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ABSTRACT

We consider a principal problem, that of the possible dominating role of self-consistent gravitational interaction in the formation of
cosmic structures: voids and their walls in the local Universe. It is in the context of the Hubble tension as a possible indication of the
difference in the descriptions of the late (local) and early (global) Universe. The kinetic Vlasov treatment enables us to consider the
evolution of gravitating structures where the fundamental role has the modified gravitational potential with a cosmological constant,
leading to the prediction of a local flow with a Hubble parameter that is nonidentical to that of the global Hubble flow. The Poisson
equation for a potential with an additional repulsive term, including an integral equation formulation, is analyzed, and we predict the
appearance of multiply connected two-dimensional gravitating structures and voids in the local Universe. The obvious consequence
of the developed mechanism is that the cosmological constant poses a natural scaling for the voids, along with the physical parameters
of their local environment, which can be traced in observational surveys.

Key words. large-scale structure of Universe

1. Introduction

The recently emerged Hubble tension can be an indicator of
certain, still unnoticed, genuine differences in the descriptions
of the late and early Universe (Riess 2020; Riess et al. 2022;
Di Valentino et al. 2021; Dainotti et al. 2021, 2023). Namely, the
discrepancy between the Hubble constant values obtained from
local surveys and global, cosmic microwave background data
can imply the need to also consider nonidentical mechanisms
of cosmic structure formation at local and global scales (e.g.,
Capozziello & Lambiase 2022; Bouchè et al. 2022).

The formation of the large-scale matter distribution of
the cosmic voids and web, filaments, and clusters of galax-
ies are considered a result of the evolution of initial den-
sity fluctuations (Peebles 1993). Zeldovich pancake theory
(Zeldovich 1970; Arnold & Shandarin 1982; Shandarin 1989;
Shandarin & Sunyaev 2009) provides deep insights into certain
features of cosmic structures.

Among various approaches to addressing the Hubble tension
is the prediction of two Hubble flows, local and global ones,
which are described by two similar sets of equations but non-
identical Hubble constants. The local flow is based on the fol-
lowing principal concept: Gurzadyan (1985) proved (as a theo-
rem) that the general function for the force satisfying the identity
of sphere-point gravity has the form

F(r) =

(
−

A
r2 + Λr

)
r̂. (1)

It is remarkable that this function satisfies the first statement of
Newton’s shell theorem (i.e., the sphere-point identity) but not
the second part, namely, the force-free field inside a shell (for
details, see Gurzadyan 2019; Gurzadyan & Stepanian 2018).

Equation (1), as weak field general relativity (GR), allows the
dynamics of groups and clusters of galaxies to be described
(Gurzadyan & Stepanian 2019, 2020). Observational indications
include the influence of halos on the properties of spirals in
galaxies (e.g., Kravtsov 2013), which supports the notion of a
non-force-free field inside a shell predicted by Eq. (1).

Due to the second term in Eq. (1), the cosmological con-
stant, Λ, emerges in nonrelativistic cosmologies, namely those
of McCrea & Milne (1934) and Zeldovich (1981). As a result,
one has two equations that look similar but have drastically dif-
ferent contents (Gurzadyan & Stepanian 2021a,b):

H2
local =

8πGρlocal

3
+

Λc2

3
, (2)

H2
global =

8πGρglobal

3
+

Λc2

3
. (3)

The first equation defines the nonrelativistic (non-GR) local flow
determined by the repulsion of the Λ term in Eq. (1) and, hence,
with a local Hubble parameter. The second equation is the Fried-
mann equation for the Friedmann-Lemaitre-Robertson-Walker
metric and flat geometry, with the global Hubble parameter. As
shown in Gurzadyan & Stepanian (2021b), an analysis of these
equations that takes the difference in the content of the matter
mean densities into account – local and global ones (ρlocal and
ρglobal) – explains the quantitative discrepancy between the local
and global values of the Hubble parameter and thus the Hubble
tension.

In this context, our present analysis assumes a principal dif-
ference in the treatments of the late (local) and early (global)
Universe and hence the need of different techniques to address
the formation of structures on local and global scales. Namely,
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while the evolution of primordial fluctuations is considered to be
responsible for the global matter distribution, the role of the self-
consistent gravitational interaction can play an important role in
the formation of local structures. Hence, we continue the kinetic
Vlasov analysis (Gurzadyan et al. 2022) of the formation of the
cosmic voids and walls.

We show the emergence of structures, two-dimensional walls
and voids, based on an analysis of the properties of solutions of
kinetic Vlasov-Poisson system equations, where the fundamen-
tal role has the potential of Eq. (1) with the repulsive cosmolog-
ical constant term. Particularly, using the methods of bifurcation
theory and analyzing solutions of integral equations, we show
the possibility of multiply connected two-dimensional gravitat-
ing structures appearing. The results predict the dependence of
void scales on the local physical parameters.

2. Vlasov-Poisson equations for modified
gravitational interaction with a cosmological
constant

We began with consideration of the mechanism for the
emergence of cosmological structures within a nonrelativistic
McCrea-Milne model of expansion of the Universe with the
modified gravitational interaction of Eq. (1) (Gurzadyan 1985).
We considered a sphere of mass M(R) that contains particles of
the same mass, m, such that the mass of particles in the ball
M =

∫
m f (x, u, t) dmdu (including in the case of a uniform dis-

tribution, M = 4πρR3/3), and the law of conservation of energy
in the form

1
2

(dR
dt

)2
−

GM
R
−

c2Λ

12
R2 = E = const. (4)

For the Hubble parameter, H (here defined as dR/dt = HR), we
get the equation

dH
dt

+ H2 +
4πGρ

3
−

1
6

c2Λ = 0. (5)

We assumed the values R(t = t0) = R0, H(t = t0) = H0, and
ρ(t = t0) = ρ0 at t = t0. We could thus define the value of the
constant E = E0 = (1/2)H2

0R0 − G · 4π
3 ρ0R2

0 −
c2

12 ΛR2
0, and the

initial conditions for the differential equation for the evolution of
a sphere of radius R(t),(

dR
dt

)2

=
a1

R
− a2R2 − a3, a1 ≡

8π
3

Gρ0R3
0, a2 ≡

c2Λ

12
,

a3 ≡
8π
3

GR3
0
(
ρ0 −

3H2
0

8πG
−

3c2Λ

8πGR0

)
. (6)

Solutions of Eq. (6) can be expressed in terms of degenerate
elliptic Legendre integrals of the third kind (see, for example,
Bateman & Erdelyi 1955):

R(t) = I∗3(−a2, 0,−a3/6, a1/4, 0).

At Λ ≡ 0, one has the classical open (infinitely expanding) and
closed Friedmannian models. In this case, the Cauchy data for
the considered ordinary differential equations are usually taken
as R(t = 0) = 0, R′t(t = 0) = +∞. It should be noted that the
case of the nonzero cosmological constant Λ does not lead to a
fundamental change in the structure of solutions to the Cauchy
problem (Eq. (6); see Vedenyapin et al. 2019, 2021).

The McCrea-Milne model with the modified potential of
Eq. (1) is stable with respect to a change in the initial data,

which is due to the self-similarity of its solutions and the theo-
rem in Gurzadyan (1985) on the general form of the potential for
a spherical region. Thus, to study the structure formation in the
local Universe, one can use the Vlasov-Poisson equations with-
out taking the GR effects into account. Obviously, the presence
of an additional repulsive Λ term on the right side of the Poisson
equation is not due to the GR metric but to Eq. (1).

We are interested in analyzing the properties of deviations
from the state of local equilibrium of systems governed by
Vlasov-Poisson equations. As the uniform distribution does not
imply equilibrium in the general case in a system of massive
particles with an additional oscillatory interaction of geometric
genesis (for the total super-harmonic potential), one can study
the evolution of matter in the vicinity of particle clusters as a
result of the evolution of cosmological fluctuations. Then, one
can introduce the concept of relative equilibrium, where the dis-
tribution of particles of a given equilibrium state satisfies the
principle of maximum entropy and, for example, have the prop-
erty of averaging over a set of hydrodynamic macro-parameters
(see Vedenyapin et al. 2019, 2021).

The system of Vlasov-Poisson equations that describes the
dynamics of a many-particle system for a d-dimensional case
(d = 2, 3) for particles of equal masses, m, within the repre-
sentation of a self-consistent gravitational field is written in the
following form (Vlasov 1961, 1978),

∂F(x, u, t)
∂t

+ divx(uF) −
∂F
∂u
∇xΦ(F) = 0,

Φ(F) ≡
∫
ωx′

∫
ωu′

Yd(|x − x′|)F(x′, u′, t∗) dx′du′, (7)

where Yd(x−x′) ∼ Y (1)
d (|x−x′|)+Y (2)

d · |x−x′|2 (the function cor-
responding to the attraction between particles) is Y (1)

d (x − x′) ∈
Lloc

1
⋂

C2(ω̄) and is integrable (and has a proper smoothness out-
side zero) in some bounded domain ωd = ωx ⊂ R

d function. The
Y (2)

d ∈ R1 is a function that depends on the cosmological con-
stant, Λ. We have assumed that, from the point of view of an
external observer, the cosmological expansion affects the sub-
structures of the quasi-two-dimensional physical structures in
the same way as in the three-dimensional case.

It can be shown (see Sect. 3) that, for an arbitrary finite time
t∗ ∈ R1

+, the modified Poisson equation is

∆
(d)
x Φ(F)

∣∣∣
t=t∗,∀t∗∈R1

+

=
2πd/2

Γ(d/2)
Gρ(x) −C1,

ρ(x) ∼ m
∫

F(x, u, t∗) du (G3 ≡ G, C1 = C1(Λ)). (8)

Equation (8) takes the form of the so-called (inhomogeneous)
Liouville–Gelfand equation (LGE; Gelfand 1963) if we take
the density distribution of particles equal to that in the case of
the Maxwell–Boltzmann integration distribution function. Here-
inafter we do not take into account the dependence of the equi-
librium distribution function on integrals of motion other than
energy: F = F0(x, u, t∗) ∝ Ω

(
ε[u(t∗); Φ(x)]

∣∣∣
ext

)
in terms of veloc-

ities (a regular branch of Φ is chosen). In this case, in the energy
neighborhood of the local extremum, one has

dΩ/dε
∣∣∣
r→rc
≈ 0, rc =

(
Gm/(3Λc2)

)1/3
. (9)

In this case, the force term in the Vlasov equation is either
vanishing or possesses a turning point on the phase plane of
the evolution of the system, and we get a relative equilibrium
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(or quasi-stationary) state as a solution of the Vlasov-Poisson
equations system. It is characterized by the average quasi-
equilibrium statistical temperature of the system, T , and the
potential gauge or density, ρ0 = A exp(−Φ(0)/T ), or the spatial
distribution in a point: x = 0, as well as by the selected energy
level of particles on the regular branch of the potential. For the
sake of simplicity, we provide Eq. 10, an explicit form of the
LGE for the two-dimensional case:

−∆(2)U = λ exp(U) − c2Λ/T, U = −Φ/T, (10)

λ = 2GmNρ0/T, T ≡ −
∂Φ/∂x j

∂ρ/∂x j

∣∣∣
j=1,2.

From a mathematical point of view, the potentials (solutions of
the LGE) correspond to the continual matter density distribu-
tion (in the ω ⊂ Rd calculation area with given conditions on
the ∂ω boundary). Obviously, this distribution is definitely ide-
alized from a physical point of view. However, based on Theo-
rem 1.3 in Esposito et al. (2005) and Brezis & Merle (1991), it
can be argued that, when the internal parameters of the function
λ(ρ0,T ) are changed in a limited area of space, there is a system
of discrete masses, qi

∣∣∣
i=1,k (defined in terms of singular points of

Robin functions), whose action on a distant particle is equivalent
to the given continuous distribution of matter:

λ exp(Uλ)∫
ω

exp(Uλ)dx
⇀ 8π

k∑
i=1

δqi
. (11)

Since there is scale invariance here, we can see that the replace-
ment of discrete particles on a continuum distribution is valid
both for a local single cluster (for example, understood as an
elementary substructure) and for the system of two-dimensional
walls. The gravitational potential in the neighborhood of the
extremum point is close to constant, and the influence of the
self-consistent fields on particle motion is absent; therefore, the
inertial motion of particles leads to relatively long-duration for-
mations whose local topology is not distorted.

We have assumed that the variation in the action over the
gravitational field (resulting in the Poisson equation) and vari-
ation over particles (leading to the equations of motion along
geodesics, and after the introduction of the distribution func-
tion particles to the Liouville equation) are independent oper-
ations. Thus, we can separate in the first approximation the
particle distribution evolution equation and equations for self-
consistent gravitational fields, assuming that particles move in a
given field and that changes in the particle distribution function
occur in accordance with the solution of the Liouville equations
(Vedenyapin et al. 2011). Thus, we can study the equation for the
potential separately, although it is essentially nonlinear. To study
it, one needs to use methods of branching theory for solutions
of nonlinear equations. However, important conclusions can be
drawn even from the linearized version of the equation for the
gravitational potential, which we demonstrate below.

3. Equation for the gravitational potential in integral
representation

We considered a system of N point bodies with equal masses,
m, interacting via the modified gravitational potential of Eq. (1).
The Hamiltonian of the system has the form

(HN)ε =

N∑
j

( p2
j

2m
+

∑
i

′

Φ(2)
ε (|xi − x j|) + mΦext(x j) + B(∂ω, x j)

)
, (12)

where Φext(x j) is the potential of the external gravitational
field at a point (x j), and B(∂ω, b f x j) is the potential energy
of the interaction of particles with boundaries, which includes
the reflection of particles from the boundary (periodicity of the
boundaries) and the impact due to a change in the local tem-
perature at the boundary of near-equilibrium particles inside the
ω region (see Kiessling 1989, 1993). The index ε of the two-
particle potential Φ(2)(r(x, x′)

)
∼ c1/|x− x′|+ c2|x− x′|2 implies

the regularization of a weakly polar function with a small argu-
ment; in other words, under the integral we replaced (e.g., in the
three-dimensional case) the function Φ(2)(r) with the function

Φ(2)
ε

(
r(x, x′)

)
={

(c1r(x, x′))−1 + c2r2(x, x′), r(x, x′) ≥ ε;
(2ε)−1 ·

(
3 − |r(x, x′)|2/ε2) + c2r2(x, x′), r(x, x′) < ε.

(13)

In this case, the volume integral potential with a summable
bounded density of particles is a continuous function up to the
boundaries of the system. In the absence of significant gradi-
ents of macro-characteristics, the particles of the system can be
described using the formalism of the canonical ensemble, char-
acterized by the corresponding (near-)equilibrium density in the
phase 6N-dimensional space:

%N = (N!Ωε)−1 exp(−HN/T ), (14)

Ωε = (N!)−1
∫

exp(−(HN)ε/T )
∏

j

dx jdpj. (15)

The canonical probability measure of particles in the configura-
tion subspace has the form

µN(T ) = Θ−1
ε exp

(
−

1
2

∑
j<i

Φε(|x j − xi|)/T
)
dωN , (16)

dωN ≡

N∏
k

exp
(
− mΦ(xk)/T

)
dxk, (17)

Θε =

∫
expω

(
−

1
2

∑
j,i; j,i

Φε(|x j − xi|)/T
)
dωN , (18)

and the divergence of the configuration integral Θε → ∞ at ε →
0 yields |x j − xi| → 0. Separating two particles from the N-
particle ensemble (xN ≡ x, xN−1 ≡ x′), we can consider the
density of the probability measure PN(x, x′, ωN−2; ε):

PN(x, x′, ωN−2; ε) = (19)

Θ−1
ε (N,T ) exp

(
− Φε(|x − x′|)

)
P(x, x′, ωN−2; ε),

where P(. . .) is a positive function that includes the interaction
potentials of other particles, and PN(x, x′, ωN−2; ε → 0) → 0
(x , x′). So, w∗ − limε→0PN(x, x′, ωN−2; ε) = PN−2(r)δ(x − x′).
Then, we can consider the canonical ensemble in the mean field
limit for de-singularized potentials. According to the Hewitt–
Savage representation theorem on the permutation-invariant
probability measure (Hewitt & Savage 1955), any such (admissi-
ble) measure, µ, of the configuration subspace of the phase space
of the many-particle system under consideration can be repre-
sented as an integral over d% = ρ(x)d3x, ρ(x) and can be consid-
ered in the classical density form. The free energy functional for
our system in this case has the form

F (ρ) =
1
2

∫
ω

∫
ω′
ρ(x)ρ(x′)NΦε(|x − x′|)dxdx′ (20)

+

∫
ω

1
2
ρ(x)ζ(x)dx +

∫
ω

ρ(x) ln
(
ρ(x)

)
dx,

ζ(x) = mΦext(x) + B(∂ω, x). (21)
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The minimization of F (ρ) occurs with the functions

ρ(x) = R−1 · exp
(
T−1( ∫

ω′
ρ(x′)NΦε(|x − x′|)dx′ + ζ(x)

))
, (22)

R ≡

∫
ω′

exp
(
T−1( ∫

ω′
ρ(x′)NΦε(|x′′ − x′|)dx′ + ζ(x′′)

))
dx′′.

(23)

Since the most probable state of a thermodynamic system cor-
responds to the minimum free energy, the solution of Eq. (23)
corresponds to the equilibrium density distribution in the multi-
particle system.

If we recall the original Vlasov-Poisson equation, Eq. (2),
the simplest stationary solution of Eq. (23) is the function
f (x, u) = f̂ (χ), where χ = mu2/2 + Φ(x) (energy substitu-
tion) and f̂ (χ) ∈ C2(R).The Poisson equation when choosing
f̂ (χ) = c1 exp(−χ/T ) (the Maxwell-Boltzmann equilibrium dis-
tribution known from collisional theory) can be represented as

∆(d)Φ = Gκd(T ) exp (−Φ/T ) − c2Λ, (24)

κd(T ) = c0|sd |
2
∫
R1

+

exp
(
−η2/(2T )

)
ηd−1dη, (25)

where |sd | is the area of the d-dimensional sphere of unit radius.
In this case, the potential Φ(x) refers to the averaged self-
consistent field determined by integrating into formula (22) the
local densities of particles with a nucleus in the form of an inter-
particle potential, Φε(x − x′). Accordingly, the density of par-
ticles, as noted in Sect. 2, can be considered as a continuous
argument function, and with it we can pass to the weak topol-
ogy of isolated points. The equivalence of temperatures for the
canonical and micro-canonical descriptions, generally speaking,
is not too obvious, but significant problems can only arise for
strongly nonequilibrium systems with negative thermodynamic
temperatures. The influence of system boundaries (Eq. (22)), in
turn, is extremely important. We will deal with this issue in the
future, using a more appropriate formalism.

The form of the LGE for the gravitational potential in cos-
mological systems is essentially local (as it is a differential equa-
tion), and it is difficult to use it to describe global processes in
a self-consistent field in order to analyze the evolution of the
entire system of particles (substructures). When studying nonlo-
cal effects, it is expedient to consider the integral version of the
equation for the potential. However, a natural limitation for the
use of this form in analytical and numerical calculations is the
obvious need to take into account the boundaries of the region
that contains the system of particles with regards to the value of
the potential at a given point (i.e., the explicit form and effects
of the term ζ(x) in Eq. (22)). Of course, this is due to the fact
that, for a system of particles interacting according to the law of
Eq. (1), the zero Dirichlet condition, Φ(x

∣∣∣
∂ω

) = 0, has to apply
to the boundary of the region under study. This condition is sub-
tle, for example, for the general, though unrealistic, case of an
asymmetric many-particle system.

We considered the following physical problem regarding the
structure of the local (late) Universe where there are high den-
sity regions, consequences of cosmological fluctuations at ear-
lier phases: can the gravitational interaction between these ω j
regions (each of which contains, e.g., a hierarchy of substruc-
tures of various sizes) or in the vicinity of each region form
a (quasi-)stationary ordered structure? The essential difference
compared to a charged plasma with Debye screening, which
allows pseudo-homogeneous equilibrium particle distributions,

is that the cosmological substructures evolving from primary
perturbations of density macroscale objects are spherically sym-
metric (d = 3) or radially symmetric (for d = 2), according to
the Gidas–Ni–Nirenberg theorem (Gidas et al. 1979). In accor-
dance with the structure of the inter-particle potential, Yd, in the
neighborhood spheres with increased density, a radially symmet-
ric layer arises, in which the attraction to the center of the sphere
interplays with a semi-infinite spherical layer with a prevailing
repulsion. For a system of two spheres that contain matter of
increased density, there is competition between those two cen-
ters, leading either to the destruction of one of them or, in con-
nection with the cosmological expansion, to the emergence of
repulsion zones between them.

Two approaches can be considered when searching for the
gravitational potential in the vicinity of a region that contains a
system of interacting particles.

The first is a solution of the equation for the potential (inho-
mogeneous LGE) under given Dirichlet conditions on some a
priori defined boundary of the region, ∂ω j; this boundary should
include only one local overdensity. In this case, one can con-
sider both the internal and external Dirichlet problems, which
correspond to attempts at establishing the values of the poten-
tial (and, hence, the density of particles) inside and outside the
∂ω j boundary shell, respectively. Influence potentials of neigh-
boring regions can be neglected under certain conditions. The
data at the boundaries must be consistent with the resulting solu-
tion (i.e., they must be a continuity of the solution).

A second, similar situation can also be considered for the
Neumann problem; however, it is possible to define the bound-
ary of the ∂ω j domain due to the presence of a maximum of the
interaction potential (at this point, the derivative of the poten-
tial vanishes). However, in such a formulation, a question natu-
rally arises regarding the legitimacy of describing the dynamics
of the region of the particles only as the zone of attraction of the
potential.

The physical aspects of this problem obviously determine the
way additional conditions for the nonlinear potential equation
are set. We restricted ourselves to using the Dirichlet conditions
(due to the shell theorem on the equivalence of the gravitational
field of a sphere and a point at its center). Thus, we are inter-
ested in whether inside (or outside) the fixed region, ω, for a
given value of the potential at the boundary, there are secondary
solutions of the LGE, Eq. (24), that possess a (quasi-)periodicity
property.

The solution of the Dirichlet problem for the Poisson equa-
tion, according to Gilbarg & Trudinger (1983) and Sauvigny
(2006), can be represented through the Green’s elliptic opera-
tor and the value of the potential at the borders. Explicitly, this
solution is

Φ(x) = −

∫
ω

G(x, x′)
(
Gρ(x′) −

c2Λ

4π

)
dx′

−
1

4π

∫
∂ω′

Φ|∂ωn ·
∂

∂x′
G(x, x′)|∂ωdS ′, (26)

where G(x, x′) is Green’s function of the Dirichlet problem for
the inhomogeneous Poisson equation. If we choose a ball of
radius R (ω = {x̃; 0 ≤ |x̃| ≤ R}), then it is possible, if the dis-
tribution of particles is close to the isotropic one, to assume the
values of the potential at its boundary, in accordance with the
theorem in Gurzadyan (1985), as

Φ|∂ω = −GM/R − c2ΛR2/6, (M = Nm). (27)

Replacing ρ(x) = (4π)−1κd(T )G exp
(
− Φ/T

)
, and defining,

according to the Nowakowski (2001), the Green’s function for
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the considered Dirichlet domain,

G(x, x′) ≡ 4π
∞∑
`=0

∑̀
m=−`

Y∗`m(θ′, ϕ′)Y`m(θ, ϕ)
2` + 1

x`<x`>
R2`+1 , (28)

x< = min(|x|, |x′|), x> = max(|x|, |x′|),

we obtain a nonlinear integral equation for the potential Φ(x)
(for d = 3):

Φ(x) = −κd(T )G
∫
ω′

( 1
|x − x′|

− G(x, x′)
)

(29)

exp
(
− Φ(x′)/T

)
dx′ −

c2Λ

6
x2 + C0,

C0 = −
GM
R
−

c2ΛR2

6
. (30)

After obvious transformations, this can be rewritten as an inho-
mogeneous Hammerstein-type equation for the dimensionless
potential, UH:

UH(x) = Ŵ
(
UH(x)

)
, Ŵ

(
UH(x)

)
≡ λH(T )

∫
ω′

( 1
|x − x′|

− G(x, x′)
)

︸                    ︷︷                    ︸
K(x,x′)

exp
(
− UH(x′)

)
dx′+

(31)

+ α(Λ,T )|x|2;

λH(T ) ≡
−κ3(T )G3

T
exp

(
−

C0

T
)
, α(Λ,T ) = −

c2Λ

6T
,

UH =
Φ −C0

T
. (32)

It should be noted that, for a spherically symmetric density dis-
tribution,∫
ω′
G(x, x′)ρ(x′)dx′ → C1(= const). (33)

4. Formation of voids

Equation (31) contains information about the behavior of the
considered cosmological, non-GR dynamics of a many-particle
system with the gravitational interaction of Eq. (1). First of all,
we should point out the obvious absence of a solution for this
equation for d = 3 in the entire area of study (and in the whole
space, except for two-dimensional surface isograves) in the form
of a constant potential, in contrast to the classical Newtonian
case of only attractive gravity. So, in this case, the global uniform
distribution of matter, as a condition for matching the modified
Poisson equation and the Vlasov equation, can only be consid-
ered as a certain approximation; a more comprehensive analysis
is needed for more general cases.

We considered a linearized (near the point UH(0) = U0) ver-
sion of Eq. (31) in the homogeneous and inhomogeneous cases:

U† = Ŵ0′
(
U†

)
, U‡ = Ŵ0′

(
U‡

)
+ α|x|2. (34)

Operator Î − Ŵ0′ , where Ŵ0′ ≡ Ŵ
′[U0] is a Frechet derivative

of the Hammerstein integral operator on the right side of the first
equation, belongs to the class of zero-index Noetherian operators
with a weak singularity. Since Green’s function is symmetric to
its coordinates, for matter distributions that slightly deviate from

spherically symmetry, Ŵ0′ can also be considered self-adjoint.
For a small deviation in the amplitude of δU† from the selected
solution, one can apply the well-known mathematical apparatus
for the analysis of Fredholm operators to the homogeneous linear
equation δU†−λ

∫
ω′
K(x−x′) exp(−U†0)δU†dx′ = 0. To simplify

the calculations without losing generality, we can take U†0 = 0
and look for periodic solutions of the last equation in the form
of an expansion in terms of eigenfunctions b j = cω exp(iqx) of
the kernel K in ω ⊆ R3) in the form δU† =

∑
j a j(cω) exp(iqx)

(q`=1,2,3 = 2π/d; the cubic case can be generalized to d` , dk).
Substituting this expression into the first population equation,
Eq. (34), we have

1 = λ

∫
ω′
K(x − x′) exp

(
− iq(x − x′)

)
d|x − x′|. (35)

Here we introduce a critical value of the parameter λ = λc, cor-
responding to the case d → ∞, q` ≡ 0. Using it, we can write the
criterion for the existence of periodic solutions for the linearized
integral homogeneous Poisson equation:

λ =

( ∫
ω

K(r)
sin(qr)

qr
r2 drdθdφ

)−1
≥ λc

≡

( ∫
ω

K(r)r2 sin(θ) drdθdφ
)−1
. (36)

Obviously, this criterion is suitable only for the case Λ ≡ 0, and
only for the two-body interaction approximation. This implies
that the root, q, of Eq. (35) is unique and, thus, that the potential
distribution will be purely periodic. As there are several incom-
mensurable roots of qs, the distribution of the potential will
belong to the class of almost-periodic functions. The accounting
of collective interactions of N particles leads to a (homogeneous)
equation of the form

δU†(x) =
∑

k=1,...,N

∫
ω1

. . .

∫
ωk

Kk(x, x1, . . . , xk)

(
exp(−δU†(x1)) . . . exp(−δU†(xk))

)
dx1 . . . dxk. (37)

After linearizing this equation, we get (see Vlasov 1961)

δU†(x) =
∑

k

λk

∫
ω1

. . .

∫
ωk

Kk(x, b f x1, . . . , xk)

k∑
`

δU†(x`)
k∏

s=1

dxs. (38)

The corresponding criterion, criterion (4), for the occurrence of
three-dimensional periodic solutions can be represented in the
following form:∫
ω

∑
k

k∑
s

λk
sin(qr)

qr

( ∫
ω1

. . .

∫
ωs−1

∫
ωs+1

. . .

∫
ωk

Ks(x, x1, . . . , xk)
∏k

n=1 dxn

dxs

)
r2 sin(θ) drdθdφ = 1. (39)

Therefore, the accounting of the cluster interactions in a many-
particle system is consistent with the accounting of two-particle
interactions: the appearance of a periodic structure potential and
of the density of matter in a linear homogeneous approximation
occurs abruptly upon reaching a certain, quasi-equilibrium tem-
perature in the system. The periods of the structures are deter-
mined from conditions (35) and (39).
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For an inhomogeneous linear equation (the second half of
Eq. (34)), it is possible, using the Hilbert–Schmidt theorem
(Tricomi 1957), to obtain an explicit form of the (unique) solu-
tions in the form of a resolvent series, as uniformly and abso-
lutely convergent Fourier series in the eigenfunctions of the ker-
nel K , for λ , λ` (` = 1, 2, . . .):

δU‡(x) = λ

∫
ω

∞∑
`=1

b`(x)b`(x′)
λ` − λ

α|x′|2 dx′ + α|x|2, (40)

where λ` are the characteristic numbers of the homogeneous
equation (i.e., they correspond to the eigenfunctions b`(x)).

Thus, the periodicity of the structure, when Λ repulsion is
taken into account, degenerates (in the simplest case) into a
composition of sinusoidal functions and growing branches of
parabolas, which leads to a smoothing of the periodicity and
the dominance of repulsion at a certain distance, in the line of
interactions between two formed inhomogeneities in a pseudo-
homogeneous distribution of matter. This process can be con-
sidered a pair interaction and a mechanism for the formation of
voids in an initially uniformly distributed material continuum.
The anisotropy of particle momentum directions in the chan-
nels between I and II inhomogeneities forms not a cubic lattice
(d1,2,3 = d) but quasi-one-dimensional layers (d3 � d1,2). Their
velocity profile in these channels is decelerated for initially fast
particles and thus is synchronized as a uniform distribution in
velocity space, due to repulsion in the far zone of the second
component of the macro-system (i.e., the II inhomogeneity at
the other end of the channel). It can be assumed that a significant
part of the density inhomogeneity transforms into a flat structure
corresponding to the first potential minimum and that this situ-
ation is mirrored in the channel of pair interaction. The repul-
sion acts as an external force, and from the II side leads to the
quasi-stationarity of the wall formed by the I inhomogeneity and
vice versa. The Λ repulsion leads to initially attracting massive
inhomogeneities appearing at distances at which the repulsion
becomes more significant due to the influence of the cosmologi-
cal term.

As shown in Gurzadyan & Stepanian (2021a,b), based on an
analysis of observational data, the repulsive term in Eq. (1) can
dominate the attraction term depending on the mean matter den-
sity of certain galaxy clusters. Then, based on the above analy-
sis, one can conclude that, although the considered mechanism
of the void formation is common – the mutual interplay of the
self-consistent gravitational attraction and of the repulsion due
to the cosmological constant term – the voids can possess differ-
ent mean scales that are determined by the local conditions, the
density, and the initial momenta of particle flows. Thus, our pro-
posed method for analyzing the solutions to the Poisson equation
is able to explain the presence of voids of various scales.

The solution of the nonlinear Hammerstein equation for the
potential differs significantly from the solution of the Fredholm
equations. If first we turn to the case Λ ≡ 0 (homogeneity of
the equation), we can immediately see that Eq. (31) has a con-
stant solution, UH = U(0)

H = const. From a physical point of
view, this means that we are considering a medium that consists
of particles, the interaction between which corresponds to only
their mutual attraction, in which there are no primary perturba-
tions. Obviously, this is an extremely unstable system. But even
without an external influence leading to the local coalescence of
particles, when the parameter λ reaches a certain value, solutions
of a new type arise, branching off from the constant.

We denote λH = λ(0)
H + η, UH(x) = U(0)

H + u(x). Then, if
we expand the exponent in the integrand expression in a Taylor

series, following Bratu (1914), we get

u(x) − λ(0)
H exp(−U(0)

H )
∫
ω′
K(x − x′)u(x′)dx′

= η exp(−U(0)
H )

∫
ω′
K(x − x′)dx′ − η exp(−U(0)

H )∫
ω′
K(x − x′)u(x′)dx′

+ (η + λ(0)
H ) exp(−U(0)

H )
∞∑
j=2

(−1) j( j!)−1
∫
ω′
K(x − x′)

(
u(x′)

) jdx′.

(41)

Substituting u(x) =
∑∞

s=1(η exp(−U(0)
H ))s/2X(x) (here X(x) are

unknown functions to be defined), we obtain a sequence of link-
ing equations with a linear left-hand side of the form

N̂(D1) =

∫
ω′
K(x − x′)dx′ = 0, N̂(D2) =

∫
ω′
K(x − x′)(

1 + λ(0)
H exp(−U(0)

H )
(D1(x′))2

2!

)
dx′, . . . , (42)

N̂(D j) ≡ D j + λ(0) exp(−U(0))
∫
K(x − x′)D j(x′)dx′ (43)

(the operator associated with the homogeneous Fredholm
equation). We have already obtained the form of the first
term of a series of successive approximations: D1(x) =

cω · sin(qx). The equation N̂(D1) = 0 has periodic solu-
tions under the criterion λ(0) exp(−U(0)Ω(q) + 1 = 0,
Ω(q) ≡ 4π

∫
K(r)

(
sin(qr)/(qr)

)
r2dr). In accordance with

Vlasov (1961), we successively solved the above equations and
obtain a solution for u(x) :

u(x) =
∑
m=0

(
η exp(−U(0))

)m+1/2
( m∑
`=1 (I)

C(2m+1)
2`+1

sin
(
(2` + 1)qx

)
+(III) C2m+1 sin

(
qx

))
+

∞∑
m=1

(
η exp(−U(0))

)m
( m∑
`=1 (II)

C(2m)
2` cos

(
2mqx

)
+(III) C2m sin

(
qx

))
. (44)

The resulting series, subject to its convergence, is a periodic
function with T = T (|q|). Since all coefficients (i)C... can be
obtained explicitly by sequential calculation, we are able to
determine the numerical values of the amplitudes of harmonics
in a given Fourier series. Thus, one can obtain a “fine structure”
of the potential, which means that the density of particles in the
emerging structures branching off from the cosmological solu-
tion with a constant density parameter, η, is related to the dif-
ference between the temperature of the medium and the critical
temperature corresponding to the critical parameter, λc.

As already mentioned, this technique requires knowledge of
the “primary” solution to the homogeneous Hammerstein equa-
tion for the potential. Using the methods of the perturbation
theory of Fredholm operators (e.g., Keller & Langford 1972;
Krasnosel’sky 1964), one can construct a solution for the inho-
mogeneous Hammerstein equation based on the results obtained
above. If we denote Î+ ≡ Î − α|x|2, then Î+ − Ŵ0′ is a Noetherian
operator zero index, dimY = 1,Y ≡ Ker(Î+−Ŵ0′ ). The condition
that Î+ − Ŵ0′ has a pseudo-inverse – that is, a bounded inverse
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from the co-kernel complement Y∗⊥ in some complement Ȳ of
the kernel Y – is equivalent to the statement about the existence
of a unique element v ∈ Ȳ, such that (Î+ − Ŵ0′ )v = w, w ∈ Y∗⊥.
In this case, the nonlinear Hammerstein equation has a unique
solution:

(
λH(ε), uH(ε)

)
, where ε is a small parameter associated

with the temperature deviation from the critical one. The values
λH and uH are the limits of the sequences λµ+1(ε) = F+(uµ(ε)),
uµ+1(ε) = ε(φ0 + εvµ+1(ε)), and vµ+1 ∈ Ȳ (u0(ε) = εφ0, v0(ε) = 0,
where φ0 is an element Î+ − Ŵ0′ kernels). Thus, we have at our
disposal a procedure for obtaining a (unique) solution of an inho-
mogeneous nonlinear equation for the potential. Near it, we can
consider a certain neighborhood where new non-holomorphic
branches of its solution can appear. However, it is already clear
that the Hammerstein equation under study has a solution that is
locally close in its construction to the inhomogeneous Fredholm
equation. Further obtaining a solution constructed in a consistent
way outside the uniqueness-domain branching solutions (replac-
ing the constant solution for the homogeneous case) is practi-
cally equivalent to the homogeneous case.

Thus, it can be argued that the behavior of the potential
in a many-particle system is capable of creating conditions
for the emergence of two-dimensional structures, which can be
associated with the walls of voids. The inclusion in the Poisson
equation of an additional repulsive Λ term from Eq. (1) plays a
fundamental role here. Moreover, using the formalism developed
above, one can obtain the fine structure of the voids themselves,
since the solutions of the Hammerstein equation for the potential
have a very complex multi-periodic structure, which can be used
for comparison with observational data.

5. Conclusions

The emergence of two-dimensional structures such as Zeldovich
pancakes is associated with the density perturbations described
by classical or (weakly) relativistic hydrodynamics. Recent
observational tensions, such as the Hubble constant tension, can
require the consideration of nonidentical processes that lead to
structure formation and evolution on local and global cosmolog-
ical scales.

Thus, we have considered a description of the local Universe,
taking into account (i) the self-consistent many-particle interac-
tion by means of the Vlasov kinetic formalism and (ii) modified
gravity with the cosmological constant term from Eq. (1), that
is to say, the repulsion at galaxy cluster scales. This description
predicts two Hubble flows, local and global ones, with noniden-
tical Hubble parameters. Thus, in a certain sense, the Hubble
tension can be considered as empirical support of Eq. (1) and of
the presented mechanism of structure formation.

Based on these aspects, we have developed a kinetic model
for the occurrence of voids separated by two-dimensional sur-
faces, following from a rigorous analysis of the Poisson equa-
tion and its quasi-oscillatory solutions. We show the appearance
mechanism of voids of different scales, depending on the local
region of the Universe.

Its appearance in the Poisson equation with the modified
potential following from the theorem in Gurzadyan (1985) on
a general function for the “sphere-point” identity poses a mathe-
matical problem of the study of inhomogeneous Fredholm inte-
gral equations.

The principal consequence of the developed mechanism is
that the cosmological constant poses a natural scaling for the
voids, via the characteristic distance when the second, repulsive

Λ term dominates over the first term in Eq. (1):

rcr =

(
3GM
Λc2

)1/3

. (45)

This distance, rcr, together with the total mass within the cor-
responding volume, or, equivalently, with the mean density
in that volume, will determine the actual size of the voids
(Gurzadyan & Stepanian 2021a).

We can illustrate this quantitatively with the available obser-
vational parameters of the Virgo Supercluster and the Laniakea
Supercluster. For the Virgo Supercluster, one has M = 1.48 ×
1015 M� (Einasto et al. 2007; Reid et al. 2019), and the scale at
which the repulsive Λ term can lead to a local Hubble flow is
in the range 17.3 < r < 18.4 Mpc. For the Laniakea Superclus-
ter, one has the mass M = 1017 M� (Tully et al. 2014) and the
critical radius when the repulsion overwhelms the gravitational
attraction, rcr ' 51 Mpc. These parameters imply diameters of
voids from 35 Mpc up to 100 Mpc in such environments.

These predictions can be directly tested in observational sur-
veys, namely, via the search for correlations in the sizes of
the voids versus the total masses and mean densities of their
local regions (e.g., Ceccarelli et al. 2006; Gurzadyan et al. 2014;
Samsonyan et al. 2021a,b). Such studies, along with the dynam-
ics and the flows of galaxy clusters and superclusters, can be
instrumental in revealing whether there are additional tensions
in descriptions of the late and early Universe.
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