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ABSTRACT

We present new measurements of the time delays of WFI2033−4723. The data sets used in this work include 14 years of data taken at the 1.2 m
Leonhard Euler Swiss telescope, 13 years of data from the SMARTS 1.3 m telescope at Las Campanas Observatory and a single year of high-
cadence and high-precision monitoring at the MPIA 2.2 m telescope. The time delays measured from these different data sets, all taken in the
R-band, are in good agreement with each other and with previous measurements from the literature. Combining all the time-delay estimates from
our data sets results in ∆tAB = 36.2+0.7

−0.8 days (2.1% precision), ∆tAC = −23.3+1.2
−1.4 days (5.6%) and ∆tBC = −59.4+1.3

−1.3 days (2.2%). In addition, the
close image pair A1-A2 of the lensed quasars can be resolved in the MPIA 2.2 m data. We measure a time delay consistent with zero in this pair
of images. We also explore the prior distributions of microlensing time-delay potentially affecting the cosmological time-delay measurements of
WFI2033−4723. Our time-delay measurements are not precise enough to conclude that microlensing time delay is present or absent from the data.
This work is part of a H0LiCOW series focusing on measuring the Hubble constant from WFI2033−4723.
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1. Introduction

The flat-Λcold dark matter (CDM) model, often labelled Standard
Cosmological Model due to its ability to fit extremely well most
of today’s cosmological observations, has recently been strength-
ened by the final update of the Planck satellite cosmic microwave
background (CMB) observations (Planck Collaboration I 2018;
Planck Collaboration VI 2018). However, a few sources of ten-
sion remain. One example is the predicted amplitude of over-
densities in the Universe, characterized by the normalisation of
the linear matter power spectrum σ8, that is in mild tension with
direct measurements, such as the cosmic-shear analyses from
the Kilo-Degree Survey (KiDS; Köhlinger et al. 2017; Troxel
et al. 2018) and Hyper Suprime-Cam (HSC; Hikage et al. 2019).
Similarly, Lyman-α measurements of Baryon Acoustic Oscilla-
tions at intermediate redshift (e.g. Bautista et al. 2017) are in
a mild tension with the flat-ΛCDM predictions. More stringent
is the measured expansion rate of the Universe, also called the
Hubble constant H0, constrained through the observation of stan-
dard candles (e.g. Riess et al. 2019) that is in 4.4σ tension with the
flat-ΛCDM predictions.

Whether such tensions result from underestimated systematic
errors in at least one of the measurements, a statistical fluke, or
point towards new physics beyond the Standard Model is cur-
rently a topic of discussion (see e.g. Mörtsell & Dhawan 2018;
Poulin et al. 2019; Amendola et al. 2019; Capozziello et al.
2019; Pandey et al. 2019, for recent examples). There is however
no simple, preferred alternative or extension to the flat-ΛCDM

⋆ Full light curves of the four data sets are only available at the
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/629/
A97

model that is clearly favoured by the existing data. In such a
context, the way forward consists of improving the precision and
accuracy of all measurements, as well as using alternative and
independent techniques to estimate the conflicting cosmological
parameters. Focusing on the Hubble constant, the so-called dis-
tance ladder method based on the cross-calibration of various dis-
tance indicators offers multiple routes towards H0 (see e.g. Cao
et al. 2017; Jang et al. 2018; Dhawan et al. 2018; Riess et al. 2019,
for recent updates). Galaxy clustering provides an alternative way
to measure the Hubble constant independently from CMB mea-
surements (e.g. DES Collaboration 2018; Kozmanyan et al. 2019),
as well as the so-called “standard sirens” technique based on grav-
itational waves events (e.g. Abbott et al. 2017; Chen et al. 2018b;
Feeney et al. 2019) or the observations of water vapour mega-
masers (e.g. Reid et al. 2013; Braatz et al. 2018).

An independent approach to directly measure H0 is to use
time-delay cosmography. The idea, first proposed by Refsdal
(1964), consists of measuring the time delay(s) between the lumi-
nosity variations of multiple images of a strongly gravitationally
lensed source. Combined with careful modelling of the mass dis-
tribution of the lens galaxy, its surroundings and accounting of the
mass along the line-of-sight, such measurements provide a direct
way to constrain H0, which is nearly independent of any other
cosmological parameters (see Treu & Marshall 2016; Suyu et al.
2018, for a review).

The H0LiCOW collaboration (Suyu et al. 2017) focuses on
this method, using state-of-the-art software and techniques to
carry out each step of the analysis. In 2017, H0LiCOW released
its first results based on a blind analysis of the quadruply lensed
quasar HE 0435−1223 (Sluse et al. 2017; Rusu et al. 2017;
Wong et al. 2017; Bonvin et al. 2017; Tihhonova et al. 2018).
Combined with two other strongly lensed systems analysed
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Table 1. Summary of the optical monitoring campaigns of WFI2033−4723.

Telescope-Instrument FoV Pixel Period of observation #obs Exp. time Seeing Airmass Sampling

Euler-C2 11′ × 11′ 0′′.344 Oct. 2004–Sep. 2010 294 5× 360 s 1′′.59 1.18 6 days
Euler-ECAM 14.′2 × 14.′2 0′′.215 Oct. 2010–May 2018 350 5× 360 s 1′′.54 1.15 4 days
SMARTS-ANDICAM 10′ × 10′ 0′′.300 Apr. 2004–Nov. 2016 345 3× 300 s 1′′.50 1.17 4 days
2.2 m-WFI 36′ × 36′ 0′′.238 Mar. 2017–Dec. 2017 136 4× 320 s 1′′.34 1.17 1 day
Total – – Oct. 2004–May 2018 876 447.0 h – –

Notes. Sampling refers to the targeted cadence, not counting the seasonal gaps. The number of epochs (#obs), median seeing, airmass and total
exposure time are computed from the epochs used in the light curves presented in Fig. 2, which discard ∼13% of the total number of exposures
for each data set (mostly due to bad weather or scheduling conflicts). The distribution in seeing and airmass of each data set is shown in the
bottom-right panel of Fig. 2.

earlier (Suyu et al. 2010, 2014) and a fourth system analyzed
recently (Birrer et al. 2019), it resulted in a 3% precision deter-
mination of the Hubble constant in a flat-ΛCDM universe, H0 =

72.5+2.1
−2.3 km s−1 Mpc−1. This result, in mild tension with the CMB

predictions but in excellent accord with the distance-ladder mea-
surements, proves both the robustness of the method and its
potential for deciding whether the discrepancies seen in H0 mea-
surements are real or not.

The present paper is part of a series focusing on the anal-
ysis of the quadruply lensed quasar WFI2033−4723. It presents
new time delay measurements based on monitoring data from the
COSMOGRAIL collaboration taken between 2004 and 2018.
In parallel, Sluse et al. (2019, hereafter H0LiCOW X) presents
measurements of the spectroscopic redshifts of galaxies in the
environment of WFI2033−4723. Rusu et al. (2019, hereafter
H0LiCOW XII) focuses on the modelling of WFI2033−4723,
taking into account the environment from H0LiCOW X and the
time delays from the present work, to derive a value of the Hub-
ble constant. Finally, Wong et al. (2019; hereafter H0LiCOW
XIII) combines the time-delay distances from all the strongly
lensed systems analysed so far by the H0LiCOW collaboration
to infer cosmological parameters.

This manuscript is divided as follows: Sect. 2 presents the
monitoring campaigns and the data reduction process that yield
the light curves of the lensed images of the quasar. Section 3
presents the time-delay measurement framework, its application
to our light curves and a series of robustness tests. Section 4
quantifies the effect of the microlensing time delay on the time-
delay measurements. Section 5 summarizes our results and gives
our conclusions.

2. Data sets

WFI2033−4723 is a bright, quadruply lensed quasar in a fold
configuration (α(2000): 20h33m42.08s; δ(2000): −47◦23′43.0′′,
Morgan et al. 2004). The most recent spectroscopic mea-
surements of the lens and source redshifts are zd = 0.6575
(H0LiCOW X) and zs = 1.662 (Sluse et al. 2012), respectively.

WFI2033−4723 has been monitored since 2004 by the 1.2m
Swiss Leonhard Euler telescope at the ESO La Silla Observa-
tory in Chile, using the C2 instrument until October 2010 and the
ECAM instrument since then, using the Rouge Genève filter, a
modified version of the broad Bessel-R filter. Parallel observa-
tions took place since 2004 with the 1.3m Small and Moderate
Aperture Research System (SMARTS) at the Cerro Tololo Inter-
American Observatory (CTIO), using the KPNO R-band filter.
From March to December 2017, WFI2033−4723 was also mon-
itored daily with the MPIA 2.2 m telescope at the ESO La Silla
Observatory using the WFI instrument with the ESO BB#Rc/162

filter. A summary of the observations is presented in Table 1,
and the full light curves are available for download on the
COSMOGRAIL website1 and on CDS. The main steps of the
data reduction process are as follows:

1. Bias and flat exposures are taken on a regular basis. Mas-
ter bias exposures are constructed to remove the additional bias
level, and master flat exposures are constructed to correct for dif-
ferences in the pixel sensitivity of the CCD detector. On the WFI
exposures, fringes are occasionally observed. A fringe pattern
correction is constructed by sigma clipping and stacking dithered
exposures from the same epoch. The pattern is then subtracted
from each individual science exposure.

2. The cleaned science exposures are sky-subtracted and
aligned using standard sextractor and IRAF procedures. A
number of reference stars are selected to construct an empirical
Point Spread Function (PSF). Figure 1 presents a stacked expo-
sure of the field-of-view of WFI2033−4723 from the WFI instru-
ment. The stars selected for PSF construction are circled in green
and labeled PSF 1 to PSF 6. Various choices of reference stars
were explored, with the best results (i.e. the smallest residuals
after deconvolution) being obtained for stars close in projection
to the lens and slightly brighter than the lensed quasar images.

3. The quasar images are deconvolved, using the empirical
PSF and the MCS deconvolution algorithm (Magain et al. 1998;
Cantale et al. 2016). The deconvolution process separates the
quasar light into two channels: (a) a collection of point sources
representing the quasar images modelled following an analytical
profile at a sub-pixel resolution, that we call the analytical chan-
nel and (b) a per-pixel fit of the light from the lens galaxy, other
extended sources (such as the host galaxy of the quasar) as well as
nearby perturbers, called the numerical channel. The flux of the
point sources representing the quasar images is then normalised
by an exposure-to-exposure normalisation coefficient, which is
computed using a selection of reference stars in the field (cir-
cled in green and labelled N1 to N6 on Fig. 1) whose flux has
been estimated in the same manner as the quasar images. This
minimises the effect of systematic errors due to the deconvolu-
tion process and PSF mismatches. The normalised fluxes of each
lensed quasar image are then combined for each observing epoch.

The light curves obtained from each instrument are presented
in Fig. 2. The top panel presents the combined C2+ECAM data
sets (the small gap in the 2010 season corresponding to the
change of instrument), the middle panel presents the SMARTS
data set and the bottom-left panel presents the WFI data set.
Similar features are clearly visible across all light curves and
data sets. A merger of all the data sets exhibits no discrep-
ancies in the stacked light curves, provided an instrumental

1 www.cosmograil.org
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Fig. 1. Part of the field of view of WFI2033−4723 seen through the WFI instrument at the 2.2 m MPIA telescope. The field is a stack of 312 images
with seeing ≤1′′.4 and ellipticity ≤0.18, totalling ∼28 h of exposure. The insert represent a single, 320 s exposure of the lens in 0′′.65 seeing. The
stars labelled PSF 1 to PSF 6 in red were used to build the point spread function. The stars labelled N1 to N6 in green were used to compute the
exposure-to-exposure normalisation coefficient.

offset in magnitude between each data set. We note that the C2,
SMARTS and ECAM data sets have been already partially dis-
cussed: Vuissoz et al. (2008) use three and a half years of data
(from 2004 to mid-2007) to measure time delays and the Hubble
constant with crude models, and Morgan et al. (2018) use the
SMARTS, C2 and ECAM data up to 2016 to estimate the quasar
accretion disk size from microlensing analysis. We emphasize
that the data reduction process presented in this section and the
time-delay analysis described in Sect. 3 are completely indepen-
dent of these previous studies. The ECAM data set after 2016
and the entire WFI data set are presented for the first time in this
work. The ambient quality of the observations are illustrated in
the bottom right panel of Fig. 2. The WFI data set clearly stands
out as the best in seeing, thanks to better dome seeing, a better
instrument and flexible scheduling at the telescope.

For the C2, ECAM and SMARTS data sets, our deconvo-
lution scheme is not able to properly resolve the close pair of
images A1 and A2. The two deconvolved images share flux even
after deconvolution, and the structures in their light curves are
clearly polluted by correlated noise. As the cosmological time
delay between the A1 and A2 images is expected to be very small
(Vuissoz et al. 2008), we chose instead to merge A1 and A2 into
a single, virtual image A light curve. To do so, we sum the decon-
volved A1 and A2 fluxes, and compute the joint uncertainty as
the quadratic sum of the A1 and A2 individual uncertainties. For
the WFI data set, the size of the instrument’s primary mirror
(2.2 m) coupled to a longer exposure time with respect to the
other instruments allows us to reach a sufficient signal-to-noise
ratio to properly resolve the A1 and A2 images after deconvolu-
tion. An estimate of the time delay between A1 and A2 is given
in Sect. 3. Having an extra light curve allows a third independent
time-delay measurement to constrain the lens models. As such,
it represents a crucial extra piece of information for time-delay
cosmography.

3. Time-delay measurement

In this section, we measure the time delays for each of the indi-
vidual data sets and combine them into a final time-delay esti-
mate to be used at the lens modelling stage (see H0LiCOW XII).
We start by giving a description of the framework used in this
paper, emphasizing how the time-delay uncertainties are evalu-
ated, before presenting our time-delay estimates and performing
robustness checks to assess the quality of our measurements. Let
us first recall the terminology used here, adopted from Tewes
et al. (2013a), Bonvin et al. (2018, 2019).

– A point estimator is a method that returns the best time-
delay estimates ∆t = [∆ti j] between two or more light curves,
with i, j ∈ [A, B, C, . . .]. A point estimator depends on estimator
parameters that impact its results, for example by controlling the
smoothness of a fit.

– The intrinsic error is the dispersion of a point estimator
when randomizing its initial state, such as the starting point of
an iterative estimator (in our case an initial guess for the time
delay). We note that this is different from the error we would get
by varying the estimator parameters.

– A generative model of mock light curves is a process that
draws simulated light curves that mimic as closely as possible
the input data, but with known time delays. We apply our point
estimators on a large set of these simulated light curves in order
to estimate a point estimator’s uncertainties δt = [(δt+, δt−)i j].
Generative models, similarly to point estimators, depend on a
set of generative model parameters that control the generation of
the simulated light curves.

– A curve-shifting technique is the combination of a point
estimator with a generative model. In the following, we call the
curve-shifting technique parameters the joint point estimator and
generative model parameters. With a chosen set of curve-shifting
parameters, the point estimator can be used to estimate the time

A97, page 3 of 13

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935921&pdf_id=1


A&A 629, A97 (2019)

17.8

18.0

18.2

18.4

18.6

18.8

M
ag

ni
tu

de
 (r

el
at

iv
e)

C2+ECAM

A
A1+A2

B
-0.8

C
-0.7

53000 54000 55000 56000 57000 58000
HJD - 2400000.5 [day]

18.2

18.4

18.6

18.8

19.0

19.2

19.4

M
ag

ni
tu

de
 (r

el
at

iv
e)

SMARTS

A
A1+A2

B
-0.8

C
-0.7

57800 57850 57900 57950 58000 58050 58100
HJD - 2400000.5 [day]

18.9

19.0

19.1

19.2

19.3

19.4

19.5

19.6

M
ag

ni
tu

de
 (r

el
at

iv
e)

WFI

A1
A2
-0.55

B
-0.4

C
-0.5

1.0 1.5 2.0 2.5
Airmass (per epoch)

No
rm

al
ise

d 
di

st
rib

ut
io

n

WFI

ECAM

C2

SMARTS

0.5 1.0 1.5 2.0 2.5 3.0
Seeing (per epoch) ['']

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 2. WFI2033−4723 light curves from the four different instruments used in this work. Top panel: Euler data sets (C2+ECAM instruments),
with the change occuring in October 2010, corresponding to the small gap visible in the 2010 season. Middle panel: SMARTS data set. Bottom
left panel: WFI data set, where the A1 and A2 images were individually resolved thanks to superior image quality and longer exposure times. We
note that different calibration stars were used for the different data sets, hence the differences in the relative magnitudes between the instruments.
Bottom right panel: normalised distribution of the airmass and seeing of all the individual exposures in each data set.
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delays from the data and the generative model can be used to
draw mock light curves with known time delays to assess the
uncertainty of the point estimates.

– A Group G = [Ei j], composed of independent time-delay
estimates E = ∆t

+δt+
−δt−

, is the result of the application of a curve-
shifting technique on a data set for a given choice of curve-
shifting technique parameters.

– A Series S = [G1, . . .Gk, . . . ,GN], k ∈ N, consists of mul-
tiple Groups that share the same data set and point estimator,
but differ in their choice of curve-shifting technique parame-
ters. Typically, a Series is a collection of Groups whose time-
delay estimates are a priori equivalently probable, and thus can
be combined or marginalised over.

3.1. PyCS formalism

We measure the time delays using the open-source PyCS soft-
ware (Tewes et al. 2013a; Bonvin et al. 2016). PyCS is currently
composed of two different point estimators.

– The free-knot splines estimator fits (i) a unique spline
to model the intrinsic luminosity variations common to all the
lensed images, and (ii) individual extrinsic splines to each light
curve in order to model the microlensing magnification by com-
pact objects in the lens galaxy. The time shifts between the light
curves are optimised concurrently with the spline fits in an iter-
ative process, following the BOK-splines algorithm of Molinari
et al. (2004). The smoothness of the fit is controlled by the num-
ber of knots in the splines, which we represent by the initial
(i.e. prior to the optimisation) temporal spacing between the
knots, denoted η and ηml for the intrinsic and extrinsic splines,
respectively. Special constraints on the knots position are
denoted by ηpos and ηpos

ml .
– The regression difference estimator fits individual regres-

sions through each light curve using Gaussian Processes. The
regressions are then shifted in time with respect to each other,
pair by pair. At each time step, the amount of variations of the
difference of the two regressions is evaluated; to the smallest
variability (the “flattest” difference curve) is associated the best
time-delay point estimate. The estimator parameters consist of a
choice of covariance kernel (and associated parameters) for the
Gaussian Process. The regression difference estimator does not
require any explicit modelling of the microlensing.

To assess the uncertainties of these two point estimators,
PyCS implements a generative model for mock lensed quasar
light curves. It takes as input (i) a model for the intrinsic lumi-
nosity variations of the quasar, (ii) models for the extrinsic vari-
ations of the individual light curves, (iii) the sampling and noise
properties of the observations, and (iv) the true time delays to
recover. The intrinsic and extrinsic variations are modelled after
the best fit of the free-knot splines estimator on the real data. The
sampling of the mock curves matches that of the real observa-
tions, and the noise is a combination of red and white noise cal-
ibrated on the real data (see Tewes et al. 2013a, for the details).
Finally, the true time delays are randomly sampled over a range
of values around the actual time delays measured on the real light
curves. The dispersions of the point estimators’ results around
the true delays of the mock light curves are used to estimate the
uncertainties.

With two point estimators and one generative model, PyCS
offers two different curve-shifting techniques. The two tech-
niques are not completely independent as they share the same
generative model, but offer a nice cross-validation of the results.
Note that we are exploring a novel generative model in our
robustness tests, as compared with previous work. When having

access to multiple data sets from different instruments, like in
the present case for WFI2033−4723, we chose to analyse the
data sets independently from each other as long as they are each
of sufficient quality to yield robust time-delay estimates. Pro-
ceeding this way is also better to fully extract the constraining
power of each data set, since different data sets can be best fit
with different estimator parameters due to their differences in
sampling and photometric uncertainties. We explore the results
obtained when combining the data sets as a robustness test
in Sect. 3.4.

For each curve-shifting technique and each data set, we vary
the curve-shifting technique parameters to obtain a Group of time-
delay estimates. The exploration of the range of plausible curve-
shifting parameters is done as follows. For a curve-shifting tech-
nique that uses the free-knot splines estimator, we use the same
parameters for the point estimator and the generative model (recall
that the generative model is based on a free-knot spline fit to the
data), for simplicity. For a curve-shifting technique that uses the
regression difference estimator, we use the same generative model
parameters as the curve-shifting techniques based on the free-knot
splines estimator. What constrains our choice of parameters for a
point estimator is the intrinsic error it yields; we limit ourselves
to the sets of parameters that yield an intrinsic error qualitatively
much smaller than the smallest total uncertainty of the most pre-
cise curve-shifting technique we have. Although this might seem
somewhat arbitrary, a large intrinsic error is a robust indicator
that the point estimator either overfit or underfit the data, which
is something we want to avoid.

The various Groups obtained by exploring the different plau-
sible sets of curve-shifting technique parameters are then gath-
ered in a Series. Each Group of the Series represents a plausible
measurement of the time delays. If all the Groups have simi-
lar time-delay measurements (albeit with different uncertainties),
we consider the most precise Group as our reference. However,
if two or more Groups are in tension, keeping only the most pre-
cise one is not a good option as the tension might indicate a
possible bias related to the choice of the curve-shifting parame-
ters. Instead, we iteratively marginalise over the Groups in ten-
sion until that tension stays below a defined threshold, following
the formalism presented in Sect. 4.1 of Bonvin et al. (2019). We
adopt a fiducial threshold value of σthresh = 0.5 in this work. In
practice, it means that once the most precise Group of the Series
has been identified, its tensions with the remaining Groups are
computed; the most precise Group for which the tension with
the reference Group exceeds 0.5σ (if any) is selected, and the
marginalisation (summation) of these two Groups become the
new reference Group. The process is repeated until all the ten-
sions drop below 0.5σ, or all the Groups are combined (which,
in the present case, never happens). As the choice of σthresh = 0.5
might seem arbitrary, we explore the impact of varying this
threshold in our robustness tests in Sect. 3.4.

In a first approach, exploring the curve-shifting technique
parameters and combining the results as we do in this work can
be done using a grid search followed by a weighted marginal-
isation over the results. Ideally, the exploration of the curve-
shifting parameters would be performed in a full Bayesian
framework, but this is currently too expensive computationally
due to the time required to sample the results for a single set
of curve-shifting parameters. Although not perfect, we deem
our current formalism as more conservative than the previous
time-delay measurements of the COSMOGRAIL collaboration
(Bonvin et al. 2017; Courbin et al. 2018). Whether this for-
malism is too conservative or not is still an open – and
complicated - question, that we will address in a forthcoming
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Table 2. Estimator parameters used to compute the time-delay estimates presented in Fig. 3.

Free-knot splines Regression difference (*)

C2 η [days] [25, 35, 45] ν 1.7 2.2 1.9 1.3 1.8
A 0.5 0.4 0.6 0.3 0.7

ηml [days] [150, 300, 600] Scale 200 200 200 300 250
Errscale 20 25 20 25 25

ECAM η [25, 35, 45] ν 1.7 2.2 1.5 1.3 1.8
A 0.5 0.4 0.4 0.2 0.3

ηml [150, 300, 600] Scale 200 200 200 200 200
Errscale 20 25 20 5 5

SMARTS η [35, 45, 55] ν 2.2 1.8 1.9 1.3 1.7
A 0.5 0.7 0.6 0.3 0.7

ηml [150, 300, 600] Scale 200 200 200 150 300
Errscale 20 25 20 10 25

WFI η [25, 35, 45] ν 1.7 1.8 1.3 1.5 1.9
ml model Splines 3rd poly. A 0.5 0.6 0.3 0.4 0.7

Scale 200 200 200 150 300
ηml pos. [Free, Fixed] – Errscale 20 25 20 10 25

Notes. η corresponds to the initial knot spacing of the intrinsic spline and ηml to the initial knot spacing of the extrinsic microlensing splines,
in days. For the WFI data set, “ml model” indicates whether the microlensing has been modeled using free-knot splines or polynomials. For
the former case, ηml pos. indicates the constraint on the microlensing spline knots. Brackets indicate that the values within have been tested in
all possible combinations – each data set has thus nine different possible combinations. For the regression difference technique the parameters
ν (smoothness degree), A (amplitude in magnitudes), scale (length scale in days) and errscale (observation variance in days) refer to the Matérn
covariance function used in the python 2.7 Gaussian process regression implementation of the pymc.gpmodule. The rightmost column (marked
with an *) has the Matérn covariance function replaced by a power-law covariance function, where ν indicates the power-law index.

work (Millon et al., in prep.), in which we will go one step fur-
ther towards a complete Bayesian analysis.

In the end, we have one Group of time-delay estimates
for each data set and curve-shifting technique. The next step
is to combine these Groups together. As stated earlier, the
two curve-shifting techniques implemented in PyCS are not
fully independent, so we chose to fully marginalise over their
respective results. In practice, this translates into summing the
normalised probability density distributions of each time-delay
estimate for the free-knot splines and the regression difference
estimator Groups, thus yielding a single Group for each data set.
Finally, combining the results of the various data sets together
can be done either by multiplying the respective probability den-
sity distributions or by marginalising over the individual results,
if we assume that the time-delay measurements are or are not
independent, respectively.

3.2. Application to WFI2033−4723

We now apply this formalism to the data sets presented in Sect. 2.
For WFI2033−4723, we have four different data sets. In a sim-
ilar fashion to Bonvin et al. (2018), we analyze these data sets
independently from each other. However, we explore the results
obtained by simultaneously fitting all of the data sets as a robust-
ness test in Sect. 3.4.

The range of the curve-shifting technique parameters to
explore must reflect the state of our knowledge about the data
sets. For example, the light curves presented in Fig. 2 are a com-
bination of the intrinsic luminosity variations of the quasar, com-
mon to all light curves, and individual extrinsic variations due
to microlensing magnification by compact objects in the lens
galaxy. Since the amount of microlensing magnification is a pri-
ori unknown, various microlensing models should be considered
if the curve-shifting technique aims to model it explicitly. Simi-
larly, there is no clear consensus on how to properly represent the
intrinsic quasar luminosity variations; on long temporal scales, a

damped random walk model gives good results (e.g. Kozłowski
et al. 2010; Zu et al. 2013), whereas on short time scales it
apparently predicts too much variability (e.g. Mushotzky et al.
2011; Kasliwal et al. 2015). Consequently, we adopt a data-
driven approach and explore various choices for the parameters
controlling the smoothness of the fit of the intrinsic and extrinsic
variations.

The curve-shifting technique parameters used in this work
are presented in Table 2. For each set of estimator parameters –
9 for the free-knot splines estimator and 5 for the regression dif-
ference estimator2, we obtain a Group of time-delay estimates,
that we combine following the formalism presented in Sect. 3.1.
We present the combined time-delay measurements for each data
set in Fig. 3. We also present the two possible combinations of
these time-delay measurements: (i) a marginalisation (labelled
“sum” in the figure) and (ii) a multiplication (labelled “mult” in
the figure). In addition to our own measurements, we report the
time-delay measurements of Vuissoz et al. (2008) and Morgan
et al. (2018), that use subsets of the data presented in this work.
Both measurements are consistent with our work, although nei-
ther of them provide a direct measurement for the AC time delay;
their AB and BC time delays are visible as smaller dots on
Fig. 3. We note that Giannini et al. (2017) obtained light-curves
of WFI2033−4723 taken with the 1.54 m Danish telescope at
the ESO La Silla Observatory, as part of the MiNDSTEp collab-
oration. However, they do not provide time-delay estimates. We
tried to apply PyCS to their data but varying the estimator and
generative model parameters gave discrepant results with very
large uncertainties. We conclude that the MiNDSTEp data set is
not of sufficient quality to produce reliable time-delay estimates
on its own, and thus we do not include it in our analysis.

Overall, our measurements agree well with each other. To
quantify that agreement, we compute the Bayes Factor, or

2 We recall that the generative model parameters used are the same as
the free-knot spline estimator, for simplicity.
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Fig. 3. WFI2033−4723 time-delay estimates. The colored points labelled “PyCS” represent the final time-delay estimates for each data set,
obtained after combining the curve-shifting technique parameters following the marginalisation scheme presented in Sect. 3.1. The gray and
black points, respectively labelled “PyCS-sum” and “PyCS-mult” represent the marginalisation and combination of the results obtained from the
individual data sets. Indicated with small diamonds and dashed lines are the AB and BC delays taken from Morgan et al. (2018) and Vuissoz et al.
(2008), respectively. The similar color between “PyCS -C2” and Vuissoz 2008 indicates that both measurement share the same data set, although
less complete in the latter case (see Table 1). The values indicated above each measurement represent the 50th, 16th and 84th percentiles of the
respective probability distributions.

evidence ratio F = H same/Hbias, following Marshall et al.
(2006). The idea is to test which hypothesis is the most probable:
either H same that the time-delay measurements of each data set
are all representing the same quantity – the cosmological time
delays – or Hbias that at least one measurement represents a
biased measurement of the cosmological time delay, for example
due to the presence of microlensing time delay (Tie & Kochanek
2018). F > 1 indicates that it is more probable for the time-delay
measurements to not be significantly affected by systematic
errors (or to be similarly biased). In such a case, a combination
of the time-delays estimates such as the “PyCS-mult” should be
favored over the marginalization of “PyCS-sum”. We test every
possible combination of the individual time-delay estimates and
find that F is always greater than 1. As it can be guessed from
Fig. 3, the smallest Bayes Factor arises when comparing the AC
delay of SMARTS and WFI, with FSMARTS+WFI

AC = 1.84. The evi-
dence ratios obtained when considering all the data sets indepen-
dently are Fall

AB ∼ 550, Fall
AC ∼ 76 and Fall

BC ∼ 123, indicating that

we should be able to use the combined “PyCS-mult” results of
Fig. 3 without any loss of consistency.

We note that a Bayes Factor greater than one, showing that
the individual measurements are mutually consistent, does not
necessarily mean that there are no unaccounted random uncer-
tainties affecting them. Rather, it means that the uncertainties
of the individual measurement are large enough not to be sig-
nificantly affected by unaccounted random error, or that simi-
lar systematic errors affect all our measurements. In the case of
time-delay measurements, a potential albeit speculative source
of error could be the microlensing time delay. A full descrip-
tion of it and an estimate of its amplitude for WFI2033−4723 is
presented in Sect. 4.

3.3. A1 and A2 light curves of the WFI data set

Morgan et al. (2018) measure a time delay between the A1
and A2 light curves of their SMARTS+EULER combined data
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Fig. 4. WFI2033−4723 time-delay estimates using the WFI data set with the A1 and A2 light curves separated. The A1A2 and BC measurements
from Morgan et al. (2018) are reported for comparison. We also report the “PyCS-mult” estimates from Fig. 3, obtained using the virtual A light
curve, represented in this figure as shaded vertical bands. In this latter case, we report the AB and AC time-delay estimates in the A1B/A2B
and A1C/A2C panels, respectively. We note that the BC estimate from WFI presented here slightly differs from Fig. 3 since the free-knot spline
estimates used in the combined group are obtained by a joint fit to all of the light curves, and so are sensitive to the use of A1 and A2 instead of A.
The values above each measurement give the 50th, 16th and 84th percentiles of the respective probability distributions.

set. To do so, they use a completely independent data reduction
pipeline and curve-shifting techniques than the ones used in this
work. Although we are also able to obtain reasonably well sepa-
rated A1 and A2 light curves for the ECAM and SMARTS data
set, applying our curve-shifting techniques on them results in
a significant loss of precision over all measurable time delays
with respect to our fiducial results obtained using the A light
curve. However, the WFI data set is of better quality, and pre-
cise time-delay measurements can be obtained, as presented in
Fig. 4 along with the A1A2 and BC measurements reported in
Morgan et al. (2018). To ease comparison with Fig. 3, we show
the combined result “PyCS-mult” obtained with the A light
curve as gray shaded vertical bands, with the AB and AC delay
plotted in the A1B/A2B and A1C/A2C panels, respectively.

For the WFI data set, we find a marginal evidence for the
A2 light curve to lead A1, whereas Morgan et al. (2018) find
the opposite. We note that basic lens mass models explored in
Vuissoz et al. (2008) predict 1 < ∆tA1A2 < 3, with A1 leading
A2. The other delays are very close to the WFI ones obtained
with A=A1+A2 – yet with worse precision and thus consis-
tent with “PyCS-mult” results assuming a zero delay between
A1 and A2. Despite the worse precision, using A1B and A2B
(or A1C and A2C) in the lens models has the advantage over
using AB (or AC) of providing an extra constraint in the form
of an independent time-delay estimate. It also solves the issue of
the anchoring position of the A=A1+A2 virtual image; when
assuming a given cosmology and predicting the time-delay sur-
face, one sees that the latter does not behave linearly with respect
to the images position (G.C.-F. Chen, private communication). In
other words, the mean position between the A1 and A2 images
does not predict an excess of time delay being the mean of the
individual A1 and A2 excesses of time delay. Consequently, allo-
cating time delays to each of the A1 and A2 images prevents a
potential bias in the lens models.

3.4. Robustness tests

To complete our analysis of the time delays of WFI2033−4723,
we conduct a number of robustness tests to ensure the validity of
our results (Sect. 3.2, hereafter the fiducial results).

The first test focuses on the Group combination threshold
σthresh that was fixed at 0.5. Recall that this parameter con-
trols how the Groups of time-delay estimates in a given Series
(obtained by varying the estimator and generative model param-
eters of a given curve-shifting technique applied to a given data
set) are combined. For this robustness test we examine two
extreme behaviours; σthresh = 0 and σthresh ∼ ∞. For σthresh =

0, all the Groups in the series are combined, as in a proper
marginalisation. For σthresh ∼ ∞, only the most precise Group
is used, in a similar behaviour to the previous COSMOGRAIL
publications. These two cases represent the two ends of the spec-
trum of plausible combinations, none of which being optimal.
On the one hand, marginalising over all the Groups in the Series
includes Groups whose curve-shifting technique parameters are
not necessarily well-suited to represent the data; on the other
hand, considering only the most precise Group increases the risk
of being affected by a systematic error linked to the specific
choice of curve-shifting technique parameters. Ensuring that the
results obtained in both cases are in agreement with our fiducial
results is a good test of the consistency of the latter. The results
obtained are presented in Fig. 5. They are in very good agree-
ment with the fiducial results, considering both precision and
accuracy. This also indicates that the different Groups in each
Series were already in good agreement with each other prior to
the marginalisation.

The second test focuses on the generative model, especially
on the way the noise in the mock data is generated. Currently,
as described in Sect. 3.1, it is a combination of white and red
noise whose parameters are manually adjusted on a subset of
mock light curves, until the statistical properties of the fit resid-
uals match the ones computed on the real data (see Tewes et al.
2013a, for details). The noise parameters to adjust differ for each
choice of data set and generative models parameters; in total,
the present work required the adjustment of 36 sets of noise
parameters. Although tedious, this procedure remains tractable
when analysing a single lens system. However, it does not scale
well for the analysis of a large collection of systems. For this
reason, we developed a new, completely automated generative
model that is based on the power spectrum of the data residuals
to generate the noise in the mock curves. In brief, this new model
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Fig. 5. Results of the robustness tests for WFI2033−4723 time-delay measurements presented in Sect. 3.4. The shaded vertical bands correspond
to our fiducial results, labelled “PyCS-mult” and “PyCS – WFI” in Figs. 3 and 4 for the top and bottom groups of panels, respectively. The values
indicated above each measurement represent the 50th, 10th and 840th percentiles of the respective probability distributions.

computes the power spectrum of the residuals of the spline fit
via Fourier transform. In Fourier space, the phases of the signal
are randomized while the amplitudes are kept the same, and the
signal is then reversed to real space via inverse Fourier trans-
form. This process allows one to generate a mock realisation of
the residuals which respect the statistical properties of the data
residuals. This mock noise is then added on top of the intrinsic
and extrinsic variability models obtained using free-knot splines
fit on the real data, similarly to what is descibed in Sect. 3.1.
A more detailed description of this new generative model will

be presented in a forthcoming work (Millon et al., in prep.).
The results of this new generative model are presented in Fig. 5
and are labelled “PS Noise”. They use the same estimator and
generative model parameters as our fiducial model presented in
Table 2, and are in excellent agreement with the fiducial results.
This test assesses the robustness of our fiducial noise generation
scheme, but also highlights the performance of the new scheme.
We thus decide to use the new scheme for the remaining robust-
ness tests presented in this section since it is much easier to apply
than the fiducial one.
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Finally, for the analysis of the previous H0LiCOW lenses we
used a different framework to measure time delays in which all
the data sets were combined into a single set of light curves.
Although in the current framework we have good reasons to
separately analyse the data sets, we want to assess the effect
of merging the data sets on the final time-delay estimates. This
provides an important insight on the robustness of the previous
time-delay measurements used by the H0LiCOW collaboration
(see Tewes et al. 2013b for RXJ1131−1231 and Bonvin et al.
2017 for HE 0435−1223 – an updated measurement of the time
delays of these two systems will be presented in Millon et al., in
prep.). We merge the data sets by applying an offset in magnitude
that is computed by minimizing the scatter between overlapping
parts of each light curve and each data set. We explore two com-
binations, one with the four data sets combined and one without
the WFI data set; since the latter stands out the most in terms of
signal-to-noise ratio, sampling and duration, we want to assess
its weight in the final combination. The results are presented in
the upper panel of Fig. 5. We can see that the addition of the WFI
data set has a clear impact, shifting the combined results towards
the delays obtained on the WFI data set alone and significantly
improving the overall precision. It is however less precise than
our fiducial results.

4. Microlensing time delay

In this section, we compute the impact of the microlensing time
delay, a speculative effect first described in Tie & Kochanek
(2018) that we summarize below. The analysis performed in this
section is similar to the one presented in Bonvin et al. (2018)
for the lensed quasar PG1115+080, itself based on the original
work of Tie & Kochanek (2018). In the following, we use the
terminology introduced in Bonvin et al. (2019).

If it were possible to observe the lensed images with a
resolution of a few microarcseconds, the spatial profile of the
source would reveal the accretion disk of the quasar. One possi-
ble model characterisation of the accretion disk emission is the
lamp-post model (e.g. Cackett et al. 2007; Starkey et al. 2016),
that predicts a temperature change propagating across the disk
driven by temperature variations at the center, thus triggering
radiation. As a result, the emission from the outer regions of the
disk follow the emission from the inner regions, but with a delay.
As the disk is seen as a point source at the spatial resolution
we are working with, the observed light curves are a blend of
the light emitted from all the spatial regions of the source vis-
ible through the chosen filter. Due to the delayed emission in
the outer regions, the variations of the observed, blended light
curves are seen slightly delayed with respect to the variations of
hypothetical, unblended light curves of the disk’s inner regions.
This excess of time delay associated to the lamp-post model of
variability is called geometrical time delay, as it relates to the
spatial extension of the source. Since the geometrical delay is
the same in all lensed images, it cancels out when measuring the
delay between two images, and has no impact on the cosmolog-
ical time delay measurement, which is the delay of interest for
time-delay cosmography.

However, stars and/or other compact objects in the lens
galaxy act as microlenses and differentially magnify the vari-
ous regions of the lensed accretion disk. The net effect of this
micromagnification is to reweight the geometrical delay for each
lensed image; the additional excess of time delay introduced
by the reweighting is called the microlensing time delay. Since
the position of the microlenses in the lens galaxy is random,
the excesses of microlensing time delays are uncorrelated and

Table 3. κ, γ, and κ⋆/κ at each lensed image position from the macro
model presented in H0LiCOW XII.

Image κ γ κ⋆/κ

A1 0.350 0.340 0.612
A2 0.462 0.424 0.690
B 0.281 0.309 0.519
C 0.567 0.547 0.698

so do not cancel out between images. This results in a bias
when measuring cosmological time delays between two lensed
images.

In order to quantify the contribution of the microlensing time
delay on the measured time delays, we first simulate microlens-
ing magnification maps at the image positions, using the lens
model from H0LiCOW XII (see Table B1). The convergence,
shear and stellar mass fraction used to generate the microlensing
maps are given in Table 3.

We use GPU-D (Vernardos et al. 2014), a GPU-accelerated
implementation of the inverse ray-shooting technique from
Wambsganss et al. (1992)3 that produces a magnification map
in the source plane from a spatially random distribution of
microlenses in the lens plane. We assume that the microlenses
follow a Salpeter mass function with a ratio of the upper to lower
masses of r = 100 and a mean microlens mass of 〈M〉 = 0.3 M⊙

4.
Each map has 8192 × 8192 pixels, representing a physical size
of 20 Einstein radii 〈REin〉, defined as:

〈REin〉 =

√

DsDds

Dd

4G〈M〉

c2
= 2.375 × 1016 cm, (1)

where Dd,Ds and Dds are the angular diameter distances5

between the observer and the deflector (i.e. the lens galaxy),
the observer and the source and the deflector and the source,
respectively. A 20〈REin〉 square region is sufficiently large to
statistically sample the effects of microlensing. We do not
present in this work what these magnification maps look like,
but the interested reader can have a look at Fig. 2 of Bonvin
et al. (2019) for an example.

The quasar accretion disk is modelled using the thin-disk
model of Shakura & Sunyaev (1973). The thin-disk model
requires (i) the wavelength at which the observations are made,
that we take as the center of the WFI BB#Rc/162 filter
(6517.25 Å)6, (ii) an Eddington luminosity ratio L/LE fixed at
0.3, (iii) a radiative efficiency for the black hole at the center
of the accretion disk of η = 0.1 and (iv) a black hole mass of
MBH = 4.26 × 108 M⊙ taken from Sluse et al. (2012). This gives
an estimated disk radius of R0 = 1.291 × 1015 cm. Our choices

3 Technically speaking, Wambsganss et al. (1992) use a tree code to
simplify the computations whereas (Vernardos et al. 2014) do the full
computation.
4 We note that Poindexter & Kochanek (2010) showed that a Salpeter
mass function might not a good model for microlenses, but in the
present application replacing it with a Chabrier or uniform mass func-
tion does not produce significant differences in the microlensing time-
delay distributions.
5 Angular diameter distances directly depend on H0. We use a value of
H0 = 72 km s−1 Mpc−1 but note that changing this value only marginally
affects the microlensing time-delay distributions.
6 choosing the KPNO R-band or Rouge Genève filter instead does not
produce a significant difference.
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Fig. 6. Distributions of the excess of microlensing time delay for the four lensed image of WFI2033−4723. The values displayed represent the
16th, 50th and 84th percentiles of the plotted distributions. The thicker lines (in blue) indicate the fiducial case where the source size corresponds
to the thin-disk model prediction. The vertical dashed grey lines represent the case where no microlensing time-delay is present. The table below
the figure reports the percentiles of the distributions of the combined image A as well as the lensed image pair.

of L/LE, η and MBH follow Morgan et al. (2018), but other val-
ues for these parameters are possible. For example, Motta et al.
(2017) estimate a black-hole mass of MBH = 1.2×108 M⊙, albeit
with a much larger uncertainty, based on microlensing estimates
of the accretion disk size. Adopting this value will greatly reduce
the predicted size of the accretion disk, and consequently the pre-
dicted microlensing time delay by a factor of ∼2.3. We however
decide to use the Sluse et al. (2012) black-hole mass estimate
since it is based on the more standard virial mass estimates using
observations of the MgII emission lines.

Next, we place the disk at a specific position on the magnifi-
cation maps. One can compute the excess of microlensing time
delay by reweighting the excess of geometrical time delay across
the disk by the microlensing magnification. Integrating over all
the pixels of the disk, we obtain the excess of microlensing time
delay (see Eq. (10) in Tie & Kochanek 2018). By marginalizing
over all the possible source positions in the microlensing maps,
we obtain probability distributions for the excess of microlensing
time delay for each lensed images. These are presented in Fig. 6.
We also explore two extra configurations of the thin-disk model
where we multiply the theoretical characteristic radius R0 by a
factor of two and three. This is motivated by the fact that direct
estimates of disk sizes using either microlensing (e.g. Rojas et al.
2014; Jiménez-Vicente et al. 2015; Morgan et al. 2018) and
also reverberation mapping (e.g. Shappee et al. 2014; Edelson
et al. 2015; Lira et al. 2015; Fausnaugh et al. 2016) generally
infer sizes 2–3 times larger than the thin-disk theory predictions.
The black-hole mass versus source size relation fitted on the
analysis of the modeled microlensing of 14 lensed quasars in
Morgan et al. (2018) predicts a source size ∼three times larger
than the thin-disk model prediction, which corresponds to the
higher value we explore here. We keep the disc inclination and

position angle at zero across all our tests, as varying these
produces only a second-order effect on the amplitude of the
excess of microlensing time delay (e.g Tie & Kochanek 2018;
Bonvin et al. 2018).

A proper inclusion of the microlensing time delay into the
cosmological analysis should be done cautiously. The distribu-
tions and values presented in Fig. 6 are computed assuming a
source position fixed in the microlensing map. However, due
to the transverse motion of the source behind the lens galaxy,
microlensing time delay changes over time. As highlighted in
Bonvin et al. (2019), what drives the effect of microlensing time
delay is not the absolute amount of micromagnification, but the
spatial variability of the micromagnification across the source
profile. Thus, the time it takes for the source to fully cross a
critical curve in the magnification map is a characteristic of the
period over which one can expect the microlensing time delay
to potentially strongly affect the time delay measurements (see
e.g. Mosquera & Kochanek 2011, for estimates of typical time-
scales).

A conservative approach to include microlensing time delay
in our measurements is to simply convolve the probability dis-
tributions presented in the table of Fig. 6 with the time-delay
measurement uncertainties presented in Sect. 3.2. A more
sophisticated approach has been proposed in Chen et al. (2018a),
that takes into account the discrepancies between the mea-
sured time-delays and the models predictions. However, there is
presently no formalism that takes into account the duration of the
monitoring campaign. In the case of WFI2033−4723, we follow
the approach from Chen et al. (2018a). This analysis is presented
in H0LiCOW XII, where the results with a source size of 1R0
have been included by default. H0LiCOW XII also shows that
including or ignoring microlensing time-delay has a minimal
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impact on the time-delay distance inference for WFI2033−4723.
As a final remark, we note that our measured A1-A2 delay from
the WFI data set is consistent with zero, as predicted by the
macro lens model; although not incompatible with the existence
of microlensing time delay, it does not favor large source sizes.

5. Conclusions

This work is part of a series carrying out a new analysis of
quadruply lensed system WFI2033−4723 for time-delay cos-
mography. H0LiCOW X studies the environment of the lens
galaxy and H0LiCOW XII models the lens system. This work
focuses on the measurement of the time delays between the mul-
tiple images of the lensed source. The key points are summarised
as follows:

– We present the most complete collection of monitoring data
of WFI2033−4723 to date. It totals ∼450 h of monitoring,
divided over four data sets (WFI, ECAM, C2 and SMARTS)
from four different instruments and spanning more than
14 years of observations. It notably includes a full season
of high-cadence (daily) and high-precision (millimagnitude)
monitoring with the WFI instrument mounted on the MPIA
2.2 m telescope at La Silla Observatory. The monitoring data
are turned into light curves using a pipeline built around the
MCS deconvolution algorithm (Magain et al. 1998; Cantale
et al. 2016), allowing us to accurately deblend the light from
the lensed quasar images even in poor seeing conditions.

– The time delays are estimated individually for each data set
using the open-source PyCS software (Tewes et al. 2013a;
Bonvin et al. 2016). The measurements from each data set
are mutually consistent. We choose to combine them into a
single group of time-delay estimates, resulting in ∆tAB =

36.2+0.7
−0.8 (2.1% precision), ∆tAC = −23.3+1.2

−1.4 (5.6%) and
∆tBC = −59.4+1.3

−1.3 (2.2%) days.
– The higher signal-to-noise ratio and better seeing of the WFI

exposures allows us to separate the A1 and A2 images of the
lensed quasar into two light curves. The time-delay measure-
ment between the two images yields ∆tA1A2 = −1.0+3.1

−2.7 days,
consistent with a null delay.

– Unlike the time-delay estimates used in the past by
H0LiCOW, the estimates presented in this work are obtained
by marginalizing over the various parameters of our curve-
shifting techniques following the formalism introduced in
Bonvin et al. (2018). In addition, a series of tests are con-
ducted to ensure the robustness of our results. Updating the
time-delay estimates of the other H0LiCOW lens systems is
planned for a future milestone update.

– We estimate the contribution of the microlensing time delay
to the measured delays using the quasar black-hole mass esti-
mate from Sluse et al. (2012). The predictions obtained using
the standard thin-disk model are moderate, and are imple-
mented by default at the lens modelling stage (H0LiCOW
XII). Increasing the disk size to match the measurements
from microlensing studies (Morgan et al. 2018) increases the
contribution of microlensing time delay. The precision of the
measured time delays neither confirms nor rules out the pres-
ence of microlensing time delay in the data.

The measured time delays and estimated microlensing time
delays are used at the lens modelling stage (H0LiCOW XII) to
measure the time-delay distance of WFI2033−4723 and infer
a value of the Hubble constant H0. H0LiCOW XIII combines
the time-delay distance of WFI2033−4723 with two other lenses
systems fully analysed by H0LiCOW (B1608+656 from Suyu
et al. 2010 and SDSS 1206+4332 from Birrer et al. 2019)

with a combined analysis of HST+AO images of RXJ1131−
1231, HE 0435−1223 and PG1115+080 from a joint STRIDES+
H0LiCOW effort (Chen et al. 2019), turning them into the most
precise joint inference of H0 from time-delay cosmography to
date. It also updates the joint inference with other cosmological
probes, superseding the previous results of H0LiCOW V (Bon-
vin et al. 2017).

This paper is the third of a series reporting success-
ful COSMOGRAIL monitoring campaigns with the MPIA
2.2 m telescope; it follows the time-delay measurements for
DES J0408−5354 (Courbin et al. 2018) and PG1115+080
(Bonvin et al. 2018). Significantly improving the precision with
which the Hubble constant can be determined from time-delay
cosmography will require the analysis of dozens of lensed sys-
tems. Being able to measure robust time-delay estimates in a
short amount of time is crucial in this regard. Our goal is to mea-
sure several tens of new delays in the next 5 years. Prospects
are excellent, as the precision of the time delays for individual
objects is of the order of 2–5% in only 1 season of high-cadence
(daily) and high SNR (>500 per quasar image) monitoring for
each object. With smaller telescopes (1 m) and lower cadence (1
point every 4 days) such a precision typically required 10 years
of effort per object.
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