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Abstract

Inferring model parameters from experimental data is a grand challenge in many sciences, including cosmology. This
often relies critically on high fidelity numerical simulations, which are prohibitively computationally expensive. The
application of deep learning techniques to generative modeling is renewing interest in using high dimensional
density estimators as computationally inexpensive emulators of fully-fledged simulations. These generative models
have the potential to make a dramatic shift in the field of scientific simulations, but for that shift to happen we need
to study the performance of such generators in the precision regime needed for science applications. To this end, in
this work we apply Generative Adversarial Networks to the problem of generating weak lensing convergence maps.
We show that our generator network produces maps that are described by, with high statistical confidence, the
same summary statistics as the fully simulated maps.
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1 Introduction
Cosmology has progressed towards a precision science
in the past two decades, moving from order of magni-
tude estimates to percent-level measurements of funda-
mental cosmological parameters. This was largely driven
by successful CMB and BAO probes (Planck Collabora-
tion et al. 2018; Alam et al. 2017; Bautista et al. 2018;
du Mas des Bourboux et al. 2017), which extract informa-
tion from very large scales, where structure formation is
well described by linear theory or by the perturbation the-
ory (Carlson et al. 2009). In order to resolve the next set
of outstanding problems in cosmology—for example the
nature of dark matter and dark energy, the total mass and
number of neutrino species, and primordial fluctuations
seeded by inflation—cosmologistswill have to rely onmea-
surements of cosmic structure at far smaller scales.
Modeling the growth of structure at those scales involves

non-linear physics that cannot be accurately described an-
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alytically, andwe instead use numerical simulations to pro-
duce theoretical predictions which are to be confronted
with observations. Weak gravitational lensing is consid-
ered to be one of the most powerful tools of extracting in-
formation from small scales. It probes both the geometry
of the Universe and the growth of structure (Bartelmann
and Schneider 2001). The shearing and magnification of
background luminous sources by gravitational lensing al-
lows us to reconstruct the matter distribution along the
line of sight. Common characterizations for gravitational
lensing shear involve cross-correlating the ellipticities of
galaxies in a two-point function estimator, giving the lens-
ing power spectrum. By comparing suchmeasurements to
theoretical predictions, we can distinguishwhether, for ex-
ample, cosmic acceleration is caused by dark energy or a
modification of general relativity.
The scientific success of the next generation of photo-

metric sky surveys (e.g. Laureijs et al. 2011, LSSTDark En-
ergy ScienceCollaboration 2012, Spergel et al. 2015) there-
fore hinges critically on the success of underlying simu-
lations. Currently the creation of each simulated virtual
universe requires an extremely computationally expensive
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simulation on High Performance Computing (HPC) re-

sources. That makes direct application of Markov chain

MonteCarlo (MCMC,Metropolis et al. 1953,Gelman et al.

2013) or similar Bayesian methods prohibitively expen-

sive, as they require hundreds of thousands of forward

model evaluations to determine the posterior probabili-

ties of model parameters. In order to make this inverse

problem practically solvable, constructing a computation-

ally cheap surrogatemodel or an emulator (Heitmann et al.

2009; Lawrence et al. 2010) is imperative. However, tradi-

tional approaches to emulators require the use of the sum-

mary statistic which is to be emulated. An approach that

makes no assumptions about suchmathematical templates

of the simulation outcome would be of considerable value.

While in this work we focus our attention on the gener-

ation of the weak lensing convergence maps, we believe

that the method presented here is relevant to many sim-

ilar problems in astrophysics and cosmology where a large

number of expensive simulations is necessary.

Recent developments in deep generative modeling tech-

niques open the potential to meet this emulation need.

The density estimators in these models are built out of

neural networks which can serve as universal approxima-

tors (Csáji 2001), thus having the ability to learn the un-

derlying distributions of data and emulate the observable

without imposing the choice of summary statistics, as in

the traditional approach to emulators. These data-driven

generative models have also found applications in astro-

physics and cosmology. On the observational side, these

models can be used to improve images of galaxies beyond

the deconvolution limit of the telescope (Schawinski et al.

2017). On the simulation side, they have been used to pro-

duce samples of cosmic web (Rodríguez et al. 2018).

In addition to generativemodeling, we have recently wit-

nessed a number of different applications of deep learning

and convolutional neural networks (CNN) to the problem

of parameter inference using weak gravitational lensing.

Training deep neural networks to regress parameters from

data simulations (Gupta et al. 2018; Ribli et al. 2019) shows

that CNN trained on noiseless lensing maps can bring few

times tighter constraints on cosmological parameters than

the power spectrum or lensing peaks analysis methods.

Similar analysis has been performed for the case of sim-

ulated lensing maps with varying level of noise due to im-

perfectmeasurement of galaxy shape distortions and finite

number density of the source galaxies (Fluri et al. 2018).

Although the advantage of CNNs over “traditional” meth-

ods is still present in the noisy case, the quantitative im-

provement is much less than in the case of noiseless simu-

lated maps. CNNs applied to weak lensing maps have also

been proposed for improved differentiating between dark

energy andmodified gravity cosmologies (Peel et al. 2018).

Finally, an image-to-image translation method employing

conditional adversarial networks was used to demonstrate

learning the mapping from an input, simulated noisy lens-
ingmap to the underlying noise field (Shirasaki et al. 2018),
effectively denoising the map.
We would like to caution that all deep learning meth-

ods are very sensitive to the input noise, thus networks
trained on either noiseless or even on simulated, idealized,
noise are likely to perform poorly in the inference regime
on the real data without a complex and domain-dependent
preparation for such task (Wang and Deng 2018). This
problem is exaggerated by the fact that trained CNNs are
mapping input lensing map to cosmological parameters
without providing full posterior probability distribution
for these parameters or any other good description of in-
ference errors.
In thiswork,we study the ability of a variant of generative

models, Generative Adversarial Networks (GANs) (Good-
fellow et al. 2014) to generate weak lensing convergence
maps. In this paper, we are not concerned about inferring
cosmological parameters, andwe do not attempt to answer
questions of optimal parameter estimators, either with
deep learning or “traditional” statistical methods. Here, we
study the ability of GANs to produce convergence maps
that are statistically indistinguishable frommaps produced
by physics-based generative models, which are in this case
N-body simulations. The training and validation maps are
produced using N-body simulations of ΛCDM cosmol-
ogy. We show that maps generated by the neural network
exhibit, with high statistical confidence, the same power
spectrum of the fully-fledged simulator maps, as well as
higher order non-Gaussian statistics, thus demonstrating
that such scientific data can be amenable to a GAN treat-
ment for generation. The very high level of agreement
achieved offers an important step towards building emu-
lators out of deep neural networks.
The paper is organized as follows: in Sect. 2 we outline

the data set used and describe our GAN architecture. We
present our results in Sect. 3 and we outline the future in-
vestigations which we think are critical to build weak lens-
ing emulators in Sect. 4. Finally, we present conclusions of
this paper in Sect. 5.

2 Methods
In this section we first introduce the weak lensing conver-
gence maps used in this work, and then proceed to de-
scribe Generative Adversarial Networks and their imple-
mentation in this work.

2.1 Dataset

To produce our training dataset, we use the cosmologi-
cal simulations described in Kratochvil et al. (2012), Yang
et al. (2011), produced using the Gadget2 (Springel 2005)
N-Body simulation code and ray-traced with the Inspec-
tor Gadget weak lensing simulation pipeline (Kratochvil
et al. 2012; Kratochvil et al. 2010; Yang et al. 2011) to pro-
duce weak lensing shear and convergence maps. A total
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of 45 simulations were produced, each consisting of 5123

particles in a box of size of 240 h–1Mpc. The cosmologi-

cal parameters used in these simulations were σ8 = 0.798,

w = –1.0,Ωm = 0.26,ΩΛ = 0.74, ns = 0.96,H0 = 0.72. These

simulation boxes were rotated and translated to produce

1000 ray-traced lensing maps at the redshift plane z = 1.0.

Eachmap covers 12 square degrees, with 2048×2048 pix-

els, which we downsampled to 1024 × 1024 pixels. Fol-

lowing the formalism introduced in Bernstein and Jarvis

(2002), the gravitational lensing illustrated by these maps

can be described by the Jacobian matrix

A(θ ) =

[

1 – κ – γ1 –γ2
–γ2 1 – κ + γ1

]

, (1)

where κ is the convergence, and γ is the shear.

The training data was generated by randomly cropping

200 256× 256 maps from each of the original 1000 maps.

The validation and development datasets have been ran-

domly cropped in the same manner. We have tested sam-

pling the validation datasets from all of the original 1000

maps versus sampling the training from 800 maps and

the validation from the remaining 200 maps. GANs are

not generally amenable to memorization of the training

dataset, this is in part because the generator network isn’t

trained directly on that data; it only learns about it by

means of information from another network, the discrim-

inator, as is described in the next section. Therefore, in our

studies, it did not make any difference how we sample our

validation dataset.We demonstrate that the generator net-

work did notmemorize the training dataset in Sect. 3.2. Fi-

nally, the probability for a map to have a single pixel value

outside [–1.0, 1.0] range is less than 0.9% so it was safe to

use the data without any normalization.

In one of the tests we report in this paper we use an aux-

iliary dataset, which consists of 1000 maps produced us-

ing the same simulation code and cosmological parame-

ters, but with a different random seed, resulting in a set of

convergence maps that are statistically independent from

those used in our training and validation.

2.2 Generative Adversarial Networks

The central problem of generative models is the question:

given a distribution of data Pr can one devise a genera-

tor G such that the distribution of model generated data

Pg = Pr? Our information about Pr comes from the train-

ing dataset, typically an independent and identically dis-

tributed random sample x1,x2, . . . ,xn which is assumed to

have the same distribution as Pr . Essentially, a generative

model aims to construct a density estimator of the dataset.

The GAN frameworks constructs an implicit density esti-

mator which can be efficiently sampled to generate sam-

ples of Pg .

The GAN framework (Goodfellow et al. 2014) sets up a

game between two players, a generator and a discrimina-

tor. The generator is trained to generate samples that aim

to be indistinguishable from training data as judged by a

competent discriminator. The discriminator is trained to

judge whether a sample looks real or fake. Essentially, the

generator tries to fool the discriminator into judging a gen-

erated map looks real.

In the neural network formulation of this framework the

generator network Gφ , parametrized by network parame-

ters φ, and discriminator network Dθ , parametrized by θ ,

are simultaneously optimized using gradient descent. The

discriminator is trained in a supervised manner by show-

ing it real and generated samples, it outputs a probability of

the input map being real or fake. It is trained to minimize

the following cross-entropy cost function:

J (D) = –Ex∼Pr logDθ (x) –Ex∼Pg log
(

1 –Dθ (x)
)

. (2)

The generator is a differentiable function (except at pos-

sibly finitely many points) that maps a sample from a noise

prior, z ∼ p(z), to the support of Pg . For example, in this

work, the noise vector is sampled from a 64-dimensional

isotropic normal distribution and the output of the gen-

erator are maps x ∈ R
256×256. The dimension of the noise

vector z needs to be commensurate with the support of the

convergence maps Pr in R
256×256. In the game-theoretic

formulation, the generator is trained to maximize equa-

tion (2), this is known as the minimax game. However, in

that formulation, the gradients of the cost function with

respect to the generator parameters vanish when the dis-

criminator is winning the game, i.e. rejecting the fake sam-

ples confidently. Losing the gradient signal makes it dif-

ficult to train the generator using gradient descent. The

original GANpaper (Goodfellow et al. 2014) proposes flip-

ping the target for the generator instead:

J (G) = –Ex∼Pg logDθ (x). (3)

This “heuristically” motivated cost function (also known

as the non-saturating game) provides strong gradients to

train the generator, especially when the generator is losing

the game (Goodfellow 2016).

Since the inception of the first GAN, there have been

many proposals for other cost functions and functional

constrains on the discriminator and generator networks.

We have experimented with some of these but in common

with a recent large scale empirical study (Lučić et al. 2018)

of these different models: “did not find evidence that any

of the tested algorithms consistently outperforms the non-

saturating GAN”, introduced in Goodfellow et al. (2014)

and outlined above. That study attributes the improve-

ments in performance reported in recent literature to dif-

ference in computational budget. With the GAN frame-



Mustafa et al. Computational Astrophysics and Cosmology             ( 2019)  6:1 Page 4 of 13

Table 1 Generator network architecture: layer types, activations, output shapes (channels × height × width) and number of trainable
parameters for each layer. TransposedConv have strides = 2

Activ. Output shape Params.

Latent – 64 –
Dense – 512 × 16 × 16 8.5M
BatchNorm ReLU 512 × 16 × 16 1024
TransposedConv 5 × 5 – 256 × 32 × 32 3.3M
BatchNorm ReLU 256 × 32 × 32 512
TransposedConv 5 × 5 – 128 × 64 × 64 819K
BatchNorm ReLU 128 × 64 × 64 256
TransposedConv 5 × 5 – 64 × 128 × 128 205K
BatchNorm ReLU 64 × 128 × 128 128
TransposedConv 5 × 5 Tanh 1 × 256 × 256 1601
Total trainable parameters 12.3M

work laid out wemove to describing the generator and dis-

criminator networks and their training procedure.

2.3 Network architecture and training

Given the intrinsic translation invariance of the conver-

gence maps (Kilbinger 2015), it is natural to construct

the generator and discriminator networks mainly from

convolutional layers. To allow the network to learn the

proper correlations on the components of the input noise

z early on, the first layer of the generator network needs

to be a fully-connected layer. A class of all convolu-

tional network architectures has been developed in Sprin-

genberg et al. (2014), which use strided convolutions

to downsample instead of pooling layers, and also use

strided transposed convolutions to upsample. This archi-

tecture was later adapted to build GANs in Deep Convolu-

tional Generative Adversarial Networks (DCGAN) (Rad-

ford et al. 2015). We experimented with DCGAN archi-

tectural parameters and we found that most of the hyper-

parameters optimized for natural images by the original

authors perform well on the convergence maps. We used

DCGAN architecture with slight modifications to meet

our problem dimensions, we also halved the number of

filters.

The generator takes a 64-dimensional vector sampled

from a normal prior z ∼ N (0, 1). The first layer is a fully

connected layer whose output is reshaped into a stack of

feature maps. The rest of the network consists of four lay-

ers of transposed convolutions (a convolutional layer with

fractional strides where zeroes are inserted between each

column and row of pixels before convolving the imagewith

the filter in order to effectively up-sample the image) that

lead to a single channel 256×256 image. The outputs of all

layers, except the output one, are batch-normalized (Ioffe

and Szegedy 2015) (by subtracting themean activation and

dividing by its standard deviation and learning a linear

scaling) which was found to stabilize the training. A recti-

fied linear unit (ReLU) activation (Nair and Hinton 2010)

(output zero when the input less than zero and output

equal to the input otherwise) is used for all except the out-

put layer where a hyperbolic-tangent (tanh) is used. The

final generator network architecture is summarized in Ta-

ble 1.

The discriminator has four convolutional layers. The

number of feature maps, stride and kernel sizes are the

same as in the generator. We reduced the number of filters

from the DCGAN guidelines by a factor of 2, which effec-

tively reduces the capacity of the generator/discriminator.

This workedwell for our problem and reduced the training

time. The output of all convolutional layers are activated

with LeakyReLU (Maas et al. 2013) with parameter α = 0.2.

The output of the last convolutional layer is flattened and

fed into a fully connected layer with a 1-dimensional out-

put that is fed into a sigmoid. Batch Normalization is ap-

plied before activations for all layers’ outputs except the

first layer. The final discriminator network architecture is

summarized in Table 2.

Finally, we minimize discriminator loss in Eq. (2) and

generator loss in Eq. (3) using Adam optimizers (Kingma

et al. 2014) with the parameters suggested in the DCGAN

paper: learning rate 0.0002 and β1 = 0.5. Batch-size is 64

maps. We flip the real and fake labels with 1% probabil-

ity to avoid the discriminator overpowering the generator

too early into the training. We implement the networks in

TensorFlow (Abadi et al. 2015) and train them on a single

NVIDIA Titan X Pascal GPU.

Training GANs using a heuristic loss function often suf-

fers from unstable updates towards the end of their train-

ing. This has been analyzed theoretically in Arjovsky and

Bottou (2017) and shown to happen when the discrimi-

nator is close to optimality but has not yet converged. In

other words, the precision of the generator at the point we

stop the training is completely arbitrary and the loss func-

tion is not useful to use for early stopping. For the results

shown in this work we trained the network until the gener-

atedmaps pass the visual and pixel intensity Kolmogorov–

Smirnov tests, see Sect. 3. This took 45 passes (epochs)

over all of the training data. Given the un-stability of the
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Table 2 Discriminator network architecture: layer types, activations, output shapes (channels × height × width) and number of
trainable parameters for each layer. All convolutional layers have stride = 2. LeakyReLU’s leakines = 0.2

Activ. Output shape Params.

Input map – 1 × 256 × 256 –
Conv 5 × 5 LReLU 64 × 128 × 128 1664
Conv 5 × 5 – 128 × 64 × 64 205K
BatchNorm LReLU 128 × 64 × 64 256
Conv 5 × 5 – 256 × 32 × 32 819K
BatchNorm LReLU 256 × 32 × 32 512
Conv 5 × 5 – 512 × 16 × 16 3.3M
BatchNorm LReLU 512 × 16 × 16 1024
Linear Sigmoid 1 131K
Total trainable parameters 4.4M

Figure 1 Weak lensing convergence maps for our ΛCDM cosmological model. Randomly selected maps from validation dataset (top) and GAN
generated examples (bottom)

updates at this point, the performance of the generator

on the summary statistics tests starts varying uncontrol-

lably. Therefore, to choose a generator configuration, we

train the networks for two extra epochs after epoch 45,

and randomly generate 100 batches (6400 maps) of sam-

ples at every single training step. We evaluate the power

spectrum on the generated samples and calculate the Chi-

squared distancemeasurement to the power spectrumhis-

tograms evaluated on a development subset of the vali-

dation dataset. We use the generator with the best Chi-

squared distance.

3 Results

Figure 1 shows examples of maps from the validation and

GAN generated datasets. The validation dataset has not

been used in the training or tuning of the networks. Visu-

ally, an expert cannot distinguish the generatedmaps from

the full simulation ones.
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Figure 2 Pixel intensity distribution of 1000 generated maps (red
circles) compared to those of 1000 validation maps (black squares).
The GAN is able to emulate the distribution of intensities in the maps.
The Kolmogorov–Smirnov test of similarity of these distributions
yields a p-value > 0.999

3.1 Evaluation of generator fidelity

Once we have obtained a density estimator of the original

data the first practical question is to determine the good-

ness of the fit. Basically, how close is Pg to Pr? This issue is

critical to understanding and improving the formulation

and training procedure for generative models, and is an

active area of research (Theis et al. 2015). Significant in-

sight into the training dynamics of GANs from a theoreti-

cal point of view has been gained in Arjovsky and Bottou

(2017), Arjovsky et al. (2017) and later works. We think

that when it comes to practical applications of generative

models, such as in the case of emulating scientific data, the

way to evaluate generative models is to study their abil-

ity to reproduce the charachtarestic statistic of the original

dataset.

To this end, we calculate three statistics on the generated

convergence maps: a first order statistic (pixel intensity),

the power spectrum and a non-Gaussian statistic. The

ability to reproduce such summary statistics is a reliable

metric to evaluate generative models from an information

encoding point of view. To test our statistical confidence of

the matching of the summary statistics we perform boot-

strapped two-tailed Kolmogorov–Smirnov (KS) test and

Andersen–Darling (AD) test of the null-hypothesis that

the summary statistics in the generated maps and the val-

idation maps have been drawn from the same continuous

distributions .a

Figure 2 shows a histogram of the distribution of pixel

intensities of an ensemble of generated maps compared to

that of a validation dataset. It is clear that the GAN genera-

tor has been able to learn the probabilities of pixel intensi-

ties in the real simulation dataset, theKS p-value is > 0.999.

We note that the maps generated by this GAN have the

same the geometry of the simulatedmaps, i.e. angular size,

resolution, etc.

The second-order statistical moment in gravitational

lensing is the shear power spectrum. This is a measure

of the correlation in gravitational lensing at different dis-

tances, and characterizes the matter density fluctuations

at different length scales. Assuming we have only Gaus-

sian fluctuations δ(x) at comoving distance x, the matter

density of the universe can be defined by its power spec-

trum Pκ :

〈

δ̃(l)δ̃∗
(

l′
)〉

= (2π )2δD
(

l – l′
)

Pκ (l), (4)

where δD is the Dirac delta function, and l is the Fourier

mode (Kilbinger 2015). The power spectrum (and its cor-

responding real-space measurement, the two-point corre-

lation function) of convergence maps has long been used

to constrain models of cosmology by comparing simu-

lated maps to real data from sky surveys (Liu et al. 2015;

Abbott et al. 2016; Jee et al. 2013). Numerically, the power

spectrum is the amplitudes of the Fourier components

of the map. We calculate the power spectrum at 248

Fourier modes of an ensemble of generated maps using

LensTools (Petri 2016), and compare them to the valida-

tion dataset. Since each map is a different random real-

ization, the comparison has to be made at the ensemble

level. Figure 3(a) shows two bands representing the mean

µ(l) ± standard deviation σ (l) of the ensemble of power

spectra at each Fouriermode of the validation and a gener-

ated dataset. As is clear in the figure, the bands completely

overlap with each other. To confirm that the range of the

power spectrum at a given l is completely reproduced in

the generatedmaps we look differentially at the underlying

1-D distributions. Samples of such distributions at equally

spaced Fourier modes are shown in Fig. 3(b). The boot-

strapped KS (AD) p-values for 236 (205) Fourier modes

are > 0.99, of the remaining modes, 10 (26) are > 0.95, all

the remaining are larger than 0.8. The power spectrum is

the figure of merit for evaluating the success of an em-

ulator for reproducing the structures of the convergence

map, and we have shown with statistical confidence that

GANs are able to discover and reproduce such structures.

It should be noted that the power spectra of the gener-

ated maps is limited to the scale resolutions in the training

dataset. For example in Fig. 3(a), one can see the statistical

fluctuations at the lower modes in the validation dataset,

the generator faithfully reproduces those fluctuations.

In Fig. 4 we show the correlation matrices of the power

spectra shown in Fig. 3, and the difference between the

correlation matrices from the validation maps and those

produced by our GAN. We also show a comparison of the

correlationmatrices from the validation dataset and an the
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Figure 3 The power spectrum of the convergence maps, evaluated at 248 Fourier modes. We use 100 batches of generated maps (6400 in total) for
this comparison. Shown in (a) are bands of the µ(l)± σ (l), the dashed lines represent the means µ(l), (b) shows the underlying distributions at 3
equidistant modes for illustration

Figure 4 The correlation matrices of the modes of the power spectra shown in Fig. 3. The first two panels show the correlation matrices of the
validation and the GAN generated maps, the third panel shows the difference between these correlation matrices. To provide a scale for comparison,
in the fourth panel we also show the difference between the validation dataset correlation matrix and the correlations in an auxiliary dataset (see
text for details)
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Figure 5 The Minkowski functionals of the convergence maps, which are sensitive to the non-Gaussian structures. We carried out the
measurements on 100 batches of generated maps (6400 in total) and compare them to those of the validation maps. The functionals are evaluated
at 19 thresholds and shown here are the bands of µ ± σ at each threshold. The dashed lines represent the mean µ

auxiliary dataset (a statistically independent dataset gener-

ated using the procedure used for the original dataset but

with a different random seed, see Sect. 2.1).

There are differences between the validation and aux-

iliary correlations matrices of up to 7%. The differences

between the validation and generated correlation matri-

ces are of a similar level (up to 10%) but show a pattern of

slightly higher correlation between high- and low-lmodes.

We find it interesting that the GAN generator assumes

a slightly stronger correlation between small and large

modes, thus a smoother power spectra, than in the sim-

ulations. This is due to the large uncertainty of the power

spectra at small modes in the original simulations as seen

in Fig. 3(a).

The power spectrum only captures the Gaussian com-

ponents of matter structures in the universe. However,

gravity produces non-Gaussian structures at small scales

which are not described by the two-point correlation func-

tion (Kilbinger 2015). There are many ways to access this

non-Gaussian statistical information, including higher-

order correlation functions, and topological features such

as Minkowski functionals V0, V1, and V2 (Mecke et al.

1994; Petri et al. 2015; Kratochvil et al. 2012) which char-

acterize the area, perimeter and genus of the convergence

maps.We investigate the ability of the networks to discover

and reproduce these non-Gaussian structures in the maps

by evaluating the three Minkowski functionals. Figure 5

compares bands of µ ± σ of the three Minkowski Func-

tionals (calculated using (Petri 2016)) to those in the real

dataset. Each functional is evaluated at 19 thresholds. As

we did with the power spectrum, we show the Minkowski

functionals at different thresholds in Fig. 6. The boot-

strapped KS (AD) for 40 (32) threshold histograms are

> 0.95 p-values 7 (6) are > 0.9 all the remaining are > 0.6.

Again, it is clear that the GANs have successfully repro-

duced those non-Gaussian structures in the maps.

Finally, we measure the approximate speed of genera-

tion:, it takes the generator ≈15 s to produce 1024 im-

ages on a single NVIDIA Titan X Pascal GPU. Training

the network takes ≈4 days on the same GPU. Running

N-Body simulations of a similar scale used in this paper

requires roughly 5000 CPU hours per box, with an addi-

tional 100-500 CPU hours to produce the planes and do

the ray-tracing to make the 1000 maps per box. While this

demonstrates that, as expected, GANs offer substantially

faster generation, it should be cautioned that these com-

parisons are not “apple-to-apple” as the N-Body simula-

tions are ab-initio, while the GANs generated maps are by

means of sampling a fit to the data.

3.2 Is the generator creating novel maps?

The success of the generator at creatingmaps thatmatches

the summary statistics of the validation dataset raises the

question of whether the generator is simply memorizing

the training dataset. Note that in the GAN framework,

the generator never sees the training dataset directly. The

question is if the generator learned about the training

dataset through the gradients it gets from the discrmina-

tor. We conduct two tests to investigate this possibility.

In the first test we generate a set of maps and find the

training maps that are closest to them. We test two dis-

tance notions, the Euclidean distance (L2) in the pixel

space of the maps and in the power spectrum space. Some

examples of the latter are shown in Fig. 7. Using both met-

rics, the training data points that are closest to generated

maps are visually distinct. Concluding that the genera-

tor is producing maps that are not present in the training

dataset.

In the second test we investigate whether the genera-

tor is a smooth function on z. Essentially, does the gen-

erator randomly associate points in the prior space with

maps or, learns a smooth and dense mapping?. This can
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Figure 6 The distributions of the Minkowski functionals at 3 equidistant thresholds shown for illustration

be tested by randomly choosing two noise vectors and

evaluating the generator on the line connecting them.

We use spherical linear interpolation to interpolate in

the Gaussian prior space (White 2016). Figure 8 shows

examples from this test. It is clear that the generated

maps smoothly morph from one to another when the

traversing the line connecting their points in the prior

space.

In attempting to estimate how many distinct maps the

generator can produce, we generated a few batches of

32k maps each. We then examined the pairwise distances

among all the maps in each batch to try to find maps that

are “close” or identical to each other. We looked at L2 dis-

tance in pixels space, in the power spectra space and in

the space of the activations of the last conv-layer of the

discriminator. The maps determined as “close” in this way

are still noticeably distinct (visually and in the associated

metric). If we are to use the “Birthday Paradox” test (Arora

and Zhang 2017), this indicates that the number of distinct

maps the generator can produce is ≫ 1B maps. It also in-

dicates that our generator does not suffer from mode col-

lapse. Our conjecture here is that one or a combination

of multiple factors could explain this result: (1) the con-

volution kernels might be the right ansatz to describe the

Gaussian fluctuations and the higher order structures en-

coded in convergence maps, (2) the maps dataset contain

only one mode, so the normal prior, which has one mode,

maps smoothly and nicely to the mode of the convergence

maps (Xiao et al. 2018).

4 Discussion and future work
The idea of applying deep generative models techniques

to emulating scientific data and simulations has been gain-

ing attention recently (Ravanbakhsh et al. 2016; deOliveira

et al. 2017; Paganini et al. 2017; Mosser et al. 2017). In this

paper we have been able to reproduce maps of a particu-

lar ΛCDM model with very high-precision in the derived

summary statistics, even though the network was not ex-

plicitly trained to recover these distributions. Furthermore

we have explored, and reproduced the statistical variety

present in simulations, in addition to the mean distribu-

tion. It remains an interesting question for the applicabil-

ity of these techniques to science whether the increased

precision achieved in this case, compared to other similar



Mustafa et al. Computational Astrophysics and Cosmology             ( 2019)  6:1 Page 10 of 13

Figure 7 Comparison of randomly generated maps (top) with training maps (middle) that are their nearest-neighbor in terms of L2 distance in
power spectrum. While the power spectra (bottom) match very well, the maps are clearly different

Figure 8 Each row is a random example of maps produced when interpolating between two randomly chosen vectors z (left to right). The
generator varies smoothly between points in the prior space

work (Rodríguez et al. 2018), is due to the training proce-

dure as outlined in Sect. 2.3 or to a difference in the under-

lying data.

We have also studied the ability of the generator to gen-

erate novel maps, the results shown in Sect. 3.2. We have

provided evidence that our model has avoided ‘mode col-

lapse’ and produces distinct maps from the originals that

also smoothly vary when interpolating in the prior space.

Finally, the success of GANs in this work demonstrates

that, unlike natural images which are the focus of the deep

learning community, scientific data come with a suite of

tools (statistical tests) which enable the verification and

improvement of the fidelity of generative networks. The

lack of such tools for natural images is a challenge to un-

derstanding the relative performance of the different gen-

erative models architectures, loss functions and training
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procedures (Theis et al. 2015; Salimans et al. 2016). So, as
well as the impact within these fields, scientific data with
its suite of tools have the potential to provide the grounds
for benchmarking and improving on the state-of-the-art
generative models.
It is worth noting here that while one of the use cases

of GANs is data augmentation, we do not think the gener-
ated maps augment the original dataset for statistical pur-
poses. This is for the simple reason that the generator is
a fit to the data, sampling a fit does not generate statisti-
cally independent samples. The current study is a proof-
of-concept that highly over-parametrized functions built
out of convolutional neural networks and optimized in by
means of adversarial training in a GAN framework can be
used to fit convergence maps with high statistical fidelity.
The real utility of GANs would come form the open ques-
tion of whether conditional generative models (Mirza and
Osindero 2014; Dumoulin et al. 2018) can be used for em-
ulating scientific data and parameter inference. The prob-
lem is outlined below and is to be addressed in futurework.
Without loss of generality, the generation of one ran-

dom realization of a science dataset (simulation or other-
wise) can be posited as a black-box model S(σ , r) where σ

is a vector of the physical model parameters and r is a set
of random numbers. The physical model S can be based
on first principles or effective theories. Different random
seeds generate statistically independentmock data realiza-
tions of themodel parameters σ . Suchmodels are typically
computationally expensive to evaluate at many different
points in the space of parameters σ .
In our minds, the most important next step to build on

the foundation of this paper and achieve an emulator of
model S, is the ability of generative models to generalize
in the space of model parameters σ from datasets at a fi-
nite number of points in the parameter space.More specif-
ically, canwe useGANs to build parametric density estima-

tors G(σ , z) of the physical model S(σ , r)? Such generaliza-
tion rests on smoothness and continuity of the response
function of the physical model S in the parameter space,
but such an assumption is the foundation of any surro-
gate modeling. Advances in conditioning generative mod-
els (Mirza and Osindero 2014; Dumoulin et al. 2018) is a
starting point to enable this goal. Future extensions of this
work will seek to to add this parameterization in order to
enable the construction of robust and computationally in-
expensive emulators of cosmological models.

5 Conclusion
We present here an application of Generative Adversar-
ial Networks to the creation of weak-lensing convergence
maps. We demonstrate that the use of neural networks for
this purpose offers an extremely fast generator and there-
fore considerable promise for cosmology applications. We
are able to obtain very high-fidelity generated images, re-
producing the power spectrum and higher-order statistics

with unprecedented precision for a neural network based
approach. We have probed these generated maps in terms
of the correlations within the maps and the ability of the
network to generalize and create novel data. The success-
ful application of GANs to produce high-fidelity maps in
this work provides an important foundation to using these
approaches as fast emulators for cosmology.
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