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ABSTRACT 

We investigate the stability of a static, infinitely long and straight vacuum string 

solution under inhomogeneous axisymmetric time-dependent perturbations. We find it to 

be perturbatively stable. 

We further extend our work by finding a string solutions in an expanding Universe. 

The back reaction of the string on the gravitational field has been ignored. The back- 

ground is assumed to be a Friedman-Robertson-Walker (FRW) cosmology. By numerically 

integrating the field equations in a radiation and matter dominated models, we discover 

oscillatory solutions. The possible damping of these oscillations is discussed. For late times 

the solution becomes identical to the static one studied in the first part of the paper. 
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I. Introduction 

The early Universe probably underwent a number of phase transitions as it cooled 

down from its hot initial state. During some of these phase transitions it is probable that 

defects or mismatches in the orientation of say, a Higgs field, in causally disconnected 

regions of spacetime, could have formed. There are essentially three types of stable topo- 

logical defect (depending on the homotopy class of the broken symmetry group) that can 

occur when the symmetry is spontaneously broken and the universe undergoes a phase 

transition. These are: monopoles, strings and walls’. Walls are unacceptable as they 

would destroy the isotropy of the microwave background radiationr. Monopoles could be 

both a blessing and a curse; we would like to have them present in order to explain charge 

quantization, but unfortunately most Grand Unified Theories predict a’ very large number 

of massive monopoles (M, - 10’sGev). This could be catastrophic for the Universe. One 

of the immediate consequences is that the Universe would become closed and recollapse 

in a very short time. Of course there exist mechanisms to reduce the number density of 

monopoles4, however, most schemes would still leave a substantial number of them, and 

we still find ourselves in the embarrassing situation of not having detected one either in 

laboratory or cosmic ray experiment. 

One of the best solutions to this so called monopole problem is provided by Inflation5. 

The sudden exponential expansion of the Universe together with a generation of an enor- 

mous amount of entropy would dilute the monopoles very effectively, leaving essentially 

one monopole per horizon volume. Unfortunately, it seems, at least in the simplest models, 

that by the same process we also get rid of all strings. There have been claims recently 

that it might be possible to have inflation and string formation at the same time 6 

In this paper we will assume that strings are generated during or after inflation and 

not worry about how this is achieved. 
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The interest in retaining cosmic strings in the early universe stems from the fact that 

they provide one of the most promising scenarios for the generation of large scale structure 

in the Universe’. We do not mean to say that this is the only possible way of doing it, but 

apart from Inflations, this is th e es scenario that we have. Furthermore, cosmic strings b t 

have some features and make some predictions that are unique, so making the theory 

falsifiable. 

Much work, both analytical aa well &s numerical9 has been done in the last five years 

or so to understand the formation of large scale structure via strings, Nevertheless, when 

one looks for the formal definition of a string, or asks what type of gravitational field it 

generates, or wishes to study a string solution in an expanding universe, there is a void in 

the literature. Some attempts at trying to find the metric for the string have been done 

by Vachaspati’O using the kinematical properties of the string trajectories. Little is known 

about the metric outside or inside a string when the spacetime is curved and/or expanding. 

Most calculations of string configurations have been done in the weak gravitational field 

approximation and usually with a static, flat background. The best-known string solution 

in the cosmological context (apart from the Nielsen-Olesen I1 vortex solution) is that found 

by Vilenkin’r This solution represents an infinitely long static straight string in a non- 

expanding flat background in the weak field approximation. In this solution, the string 

is pictured as a one dimensional object embedded in a three dimensional space, it has no 

internal structure and the energy density p is related to the pressure in the direction of 

the string axis simply by p = -pz assuming the string is on the z axis. This solution 

was later generalized to the strong field limit by Gott and Hiscock13 independently. In 

these two papers, Einstein’s equations are solved for an axisymmetric static spacetime, 

where an exterior vacuum solution is matched to a non-singular, non-vacuum interior 

spacetime with p = -p,. This solution in the weak field approximation becomes the 

Vilenkin solution. In the same spirit Stein-Schabes l4 further generalized this solution to 

the non-static case and found a new class of solutions. Recently, a more formal approach 
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to the matching conditions between the interior and exterior solutions for the string has 

been taken by Matzner and Laguna-Castillo15 . Since then a plethora of new solutions 

describing different types of strings have appeared in the literature. Unfortunately, none 

of these solutions truly solves the problem in its entirety. It is usually assumed that the 

energy momentum tensor Tfiy has a rather ad hoc form. In most cases the density and 

pressures are chosen more on a phenomenological bases rather than from the Lagrangian 

for the theory. Recently, Garfinkle r6 has tackled the problem the right way. Starting from 

a Lagrangian describing a string in a given curved background, he obtains and numerically 

solves the equations of motion and studies the form and behaviour of the energy momentum 

tensor. His calculation is done for static backgrounds both when the model is flat and 

curved. However, the work was not extended to encompass non-static spacetimes nor was 

the stability of these solutions investigated. This is part of what we shall do in this paper. 

The paper will be organized as follows. In Sec. II. we will re-analyse briefly the 

solutions found by Garfinklers and study their stability under inhomogeneous axisymmet- 

ric time-dependent perturbations. In Sec. III we will consider the string solution in an 

expanding homogeneous and isotropic spacetime, for both a matter and radiation dom- 

inated epochs. We will treat the string as a perturbation on spacetime and ignore the 

back-reaction of the string on the evolution of the geometry. Most of the calculations will 

be done explicitly for the local U(1) string but the results can easily be reduced to the 

case of a global string. We will finish with some comments and conclusions. 
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II. Stability of Cosmic Strings in Mhkowski Spacetime 

The set of equations describing a string field configuration have not been solved analyt- 

ically so far. Nevertheless, particular solutions can be found which satisfy the appropriate 

boundary conditions at infinity to describe an isolated well defined object. In this section we 

shall study the stability of a static string solution in a Minkowski background under inh+ 

mogeneous time-dependent perturbations. We will assume that the perturbations are such 

that they preserve the symmetries of both the fields and the spacetime, for this reason they 

will only be functions of the radial coordinate and time. Implicitly we are assuming that 

the string is infinite in length and straight. It has been argued that for topological reasons 

the string has to be stable. In fact, the stability of such solutions under time-dependent 

perturbations which preserve the isometries have not been considered. Nevertheless, using 

the method of trial functions r’ it has been shown that the string described above is stable 

under time-independent perturbations and that the configuration is the one of minimum 

energy. This, however, does not prove that if the string is perturbed in a more general 

way, say in a time-dependent fashion, it could not find a new stable state. We will show 

that is not the case. For a very similar discussion regarding monopoles see ref.18. The 

static string as described in ref. (16) is stable against time-dependent perturbations, and 

the energy is at its minimum. Our inability to construct the full analytical solution to the 

string equations makes the process of determining its stability a bit more involved. We will 

put forward an argument that shows that the asymptotic (large distance) solution to the 

string equations is stable. We will then extract some generic features of this solution and 

use them as an initial state for a full numerical integration of the perturbation equations. 

We define a local string as that obtained when a local U(1) gauge group is broken (by 

analogy we define the global string). The Lagrangian for this theory takes the following 

form, 

L ‘= D,r$‘D’d - IF 
4 py 

F”’ - ;A (4.4 - ,# (2.1) 

5 



where D, = a, - ieA, , F,,y = LJ,,A, - &A, and a,, is the covariant derivative. We 

will now decompose the complex field C$ into its magnitude and phase and adopt the same 

notation as in ref.(l6). Let 4 = Re i$, then from (2.1) we can get the field equations 

a” [R2 (a,,$ + eA,)] = 0 (2.2) 

aP‘R - R [4x (R’ - 7’) + (a,$ + eA,) (ah/j + eA’)] = 0 (2.3) 

a”F,, - 47reR’ (a& + eA,) = 0 (2.4) 

We still have the freedom to chose the gauge, so we will impose the Lorentz gauge 

where @A, = 0. 

It will be useful to introduce now the total energy per unit length Et, 

Et = 2~ (Do4)*(Do4) + (Di4)*(Di4) + iF”‘Fpv + :x(Q*~ -$)2 1 rdT (2.5) 

The background Minkowski metric in cylindrical coordinates is 

da2 = -dta + dz’ + d? + rZdQp2 

this metric will be used to raise and lower indices. 

If we make the following ansatz 

R = R(r) (2.7a) 

ti=co (2.7b) 

A,(r) = t(P(r) - 1)6: (2.7~) 

where 6: is the Kronecker delta function. We can see that eq.(2.2) is immediately satisfied 

and eqs.(2.3) and (2.4) become 
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d 
‘z 

= R [4X2 (R2 - )I’) + P”] 

d 1dP 

‘z rdr 
(--) = 4ne2R2P 

(2.8) 

(2.9) 

It has been shown11~12~‘6~17 that there exist solutions to these equations that satisfy the 

appropriate boundary conditions at infinity, 

lim R(r) = 7 
r-03 

lim P(r) = 0 
r-a) 

and are regular at the origin, i.e., R(0) = O,P(O) = 1. The conditions at infinity define 

an isolated object with finite energy per unit length. The case of a global string can 

be obtained by setting the gauge field to zero i.e. P(r) = 1. In this case the energy is 

logarithmically divergent so a cutoff is necessary. 

With these definitions at hand we will assume that the general solution to (2.8) and 

(2.9) is known and we will investigate its stability. Let Ro and PO be this solution, and 

construct a perturbation to this in the following way, 

R(r,t) = Ro(r) + Rl(r,t) (2.10) 

A,(r,t) = A~(4 + s,(r,t) (2.11) 

with A;(r) = i(Po(r) - 1)6,‘. By demanding the perturbed gauge field to satisfy the 

Lorentz gauge condition we immediately get the allowed functional form for it: S,(r,t) = 

(So(r), Sl(t), Sr(r,t), Ss(r,t)). Substituting these into (2.8), (2.9) and linearizing around 

the unperturbed solution we get the following equations, 

Paps, = 4?reR; [eR& + 2PoR1S$‘] 

7 

(2.12) 



a”a,Ro = 4x [3Ro’ - $1 + 2 (2.13) 

with apa, = a,2 + +a,. The energy difference between the perturbed and unperturbed 

solutions will be denoted by AE(t) = El(t)-& = 2~s A&(t)rdr where the energy density 

can be obtained from eq.(2.5), 

A& = a: + (2.14) 

(’ E a,). To this order neither So, Sr or Ss contribute to the energy difference, so we will 

set them to zero. In order to solve eqs(2.12) and (2.13) we expand both perturbations in 

Fourier components, 

(Ct(r,t),&(r,t)) = Ce-iW’(S,(r;w),R,(r;w)) 
w 

(2.15) 

then the perturbation equations become 

SF + ;S; + (w” - 47reZR,9Sr = 8aeRoPoR, 

R:’ + ;R: + wz -4X (3R; - $) - 9 
> 

R, = $R&S, 

(2.16) 

(2.17) 

Clearly, the stability will depend on the sign of Im(w). The criteria is clear, the 

solution is stable if Im(w) < 0, unstable otherwise. The only constraint we will impose on 

the perturbation is that they are small and have finite energy. We cannot analytically solve 

eqs(2.16) and (2.17) for obvious reasons, but since the crucial piece of information is the 

value of w, we shall study the solution to these equations in the far field limit i.e., r -+ co. 

In this limit the unperturbed solution takes the following form, Ro = 11 and Po E 0. If we 

input these values, rescale the radial coordinate p = Xn’r and introduce a new frequency 

2 = Xrfawa we get, 
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IVY + ‘IV,! + ((2’ - CXz)Wi = 0 
P 

(2.18) 

with Wi(p) z (Rp,Sp) and o: = (8,4?reZ/X). The general solution to (2.18) will be given 

as a linear combination of Bessel functions. In the large p limit the solution takes the 

following form 

WiA[ C~COS((&~ - af)+p) + Cssin((Gs - af)+p)] (2.19) 

with Wio,C1 and Cs constants. Let us decompose oi into its real and imaginary part, rj = 

G, + irks with ~ZJ, and &s real. Then the condition for having a finite energy perturbation 

becomes, Im(dm) = 0 which in turn implies that Gz is real and such that I;: 2 c$ 

and &s = 0. As a consequence of this all the time dependence in (2.15) is oscillatory 

and there is a continuum spectrum of frequencies with Gz > 4sea/X Y (mn,/m+)’ (see 

Vilenkin in ref.1). The smallest frequency of the Fourier spectrum turns out to be given 

by the ratio of the mass of the Higgs field to the gauge field. Thus we can conclude that 

in the large p limit (r + oo) the solution is stable. To confirm our result we numerically 

integrated the system of equations (2.12) and (2.13) and plotted the results for different 

frequencies. The scalar field and the gauge field are plotted in figs. la and lb respectively 

as functions of the radial distance for a fixed time t.. When G2 < 0 the solutions diverge 

and have infinite energies (they rapidly escape the linear regime where our approximation 

is valid). It is only when Gz 2 0 that the solutions stay bounded. The solid line represents 

the unperturbed solution. In the cases shown X was chosen such that 4xe*/X - 1. The 

dividing line between having finite and infinite energy perturbations given by Gz = O(1) 

as predicted. 

Finally, if we calculate the energy difference for the allowed range of frequencies, 

using eq.(2.14) we get AE 2 0 (Y O(lO-‘)). Th e important point is that it is positive, 

confirming our early claim that the string is stable. Even though the perturbations are 

not the most general type they seem to indicate that the string is a very stable object. 
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III. Cosmic Strings in a Friedman-Robertson-Walker Spacetime 

In this section we would like to discuss what happens when a cosmic string defined by 

(2.1) is embedded into an expanding FRW model. The relevance of this questioned seems 

to us to be undeniable, and some of the answers could dramatically affect the scenarios 

for the formation of large scale structure. We will consider the string to be nonstatic, 

infinitely long and straight, and such that it acts only as a perturbation on spacetime. We 

shall not worry about the back-reaction of the string and gauge fields on the geometry 

which, as stated earlier, will be that of a flat FRW model. This approximation is valid 

when the curvature of the string Ratring is much larger than HG’, but the core of the 

string ratring is not negligible compare to H;’ (the string is not a delta function), i.e., 

1 
r+r, 

- ratring I Hc’ << &ring. In this limit the isotropy and homogeneity of the FRW 

background are not destroyed far from the string and the effect of expansion on the Higgs 

and Gauge fields is non-negligible. We shall consider the problem in two different regimes: 

when the universe is radiation dominated and when it is matter dominated. An implicit 

assumption is that metric perturbations are small so that the metric remains Friedmanian 

throughout the evolution. By treating the string ss a perturbation on the universe, we are 

effectively looking at length scales which are small compared to the Hubble radius. 

The equations of motion for this case are given by eqs.(2.2),(2.3) and (2.4), but the 

metric will be that of a flat FRW. In cylindrical coordinates it becomes 

ds2 = -dt’ + a(t)’ (dz’ + dra + r’dp’) 

Eq.(2.2) can again be satisfied by the taking 1c, = (o and 

A,(r,t) = f(P(r,t) - I)$ 

while the equations for R(r,t) and P(r,t) become 

;+3c-; f411 [R +;:I =-4X@-$)--$ 

(3.1) 

(3.2) 
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(3.3) 

We have been unable to solve this system of equation analytically, instead we have solved 

the equations numerically and the results are shown in figs. 2a, 2b, 3a and 3b for the 

global string in a radiation and matter universe respectively, and in fig.4 for the local 

string. Before discussing the solutions, we would like to highlight some important points. 

The first and most obvious one is that, since the universe is expanding like some power law 

a - t” with a = i for radiation and o = 3 for matter, then there are no static solutions 

for P or R. This is important because it means that a string cannot just sit quietly while 

the universe expands. We should make clear that we are considering a straight string and 

not a loop. For a loop it is known that the solution cannot be static (due to the tension), 

however, in this case the tension acts only in the direction of the string axis. 

The integration has been done using the following boundary conditions, 

R(o,to) = o, ri(o,ta) = o (3.4a) 

R(r.,td = rl, k(r,,to) = o (3.46) 

P(O,to) = 1, P(o,to) = 0 (3.4c) 

P(r.,lo) = 0, P(r&) = 0 (3.4d) 

where T. >> 1. These initial and boundary conditions define the static string and among 

other things they make the energy finite at infinity (at least for the local string). We will 

assume that at to the string is identical to the static string, then we stitch on expansion 

and study the results. The reason for this choice of initial conditions is twofold, one is that 

even though no analytical solutions exist of the static case, both numerical and analytical 

work have established this as a good limiting csse and in the limit of slow expansion the 
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static string solution (in comoving coordinates) is recovered. The boundary conditions for 

the global U(1) string can be obtained by setting P(r, t) = 1 t/ t, r. 

We shall only discuss the local string as most of what we say can be apply to the 

global case by taking the appropriate formal limit. One of the features of the solution is 

the oscillatory character of the string field ( similar in nature to the response of the static 

string found in the previous section). Figs. 2a and 3a show the oscillations of R(r, t) with 

time. The oscillation frequency wo is of order VI+ = Xiv. Both the string field as well as 

the gauge field oscillate around some static minimum value and the motion gets damped 

due to the expansion of the universe, on a timescale of order Hr’. After some time the 

radial derivatives of the fields get suppressed by the expansion and the damping term goes 

to zero like some power of t. In principle, if we assume the string does not couple to 

anything else it would continue to oscillate (due to the self-coupling it could radiate Higgs 

particles with masses of order the frequency of oscillation), however, it would seem more 

natural to speculate that the string will radiate particles and loose energy until it settles 

down into some static configuration. It is also conceivable that as the string oscillates it 

emits cylindrical gravitational waves. It is known IQ that cylindrical configurations (like in a 

cylindrical collapse) emit gravitational waves which resemble the Einstein-Rosen solutions, 

furthermore, there is a well defined quantity that characterizes this solutions, the so called 

C-energy introduced in ref.( 19). These two possible mechanism for losing energy are now 

under investigation. 

Whatever the mechanism is, once the universe has expanded for a while, the string 

will effectively decouple from the expansion in the radial direction and will only feel the 

expansion in the s-direction. We can understand these oscillations in the following way; 

at t = to the string is in the static configuration, expansion is then switched on. The 

string will try to expand with the background, however, due to the transverse non-zero 

components of the stress tensor, it will try to return to its original state, resulting in an 
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oscillatory motion. In fact, when a(t) is large, the gradient terms in eqs.(3.2) and (3.3) get 

suppressed and what is left of the equations resemble a damped harmonic oscillator. 

These oscillations could have some observable consequences. An observer close to 

the string, could measure a time changing field produced by the string, and as mentioned 

earlier, there might be emission of gravitational radiation. It is interesting to note (fig.5) 

that the energy, density c does not present the oscillatory behaviour, but rather just 

decreases as time goes by. 

Unfortunately, the damping time is very short r z 0 (!!I;‘), which would indicate 

that this effect is probably not observable today. 

We can see the time variation of the energy by calculating T,,“. From the Lagrangian 

we get 

T,,y = R;,R;, + R=P=6:6; + F;F,, + Lg,,y (3.5) 

One can immediately see that if R = R(r,t) and P = P(r,t), then the stress tensor 

will have some non-zero off-diagonal components. If we define a set of basis vectors 

A d 
t,= z Ir 0 

then the stress tensor can be written as 

T,w = &fv + P,i,i, + P&,2, + P&,,& + P~,(;$~ + ;Jy) 

(3.6~) 

(3.6b) 

(3.h) 

(3.6d) 

(3.7) 
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where 

RZP2 
+ ~+2X(R14)‘+ 

2 
RZPZ -- 
aZrZ 

(9 - (G)‘) 

1 
R=PZ -- 
aar2 

(p. - (G)‘) 

1 
+ $$ - 2X (R” -‘I’)’ + 

PP’ 
4*ezazrz 

(3.8~) 

(3.8b) 

(3.8~) 

(3.8d) 

(3.8~~) 

Two important points should be noticed, the first is that the energy momentum tensor 

is not diagonal and c # -Pg. This fact would be of prime importance when considering 

the back reaction, since we know that the Ricci tensor for a FRW model is diagonal, so 

making it inconsistent with this energy-momentum tensor. In order to make this tensor 

compatible with the metric, when considering the back reaction, we would be forced to 

include some inhomogeneities. The second point is that the off diagonal component of the 

stress tensor goes to zero like + for large r. Furthermore, as t -+ co both, @r,t) and 

P(r,t) + 0, making the stress tensor diagonal with E = -P.. The energy density as a 

function of r for different times is shown in fig.5. However, near the string, the spacetime 

metric would probably have to be at least anisotropic. 
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IV Conclusions 

In this paper we have addressed two questions. One was the stability of the static 

string under time-dependent axisymmetric inhomogeneous perturbations. We found it to 

be stable against these type of perturbations, making it a good candidate for the ground 

state solution. We also proposed that this could be a good approximation for the behaviour 

of a string in a slowly expanding universe. The perturbed scalar and gauge fields oscillate 

around the unperturbed solution. If we define the core radius of the string as the dis- 

tance from the center at which the Higgs field aquires a predefined value, then the string 

undergoes radial oscillations when perturbed in this way. We found that the minimum 

frequency of oscillation is given by the ratio between the mass of the vector field and the 

Higgs field (Lj,,,i” - (m~,/m+)*. We did not investigate the stability against more general 

perturbations that would break the axial symmetry, however, we feel that the string would 

probably just radiate away all the modes which are not compatible with the symmetries in 

the form of gravitational waves, and if coupled to any other field, it would radiate particles 

or photons. 

We then solved the string equations when embedded in an expanding radiation or 

matter-dominated flat model. The results do not differ much for these two cases. We 

chose the background to be flat so as to avoid problems with the embedding and the 

different symmetries of the two spacetimes. We did not consider the back-reaction of 

the string on the metric, but by calculating the energy-momentum tensor for this field 

configuration we found it to be non-diagonal. Thii is an indication that the metric must 

be anisotropic and probably inhomogeneous near the string. 

The oscillatory behaviour disappears in the limit of small and large r (due to the 

boundary conditions). Presumably in a more realistic scenario the string would emit 

particles or radiate gravitational waves, to settle eventually into a static configuration. If 

the model universe is not expanding too fast, then we can set a(t) - ao, k(t) = 0 in 
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eqs.(3.2) and (3.3) and recover the static solution. The static solution appears as a special 

limiting case of the non-static solution. We have not proven that this solution is stable, 

but it is a tempting possibility. The perturbative study of this case is also underway. 

We have found that although interesting consequences can be derived from the oscilla- 

tory nature of the solution, the effect is probably not too important from the observational 

point of view, since damping occurs in a few Hubble times after the formation of the 

string, and by now the amplitude of the oscillations is very small. One possible observable 

consequence of the damping could be a gravitational wave background coming from the 

oscillating strings. 
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Figure Captions 

1 In fig. la we have plotted the magnitude of the scalar field 4 represented by R(r,t.) as 

a function of the radius for a given time t. and the perturbations for different values 

of the frequency w*. Fig. lb shows the gauge field P(r, t.) and its perturbation. In 

both cases the unperturbed static solution is represented by the solid line. 

2 The string field R(r,t) is plotted against t/to with to = Hi’ in fig.a and against r/r0 

in fig.b for a radiation dominated Universe. The oscillations are damped for large r 

and large t. 

3 The string field R(r, t) is plotted against t/to in fig.a and against r/ro in fig.b for a 

matter dominated Universe. The oscillations are damped for large r and large t. 

4 The string field R(r, t) (dotted line) and the gauge field component P(r, t) (solid line) 

are plotted here against r/ro for different time steps label by tl, tz, . . . . The oscillations 

presented in the global case are also present in the local case. 

5 The energy density e as a function of r for different values oft 

17 



References 

1. T.W.B. Kibble, J.Phys. AS, 1387 (1976) 

- T.W.B. Kibble, Phys. Rep. 67, 183 (1980) 

- A. Vilenkin, Phys. Rep. 121, 263 (1985) 

2. Ya. B. Zeldovich, I.Yu. Kobzarev and L.B.Okun, Zh. Eksp. Tepr. Fiz. 67, 3 (1974) 

[ Sov. Phys. JETP 40, 1 (1975)] 

3. J.P. Preskill, Phys.Rev.Lett. 43, 1365 (1979) 

4. J.A. Stein-Schabes, Mon. Not. R. Astr. Sot. 216, 809 (1985) 

5. A.H. Guth, Phys. Rev. D23, 347 (1981). 

- A.Albrecht and P.J. Steinhardt Phys. Rev. Lett. 48, 1220 (1982). 

- A.D. Linde, Phys. Lett. 108B, 389 (1982). 

6. E.T. Vishniac, K.A. Olive and D. Seckel, Cosmic Strings and Inflation CERN - 

TH.4554/86 

7. Ya. B. Zeldovich, Mon. Not. R. Astr. Sot. 192, 663 (1980) 

- A. Vilenkin in ref. (1) 

- R.H. Brandenberger and N. Turok, Phys. Rev. DSS, 2182 (1986) 

8 . M.S. Turner, The Inflationary Paradigm, Proceedings of the Corgise School on 

Fundamental Physics and Cosmology, edited by J. Audouze and J. Tran Thanh Van, 

Editions Frontieres, Gif-Sur-Yvette (1985). 

9. A. Albrecht and N. Turok, Phys. Rev. Lett. 54, 1868 (1985) 

- D.P.Bennett, Phys. Rev. D33, 872 (1986) 

10. T. Vachaspati, Nucl. Phys. B277, 593 (1986) 

18 



11. H.B. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973). 

12. A. Vilenkin, Phys. Rev. D23, 852 (1981) 

13. J.R. Gott, Ap. J. 288, 422 (1985). 

- W.A.Hiscock, Phys. Rev. D31, 3288 (1985). 

14. J.A. Stein-Schabes, Phys. Rev. D33, 3545 (1986). 

15. P. Laguna-Castillo and R.A. Matzner, Discontinuity Cylinder models of gravitating 

U(1) cosmic string Austin Preprint (1986). 

16. D. Garfinkle, Phys. Rev. D32, 1323 (1985). 

17. E.B. Bogomolnyi, Sov.J. Nucl. Phys. 24, 449 (1977). 

- E.B. Bogomolnyi and A.I.Vainshtein, Sov.J. Nucl. Phys. 23, 588 (1977). 

18. J.E. Mandula, Phys.Rev. D 14, 3497 (1976). 

- R.A. Brandt and F. Neri, Nucl. Phys. B161, 253 (1979). 

- D. Lohiya, Ann. of Phys. 141, 104 (1982). 

19. K.S. Thorne, Phys. Rev. 138(B) 251, (1965). 

19 



kl 
t- 

‘4 
\h 

yyQu) 

II II II II 

I i 
I 
I 

j 

--PC 

--CD 

-In 

0 

-4 
k 

-CQ 

-03 

-. 



I 

i I I I 
; 

: ! 

1 I 

z 

r( 
as 4 3 q 

0 

(*J‘J)d 

d 

0 



t- 

1 ’ 
I I I I I I I I I I I I I _ 

kc 

-0 
m 

--v) 

A 
I I I I I I I I I I I I I I I I I 

4 
g 

v-4 
A 3 

e 
74 

(W>lI 



.6
 

2 
4 

6 
a 

d-
0 

10
 

12
 

14
 



1.
1 

1.
05

 1 

.9
5 .9

 

I 
I 

I 
I 

I 
I 

I 
1 

I 
II 

1 
IIl

l 
1 

IIl
l 

IllI
 

1 
IIl

l 
1 

II 

M
at

te
r 

D
om

in
at

ed
 

U
ni

ve
rs

e 

II 
II 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

5 
10

 
15

 
25

 
30

 
35

 

s 



1.
2 

1.
1 .8

 

.8
 

.5
 

Ill
 

I 
III

 
I 

III
 

I 
III

 
I 

III
 

I 
Ill

 
I 

III
 

I 
I 

I 

I 
I 

M
at

te
r 

D
om

in
at

ed
 

U
ni

ve
rs

e 
M

at
te

r 
D

om
in

at
ed

 
U

ni
ve

rs
e 

I 
I 

I 
I 

I 
I 

I 
I 

I 

0 
2 

4 
8 

8 
10

 
12

 
14

 



\I’
 

I’ 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

+ 

t~
llll

llll
llll

llll
l~

I 

0 
5 

10
 

15
 

20
 

r/h
 



0 

-s 

F 

h 
4 
.I+ 

z 

a” 

3 


