( zs

z0

)α
exp

[
−
(
zs

z0

)β]
, (2)
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Fig. 2. The thin solid line shows our redshift distribution
model given by Eq. (2) with (z0, α, β) = (0.8, 2, 1.5). Two
other models will also be used: one is (z0, α, β) = (0.7, 2, 1.5)
(thin dashed line) and one is (z0, α, β) = (0.9, 2, 1.5) (thin dot-
dashed line). The thick solid line corresponds to the model used
in Wilson et al. (2000) for the I ' [22.5, 23.5] galaxies. All the
distributions are normalised.

with the parameters (z0, α, β) = (0.8, 2, 1.5), which is con-
sistent with a limiting magnitude IAB = 24.5 given by
Cohen et al. (2000) (it corresponds to a mean redshift
of 1.2). However, in contrast to Cohen et al. (2000) we
only have photometric data (in one color), which prevents
us from inferring the accurate redshift distribution of our
galaxies. The impact of this uncertainty is discussed be-
low. We adopted a simplified approach consisting in look-
ing at the sensitivity of cosmological parameter estima-
tion for three realistic redshift distributions. Therefore
in addition to the distribution expressed in Eq. (2) with
z0 = 0.8, we will consider two other sets, one is (z0, α, β) =
(0.7, 2, 1.5) and the other (z0, α, β) = (0.9, 2, 1.5), which
z0 = 0.8 ± 0.1 (similar to the redshift error quoted in
Rhodes et al. 2001), corresponding to an uncertainty in
the mean redshift of ±0.15. The three models are shown
in Fig. 2, together with the redshift distribution used in
Wilson et al. (2000) corresponding to a magnitude distri-
bution I ' [22.5, 23.5], slightly brighter than our survey
(the thick solid line).

We define the power spectrum of the convergence as
(following the notation in Schneider et al. 1998):

Pκ(k) =
9
4

Ω2
0

∫ wH

0

dw
a2(w)

P3D

(
k

fK(w)
;w
)

×
[∫ wH

w

dw′n(w′)
fK(w′ − w)
fK(w′)

]2

, (3)

where fK(w) is the comoving angular diameter distance
out to a distance w (wH is the horizon distance), and
n(w(z)) is the redshift distribution of the sources given
in Eq. (2). P3D(k) is the non-linear mass power spectrum,
and k is the 2-dimensional wave vector perpendicular to

the line-of-sight. For a top-hat smoothing window of ra-
dius θc, the variance is:

〈γ2〉 =
2
πθ2

c

∫ ∞
0

dk
k
Pκ(k)[J1(kθc)]2, (4)

where J1 is the first Bessel function of the first kind.
The aperture mass Map was introduced in Kaiser et al.
(1994):

Map =
∫
θ<θc

d2θκ(θ) U(θ), (5)

where κ(θ) is the convergence field, and U(θ) is a compen-
sated filter (i.e. with zero mean). Schneider et al. (1998)
applied this statistic to the cosmic shear measurements.
They showed that the aperture mass variance is related to
the convergence power spectrum by:

〈M2
ap〉 =

288
πθ4

c

∫ ∞
0

dk
k3
Pκ(k)[J4(kθc)]2. (6)

〈M2
ap〉 can be calculated directly from the shear γ without

the need for a mass reconstruction.
For each galaxy, we define the tangential and radial

shear components (γt and γr) with respect to the center
of the aperture:

γt = −γ1 cos(2φ)− γ2 sin(2φ)
γr = −γ2 cos(2φ) + γ1 sin(2φ), (7)

where φ is the position angle between the x-axis and the
line connecting the aperture center to the galaxy. It is
then easy to show that the aperture mass is related to the
tangential shear by:

Map =
∫
θ<θc

d2θγt(θ) Q(θ), (8)

where the filter Q(θ) is given from U(θ):

Q(θ) =
2
θ2

∫ θ

0

dθ′ θ′ U(θ′)− U(θ). (9)

If γt is replaced by γr in Eq. (8), then the lensing signal
vanishes, due to the curl-free property of the shear field
(Kaiser et al. 1994)6. This remarkable property constitutes
a test of the lensing origin of the signal. The change from
γt to γr can simply be accomplished just by rotating the
galaxies by 45 degrees in the aperture (i.e. changing a curl-
free field to a pure curl field). Hereafter we call the Map

statistic measured with the 45 degree rotated galaxies the
R-mode (R for radial mode), and 〈M2

⊥〉 the corresponding
variance. It is interesting to note that the R-mode is not
expected to vanish if the measured signal is due to spin
alignments of galaxies (Crittenden et al. 2000b). Therefore
it can be used to constrain the amount of residual system-
atics as well as the degree of the spin alignment of the
galaxies leading to their intrinsic alignment.

6 Curl modes are produced by non-linear lensing effects, but
these are very small (Bernardeau et al. 1997).
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From the shear γ and its projections defined in Eq. (7)
we can also define various galaxy pairwise correlation func-
tions related to the convergence power spectrum. Note
that the tangential and radial shear projections in what
follows are performed using the relative location vector
of the pair members, not from an aperture center. The
following correlation functions can be defined (Miralda-
Escudé 1991; Kaiser 1992):

〈γγ〉θ =
1

2π

∫ ∞
0

dk kPκ(k)J0(kθ), (10)

〈γtγt〉θ =
1

4π

∫ ∞
0

dk kPκ(k)[J0(kθ) + J4(kθ)], (11)

〈γrγr〉θ =
1

4π

∫ ∞
0

dk kPκ(k)[J0(kθ) − J4(kθ)], (12)

where θ is the pair separation angle. The cross-correlation
〈γtγr〉θ is expected to vanish for parity reasons (there is
no preferred orientation on average).

It is easy to see that the Eqs. (4), (6), (10)–(12) are dif-
ferent ways to measure the same quantity, that is the con-
vergence power spectrum Pκ(k). Ultimately the goal is to
deproject Pκ(k) in order to reconstruct the 3D mass power
spectrum from Eq. (3), but this is beyond the scope of this
paper. Here we restrict our analysis to a joint detection
of these statistics, and show that they are consistent with
the gravitational lensing hypothesis. We will also examine
the constraints on the power spectrum normalization σ8

and the mean density of the universe Ω0.

4.2. Estimators

Let us now define the estimators we used to measure the
quantities given in Eqs. (4), (6), (10)–(12).

The variance of the shear is simply obtained by a cell
averaging of the squared shear γ2(θi) over the cell index i.
An unbiased estimate of the squared shear for the cell i is:

E[γ2(θi)] =

2∑
α=1

Ni∑
k 6=l

wkwl egal
α (θk)egal

α (θl)

Ni∑
k 6=l

wkwl

, (13)

where wk is the weight for the galaxy k, and Ni is the
number of galaxies in the cell i. The cell averaging over
the survey is then an unbiased estimate of the shear vari-
ance 〈γ2〉. However, due to the presence of masked areas
(mentioned in Sect. 4.1), some cells may have a very low
number of galaxies compared to others. Instead of apply-
ing an arbitrary sharp cut off on the fraction of the aper-
tures filled with masks (as in previous works) we decided
to keep all the cells, and to weight each of them with the

squared sum of the galaxy weights located in the cell. The
cell averaging is now defined as:

E[γ2] =

∑
cells

E[γ2(θi)]

(
Ni∑
k=1

wk

)2


∑
cells

( Ni∑
k=1

wk

)2
 , (14)

where i identifies the cell. One potential problem with
this procedure is that the sum of the weights is related to
the number of objects in the aperture, which is affected by
magnification bias, and therefore correlated with the shear
signal measured in the same aperture. Fortunately the first
non-vanishing contribution of this weighting scheme is a
third order effect (of order 1%), and is therefore negligi-
ble7. The advantage is that we can use all cells without
wondering about their filling factor, and it naturaly down-
weights the cells which contain a large fraction of poorly
determined galaxy ellipticities. The weighting scheme of
Eq. (14) has been tested against numerical simulation, us-
ing a simulated survey with the same survey geometry as
our data: it gave unbiased measures of the lensing signal
applied to the galaxies.

The Map statistic is calculated from a similar estima-
tor, although the smoothing window is no longer a top-hat
but the Q function defined in Eq. (9). An unbiased esti-
mate of M2

ap(θi) in the cell i is:

E[M2
ap(θi)] =

Ni∑
k 6=l

wkwl egal
t (θk)egal

t (θl) Q(θk)Q(θl)

N∑
k 6=l

wkwl

, (15)

where egal
t is the tangential galaxy ellipticity, and Q is

given by (see Schneider et al. 1998):

Q(θ) =
6
π

(
θ

θc

)2
[

1−
(
θ

θc

)2
]
. (16)

The estimation of 〈M2
ap〉 over the survey is then given by

the same expression as in Eq. (14), with E[γ2(θi)] replaced
by E[M2

ap(θi)]. We emphasize that the this filter probes
effective scales θc/5, and not θc (see Fig. 2 in Schneider
et al. 1998). Therefore we have to be careful when com-
paring the signal at different scales between different esti-
mators.

The shear correlation function 〈γγ〉θ at separation θ is
obtained by identifying all the pairs of galaxies falling in

7 Moreover the slope of number counts in our I-band is ∼0.3,
which makes the magnification effect very small (see Moessner
et al. 1998 for an application of the effect to the angular cor-
relation function).
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Fig. 3. Top-hat smoothed variance of the shear (points with
error bars). The three models correspond to (Ω0,Λ, σ8) =
(0.3, 0, 0.9), (0.3, 0.7, 0.9), (1, 0, 0.6) for the short-dashed, solid
and long-dashed lines respectively. The power spectrum is a
CDM-model with Γ = 0.21. The error bars correspond to
the dispersion of the variance measured from 200 realizations
of the data set with randomized orientations of the galaxy
ellipticities.

the separation interval [θ−dθ, θ+dθ], and calculating the
pairwise shear correlation:

E[γγ; θ] =
2∑

α=1

∑
pairs

wkwl egal
α (θk)egal

α (θl)∑
pairs

wkwl
· (17)

The tangential and radial correlation functions 〈γtγt〉θ and
〈γrγr〉θ are measured also from Eq. (17) by replacing egal

with egal
t and egal

r respectively and dropping the sum over
α. It is worth noting that the estimators given here are
independent of the angular correlation properties of the
source galaxies.

5. Results and comparison to cosmological models

In this section we present our measurements of the 2-point
correlations of the shear using the different estimators de-
fined above. Figures 3 to 8 show the results for the differ-
ent estimators: the variance in Fig. 3, the mass aperture
statistic in Fig. 4, the shear correlation function in Fig. 5,
the radial and tangential shear correlations in Fig. 6, and
the cross-correlation of the radial and tangential shear in
Fig. 8. Along with the measurements we show the pre-
dictions of three cosmological models which are represen-
tative of an open model, a flat model with cosmological
constant, and an Einstein-de Sitter model. The amplitude
of mass fluctuations in these models is normalized to the
abundance of galaxy clusters. The three models are char-

Fig. 4. The aperture mass statistic for the same models as in
Fig. 3. The lower panel plots the R-mode, obtained by making
a 45 degree rotation as described in the text. There is no signif-
icant detection for θ > 5 arcmin (corresponding to an effective
angular scale of 1′, as discussed in the text), which shows the
low level of contamination by galaxy intrinsic alignment and/or
residual systematics.

Fig. 5. Shear correlation function 〈γγ〉θ. The models are the
same as in Fig. 3. The lower panel uses a log-scale for the x-axis
to highlight the small scale details.

acterized by the values of Ω0,Λ and σ8 as follows:

– short-dashed line: Ω0 = 0.3, Λ = 0, σ8 = 0.9
– solid line: Ω0 = 0.3, Λ = 0.7, σ8 = 0.9
– long-dashed line: Ω0 = 1, Λ = 0, σ8 = 0.6.

The power spectrum is taken to be a cold dark matter
(CDM) power spectrum with shape parameter Γ = 0.21.
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Fig. 6. Top panel: tangential shear correlation function
〈γtγt〉θ. Bottom panel: radial shear correlation function
〈γrγr〉θ. The models are the same as in Fig. 3.

The predictions for shear correlations are computed us-
ing the non-linear evolution of the power spectrum using
the Peacock & Dodds (1996) fitting formula. It is assumed
that the source redshift distribution follows Eq. (2) with
(z0, α, β) = (0.8, 2, 1.5), which corresponds to a mean red-
shift of 1.2.

It is reassuring that the different statistics agree with
each other in their comparison with the model predic-
tions. These statistics weight the data in different ways
and are susceptible to different kinds of systematic errors.
The consistency of all the 2-point estimators suggests that
the level of systematics in the data is low compared to the
signal. A further test for systematics is provided by mea-
suring the cross-correlation function 〈γtγr〉θ, which should
be zero for a signal due to gravitational lensing. It is shown
in Fig. 8 that it is indeed consistent with zero at all scales.
The figure also shows the cross-correlation obtained when
the anisotropic contamination of the PSF is not corrected
– clearly such a correction is crucial in measuring the lens-
ing signal.

The lower panel of Fig. 4 shows the R-mode of the
mass aperture statistic. As this statistic uses a compen-
sated filter, the scale beyond which the measured R-mode
is consistent with zero (5′ on the plot) corresponds to an
effective angular scale θ ' 1′. This places an upper limit on
measured shear correlations due to the intrinsic alignment
of galaxies, given the redshift distribution of the sources.
The vanishing of 〈M2

⊥〉 for effective angular scales larger
than 1′ strongly supports our conclusion that the level
of residual systematics is low: this is a very hard test to
pass, as it means that the signal is produced by a pure
scalar field, which need not be the case for systematics.
We checked that M2

⊥ is Gaussian distributed with a zero

Fig. 7. Shear rms 〈γ2〉1/2 (solid line) measured in a ray-tracing
simulation (Jain et al. 2000) for the open Ω0 = 0.3 model. The
dashed line is the sample variance of the shear rms measured
from 7 different realisations of the mass distribution for a sur-
vey of 6.5 deg2.

average all over the survey, which is what we would expect
from a pure noise realisation. For scales below 5′ on the
plot, the R-mode is not consistent with zero at the 2-σ
level. Since the cross-correlation 〈γtγr〉θ is consistent with
zero at this scale, the source of the R-mode is probably
not a residual systematic caused by an imperfect PSF cor-
rection. Rather, it might be due to the effect of intrinsic
alignments (Crittenden et al. 2000b).

The error bars shown in Figs. 3 to 8 are calculated
from a measurement of the different statistics in 200 real-
izations of the data set, with randomized orientations of
the galaxies. We measured the sample variance from ray-
tracing simulations (Jain et al. 2000) and find that it is
smaller than 20% of the noise error bars shown here (see
Van Waerbeke et al. 1999 where the sample variance has
been calculated for surveys with similar geometry), there-
fore we have not included it in our figures. Figure 7 shows
an estimate of the sample variance for the rms shear us-
ing a compact 6.5 deg2 ray-tracing simulation (Jain et al.
2000). This figure shows that the sample variance is about
one order of magnitude smaller than 〈κ2〉1/2 for the range
of scales of interest. Hence our errors are not dominated
by sample variance, as was the case in the first detections
of cosmic shear. As the probed angular scales approach
the size of the fields (which is ∼30′ with the CFH12K
camera) the sample variance becomes larger. This could
be responsible for the small fluctuations in the measured
correlations in Figs. 5 and 6 for scales larger than 24′.

6. Cosmological constraints

As noted elsewhere (e.g. Bernardeau et al. 1997; Jain &
Seljak 1997), the parameters which dominate the 2-point
shear statistics are the power spectrum normalization σ8

and the mean density Ω0. We investigate below how the
statistics measured in Figs. 3 to 6 are consistent with each
other when constraining these parameters. Our parame-
ter estimates below rely on some simplifying assumptions;
a more detailed analysis over a wider space of parame-
ters will be presented elsewhere. In particular, as discussed
later, the choice of the slope of the power spectrum Γ is
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Fig. 8. Shear cross-correlation function 〈γtγr〉θ. The signal
should vanish if the data are not contaminated by systemat-
ics. As a comparison, the open circles show the same cross-
correlation function computed from the galaxy ellipticities
where the anisotropic correction of the PSF has been skipped.

weakly known, and may significantly affect the parameter
estimate. As pointed out in Sect. 4, the uncertainty on
the redshift distribution is also a concern, but we partialy
address this point by constraining the parameters using
three different redshift distributions. A complete analysis
involving marginalisation over Γ and the redshift distri-
bution using tight priors is left for a future work.

We assume that the data follow Gaussian statistics and
neglect sample variance since it is a very small contribu-
tor to the noise for our survey, as discussed above. We
compute the likelihood function L:

L =
1

(2π)n/2 |S|1/2
exp

[
−1

2
(d− s)T S−1 (d− s)

]
, (18)

where d and s are the data and model vectors respectively,
and S = 〈(d− s)T (d− s)〉 is the noise correlation matrix.
S was computed for the different statistics from 200 ran-
dom realizations of the survey, therefore effects associated
with the survey geometry are included in our noise ma-
trix. The model s was computed for a grid of cosmological
models which covers Ω0 ∈ [0, 1] and σ8 ∈ [0.2, 1.8] with a
zero cosmological constant. The prior is chosen to be flat
over this grid, and zero outside. We also fixed Γ = 0.21
and we first use the redshift distribution given by Eq. (2)
with (z0, α, β) = (0.8, 2, 1.5). The two other redshift dis-
tributions defined in Sect. 4.1 will be discussed at the end
of this section. We discuss below the impact of this choice
of priors.

Figure 4 (bottom panel) shows that for effective scales
smaller than 1′ there is a non-vanishing R-mode which
could come either from a residual systematic, or from an
intrinsic alignment effect. Therefore it is safer to exclude

Fig. 9. Likelihood contours in the Ω0−σ8 plane from the top-
hat smoothed variance 〈γ2〉 shown in Fig. 3. The first point in
Fig. 3 was not included in the likelihood calculation to avoid
the small scale systematic shown in Fig. 4 (bottom panel).
The cosmological models have Λ = 0, with a CDM-type power
spectrum and Γ = 0.21. The redshift of the sources is given by
Eq. (2). with (z0, α, β) = (0.8, 2, 1.5). The confidence levels are
(0.68, 0.95, 0.999).

this part from the likelihood calculation: for the top-hat
variance, we excluded the point at 1′, for the correlation
functions the points below 2′, and for the Map statistic
the points below 5′. For the correlation function, we also
excluded the points at scales larger than 20′ because of
the small fluctuations in the measured correlations. The
constraints on the cosmological parameters are not signif-
icantly affected whether these large scale points are ex-
cluded or not.

Figures 9 to 13 show the (Ω0, σ8) constraints for each
of the statistics shown in Figs. 3 to 6. The contours show
the 99.9%, 95.0% and 68.0% confidence levels. The agree-
ment between the contours is excellent, though the Map

statistic and the radial correlation function do not give
as tight constraints as the other statistics. The correla-
tion function measurements below 2′ may be considered
by using error bars that include a possible systematic bias:
this is equivalent to adding a systematic covariance ma-
trix Ssys to the noise covariance S matrix in Eq. (18).
The new contours computed with the enlarged error bars8

are shown in Fig. 14. The maximum of the likelihood in
the variance and correlation function likelihood plots is at
σ8 ' 0.9 and Ω0 ' 0.3. Note that the results are in very
good agreement9 with a similar plot in Maoli et al. (2001)
(Fig. 8), here the contours are narrower, and are obtained
from a homogeneous data set. Moreover, the degeneracy
between Ω0 and σ8 is broken.

8 The enlarged error bars were computed from the estimation
of our B-mode analysis, which will be presented elsewhere.

9 although in Maoli et al. (2001) we performed a fit in the
(Ω0, σ8) plane while here we measured the allowed area for the
product σ8 Ω0.6

0 , i.e. fixing the Ω0 exponent to 0.6.
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Fig. 10. As in Fig. 9, but using the Map statistic of Fig. 4 (top
panel) instead of the top-hat variance. The first five points in
Fig. 4 were not included in the likelihood calculation in order
to avoid the small scale systematic shown in Fig. 4 (bottom
panel).

Fig. 11. Likelihood contours as in Fig. 9, but using the shear
correlation function 〈γγ〉θ (Fig. 5) instead of the top-hat vari-
ance. The first two points and scales larger than 20′ in Fig. 5
were not included in the likelihood calculation to avoid the
contribution from the small scale systematic shown in Fig. 4
(bottom panel).

The partial breaking of degeneracy between Ω0 and σ8

was expected from the fully non-linear calculation of shear
correlations (Jain & Seljak 1997). In the non-linear regime
the dependence of the 2-points statistics on Ω0 and σ8

becomes sensitive to angular scale. For example, as shown
in Jain & Seljak (1997), the shear rms measures σ8 Ω0.5

0 on
scale between 2′−5′, and σ8 Ω0.8

0 on scales &10′. Therefore
a low Ω0 universe should see a net decrease of shear power
at large scale compared to a Ω0 = 1 universe (for a given
shape of the power spectrum), as is evident in Fig. 3. Note
that the aperture mass Map is still degenerate with Ω0 and
σ8 (Fig. 10) because it probes effective scales up to ∼2.6′

only, which is not enough to break the degeneracy.

Fig. 12. As in Fig. 9, but using the tangential shear correla-
tion function 〈γtγt〉θ (Fig. 6) instead of the top-hat variance.
The first two points and scales larger than 20′ in Fig. 6 were
not included in the likelihood calculation in order to avoid the
contribution from the small scale systematic shown in Fig. 4
(bottom panel).

Fig. 13. As in Fig. 9, but using the radial shear correlation
function 〈γrγr〉θ (results in Fig. 6) instead of the top-hat vari-
ance. The first two points and scales larger than 20′ in Fig. 6
were not included in the likelihood calculation in order to
avoid the contribution from the small scale systematic shown
in Fig. 4 (bottom panel).

It seems that the aperture mass (Fig. 10) gives a
slightly larger σ8 for a large Ω0 compared to the other
statistics, while they all agree for Ω0 < 0.7. This could be
an indication for a low Ω0 Universe, however in practice,
the probability contours for the different statistics can-
not be combined in a straightforward way because they
are largely redundant. The best strategy here is to con-
centrate on one particular statistic. We expect the best
constraints from the shear correlation function (since it
contains all the information by definition), and therefore
base our parameter estimates on the likelihood contours
obtained from it. The contours in the σ8 − Ω0 plane in
Fig. 14 closely follow the curve σ8 ∝ Ω0.6

0 . This allows us
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Fig. 14. Likelihood contours as in Fig. 11, but all the points in
Fig. 5 on scales smaller than 20′ were used. In order to account
for the small scale systematic shown in Fig. 4 (bottom panel)
the error bars on the first two points were increased to include
the systematic amplitude.

to obtain the following measurement of σ8 Ω0.6
0 (from this

figure alone):

σ8 Ω0.6
0 = 0.48+0.04(0.06)

−0.05(0.07), (19)

where the uncertainties correspond to the 95% (99.9%)
confidence levels. The result in Eq. (19) is derived for
CDM models only, and fairly robust against different val-
ues of Γ. These errors are statistical only, and that they do
not include systematic error on the redshift distribution
and on the value of Γ.

If we choose a strong prior for Γ, we can constrain the
two parameters separately; for Γ = 0.21 we get, at the 95%
confidence level: 0.22 < Ω0 < 0.55 and 0.65 < σ8 < 1.2
for open models and σ8 > 0.7 and Ω0 < 0.4 for flat (Λ-
CDM) models. However, this result is clearly sensitive to
the prior choosen for Γ. In particular, if we use the rela-
tion Γ = Ω0h for a cold dark matter model, then some
extreme combinations of σ8, Ω0 and Γ cannot be ruled
out from lensing alone. The degeneracy between Ω0 and
σ8 is broken only if we take Γ to lie in a reasonable inter-
val. Such interval can be motivated by galaxy surveys for
instance, which give 0.19 < Γ < 0.37 at 68% confidence
level for the APM (Eisentsein & Zaldarriaga 2001). For
instance the choice Γ = 0.7 would make Ω0 = 1, σ8 = 0.5
consistent with the data. The second source of uncertainty
comes from the redshift distribution, kown only approx-
imately. As discussed in Sect. 4.1 and shown in Fig. 2
we have a rough idea of this distribution, but until we
obtain the information on the photometric or spectro-
scopic redshifts (which is in progress) we cannot guar-
antee a precise cosmological parameter estimation here.
Figures 15 and 16 show the confidence contours as calcu-
lated in Fig. 14 but with the two other redshift distribu-
tions defined in Sect. 4.1. Despite the large differences of
the distribution, in particular for the number of galaxies
at z > 1.5, it is reassuring that the contours are in fact

Fig. 15. Likelihood contours as in Fig. 14, but the source
redshift distribution is assumed to be lower, with (z0, α, β) =
(0.7, 2, 1.5).

Fig. 16. Likelihood contours as in Fig. 14, but the source
redshift distribution is assumed to be higher , with (z0, α, β) =
(0.9, 2, 1.5).

only slightly modified. The detailed analysis involving a
marginalisation over Γ and over the redshift distribution
of the sources (constrained using photometric redshifts)
is left for a forthcoming study. However, for the reason-
able values of Γ, the degeneracy-breaking for the high Ω0

models is not affected by the present uncertainty on the
redshift distribution of the sources. Our result is consistent
with the rough guide given by the scaling σ8 Ω0.6

0 ∝ z−0.5
0

(Jain & Seljak 1997).

7. Small scale signal

Our correlation function measurements extend to much
smaller scales than shown in the figures above. The limit is
set only by the fact that we reject one member of all pairs
closer than 3 arcsec. Figures 17 and 18 show the tangen-
tial, radial and total shear correlation functions. The pair
separation bins are much smaller than in Figs. 5 and 6,
which explains why the error bars are larger. Even at the
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Fig. 17. Tangential (top panel) and radial (bottom panel)
shear correlation functions 〈γtγt〉θ and 〈γrγr〉θ down to 3′′. The
solid, long-dashed (hidden by the solid line) and short-dashed
lines are predictions from the same models as in Fig. 3.

smallest scales, the shear correlation function 〈γγ〉θ is con-
sistent with the model predictions.

The surprising result for the small scale correlations is
the behavior of the tangential and radial shear correlation
functions: at scales smaller than 5′′ we find an increased
amplitude for 〈γtγt〉θ, and a negative 〈γrγr〉θ. Though sur-
prinsing, a negative 〈γrγr〉θ is not unphysical: for instance
in Kaiser (1992) (Table 1), a shallow mass power spec-
trum (n > −1) implies such an effect. In terms of halo
mass profile, it corresponds to a projected profile steeper
than −1.5. However, regardless of the nature of this sig-
nal, it is important to note that this is a very small scale
effect which has no impact on the statistics discussed in
preceding sections. The contribution of the increased sig-
nal from 〈γtγt〉θ to the variance at 1′ is less than 1%;
moreover since 〈γγ〉θ is not affected at all, the variance
is also unaffected. As an explicit test, we checked that
by removing one member of the pairs closer than 7′′ the
measured signal in Figs. 3–6 is unchanged. In a similar cos-
mic shear analysis using the Red-sequence Cluster Survey
(Gladders & Yee 2000) another group finds a similar small
scale behavior, though at lower statistical significance (H.
Hoekstra, private communication).

The cross-correlation 〈γtγr〉θ vanishes down to 3′′,
therefore no obvious systematic is responsible for this ef-
fect. The effect is unlikely to be caused by overlapping
isophotes, or close neighbors effects because 〈γt〉2θ <<
〈γtγt〉θ: if it were a close neighbor alignment we would
expect that 〈γt〉θ (the average tangential ellipticity for all
the pair members in each pair separation bin θ) carries
all of the signal, which is not the case. In fact we find
〈γt〉2θ ∼ 0.2〈γtγt〉θ, which means that a close neighbor ef-
fect can hardly exceed 20% of the small scale signal.

Fig. 18. Same as Fig. 17 but for the shear correlation func-
tion 〈γγ〉θ. The open circles correspond to the cross-correlation
〈γtγr〉.

A forthcoming paper using the same data set will be
devoted to the measurement of E and B modes (as de-
fined in Crittenden et al. 2000a), and we will study this
small scale signal in more detail. At this stage of the
analysis we cannot exclude a possible residual systematic.
However, a preliminary analysis shows that the B mode
down to 3′′ is much smaller than the E mode, which is
hard to understand if the signal comes entirely from resid-
ual systematics.

8. Conclusion
Using 6.5 deg2 of the VIRMOS-Descart survey in progress
at the CFHT, we were able to measure various 2-point
correlation statistics of cosmic shear. The top-hat vari-
ance, the aperture mass statistic and different shear cor-
relation functions gave consistent results over a wide range
of scales. Further tests of the lensing origin of the signal
exploiting the scalar nature of the gravitational potential
were also convincingly verified. We demonstrated that the
level of systematics, in particular the intrinsic alignment
of galaxies, is likely to be small, and does not contribute
to the signal for scales larger than 1′. For scales smaller
than 1′ we have either ignored the measurements, or in-
creased the error bars by the amount of signal found in
the B−mode analysis which will be presented elsewhere.
We believe that these results demonstrate the significance
of our detection of shear correlations due to gravitational
lensing. The quality of the data and the adequate size of
our survey allow us to put some constrains on the cos-
mological models. We obtained tight constraints on the
cosmological parameters Ω0 and σ8 modulo, the uncer-
tainties in the value of the power spectrum slope Γ and in
the source redshift distribution. We found that different
values of Γ significantly affects the degeneracy breaking in
the Ω0, σ8 plane. Only the use of external priors can allow
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robust and independent constraints on these parameters.
A detailed analysis based on a marginalisation of Γ and
the observed redshift distribution (using photometric red-
shifts) will be done in a forthcoming paper. Nevertheless
these results suggest that high precision measurements can
be made with larger lensing surveys on a much larger set
of cosmological parameters. Clearly, weak lensing surveys
will play an important role in measuring the cosmological
parameters together with Cosmic Microwave Background,
Supernovae, and Large Scale Structures (Hu & Tegmark
1999).

The final stage of the VIRMOS survey is to accom-
plish 16 deg2 in patches of 4 deg2, 4 colors each, thus
allowing the possibility to use the photometric redshifts
of the galaxies. The use of photometric (or spectroscopic)
redshifts will be useful to put robust constraints on the
cosmological parameters and improve the scientific inter-
pretation of cosmic shear (e.g. doing tomography as in
Hu 1999) but also to measure the intrinsic alignments
itself (which can be used to constrain galaxy formation
models for instance).

The constraints obtained so far are within a framework
of structure formation through gravitational instability
with Gaussian initial conditions and Cold Dark Matter.
As the amount of observations increases and the measure-
ment quality improves, the first hints of the shape of the
power spectrum will be soon available. It opens new means
of really testing the formation mechanisms of the large-
scale structure and the cosmological parameters beyond
the standard model (Uzan & Bernardeau 2000).

Over the last two years, we have seen the transition
from the detection of the weak lensing signal to the first
measurements of cosmological parameters from it. The
agreement between theoretical predictions and observa-
tional results with such a high precision indicates that
the measurement of cosmic shear statistics is becoming
a mature cosmological tool. Many surveys are under way
or scheduled for the next 5 years. They will use larger
panoramic cameras than the CFH12K, and will cover solid
angles 10 to 100 times wider than this work. The results of
this work give us confidence that cosmic shear statistics
will provide valuable measurements of cosmological pa-
rameters, probe the biasing of mass/light, produce maps
of the dark matter distribution and reconstruct its power
spectrum.
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