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Abstract

We investigate the gravitational field of cosmic vacuum strings and
domain walls in the context of Brans-Dicke theory of gravity. Using
the weak field approximation we find the solutions which describe the
spacetime and the scalar field generated by these topological structures,
comparing the results with the ones obtained in General Relativity.
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1 Introduction

Cosmic vacuum strings and domain walls are exotic topological structures
which have been introduced in Cosmology in the last two decades[1]-[3],
and, despite the fact that so far no direct observational evidence for their
existence has been found, the richness of the new ideas they brought along
to this branch of Physics seems to justify their popularity at least among
theoretical cosmologists. Cosmic strings, for example, are thought to play
an essential role in some proposed theories of galaxies formation since they
could act as ‘seeds’ for the nucleation of galaxies and cluster of galaxies{4].
Also, vacuum strings and domain walls are predicted by GUT models of the
Universe. Although the predicted lifetime of these structures as well as their
gravitational effects are still a matter of controversy, some authors strongly
hold that they must have appeared when the Universe was cooling down
after the early stages of hot big bang[2].

Historically, it was Vilenkin[l], who first found the solutions correspond-
ing to the metrics generated by strings and domain walls in the context of
General Relativity. Solving Einstein equations in the weak-field approxima-
tion, Vilenkin was able to show that the gravitational field of a vacuum string
manifests itself as a global change in the topology of Minkowski spacetime.
The Riemmann curvature vanishes everywhere except on the string, where
it is singular. The spacetime commonly called ‘conical’ has a line element
given by ds? = dt? — dr? — a?r2d6? — dz?, where o? = 1 ~ 8uG and p is
the linear.energy density of the string.!. As is well known, this kind of con-
ical geometry can produce several effects like gravitational lensing(5], pair
" production[6], bremsstrihlung radiation[7], electrostatic self-interaction[8]
and the so-called gravitational Aharonov-Bohm effect[9].

In this paper we consider vacuum strings and domain walls in Brans-

IThis value of o was calculated by Vilenkin in the weak field approximation. Later,
Hiscock[4], who found the string exact solution obtained a =1 - 4pG




Dicke theory of gravity. Our approach consists of working out the field equa-
tions in the weak field approximation in much the same way as Vilenkin did
in solving the same problem in General Relativity. At this point we should
quote an article published by Gundlach and Ortiz[10], who also considered

strings in Brans-Dicke theory however through quite a diferent approach.

2 Brans-Dicke equations in the weak field ap-
proximation

Paralleling General Relativity one can linearize Brans-Dicke field equations

by assuming that the metric g,, and the saclar field ¢ can be written as

Guv =Ny + R (1)
¢ =¢o+e=G"1(1+Ge) , (2)

where 7, = diag(1,—1,—1,-1) is the Minkowski metric tensor, h,, is the
linear part of g,,, ¢p is a constant which may be identified to G~ (G being
the Newtonian gravitational constant) and € is a first-order term in the
energy density u. Clearly, it is assumed that both |k, | and |Ge| are < 1.

Thus, from these assumptions one is readily able to derive the following

equations[11}: i
+1
RWY = 87G |T,, — Q%TEWT] +Gepy (3)
and
o)e = 8T , (4)
2w+ 3

where RSU) denotes the linearized Ricci tensor R,,,, i.e.,

I
Rszlv) - % (-nmhw,ﬂﬁ + hﬁ.u,ﬁ +h h’“’y>

voB T
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g
= % (hﬂ'vuvﬁ + hretﬂ»ﬁ - h’“'u - D(l)huy) ? (5)

with & = h2 and OW) is the Minkowskian D’Alembertian.

A great simplification of the equations (3) is achieved if instead of the
usual harmonic gauge of General Relativity <(hfj - %Mjh) L= 0) one choses
the Brans-Dicke gauge[11]

(hﬁ—-%éﬁh) =Ge, - (6)
o

’

(Later, this gauge will be put in a more general form when we examine the

domain wall case.) From (6) one can easily show that
I¢] v
hﬂ,u.[)’ + hﬁ,u,ﬁ - h,u-l/ = QGe,u,u ' (7)
Then, the equation (3) reduces to

9° . w1
(W - ) b = 1076 [f = SZnet] )

3 The Gravitational Field of Vacuum Strings

Now let us consider an infinite, static, straight vacuum string oriented along
the z-axis and located at the origin of our coordinate system. As was shown

by Vilenkin[1], its energy-momentum T/ may be written as

T#(Iv y) = #5(17)5(?!)‘113%(17070,1% ) (9)

where u is the linear energy density of the vacuum string. Putting (9) into
the field equations (4) and (8) we get the following:
_ 16mpG

T2hoo = - Vihp=-Gyle= 2w+3b(.’r)é(y) . (10)
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and

27 uGlw+1 .
V2 b1 = Vihag = —%%13—)5(93)5(?” . (11)

Now, taking into account the cylindrical symmetry of the problem the

solutions of the equations above are:

hoo = —h33 = —G€ = %ﬁfgﬁn (%) 5 (12)
h11 = hy= 1—%2%(%“)5” (;%) ; (13)

where 7 = [22 4 %2]1/2 and r¢ is an integration constant. In this way, we
arrive at the metric line element which written in cylindrical coordinates is

given by

SuG
2w+ 3

ds? = (1+ n (l) )(dt? —dz? — (1-8uGln(—))(dr®+72d8%))- (14)
To ! To

b

Introducing a new coordinate r’ by the transformation r = 7o (%) R

where a = 7o (1 - 8;LG)"1/2 and b = (1 — 41G)~1, and neglecting second-

order terms in uG, this line element may be put in the form

S,UG r’ > ' [
2 _ I 2 _ 1,2 _ 2 _ _ 246°
ds <1+ 513t <T0> (t* ~ dz* — dr' - (1 - 8uG) r'2d8?)

(15)
Finally, defining a new angular variable by (1 — 8uG)d# = df', we end up

with

SHG T/ 1 i ' ,
2 _ 2 g2 /2 202 .
ds® = (1 + o 1 3ﬁn <_To)> (dz‘ dz dr r<dé ) (16)
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Let us make some comments. First of all, it must be noted that r can-
not be large, otherwise the weak-field approximation ceases to be valid.
Second, looking at the equations (15) and (16) one realizes that they repre-
sent nothing but a conformal transformation of Vilenkin conical metric. (It
is worthwhile mentioning that a very similar result is obtained by Gundlach
and Ortiz[10] following a different method.).

We see that the effect caused by the presence of the scalar field is to
bring éurvature to the conical spacetime. Thus, in addition to the change of
the global topology there is also a curved geometry. Indeed, from (12) and
(13) one can evaluate the components of the Riemmann tensor which in the

weak-field approximation are given by[12]

1 .
RuuAp = '2' (h/.tp,l/)\ + hx/)\,up - hup,u)\ - hu/\,up) ' (17)

A straightforward calculation shows that the non-vanishing components of

Ry.u/\p are

— _ _ 4uG (1-2cos?8 .
Roion = ~Rizis= —7513 ( == ) ; (18)
— _ _ 4pG (1-2sin%6 .
Rozoz = —Roszz = —353 ( —r ) ; (19)
8uG _ sinf cosé
Roio2 = —Rizgs = 355057 (20)

and Rygyy = —187uCletl) g(0)6(y)

- 2w+3
(21)

However, due to the conformal character of the metric (16), the motion
of photons is not affected by the local curvature. It is worthy of mention

that if one takes the limit w — oo, only the component Rjz;9 survives, which
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means that the curvature disappears everywhere except on the string and
Vilenkin's result is reproduced. Analogously, if this limit is taken directly
in either equation (15) or (16), then the rescaled conical metric tends to the
corresponding General Relativity solution whereas from (12) the scalar field

goes over G~1.

4 The Gravitational field of vacuum domain walls

Let us turn to the case of domain walls, also investigated by Vilenkin,
who solved this problem, first in the weak field approximation of General
Relativity[1], and later by finding an exact solution{13].

We consider an infinite static plane wall parallel to the (y, z)-plane. If
o is a homogeneous vacuum energy surface distribution, then the energy-

momentum tensor 7% must be given by[1]

TH(z) = o6(z).diag(1,0,1,1) - (22)

As we have mentioned earlier, for the sake of mathematical convenience we

shall modify the gauge condition (6) to a more general form given by

(hﬁ - %6,‘,‘h> - (1‘— %) Ge, (23)
WM

where « is a free parameter. (This allows one to generate an infinite class
of a-dependent solutions). With this choice we can show that the equation
(3) takes the form

d? w41 ’ -
(a—ti — v2> huu = —167G (le — m’ﬂuuT> — aGe,u,u . (24)

Putting (22) into (24) and taking into account the fact that f,, and ¢ depend

only on z, we get for the metric functions

-1



L

d2

2 G 6 .
hos = = frha =~ firhs = 2 (25)
d? 48 Glw+1—-2)é(x
proily = BroGledl gt (26)

From (4) the equation for the scalar field will be given by

d?e 24moé(z)

dz? = 2w+3 (20
The solutions of these equations are easily verified to be
hoo = —hay = —hsz = —%%“’éﬂ , (28)
hi = urel(y 41— )zl (29)
and €= —%:—,I%l . (30)

From these results a simple expression for the metric is obtained if one choses

o= %(2w+3):

8roGw|z|
2w+ 3
which exactly reduces to Vilenkin’s solution for large values of w. We should

ds? = [1 - ] (dt2 —dz? - dy? - dz2) , (31)

point out that if « is taken independent ofw then when w — oo the metric
functions h,, also tend to Vilenkin’s solution(l].

Thus we see that for domain walls the picture here is almost identical to
that coming from General Relativity, since the only effect brought about by

the scalar field consists of a simple redefinition of the vacuum energy density

2wa

2w+3"
generated in this case.

octoo = If only first-order terms in oG are retained no curvature is



5 Final Remarks

Basically our motivation to investigate vacuum strings and domain walls out-
side the General Relativity scheme, specifically in Brans-Dicke theory, comes
from the important role, we believe, scalar-tensor theories can play in our
understanding of the early Universe (see, for example, [14],[15]), when topo-
logical structures like vacuum strings and domain walls may have existed.

Physical processes like gravitational lensing[5], galaxies formation[16] pair

production{6], bremsstrahlung radiation[7], and electrostatic self-interaction(8],

which may be viewed as caused by these structures should now be investi-
gated assuming the curved spacetime background of eq.(16). We have left

these subjects for future work.
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