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There is an approximately 9% discrepancy, corresponding to 2:4�, between two independent

constraints on the expansion rate of the Universe: one indirectly arising from the cosmic microwave

background and baryon acoustic oscillations and one more directly obtained from local measurements of

the relation between redshifts and distances to sources. We argue that by taking into account the local

gravitational potential at the position of the observer this tension—strengthened by the recent Planck

results—is partially relieved and the concordance of the Standard Model of cosmology increased. We

estimate that measurements of the local Hubble constant are subject to a cosmic variance of about 2.4%

(limiting the local sample to redshifts z > 0:010) or 1.3% (limiting it to z > 0:023), a more significant

correction than that taken into account already. Nonetheless, we show that one would need a very rare

fluctuation to fully explain the offset in the Hubble rates. If this tension is further strengthened, a

cosmology beyond the Standard Model may prove necessary.

DOI: 10.1103/PhysRevLett.110.241305 PACS numbers: 98.80.Es, 98.62.Py, 98.65.Dx, 98.70.Vc

Introduction.—We can only observe the Universe from
our own position, which is—in terms of cosmological
scales—fixed and lying in a gravitational potential the
value of which possibly cannot be probed [1]. If the
observer could move around in the Universe, they would
measure the variation of local parameters, a variation
caused by observing from locations with different values
of the gravitational potential. However, as we cannot mea-
sure this unavoidable variation, there is a cosmic variance
on physical parameters that are potentially sensitive to the
local spacetime around the observer. One such parameter is
the local expansion rate.

In this Letter, we discuss how the locally measured
expansion rate is offset from the global average expansion
rate of the Universe by the value of the gravitational
potential at the observer. By considering the statistics of
the distribution of matter in the Universe, we derive the
distribution of the gravitational potential at the observer
and, consequently, the expected distribution of the offset of
the local expansion rate with respect to the global expan-
sion rate. On one hand, this analysis (partially) relieves the
tension between existing local and global measurements of
the expansion rate. On the other hand, our results suggest
that local measurements of the Hubble parameter are
limited to a minimum systematic error of a few percent,
which should be included in the error budget of such
measurements.

Constraints on the Hubble constant.—The most recent
measurement of the local Hubble parameter performed
by considering recession velocities of objects around us
reports a value of Hlocal

0 ¼ 73:8� 2:4 km s�1 Mpc�1 [2],

whereas the Planck 2013 analysis gives HCMB
0 ¼ 67:80�

0:77 km s�1 Mpc�1 ([3], Table 5), assuming a spatially
flat �CDM model (a homogeneous Universe with a

cosmological constant � and cold dark matter) and fitting
to observations of the cosmic microwave background
(CMB) and baryon acoustic oscillations (BAO) only.
These two independent measurements give a discrepancy
of approximately 9%, corresponding to 2:4�. It is worth
stressing that the recent Planck results strengthened this
tension, which is only marginal, at 2:0�, when the 9-yr
Wilkinson microwave anisotropy probe data are used [4].
The 9% disagreement between the expansion rates could
be a statistical fluke or instead a hint for a neglected
systematic error. Here, we take the second point of
view. Local fluctuations of the Hubble parameter are
indeed to be expected as a consequence of the density
perturbations abundant in the late nonlinear Universe.
In particular, a higher Hlocal

0 value will be observed if

we happen to live inside an underdensity (see e.g.,
Refs. [5–22] for studies of the effect of a neglected
inhomogeneity on cosmological parameters). It is there-
fore natural to ask if the tension between Hlocal

0 and HCMB
0

can be relieved if a local underdensity consistent with
large-scale structure is taken into account in the analysis.
It is interesting to note that the possibility of living in a

local underdense ‘‘Hubble bubble’’ has been considered
before. Reference [23] found indeed that the Hubble
parameter estimated from supernovae Ia (SNe) within
74h�1 Mpc is 6:5%� 1:8% higher than the Hubble pa-
rameter measured from SNe outside this region (see also
Refs. [24,25]). The analysis of Ref. [2] considers this issue
and tries to correct for it; we will discuss this later. The
topic of a local Hubble bubble dates back to the 1990s; see,
e.g., Refs. [26–32] for previous work on the cosmic vari-
ance of the local Hubble parameter.
The Hubble bubble model.—To tackle this problem,

we take the simplest approach; that is, we model the
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inhomogeneity by means of the Hubble bubble model,
which is the basis of the so-called spherical ‘‘top-hat’’
collapse [33]. The idea is to carve out of the Friedmann-
Lemaı̂tre-Robertson-Walker background a sphere of mat-
ter that is then compressed or diluted so as to obtain a toy
model of the inhomogeneity with a slightly different
Friedmann-Lemaı̂tre-Robertson-Walker solution. At the
junction of the two metrics, the density is discontinuous
and the description could be improved by means of the
spherically symmetric Lemaı̂tre-Tolman-Bondi (LTB) so-
lution of Einstein’s equation [34–36]. For our purposes,
however, the Hubble bubble model suffices, as we are not
interested in the junction between inhomogeneity and
background.

A straightforward prediction of the Hubble bubble
model is that an adiabatic perturbation in density causes
a perturbation in the expansion rate given by

�H

H
¼ � 1

3

��

�
fð�mÞ�

�
��

�
;�m

�
; (1)

where all quantities are evaluated at the present time.
The function fð�mÞ is the growth rate and embodies the
effect of a non-negligible cosmological constant [37].
During matter domination one has f ¼ 1, and the standard
relation is recovered. In Fig. 1, we show the function
�½ð��=�Þ;�m�, which parametrizes the effect of values
of ��=� approaching the nonlinear regime, computed by
means of the �LTB model [39–41]. For linear contrasts,
j��=�j � 1, we have � ’ 1 and Eq. (1) becomes a linear
relation between perturbations in the density and perturba-
tions in the expansion rate.

The local measurements of the Hubble constant from
Ref. [2] use standard candles within the redshift range
bounded by zmin ¼ 0:010 (or 0.023) and zmax ¼ 0:1.
Therefore, we need to know the typical contrast of a
perturbation that extends over a redshift in this range.
We take a conservative approach and consider density
perturbations stemming from a standard matter power
spectrum PðkÞ with Planckþ BAO best-fit parameters.
Consequently, we know that the mean square of the density
perturbation in a sphere of radius R around any point
today—and so also around us—is

�2
R �

�
�M

M

�
2 ¼

Z 1

0

k2dk

2�2
PðkÞ

�
3j1ðRkÞ
Rk

�
2
; (2)

where M is the mass enclosed by a sphere of radius R and
j1 is the spherical Bessel function of the first kind.
Next, we assume that perturbations in the density field

follow a Gaussian distribution pgau with the variance given

by �2
R of Eq. (2),

pgauðxÞ ¼ 1

�R

ffiffiffiffiffiffiffi
2�

p e�x2=2�2
R ; (3)

with x � ��=�. In Fig. 2 we plot the 68%, 95%,
and 99.7% confidence-level fluctuations on the local
Hubble parameter, as well as the 1-� band relative to the
value Hlocal

0 =HCMB
0 � 1, which shows the 2:4-� tension

discussed above.
In reality, nonlinear matter fluctuations are better

described by a log-normal distribution [42]

plognðxÞ ¼
exp

�
� ½logð�2

Rþ1Þþ2 logðxþ1Þ�2
8 logð�2

Rþ1Þ

�

ffiffiffiffiffiffiffi
2�

p ðxþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð�2

R þ 1Þ
q ; (4)

which has zero mean, variance �2
R, and support ð�1;1�, in

agreement with the fact that ��=� >�1. Moreover, for
�R ! 0 it approaches the Gaussian distribution of Eq. (3).
In Fig. 3, we show the 68%, 95%, and 99.7% confidence
level fluctuations of the local Hubble parameter induced
by log-normally distributed matter perturbations. We show
separately the case for both over- and underdensities as
they are no longer symmetric when using a skewed distri-
bution such as Eq. (4). Using the log-normal distribution,
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FIG. 1. Function� which corrects the relation of Eq. (1) when
the density contrast is not linear. The plot assumes the Planckþ
BAO best-fit value of�m ¼ 0:3086, but the dependence of� on
cosmological parameters is very weak.
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FIG. 2 (color online). The 68%, 95%, and 99.7% confidence-
level probabilities of Gaussian matter fluctuations (right vertical
axis) and consequently of the local Hubble parameter (left
vertical axis), as a function of co-moving size of the matter
fluctuation (top ticks) or, equivalently, redshift (bottom ticks).
The relation between �H=H and ��=� is given by Eq. (1). The
range zmin � z � zmax corresponds to the range of observation
of Ref. [2]. Also shown is the 1-� emerald band relative to the
value Hlocal

0 =HCMB
0 � 1, which shows the 2:4� tension between

CMB and local measurements of the Hubble constant.
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we see that local voids at a low redshift are actually more
likely than they would appear from a Gaussian distribution.
From here on, we will use the superscriptsþ,� to refer to
the distinct distributions of positive and negative perturba-
tions and their properties, in particular the mean systematic
error ��

H0
. For the symmetric Gaussian distribution we of

course have �þ
H0

¼ ��
H0
.

Discussion.—To estimate the mean systematic error on
local determinations of the Hubble constant, we average
the 68% confidence level on �H=H over the survey range,

��
H0

¼
�Z zmax

zmin

dzWSNðzÞ
�
�H�

H

�
2
�
1=2

: (5)

In the equation above, the quantity WSNðzÞ represents the
redshift distribution of the SNe used in Ref. [2], which is
peaked at the lower redshifts. It is important to stress at this

point that we are assuming that the SNe are isotropically
distributed over the sky. This implies that we are neglecting
the effect of the anisotropic distribution of the sources,
which could sizably increase the magnitude of the cosmic
variance. We list in Table I the numerical values of Eq. (5)
for combinations of cases where either the Gaussian dis-
tribution of Eq. (3) or the skewed log-normal distribution
of Eq. (4) is used.
As �H=H is naturally larger at lower redshift, the value

of �H0
depends strongly on WSNðzÞ and, in particular, on

zmin and zmax. If one were to extend the upper range of zmax,
then the cosmic variance �H0

could be reduced at the

cost that the uncertainty in the values of the cosmological
parameters �m, ��, negligible in the current analysis,
would begin to play a role. Alternatively, one could reduce
the effect of the cosmic variance by increasing the lower
cutoff zmin. As discussed earlier, Ref. [23] claims that the
expansion rate estimated from SNe within 74h�1 Mpc
(corresponding approximately to z ¼ 0:023) is 6:5%�
1:8% greater than the one measured from SNe outside
this region. Consequently, one can alleviate the Hubble
bubble effect by adopting zmin ¼ 0:023 [2]. In Table I,
we also show the values of �H0

corresponding to this

choice. The median redshift of the SN redshift distribution
is zmedian ’ 0:025 if zmin ¼ 0:010 is used and zmedian ’
0:033 if zmin ¼ 0:023 is adopted instead. Also, from
Figs. 2 and 3 one can see that this mismatch of 6.5% can
be explained by a local inhomogeneity in agreement with
the Standard Model at about 2�R.
It is now natural to ask how much this additional error

from the cosmic variance of our local gravitational poten-
tial can relieve the tension of 9% between the central
values of the two observations discussed at the beginning.
Before proceeding, however, we should point out that
Ref. [2] besides limiting in most of the analysis the sample
to zmin ¼ 0:023 also tries to address the cosmic variance
uncertainty by correcting each SN Ia on the Hubble dia-
gram for the expected perturbation of its redshift as deter-
mined from the IRAS PSCz density field [43], in particular
by adopting the model B05 of Ref. [8]. The result of this
velocity correction causes the final value of H0 to decrease
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FIG. 3 (color online). The 68%, 95%, and 99.7% confidence-
level probabilities of log-normally distributed matter fluctuations
(right vertical axis) and consequently of the local Hubble para-
meter (left vertical axis), as a function of co-moving size of the
matter fluctuation (top ticks) or, equivalently, redshift (bottom
ticks). As in Fig. 2, we show the 1-� band relative to the value
Hlocal

0 =HCMB
0 � 1.

TABLE I. Cosmic variance ��
H0

of the local Hubble parameter calculated using Eq. (5). pgau and plogn denote the statistical
distribution used to describe the density contrast, ��=�, Gaussian (3) or log normal (4). zmin denotes the minimum redshift of the SNe
included in the sample. The Gaussian distribution has symmetric errors, �þ

H0
¼ ��

H0
. The quantity �Hþ

0 gives the absolute error

relative to �þ
H0

for Hlocal
0 . Finally, �H � jHlocal

0;unc �HCMB
0 j ¼ 2:5� describes how much the tension between the CMB and local

measurement of H0 is reduced when �
þ
H0

is included as a systematic error. The quantity Hlocal
0;unc is the 0.5%-greater uncorrected value of

the local Hubble constant; see the main text for more details.

Case

Density contrast

distribution zmin �þ
H0

[%] ��
H0

[%] �Hþ
0 ðkm=sÞ=Mpc

Adding errors

linearly

Adding errors

in quadrature

I pgau of Eq. (3) 0:010 2.1 2.1 1.58 �H ¼ 1:6� �H ¼ 2:1�
II plogn of Eq. (4) 0:010 2.4 1.7 1.79 �H ¼ 1:5� �H ¼ 2:1�
III pgau of Eq. (3) 0:023 1.2 1.2 0.90 �H ¼ 1:9� �H ¼ 2:4�
IV plogn of Eq. (4) 0:023 1.3 1.1 0.97 �H ¼ 1:8� �H ¼ 2:4�
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by 0:5%� 0:1%. While this approach is in our opinion the
right way to proceed so as to deal with the cosmic variance,
in light of the tension between HCMB

0 and Hlocal
0 and the

uncertainties in the model of Refs. [8,44], we think it is
worth considering the case in which one does not use the
results of Ref. [8] and more conservatively estimates the
variance stemming from standard inhomogeneities. We
therefore compare the global HCMB

0 to the 0.5%-greater

uncorrected value of Hlocal
0;unc ¼ 74:2� 2:4 km s�1 Mpc�1.

This slightly increases the tension, which is now �H �
jHlocal

0;unc �HCMB
0 j ¼ 2:5�. As the error from cosmic vari-

ance is systematic in nature, it should be kept separate from
the statistical one. Just to give a rough estimate, we list in
Table I how much the tension is reduced by adding the
errors linearly or in quadrature. When using the log-normal
distribution, we employ the value �þ

H0
as Hlocal

0 >HCMB
0 .

Conclusions.—The simple analysis of this Letter carries
two messages. The first is that local measurements of the
Hubble parameter are limited to the minimum systematic
error �Hþ

0 listed in Table I. These results qualitatively

agree with previous estimations of the cosmic variance of
the local expansion rate (see e.g., Refs. [20,29,30]).

The second point is that by including the effect of a local
inhomogeneity—in particular a local underdensity—the
tension between CMB and local measurements of the
Hubble constant is alleviated, even though only partially.
One can quantify the remaining tension by estimating the
probability that inhomogeneities stemming from a stan-
dard matter power spectrum can explain the 9% discrep-
ancy. We show in Fig. 4 the result for the four cases
discussed in Table I: it is evident that one needs a very
rare large-scale structure to explain away the offset in the
Hubble rates. If this tension is further increased [45],
a cosmology beyond the Standard Model may prove
necessary.

Of course, a more thorough analysis is needed to pre-
cisely quantify the effect of the local inhomogeneity on

measurements of the expansion rate, possibly by introduc-
ing the effect of perturbations of the local gravitational
potential directly in the first steps of the data analysis, as in
Ref. [2]. Nonetheless, the results of this Letter provide a
quick and easy way—Eqs. (1) to (5)—to estimate the
systematic error �H0

, which can be specialized to a given

survey by using the corresponding distribution of standard
candles WSNðzÞ.
Finally, in the present era of ‘‘precision’’ cosmology it is

of crucial importance to fully understand the source of this
offset in the Hubble rates, if it is a mere systematic error or
new physics. If one neglects this issue, a fit of a cosmo-
logical experiment at large scale combined with local
measurements of the Hubble constant biases the extracted
cosmological parameters, e.g., the equation of state of dark
energy and the effective number of relativistic degrees of
freedom. On the other hand, disregarding local measure-
ments on the basis of this disagreement might potentially
obscure a hint of cosmology beyond the Standard Model.
This is clearly shown by the analysis of the Planck
collaboration; see, e.g., Eqs. (91–93) in Ref. [3].
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