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Abstract. An internal full subcategory of a cartesian closed category & is shown
to give rise to a structure on the 2-category Cat(&) of categories in & which
introduces the notion of size into the analysis of categories in & and allows proofs
by transcendental arguments. The relationship to the currently popular study of
locally internal categories is examined.

Internal full subcategories of locally presentable categories (in the sense of
Gabriel-Ulmer) are studied in detail. An algorithm is developed for their construc-
tion and this is applied to the categories of double categories, triple categories, and
so on.

Introduction. The theory of categories is essentially algebraic in the terminology
of Freyd [12]. This means that it is pertinent to take models of the theory in any
finitely complete category &. Of course this does not mean that all the usual
properties of categories are available to us in &. The 2-category Cat{&) of
categories in & is finitely complete (Street [29]) so pullbacks, categories of Eilen-
berg-Moore algebras for monads, comma categories, and so on, are available. Even
some colimit constructions such as the categories of Kleisli algebras exist. Obvi-
ously the more like the category Set of sets â becomes the more closely category
theory internal to 6E resembles ordinary category theory. If & is finitely cocomp-
lete, for example, we gain localization; or, if 6B is cartesian closed we gain functor
categories.

Yet there is an aspect of category theory which distinguishes it from other
essentially algebraic theories; namely, the question of size. We take the position that
size must be introduced by the endowment of extra data which is not universally
determined by the category & (as are limits, subobject classifiers, cartesian internal
homs). In the present paper the extra data are taken to constitute an internal full
subcategory of &. This means a category S in & together with a fully faithful
representation of the internal arrows of S as actual arrows in (2. It then makes
sense to ask whether or not a category A in & has an 5-valued homfunctor
Aop X A —» S; those A which do are called admissible (or locally small) relative to
the size structure on d determined by our given internal full subcategory. It is
shown in §10 that, for a category $ sufficiently like Set (in fact, a Grothendieck
topos), there must be a trade-off between the number of admissible categories in &
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272 ROSS STREET

and the cocompleteness properties of S; if S is to be as cocomplete as & then every
admissible category must be an ordered object.

To illustrate the fact that an internal full subcategory S of & gives a good notion
of size for categories in &, it is shown in §6 that the 2-category Cat(&) inherits a
Yoneda structure (Street-Walters [30]) with 9A = [A°p, S] when & is cartesian
closed. Indeed, this structure arises from a fibrational cosmos (= "cosmos" in the
sense of Street [28]).

This paper investigates the existence and nature of internal full subcategories,
especially in cartesian closed, locally presentable categories &. It is shown in §7
that internal full subcategories of [6°p, Set] essentially amount to full subfunctors
of [(ß 4,-)op, Set] which actually land in Cat. These include Grothendieck topolo-
gies on Q regarded as particular full subcategories of the subobject classifier
[(<3|-l)op, 2] of [ß°p, Set], and include "calibrations" of Q, in the sense of Bénabou
[3]. Cosmos theory arising from the latter is shown in §9 to lead to the theory of
locally internal categories (see Johnstone [18, Appendix]); locally internal cate-
gories are essentially the admissible categories in [C°p, Set] relative to the maximum
calibration of 6.

In fact, internal full subcategories of [6°p, Set] can be identified with a certain
class of Gabriel theories (3.5) on 6; namely those which are pullback stable. These
are more general than Grothendieck topologies on Q in that they allow cocones in
Q which do not arise from cribles. Categories which are equivalent to categories of
models for pullback stable Gabriel theories are precisely internally complete (7.24),
locally presentable (3.4) categories (see Theorem (7.25)). The category of sets with
distinguished subsets is such without being a topos.

A Gabriel theory J on G leads to a Gabriel theory Jq^v on each Q j U. An
internal full subcategory of a locally presentable category Mod(J, Set) is shown in
§8 to amount essentially to a full subfunctor of Mod(Jei_, Set) which not only
lands in Cat but is also a model for /. This result is applied to the category r-tplcat
of r-tple categories for each r to produce internal full subcategories of (r + 1)-
dimensional cubes. These give the ingredients for a comprehension scheme at each
level of the hierarchy of Gray [17].

Our basic notation is that of Mac Lane [21] and Kelly-Street [19]. We write
[&, $] for the category of functors from & to % (rather than <SS). For a
2-category %, we write \%\ for the underlying category (rather than 9Q, which has
simplicial overtones).

This work represents a substantial revision and extension of a preprint by the
same title circulated in January 1976. Some of the material herein has been exposed
in seminars at the University of Sussex (July 1976) and Columbia University
(October 1976, February 1977). Partial support was provided by a grant from the
National Science Foundation of the United States (1976-1977) which enabled the
author to spend his study leave at Wesleyan University (Middletown, Connecticut).

1. The Grothendieck construction. For an ordered pair A, B of categories there is
a functor -J,5 X ^ J,-:^ X Bop -» Cat whose value at (a, b) is the product of the
two comma categories b [ B, A i a and which is given on arrows by composition.
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COSMOI OF INTERNAL CATEGORIES 273

For a 2-category %, the Grothendieck construction 3(F) (or more precisely, 3AB(F))
on a functor F: Aop X B -+ % is the (- [ B X A j -)-indexed colimit col(- |5X
,4 | -, F) of F in the sense of Street [29]. This means that there is an isomorphism
of categories

%(3(F), X)=[A X Bop, Cat](- IB XA I-, %(F, X)) (1.1)

which is 2-natural in X.
The particular case of interest here is where % = Cat. Then (1.1) amounts to a

2-natural isomorphism

[3(F), X] ^[A°p X B, Cat](F, [- I B X A I -, X]). (1.2)
In other words, § is a left adjoint for the 2-functor

[-IBXA l-,~]: Cat->[/lop X B, Cat]. (1.3)
The existence of 3 follows from the cocompleteness of the 2-category Cat.
However, the presence of the objects \a, \b in A \, a, b [ B means that there are
canonical choices of representatives for equivalence classes in IIa b b | B X A I a
X F(a, b), and we obtain the following simple description of the category 3 (F)
(compare Gray [17, pp. 267-271]).

(1.4) The objects are triples (a, x, b) where a, b, x are objects of A, B, F(a, b),
respectively. An arrow (a, |, ß): (a, x, b)-»(a', x', b') consists of arrows a: a-* a',
ß: b -» b', £: F(a, ß)x —» F(a, b')x' in A, B, F(a, b'), respectively. Composition is
given by

(a', r, ß')(a, i ß) = (a'a, F(a, 6")f ■ F{a, ß% ß'ß).
To complete the definition of § : [Aop X B, Cat] -* Cat as a 2-functor notice that

a natural transformation o: F -* G determines a functor § (a): 3(F) -» 3(G) via
the equations:

3(a)(a, x, b) = (a, aab(x), b),

3(o)(aA,ß) = (a,oa<b.(H),ß);
and a modification m: a —» t determines a natural transformation 3(m): 3(a) —»
S(t) with 3(m)(axJ>) = (la, mab(x), \b).

The above description makes it clear that 3 lifts to a 2-functor
3 : [Aop X B, Cat] -» Cat 1 B X A (1.5)

where we regard 3(F) as a category over B X A via the projection which takes
(a,iß)to(ß,a).

(1.6) The 2-functor (1.5) is faithful and locally fully faithful (the latter means it
induces fully faithful functors on hom-categories).

(1.7) The 2-functor (1.5) has a left adjoint 911 whose value at (9p): M -* B X A is
the functor 911 (M): Aop X B -> Cat described as follows. The objects of
91L(A/)(a, b) are triples (a, m, ß) where m is an object of M and a: a -*pm, ß:
qm^>b are arrows of A, B, respectively. An arrow ¡i: (a, m, ß) -* (a', m', ß') in
91l(A/)(a, b) is an arrow ¡i: m -» m' in M such that a' = pfi • a, ß' • qp = ß.
Composition is that of M. For (0, <f>): (a,b)^>(c,d) in Aop X B, the functor
91l(M)(0, <i>): 9!t(A/)(a, ¿>) -* 9H(A/)(c, d) is given by
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274 ROSS STREET

91t(M)(0, <*>)(«, m, ß) = (aO, m, <t>ß),        91t(A/)(0, <f>)|ii = /x.
(1.8) The 2-functor (1.5) is monadic. This means that the 2-functor induced by 3

from [Aop X B, Cat] to the 2-category Spl(5, A) of Eilenberg-Moore algebras for
the monad 3 9H on Cat | B X A generated by the adjunction 91L H 3, is an
equivalence. So 3 induces an equivalence of 2-categories

[Aop X B, Cat] ex Spl(B, A). (1.9)

(1.10) The objects of Spl(5, A) are called split fibrations from B to A. Any two
3 9H-algebra structures on an object of Cat | B X A are isomorphic, so Spi(5, A)
is equivalent to a locally full sub-2-category of Cat | B X A.

(1.11) An object of a 2-category % is called discrete when all 2-cells between
arrows into that object are identities. Consequently, the full sub-2-category D% of
discrete objects in % is a mere category; all its 2-cells are identities. Discreteness is
preserved by 2-functors with left adjoints; in particular, by equivalences.

One sees immediately that D[Aop X B, Cat] ^ [Aop X B, Set], so 3 induces an
equivalence of categories

[Aop X B, Set] es DSpl(B, A). (1.12)

(1.13) Objects of DSpl(B, A) are called discrete fibrations from B to A. An object
(*): M -» B X A of Cat J, B X A is discrete if and only if p¡i, qp are both identities
implies ¡i is an identity for all arrows ¡i in M. Discrete fibrations from B to A are
precisely split fibrations which are discrete objects of Cat \ B X A. A discrete
object of Cat \ B X A admits at most one 3 911-algebra structure. The category
DSpl(B, A) is a. full sub-2-category of Cat | B X A.

(1.14) In view of the composite equivalence
Spl(B, A) ~[Aop X B, Cat] ^[lop X (Aop X B), Cat] tt Spl(Aop X B, 1),

the reader may wonder why we have chosen to describe a two-sided Grothendieck
construction. The reason is that, for a functor F: Aop X ¿? —» Cat, the categories
3B(F) and 3iAoPxB(F), while having the same objects, are structurally different. The
relationship (and hence also the above equivalence) is not "2-canonical"; it
involves breaking categories up into sets of objects and sets of arrows.

(1.15) We next consider the question of "naturality" of the 2-functors

3AB: [Aop X B, Cat] -* Cat | B X A

in A, B. The assignment B, A \->[Aop X B, Cat] can be extended to arrows and
2-cells by composition to define a 2-functor

[ (_)op x ~ , Cat ] : Catop X Cat000" -> 2-CAT. (1.16)

The assignment B, A i-> Cat \, B X A can be extended to arrows by pullback to
define a pseudo-functor

Cat | ~ X -: |Cat|op X |Cat|op -» 2-CAT (1.17)

(for the terminology see Kelly-Street [19]); there is no natural extension of the
assignment to 2-cells. It is readily checked that 3B are the components of a
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COSMOI OF INTERNAL CATEGORIES 275

pseudo-natural transformation

$Z: [(-)°Px ~,Cat]^Cat|~x-

between pseudo-functors from |Cat|op X |Cat|op to 2-CAT.
(1.18) From (1.16), (1.9) we can extend the assignment B, A t-*Spl(B, A) to a

pseudo-functor
Spl(~ , -): Catop X Catcoop -* 2-CAT (1.19)

such that the equivalences (1.9) are pseudo-natural. The forgetful 2-functors
Spl(5, A) -» Cat I B X A are the components of a pseudo-natural transformation
from Spl(~, -) to Cat J, ~ X - as pseudo-functors from |Cat|op X |Cat|op to 2-
CAT.

(1.20) Since discreteness is preserved by pulling back, the assignment B, A i->
£>SpI(fi, A) extends to a pseudo-functor

Z)Spl(~ , -): Catop X Catcoop^CAT

which is a sub-pseudo-functor of (1.19).
(1.21) Note that from (1.9), (1.12) there are pseudo-natural equivalences

Spl(B,A)~Spl(A°p,B°p),
DSpl(B, A) a DSpl(Aop, 5op).

2. Fibrational cosmoi. The monad 3 9H on Cat|5 X A (1.8) can be generalized
to the case where A, B are objects of a finitely complete 2-category %.

(2.1) For objects A, B of a finitely complete (see Street [29]) 2-category %, we
shall describe a monad 9 (or more strictly 9£) on the 2-category %\,B X A. The
2-functor 9: %IB X A -> 9C|5 X ^ is described as follows. For an object (|):
M ^ B X A over Ä X A, the object 9"(Af ) over B X A is the limit of the diagram

A A *B B (2.2)

with arrow into B X A induced by the projections from 9(M) to the outside A, B.
The 2-functoriality of the diagram (2.2) induces 2-functoriality for the limits. The
unique functor i: 2—» 1 and the functor 3,: 2—»3 given by 3,(0) = 0, 3,(1) = 2,
induce arrows i(\\A: A ^>2(\\A, i (\\ B: B -> 2 rfl B, and 3t (\\A: 3(\\A ^>2 i\\A,
3,rîï2?:3iti.o—»2rf)A. The components of the unit of the monad are the arrows
M -» 9"(Af ) induced by t rfl A, i f\) B. The components of the multiplication of the
monad are the arrows 'ö^(M) -» 9"(M) induced by 3, rfi A, 3, ffl B.

(2.3) Write Spl(B, A) (or more precisely, Spl(B,A; %)) for the 2-category of
Eilenberg-Moore algebras for the monad 9£ on %IB X A. The objects of
Spl(B, A) are called split fibrations from B to A in %. Any two ?T-algebra structures
on an object of %¡,B X A are isomorphic, so Spl(B, A) is equivalent to a locally
full sub-2-category of %IB X A.
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276 ROSS STREET

(2.4) For an object M over B X A and arrows a: A' —> A, b: B' —> B in %, we
write M(a, b) for the object over B' X A' obtained by pullback along b X a. We
call M(a, b) the fibre of M over a, b. In particular, when A = B, 2 rfl A(a, b) is the
comma object of a, b and denoted by a\b.

(2.5) A structure of 9-algebra on an object E over B X A amounts precisely to a
structure of 3 <31t-algebra on each category %(X, E) over %(X, B) X %(X, A)
2-naturally in X. This follows from the Yoneda lemma and the fact that 9" is
defined purely in terms of limits in % and is taken into 3 <D\i by représentâmes
%(X, -).

(2.6) From (1.17), (1.19), (2.5) it follows that a structure of 9^-algebra on an
object E over B X A induces a structure of 9-algebra on any fibre E(a, b) (2.4).
Indeed, we obtain a pseudo-functor

Spl(~, -): %op X %coop -* 2-CAT (2.7)

whose value at B, A is Spl(B, A) and at b, a is pullback along b X a.
(2.8) Each split fibration E from B to A gives rise to a functor

E(-, ~): %(A', A)op X %(B', B) -± Spl(B', A')

whose value at a, b  is E(a, b) and whose value at a:  a' -> a, ß:  b -» b'  is
E(a, ß) = Spl(ß, a)E: Spl(b, a)E^Spl(b', a')E.

(2.9) Objects of DSpl(B, A) (1.11) are called discrete fibrations from B to A in %.
It follows from (1.13), (2.5) that DSpl(B, A) is a full sub-2-category of %IB X A.
There is a sub-pseudo-functor

DSpl(~, -): 9C°P x %mop -* CAT
of (2.7). For a discrete fibration E from B to A, the functor (2.8) factors through a
functor:

E(-, ~): %(A', A)op X %(B', B) -» DSpl(B', A').

(2.10) When % = Cat and A' = B' = 1, notice that Spl(B', A') = Cat, and, for
any functor F: Aop X B -» Cat, the functor

(3F)(-, -):[ \,A]opx[ l,2?]-> Cat

of (2.8) with £ = S F is isomorphic to 2r.
(2.11) Definition. Afibrational cosmos consists of the following data:
(a) a finitely complete 2-category % ;
(b) a 2-functor <3> : %coop -* % with a left adjoint 9 *: % -+ 3Ccoop;

(c) for each object A of %, a discrete fibration E^ from ÍPy4 to A in 5C;
satisfying the following axioms:

(i) for each A, B, the functor
(EA(A, ~): %(B, 9A) -* DSpl(B, A)

(see (2.9)) is fully faithful;
(ii) for each B, the functors of (i) are the components of a pseudo-natural

transformation

G_(-, ~): 3C(2f, 9-) -> 2)SM#, -)
between pseudo-functors 5Ccoop -► CAT.
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(2.12) A fibrational cosmos amounts precisely to what was called a "cosmos" in
Street [28], except that we have here insisted on a terminal object in %. It was
shown in [28] that a large portion of category theory could be developed elementar-
ily in a fibrational cosmos.

(2.13) For any object A, the object 2 (\\A over A X A is a discrete fibration from
A to A. An arrow a: A' X A is called admissible when there exist an arrow h:
A -» 9A' and an isomorphism eA,(A', h) m 2 rfl A(a, A) ( = a \, A) over A X A'; the
arrow h is unique up to isomorphism and denoted by homA(a, 1). An object A is
called admissible (or legitimate, or locally small) when I: A ^>A is admissible; in
this case homA(\, 1) is denoted by_y^: /I —> 'ÍP/I and called the yoneda arrow of A.
Also Ela = (2 rfi 9A)(yA, 9A), %oyA is admissible and hom9A(yA, 1) a lg,^. If yl
and/: /Í -» 2? are admissible there is a 2-cell

homB(f, 1)

which is defined by the condition that £A(A, xf) is isomorphic to the canonical
arrow 2 r\\ A -> (2 rfl B)(f,f) over ^ x^.

(2.15) A fibrational cosmos structure on 3C gives rise to a Yoneda structure on %
in the sense of Street-Walters [30]; indeed their Axiom 3* is satisfied. The data for
the Yoneda structure are the admissible arrows described in (2.13) and the
diagrams (2.14).

3. Locally presentable categories.
(3.1) Suppose a is a regular cardinal. A category fy is called a-filtered when, for

each functor K: £ —» $ where the set of arrows of £ has cardinality < a, there exist
an object X of f and a cocone K=s> X. An a-filtered colimit is a colimit of a
functor whose source is an a-filtered category.

(3.2) An object A of a category & is called a-presentable when the representable
functor &(A, -) preserves a-filtered colimits.

(3.3) A set 3 of objects of a category â is called strongly generating when, for all
arrows /: A -> B in &, if &(G,f): <£(G, A) -> &(G, B) is an isomorphism for all
G E. 3 then/is an isomorphism.

(3.4) A category is called locally presentable when it satisfies the following
conditions:

(i) it is small cocomplete and finitely complete;
(ii) it has small homsets;
(iii) there exist a small regular cardinal a and a small strongly generating set of

a-presentable objects.
(3.5) A Gabriel theory J on a category 6 is a function which assigns to each

object U of ß a small set /( U) whose elements are natural transformations

yA
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278 ROSS STREET

(that is, cocones with vertex U) where "31 is small.
(3.6) A model of J in a category % is a functor F: ß°p —» 9C such that, for each

object U of ß and each t G /((/), the cone Ft: Ft/=> FZ> is a limit for FD. Write
Mod(J, %) for the full subcategory of [ß°p, %] consisting of the models of /. One
easily verifies that Mod(J, %) is closed under pointwise limits in [ß°p, %].

Proofs of the following two theorems can be found in Gabriel-Ulmer [15].

(3.7) Theorem. A category & is locally presentable if and only if there exist a small
category Q, a Gabriel theory J on ß, and an equivalence of categories & =:
Mod(J, Set).   □

(3.8) Theorem. If J is a Gabriel theory on a small category ß and % is locally
presentable then Mod(J, %) is locally presentable and its inclusion in [Q°p, %] has a
left adjoint.   □

(3.9) Our interest here is mainly in cartesian closed locally presentable categories.
The following theorem is essentially a corollary of the Reflection Theorem (Theo-
rem 1.2 and Corollary 2.1) of Day [6]. (It is a little stronger than the statement at
the top of p. 4 of Day [6].)

(3.10) Theorem. Suppose 911 is a full subcategory of a cartesian closed category 9
and that the inclusion has a left adjoint L. Properties (a), (b) below are equivalent and
imply property (c). If 911 is strongly generating (3.3) for 9 then (c) implies (b).

(a) L preserves finite products.
(b) For all P E 9, F E 911, there is an isomorph in 91L of the internal horn [P, F]

in 9.
(c) 9H is cartesian closed.

Proof. Our (a), (b) amount to (8), (1) of Day's Reflection Theorem and so are
equivalent. Under condition (b) the restriction of the internal hom of 9 to 911
yields (c). Finally assume (c), and let \F, G\ be the internal hom of F, G in 911.
Evaluation [F, G] X F-> G induces an arrow IF, GJ->[F, G] which, for H E 9H,
induces the composite isomorphism:

<$(H, [F, G]) « 91L(22, [F, G]) m <$(H X F, G) a <$(H, [F, G]).

If 911 is strongly generating this implies [F, G] =[F, G\ E 91L. It follows that the
component [F, G] —> L[F, G] of the unit of the adjunction is an isomorphism.
Again using that 91L is strongly generating we see that we are in the situation of (2)
of Day's Reflection Theorem; so his (1) holds which is our (b).   □
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(3.11) Theorem. Suppose J is a Gabriel theory on a small (respectively, finite)
category ß such that the representable functors are models. The following six
conditions are equivalent.

(a) Mod(J, Set) is cartesian closed;
(b)for all F, P E [ß°p, Set], if F is a model of J then [P, F] is a model ofj;
(c) the left adjoint of the inclusion of Mod(J, Set) in [6°p, Set] is finite product

preserving;
(d) for all small (respectively, finitely) complete, cartesian closed, locally small

categories &, the category Mod(J, &) is cartesian closed;
(e) for all categories & as in (d) and F, P E [ß°p, &], if F is a model of J then

[P, F] is a model of J;
(f) for all cartesian closed, locally presentable categories &, the left adjoint to the

inclusion of Mod(J, &) in [G°p, (£■] is finite product preserving.1

Proof. The equivalence of (a), (b), (c) will follow from (3.10) once we know that
Mod(J, Set) is strongly generating in [ß°p, Set]. But the representables are dense in
[ß°p, Set] and are in Mod(J, Set). So Mod(J, Set) is in fact dense in [ß°p, Set] and
hence strongly generating.

Clearly (f)=>(c) and (d)=>(a). By (3.10), (e)=>(f) and (e)=>(d). We complete
the proof by showing that (b) => (e). Note that Q: ß°p -» & is a model for J if and
only if, for all A of &, â(A, Q) is a model of J in Set. The internal hom in [&", &\
is given by the end formula:

[P, Q] =/  [PV,e(V,U)(\\QV].
Take P, F: ß°p —> & where F is a model of J in â. We have isomorphisms:

&(A, [P,F]) = &{a, f^PV, S(V,-) fîi FV]\

a [  &(A X PV, ß( V, -) (\\ FV)

Set(â(B, A X PV), &(B, S(V, -) fh FV))

= (   [ Set(&(B,A X PV), Set(ß(K, -), &(B, FV)))

a f[â(B,A X P),&(B,F)],
J B

and the last of these functors is a model in Set by (b). So [P, F] is a model in &.
D

(3.12) Let A+ denote the full subcategory of |Cat| consisting of the nonempty
finite ordinals. Under composition A+ is generated by the cosimplicial diagram
consisting of the monomorphisms 3m:n-»n + lfor0<m < n where 3m < 3m+i,
and the epimorphisms ¿m: n+1—»n for0<w<n— 1 where 3mHtmH3m+i in
Cat.

VB

Some of the implications of this theorem appear in [2].
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(3.13) The inclusion A+ -^ |Cat| induces a "singular" functor 2: |Cat| -► [A°f!, Set]
whose value at Ais I A = [-, A]: Aop ->■ Set.

(3.14) On the other hand, we also have a functor Aop -» [|Cat|, Set] whose value
at n is [n, -]. In other words, we have a simplicial object in [|Cat|, Set] which we
denote by:

->■  evn -> ev
dl

evr.

For « > 0 and a category A, the elements of the set An = evnA = (IA)(n + 1) = [n
+ 1, A] are composable «-tuples of arrows in the category A; also dnA = [3m, A].
For a functor/: A -> B, put/, = evJ = (//)„ + ,: ¿B -» 2?„.

(3.15) It follows that 2: |Cat| ^[A^p, Set] is fully faithful. Since |Cat| is small
cocomplete, 2 has a left adjoint L: [Aop, Set] -»• |Cat| whose value at a simplicial set
F is the category:

L(F)=f Fn X n.

An alternative description given by Gabriel-Zisman [14, p. 33] is: form the free
category on the graph

Fd0
F2   :+    Fl

and factor out by the equivalence relation generated by the relations:

(Fi0)x~\x   forallxEFl,

(F3,)z ~ (F32)z • (F30)z    for all z E F3.

(3.16) Let Jcat denote the Gabriel theory on A+ for which Jcal(\) and Jcat(2) are
empty and, for n > 2, Jcal(ji + 1) consists of the single cocone:

3„   .
1

i
n + 1

Notice that the above cocones are pushouts in Cat and hence in A+; so Jcat has the
property that the representables are models.

(3.17) It is easily seen that 2 (3.13) induces an equivalence of categories

|Cat| ac Mod(Jcal, Set).
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Since |Cat| is cartesian closed, we have the following corollary of Theorem (3.11).

(3.18) Theorem. The functor L: [Aop, Set] -» |Cat| of (3.15) is finite product
preserving.    □

(3.19) The observation (3.18) seems to have been missed by Gabriel-Zisman [14]
since they invoke the Eilenberg-Zilber lemma (p. 26) and arguments involving
"shuffles" to prove that the left adjoint to the inclusion of the category |Gpd| of
groupoids in [A^P, Set] is finite product preserving. However, if F is a category and
F is a groupoid it is clear that the category [P, F] is a groupoid, so, by (3.10), the
left adjoint of the inclusion of |Gpd| in |Cat| preserves finite products. The same
argument can be applied to the category |Ord| of partially ordered sets. Combining
this with (3.18) we obtain:

(3.20) Corollary. The functors |Gpd| -+ [Aop, Set], |Ord| -> [A°+p, Set] obtained by
restriction of I (3.13) both have finite-product-preserving left adjoints.    □

(3.21) There are two variants of (3.12) to (3.20) each with its uses. The category
A+ could be replaced by the full subcategory of |Cat| consisting of the ordinals
1, 2, 3, 4. The simplicial objects are truncated; however, all the results remain true
including (3.18). This variant is essential for those to whom "small" means "finite".
The other useful variant is to replace A+ by the category |Cat,p| of finitely
presented categories. Then Jcat must be replaced by the Gabriel theory consisting of
all finite colimit cocones so that Mod(Jcal, Set) consists of the finite-limit-preserv-
ing (= left exact) functors from |Catfp|op to Set. Again all the results remain true.

(3.22) For any category & and Jcat as in (3.16) we write cat(&) for the category of
models of Jcat in &; that is, cat(&) = Mod(Jcal, &). An object A of cat(&) is called
a category in & (or a category object in &, or an internal category of &); it is
precisely a simplicial object

¿o
-" <*!    \ d0    >

•"    -"     A2 d2 Al      d, A0

such that, for n > 2, the arrows d0, dn: An-+An_i are the pullback of d0, dn_l:
An_l -» A„_2. An arrow/: A -» B in cat(&) is called a functor in â and consists of
arrows/,: An -^ Bn, n > 0, which constitute an arrow of simplicial objects.

(3.23) For all natural numbers r, we define catr(&) inductively by cat°(&) = &,
catr+l(â) = cat(catr(â)). The objects of catr(&) are called r-tple categories in (£.
Theorem (3.11) (recall, (3.21)) has the following corollary.

(3.24) Theorem. Suppose & is a small (respectively, finitely) complete, cartesian
closed, locally small category. Then:

(a) catr(&) is small (respectively, finitely) complete, cartesian closed and locally
small;
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(b) ifF, P E [(Ar+)op, &] and F E caf(&) then [P, F] E catr(&);
(c) if & is locally presentable then so is catr(&) and the inclusion of catr(&) in

[(Ar+)op, &■] has a finite-product-preserving left adjoint,   fj

(3.25) It follows also from the work of Freyd-Kelly [13], (3.24)(b) and (3.10) that,
if & is the category of compactly generated topological spaces, then the inclusion
catr((£) -» [(Ar+)op, &] has a finite-product-preserving left adjoint. There are many
other such non-locally-presentable examples.

4. Fibrations between internal categories.
(4.1) For any locally small category &, we have a Yoneda embedding 6H:

& -» [éE°p, Set] which leads to a pullback diagram:

cat(&)~ -^— -»-[«»p, i Cat |]

[1,1]

[A°P,<£] - j—-  [A°p, [&°p, Set]] = [<TP, [A°p, Set]]

The functor % is fully faithful. For/: A -» B in cat(&), write <£(-,/): &(-, A) ->
&(-,B) for <?)/; so, for each Jf E <£, we have a functor &(X,f): &(X,A)-*
&(X, B).

(4.2) For functors/, g: A —> B in &, a transformation a: f^> g in £E is an arrow a:
,40-> 5, in â such that, for each object X of (£, the arrows (£(*, a)a of #(*, B)
for a E S (X, A0) are the components of a natural transformation from a(X,f) to
â^X, g). It follows that a induces a modification &(-, a): <$,(-, f)^> &(-, g).

(4.3) Write Cat(&) for the 2-category of categories, functors and transformations
in 6E, where the compositions are such that the assignment cth» &(-, a) enriches
the functor ty above (4.1) to a fully faithful 2-functor

%: Cat(&)->[@?p, Cat].

(4.4) If 6E is a finitely (small) complete category then Cat(â) is a finitely (small)
complete 2-category and the indexed limits are preserved by •?). Limits in [(2op, Cat]
are formed pointwise; in particular, (2 rf» F)X = [2, FY] for all F: <2°p -> Cat.

(4.5) If & is a finitely (small) complete, cartesian closed category then Cat(&) is a
finitely (small) complete, cartesian closed 2-category. From (3.24) we have that
cat(â) = \Cat(&)\ is cartesian closed and the internal hom is preserved by ^. By
(4.4), for any finite category K we have K (\\ [B, C] — [B, K ffl C] in cat(â) since it
becomes true after applying ty . This gives the (natural in K) isomorphisms

|Cat|(2C Cat(&)(A, [B, C])) » cat(&)(A, K (\\[B, C])

<*cat(&)(A, [B,K<\\C])

a cat(&)(A X B,K (\]C)
s |Cat|(2C Cat(&)(A X B, C))
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which are 2-natural in A. In particular, we have this for K E A+ which is dense in
(Cat). This gives:

Cat(&)(A, [B, C]) a Cat(&)(A X B, C)

2-naturally in A. This proves (4.5).
(4.6) For any finitely complete category & and categories A, B in (£, there is a

monad 9l¿ on the category â j B0 X A0 described as follows. For an object (*):
M —> B0 X A0 over B0 X A0, the object 9t(Af ) over B0 X A0 is the limit of the
diagram

with arrow into B0 X A0 induced by the projections from 9l(M) to the outside
A0, B0. The functoriality of limit gives that of 91. The components of the unit are
induced by /0: A0-^>AX, i0: 2?0—» Bl and the components of the multiplication by
rf,: A2 -> Ax, rf,: B2 -> 5, (3.22).

(4.7) Write Prof(B, A ; &) (or simply Prof(B, A)) for the category of Eilenberg-
Moore algebras for the monad 91 on & j B0 X A0. The objects of Prof(B, A) are
called profunctors from B to A in â.

(4.8) Suppose F is a profunctor from B to A in &. The structure on P includes
arrows p: P —* A0, q: P -^ B0 and an action c: 9LF —* P. There are pullbacks:

(Aip)0     %      P     (qlB\     -*      2?, 91F ^     (qlB)0
i Ip <U ld0 i ido

A. ^     A0 P -*      B0     (AiP)o     -* P

The right inverses «0, i0 for dx: A¡^> Aü, dQ: Bx -» B0 induce right inverses for
91F -^>(A I p)0, 9LF -» (q I B)0 which compose with the action c to yield actions
cr: (A I p)0 -+P,c,:(q I B)Q -> P for the monads (A I -)0, (- | B)0 on F E 3, i B0
X A0. (In fact, to give an action c is precisely to give two actions cr, c, satisfying the
obvious "bimodule" condition.)

(4.9) Suppose F is a category in Prof(B, A ; &). So we have profunctors P„ from
B to A (3.22) and structure arrows/?, q, c for each n > 0. We shall now describe a
category TP in & which has (TP)0 = F0. The object (rF), of & is the limit in the
category â | B0 X A0 of the diagram

(q i B)o Px (A i p)0

We obtain a graph TP in & by taking d0, dx: (rF), -» (rF)0 to be the projections
from the limit to the left and right F0, respectively. It remains to describe a natural
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category structure on each of the graphs &(K, TP) for K E &. Suppose x, x':
K-> PQ are objects of the graph &(K, TP). An arrow from x to x' in &(K, TP)
amounts (by the universal property of (rF),) to a triple (a, ¿, ß) where a, f, ß are
arrows of &(K, B), &(K, P), &(K, A) such that d0ß = qx, dxa = px', d^ =
c,(x, ß), dxi = cr(a, x'). Suppose (ß, £, a): x -► x', (/?', £', a'): x' -» x" are arrows
in <£(K, TP). "Associativity" and "bimodularity" give the equations

c,(x, ß'ß) = c,(Cl(x, ß), ß'),        cr(a, cr(a', x")) = cr(a'a, x"),

c,(cr(a, x'), ß') = cr(a, c,(x', ß')).

So £: c,(x, ß) -* cr(a, x'), |': c,(x', ß') -+ cr(a', x") in &(K, P) induce c,(|, /?'):
c,(x, >8'>8) -> c,(cr(a, x'), ß'), cr(a, f): c,(c,(a, x'), /?') -» cr(a'a, x"). Composition
for &(K, TP) is defined by:

(ß', r, «')(/?, I, a) = (/3'/3, cr(a, $>,(«, 0'), «'«)■
(Compare with (1.4).)

(4.10) For each category P in Prof(B,A; &), the category TF in S becomes an
object of Cat(&) I B X A by means of the functor TP -» B X A determined by the
composites

(rF), ^(q i B)0^BV (TP)¡-*(A lp)o-»Av
(4.11) In fact, TP supports a canonical structure of split fibration from B to A in

Cat(&) (2.3). The action c: 9(TF) -> TP of 9" on TP is induced by the action of 91
on F, (of course, c0 is precisely the action of 91 on F0).

(4.12) The functoriality of finite limits allows us to extend the assignment
F h> TP to a 2-functor

T: Cat(Prof(B,A; &)) -» S/>/(5, ̂ ; Ca/((£)).

(4.13) Theorem. FAe 2-functor T is an equivalence.   □

(Since all constructions involved are finite limits, the proof reduces to the case
& = Set.)

(4.14) Consequently, T induces an equivalence of categories:

Prof(B, A ; &) at DSpl(B, A ; Cat(&)).
(4.15) It is rather trivial to observe:

Prof(B,A; &) = Prof(Aop X B, 1; <£).
From this and (4.13) we deduce the rather less trivial equivalence of 2-categories

Spl(B,A; Cat(&)) ai Spl(Aop X B, 1; Cat(&)). (4.16)
A rather more precise statement than the last sentence of (1.14) is: for a finitely

complete 2-category % with involution ( )op: %°° -» % there need be no equiva-
lence (4.16) with Cat(&) replaced by DC. Since the pseudo-functoriality of
S/>/(~, -) (2.7) is given representably, it follows from (1.19) that the equivalences
(4.16) arepseudo-natural in A, B.

(4.17) These considerations suggest a closer look at the categories Prof(B, 1; &).
On the one hand, regarding a profunctor F from F to 1 as a discrete category in
ProfiB, 1; (£) we obtain a category TP over B (4.9). Then (TF), - (q I F)0, so
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there is a pullback
i\

F,       ->       By
dfyl ld0
Eo     r*     Bo%

where F = TP. It is a classical (and easy) observation that T induces an equivalence
between Prof(B, 1; &) and the full subcategory of Cat(&) i B consisting of those
functors q: E —* B in & for which the above square is a pullback.

(4.18) On the other hand, for our profunctor F from B to 1, we can apply (2.9)
with F = TP, A = 1, and A' = 1, B' = Y discrete categories in &. This yields a
functor E(-, ~) which we denote by:

PY: &(Y,B)^>& i Y.

More explicitly, for an object b:  Y-h> B0 of &(Y, B), the object PYb over Y is
obtained by pulling back q: P —> B0 along b; for an arrow ß: Y -* F, of &( Y, B)

ß
from b to b', the arrows PYb -» Y-» F,, PYb -» F induce an arrow PYb -> (q i B)0
which composes with the action (q J, 2i)0—» F to induce an arrow PYß: PYb -»
PYb' over F. Furthermore, the functors PY are pseudo-natural in Y where 6Î 1 y is
regarded as pseudo-functorial in Y via pullback. Can we recapture F from the
pseudo-natural transformation &(~, B) -» & J, —? Yes, up to isomorphism. This
will follow from our analysis below of pseudo-natural transformations with domain
&(-, B) = %B where F is a category in & (see (5.18)).

S. An extension of Yoneda's lemma.
(5.1) Suppose R: S -» & is a functor. An arrow u: E' -> E in S is said to be left

cartesian (with respect to R) when, for all v. F" -» F in S and /: FF" -* FF' in &
such that Rv = Ru-1, there exists a unique w: E" —> E' in S such that v = uw
and Fw = /. In this section we deal only with "left cartesian" so we shall
abbreviate this to "cartesian". It is easily seen that, if u: E' —» F is cartesian, an
arrow u': E" —» E' is cartesian precisely when uu' is cartesian.

(5.2) Suppose the following square in S is taken by F to a pullback in &, and
that u is cartesian.

P      ^      H
i il

E'      -»      F
u

FAe square is a pullback in S if and only ifv is cartesian.
(5.3) The functor F: S -» S is called a left fibration (or S is a fibration from 1 to

($■, or S is a fe/f fibred category over &) when, for each object F of S and each
arrow r: A -^ RE in &, there exists a cartesian arrow x,'. r*E-+E such that
RXr = r. It follows from (5.2) in this case, if & has pullbacks then cartesian arrows
have pullbacks with arbitrary arrows in S.

(5.4) To relate the notion of fibration with that of split fibration (1.10), suppose
F: A09 -* Cat is a functor. The Grothendieck construction (1.15) gives a category
3A(F) over A. An arrow (a, £): (a, x)-»(a', x') (see (1.4)) is cartesian precisely
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when £ is an isomorphism. If | is an identity we say (a, £) is split cartesian. It is easy
to see that 3A (F) is a fibration from 1 to A ; indeed, split cartesian arrows can be
found to fulfil the condition.

(5.5) A left fibration F: ë -h> & determines a pseudo-functor ë : S°p -» CAT as
follows. For each object A of &, ëA is defined by the pullback:

ëA      —>      ë
i iR
1 -*        &

A

it is the fibre of ë over A. For r: A —> B, the functor ër: ëB -» ëA is given by
(ër)E = r*E (5.3) and x- • §>h = hx,. The isomorphisms ë(sr) ss ër ■ es, ë\A —
\SA are induced by the universal property of cartesian arrows.

(5.6) For categories &, 9 over 8,, write Cart^íF, S) for the category of carte-
sian-arrow-preserving functors from ÇF to ë over & and natural transformations
over (£.

(5.7) It is a classical result of Grothendieck that, for left fibred categories S, 9
over <£, the category Carts(9\ S) is isomorphic to the category of pseudo-natural
transformations from f to ë (as pseudo-functors (5.5)) and modifications. Indeed,
every pseudo-functor <Sop —> CAT is isomorphic to one arising from a left fibration
(5.5), so we have an equivalence between the 2-category of pseudo-functors from
&°p to CAT and a sub-2-category of CAT j &. The equivalence is a simple
extension of the Grothendieck construction Sf of §1.

(5.8) Suppose F is a category in £E. Let & -J,- B denote the Grothendieck
constructon gf evaluated at the functor %B = &(-, B): Ä°p^Cat (4.3). Ex-
plicitly, using (1.4), an object of & •!• F is an arrow b: X —* B0 in &, and an arrow
(/, ß): b^b' consists of arrows /: X -> X', ß: X -+ F, in & such that d0ß = b,
d,ß = b'f

X->X'

(5.9)
Note that (/, ß) is split cartesian precisely when ß is an identity transformation
b -> b'f in Cai(6£); that is, when b = 6'/and /? = i0b.

(5.10) There is a functor (<£ -|- F)op -* Cat described as follows. The value at b
is the comma category b | &(X, B). The value at (/, ß) is the functor b' | &(X', B)
-* b I &(X, B) given by "pasting on" the diagram (5.9) in the 2-category Cat(&).

(5.11) The following diagrams represent arrows in & •!• F.

do                                      di
F, -°--> F0 F, -> B0
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Let F denote the graph in iE |- B with these arrows as domain and codomain
arrows, respectively. Then F projects into (2 as the underlying graph of F.

(5.12) Proposition. For each category B in & there is a structure of category on
the graph B (5.11) in & ••,■ B with the following properties:

(i) the functor of (5.10) is isomorphic to the functor (& ■!• F)(-, F): (<£ -|- F)op
->Cat;

(ii) the projection & • \, ■ B —» â takes B to B as simplicial objects;
(iii) each d0: Bn+l—>Bn is split left cartesian.

Proof. An arrow b -» F0 amounts precisely to an object of b j 6£(Ar, F), and an
arrow 6 -* F, amounts precisely to an arrow of ¿> ¿ (t(X, B). It easily follows that
the graph F represents the composite of the functor (5.10) with the underlying
functor from Cat to graphs. The desired objects Bn can all be defined by the
appropriate pullbacks (3.22) which all exist since d0: F, -» F0 is split cartesian (5.2).
By Yoneda's lemma the simplicial structure on B can be induced from the
pointwise category structure on the functor of (5.10). So (i) holds. Yoneda's lemma
gives (ii), and (iii) is clear from the construction.    □

(5.13) Suppose F: ë -> (S. is a functor (respectively, a split left fibration) and F is
a category in &. Write ëpB (respectively, ëB) for the full subcategory of Cat(ë)
consisting of those categories F in S which are taken as simplicial objects to F by
F and which have d0: F, —> E0 cartesian (respectively, split cartesian). If F is
discrete then ëpB (respectively, ëB) is equivalent (respectively, isomorphic) to the
fibre of ë over B (5.5). For any B in the split case, ë B is equivalent to ëB.

(5.14) Evaluation at B (5.12) provides a functor

evalB: Carts(# •!• F, S) -* ëpB.

For a cartesian-arrow-preserving functor TV: & -J,- B —» ë over A, it follows from
(5.2), (5.12) that the value of N at the simplicial object B gives an object
NB = evalgN of ëpB. A natural transformation 0: N -* N' over & provides, for
each n, an arrow 0g : NBn —» N'Bn in ëBn which, by naturality, form a functor
9¿ = eval¿0: NB -^ "n'B.

(5.15) Theorem. Suppose R: ë —» & is a functor and B is a category in &.
(i) The functor evalg o/(5.14) is fully faithful.
(ii) If R is a left fibration then eval¿ is an equivalence of categories.
(iii) If R is a split left fibration then evalB restricts to an isomorphism of categories:

Spl(<£, 1)(£ •!■ F, g) s ëB.

(iv) For all functors F: &°p —* Cat there is an isomorphism of categories

[&°p, Cat](&(-, B), F) s 3f(F)B.

Proof, (i) Take N, N' objects of Cartea! -J,- B, S) and suppose <f>: NB -> N'B
is a functor in ë. For each object b of & • i • B, the commutative square
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Nb
N{b,iob)i

NBn

N'b
iN'(b,iob)

N'Bn
"f>o

defines 9b: Nb -» N'b in ëX since the vertical arrows are cartesian. With the data
(5.9), the above square, the equations (b, i0b) = (d0, i0b)( ß, i0b), ¿20<£, = <¡>0d0, and
the fact that d0 = N'(d0, i0b) is cartesian, we deduce the equation <f>lN(ß, ¿0¿>) =
N'(ß, i0b)9b. This equation together with (dx, \B)(ß, i0b) = (b', í0¿>')(/, ß), dfa =
<í>0<2,, and the fact that N'(b', i0b') is cartesian, imply N'(f ß)$b = 9b,(f, ß). So we
have a natural transformation 9: N —> N' over (£. The assignment <J> i-> 9 is clearly
inverse to 9 h» 9B. This proves (i).

(ii) Suppose F is a left fibration and F is an object of ëpB. Define N:
& -i- B -» S as follows. Put Nb = b*E0 E S* (5.3). Take (/, ß): b -^ b' as in
(5.9). Since ¿0: F, —» F0 is cartesian, so is

Xß       d0
ß*E^E^ F0.

But d0ß = b, so there is an isomorphism ß*F, a b*E0 which commutes with the
cartesian arrows into F0. Define N(f, ß) by the condition RN(f, ß) = f and the
commutative diagram

Haß)b*E0

ß*F,

b'*E0

iXf

Xß

F, denote the left side
To show that N preserves composition take (/, ß), (/', ß') with composite (/'/, y)
where y = ß'f- ß: b => é"/7 "» Caí(<£). Let |, £': é*F0
and top of the commutative diagram

N(f,ß)

The diagram shows that £, £' are a composable pair of arrows in the category
ë(b*E0,E). Let f: b*E0-*Ex denote their composite. Since F takes F to B,
Ff = y. Now d0Ç = í/0£ and d0, £ are cartesian, so f is cartesian. So f is the
composite

Xß
b*E0»y*Ei-*Ev

Also ¿,f = ¿,f, so Xß"N(f, ß')N(f ß) = Xß»N(f'f, y) from which the cartesian
Xß« can be cancelled. So N preserves composition.
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Since d0: F, -» F0 is cartesian, we deduce that, for any b: X -» F0, the arrow x¡¿
is the composite

(y>)*Et*b*E0*E0XEv
So, if b = b'f, then XvN(f> 'o^) is cartesian. So #(/, i0b) is cartesian. It follows that
A^ preserves identities and cartesian arrows.

To see that NB » F it follows from Proposition (5.12) that it suffices to see this
at the level of underlying graphs. From the definition of N on arrows and (5.11) it
is immediate that N takes d0, dx: F, —» F0 to an isomorph of d0, dx: F, —» F0. This
proves (ii).

(iii) In this case the isomorphisms such as b*E0 = /?*F, can be chosen to be
identities in a coherent way in (ii). So we obtain NB = E when N preserves split
cartesian arrows.

(iv) The isomorphism of (iii) with ë = gf(F) composes with the effect on
hom-categories of the Grothendieck construction (1.9) to yield the result.    □

(5.16) Observe that when F and F are discrete, Theorem (5.15)(iv) reduces to the
usual Yoneda lemma (Mac Lane [21, p. 61]).

(5.17) We now return to the remarks at the end of (4.18). In Theorem (5.15), take
ë = [2, 6£] and F = [3,, \¿¡, the codomain functor. An arrow in [2, d] is cartesian
precisely when it is a pullback square in &. Assuming & has pullbacks, we see that
F is a left fibration. Combining (4.17), (5.13) and (5.15)(ii), we obtain the equiva-
lence:

Carta(ffi -l- B, [2, &]) at ProfiB, 1; &). (5.18)

The left-hand side of this is isomorphic (5.7) to the category of pseudo-functors and
pseudo-natural transformations from ££(~, F) to & i ~. It follows that a profunc-
tor F from B to 1 in â amounts up to isomorphism to a pseudo-natural transfor-
mation #(~, F) -» & i ~.

6. Internal full subcategories. For a category F in a finitely complete category a,
the external to 68 notion of a pseudo-natural transformation N: &(-, B) —» & i -
internalizes via the extended Yoneda lemma to the notion of a profunctor F from
F to 1 (4.18), (5.18). Properties of A^ translate to properties of F; for example, we
can ask what it means in terms of F for the functors NY to be full, faithful, left
exact, right adjoints, etc., for all Y. This section is concerned with the fully faithful
requirement.

(6.1) An internal full subcategory (S, I) of & consists of a category S in d
together with a profunctor 2 from S to 1 such that, for all objects Y of &, the
functor

IY: â(Y,S)-»& i Y

(as described in (4.18)) is fully faithful. Each (S, I) gives (4.17) an object IY -> S of
[2, Cat(&)], and so we obtain a 2-category of internal full subcategories of &.
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(6.2) Theorem. For an arrow q: I —» S0 in a finitely complete category &, the
following structures are equivalent.

(i) An internal full subcategory (S, I) such that the object of 6L i S0 underlying the
prof une tor I is q;

(ii) a graph d0, d}: S, -» S0 in & and an arrow s: Is (d0) -» Is (dx) in &■ i Sx such
that the components

&(r.do)
&(Y,S¡)        - &(Y,S0)

&(Y,S0)

oY

& i Y

of the modification a corresponding to s induce isomorphisms of sets &(Y, Sx)
1Y J, IY;

(iii) a cartesian internal horn

(ÍK*x Sn

for the objects q X 1: 2 X S0 -^ S0 X S0, 1 X q: S0 X 2 -> SQ X S0 in the category
&IS0X S0.

Proof, (i) =s> (ii) To say IY: &(Y, S) -+ & i Y is fully faithful is to say that the
induced functor [2, &(Y, S)] —> IY i IY is an isomorphism of categories. Restricting
this isomorphism to objects gives the isomorphism of sets &(Y, Sx) = IY i IY as
required for (ii).

(ii) <=> (iii) Take x,y: Y -» S0 and let z: IY(x) -» S0 X S0 be the product of (*):
Y -* S0 X S0 and q X 1: 50 -^ S0 X S0 in & i S0 X S0. Then we obtain bijections:

IY(x)
f S0 xl

1 x q

S0 x S0

IY(X)
g

^s„

IY(X) iY(y)

To say (¿°) is a cartesian internal horn as in (iii) is to say that arrows/are in natural
bijection with arrows £: Y —> Sx such that ¿/0£ = x, dx£ = v. On the other hand,
elements of IY i IY as in (ii) are precisely triples (x, g, y) as above. The equivalence
of (ii) and (iii) follows easily.

(ii) => (i) The graph d0, dx: IY j IY -» &(Y, S0) enriches to a category by defining
composition by (y, h, z)(x, g, y) = (x, hg, z). Assuming (ii) this structure transfers
by Yoneda's lemma to yield a category S in & with underlying graph d0, dx :
S, -» S1,, and such that &(Y, S) is equivalent to the full subcategory of & i Y
consisting of the objects IY(x) over Y.   □
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(6.3) It follows from (6.2) that any two internal full subcategories of 68 with the
same arrow q: I —> S0 underlying their profunctors must be isomorphic. Further-
more, if 68 i S0 X S0 is cartesian closed, then any arrow q: I -» S0 can be enriched
to an internal full subcategory (S, I) of 68.

(6.4) Theorem. Suppose (S, I) is an internal full subcategory of a finitely complete
category 68. For each category B in 68, the functor

(r2)(l,~): Cat(&)(B, S)^DSpl(B, 1; Cat(&))
(see (4.17), (2.9)) is fully faithful.

Proof. Recall (2.9) that DSpl(B, 1; Cat(&)) is a full subcategory of Cat(&) j F.
So it must be shown that (T2)(l,~) is fully faithful when regarded as landing in
Cat(&) I B. Take functors h, k: B -> S in 68 and suppose we have an arrow

(TI)(l,h)     i     (TI)(l,k)

B
in Cat(&) I B. By Theorem 6.2(h) the arrows h0, k0: F0 -> S0 and/: IB(h) -» IBo(k)
determine an arrow £: F0 -» S0 with d0£ = h0, dy£ = k0. It is not hard to see that |:
h -> k is a transformation (4.2) in 68, indeed, the unique one with (r2)(l, £) = /
D

(6.5) Theorem. Suppose (S, I) is an internal full subcategory of a finitely complete,
cartesian closed category 68. The following data determine afibrational cosmos (2.11):

(a) the 2-category Cat(&) (see (4.5));
(b) the 2-functor <!P = [(-)op, S] with left adjoint 9* - [-, S]op;
(c) for each object A of Cat(&), the discrete fibration eA from 9A to A

corresponding under (4.16) to the discrete fibration E^ from /iop X 9A to 1 obtained
by pullback (recall (4.17)):

êA -»      TI

i il
AopXÏAop, S]      ->       S

L J       eval

Proof. By (4.5), % = Caf(68) is finitely complete and cartesian closed. So:
%°°°P([A, S]op, F) = %(B, [A, 5]op)°P

= %(B°P, [A,S])^%(A, [Fop, S]).

This gives 9 * -\ 9. The composite

%(B, 9A) a %(Aop X B, S)I0-^}DSp!(Aop X B, 1; %)  »  DSpl(B,A; %)
(4.16)

is fully faithful (6.4) and pseudo-natural in A, B (2.7) (4.16). The image of the
identity of 9A under this composite when F = 9A is precisely GA as in (c). The
argument of Yoneda's lemma can mimicked to show that the composite must be
E^O-l^). So we have (2.1 l)(i), (ii).   □
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(6.6) For functors a: K^>A, a': L->A in 68, the image under (4.16) of the
discrete fibration a I a' from L to K (see (2.4), (2.13)) is the discrete fibration a i a'
from Kop X L to 1 called the twisted comma category of a, a'. For any object X of
68, ah arrow X -» a | a' amounts to a triple (u, a, v) where u: X —» K, v: X -» L
and a: au^a'v in Car(68); a transformation between arrows corresponding to
(u, a, v), (r, ß, s) consists of transformations a: r^>u, t: v-* s such that the
following commutes.

au      —»      a v
aaf ia'r
ar      ->      a's

ß

In particular, A I A is called the twisted arrow category of A.
(6.7) A functor a: 2C-» A in 68 is admissible (2.13) in the fibrational cosmos of

(6.5) if and only if there exists a functor A(a, 1): K°p X A -» S for which there is a
pullback

a i A ->        TI
ii ii

Kop X A        -» S
A („, 1)

In particular, an admissible category A in 68 has a hom-functor Aop X A -» S
pullback along which takes TI to the twisted arrow category of A. This provides
the details for Street-Walters [30, p. 376].

(6.8) In the situation of (6.4), ifj: T^> S is a fully faithful functor in 68 (that is,
A I A atj If) and J is the pullback of I along j0 then (T, J) is an internal full
subcategory of 68.

7. Gabriel theories and internal full subcategories.
(7.1) Any internal full subcategory (S, 2) of Set yields a fully faithful functor

5 = Set(l, S) -I Set j 1 = Set.
On the other hand, suppose t: F-> Set is a fully faithful functor where T is a small
category. Let S be the full subcategory of Set consisting of the sets U, t E T. Then t
induces an equivalence T oí S and the inclusion of S in Set gives fully faithful
functors

Set(y, S) = [ Y, S] ->[ Y, Set] ex Set i Y

which are pseudo-natural in Y. It follows (5.18), (6.1) that 5 bears a structure of
internal full subcategory, called the canonical one. From this we see that every
internal full subcategory of Set is equivalent to a small full subcategory of Set with its
canonical internal full subcategory structure. We shall now do a similar analysis for
[ß°p, Set] in place of Set.

(7.2) For each functor F: ß°p —» Set there is a functor

AF: [ß°p, Set] | F^[gf(F)op, Set]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COSMOI OF INTERNAL CATEGORIES 293

defined as follows (refer to (1.4)). For 9: G -» F, (AF9)(U, s) = {x E GU\(9U)x =
í} for s E Ft/, and (AF9)h is the restriction of GA. For y: #-» 0', (Afy)(£/^x =
y^x.

(7.3) Proposition. The functors AF of (7.2) are the components of a pseudo-natural
equivalence

A ~ : [ß°p, Set] I ~ ex [gf(~)op, Set]

between pseudo-functors from [ß°p, Set]op to CAT.

(Note that the codomain of A is actually a. functor.)
Proof. Using the fact that a functor into g (F) is a discrete left fibration if and

only if it is an arrow of discrete left fibrations over ß, we have the following
equivalences which are pseudo-natural (1.19) in F and whose composite is AF :

rß°p, Set] IF a*  2)Spl(l, ß) J, 3(F)1 J (1.12)

ex DSpl(l, 3(F))  ex   [g(F)op, Set].    Q
(1.12) L J

(7.4) In particular, (7.3) applies when F= ß(-, U)=eÜU (4.1) to yield a
pseudo-natural equivalence

[ß°p, Set] i <% ~ ex [(ß i ~)op, Set]

whose component at U is

A^: [ß°p, Set] i ß(-, U)ex[(ß{ U)op, Set].

(7.5) Theorem. Suppose ß is a small category, T: ß°p -» Cat is a pseudo-functor,
and

i:F^[(ß|~)op,Set]

is a pseudo-natural transformation with fully faithful components. There exist an
internal full subcategory (S, I) of [ß°p, Set] and a pseudo-natural equivalence Tex S
which are unique up to isomorphism with the property that S is a full subfunctor of
[(ß i ~)op, Set] satisfying:

(i) i is the composite of the equivalence Tex S with the inclusion S -*
[(G i ~)op, Set];

(ii) the inclusion mentioned in (i) is isomorphic to the composite

S   %   ie°p, Set](^l~, S)'^\eap, Set] 1<3>~ => l"(ß|~)op, Set].
Yoneda1 J (6.1) L J (7.4) L J

Proof. Let F denote the small full subcategory of Set consisting of all the sets
((tU)t)h where h: V-+ U in ß and / E TU. Then i factors through the full
subfunctor [(ß | ~)op, F]: ß°p -> Cat of [(ß | ~)op, Set]: ß°p ^ CAT. For U e ß,
let SU denote the full subcategory of [(ß J, U)op, R ] consisting of those functors
which are isomorphic to functors of the form (iU)t. If/: U' -^ U in ß and <i> E SU
then [(ß if)op, R]<¡> E 5C/' since í is pseudo-natural. So S becomes a full subfunc-
tor of [(ß i ~)op, F ] and i induces a pseudo-natural equivalence T ex S as required
for (i).
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The inclusion S —> [(ß | ~)op, Set] induces fully faithful functors

[ß°p, Set](F, S) -+[ß°p, SET](F, [(ß i ~)op, Set])

which are natural in F. Using (1.2) with X replaced by Setop, we see that the
codomain of the above displayed functor is naturally isomorphic to [g(F)op, Set].
Combining this with (7.3) we obtain fully faithful functors

[ß°p, Set](F, 5) ^[ß°p, Set] j F

which are pseudo-natural in F. So, by (5.18), there is an internal full subcategory
(S, I) of [ß°p, Set] for which IF (4.18) is the above displayed fully faithful functor.
This gives (ii).

Uniqueness is left to the reader.   □
(7.6) For a full subfunctor S of [(ß i ~)op, Set] which lands in Cat we obtain an

internal full subcategory (S, I) of [ß°p, Set] satisfying (7.5)(ii); this is called the
canonical internal full subcategory structure on S. It follows from (7.5) that every
internal full subcategory of [ß°p, Set] is equivalent (6.1) to a canonical one. We call
[(ß i ~)op, Set]: ß°p -»CAT the gross internal full subcategory; it would be an
internal full subcategory if it were not so big. Any full subfunctor of the gross
internal full subcategory which lands in Cat is an internal full subcategory of
[ß°p, Set], and all such arise in this way up to equivalence.

(7.7) One particular case of (7.5) when ß has pullbacks arises from the Yoneda
embeddings

eH: G i U^[(6 iU)op, Set].

Regarding the domain ß J, U as pseudo-functorial in U via pullback and the
codomain as functorial in U as usual (1.1), we see that these embeddings are the
components of a pseudo-natural transformation. Applying (7.5) yields an internal
full subcategory (C, I) of [ß°p, Set] called the realization of ß in [ß°p, Set]. Note
that CU ex ß l U pseudo-naturally in U. A calibration (in the sense of Bénabou
[3]) of the category ß is precisely a full sub-internal-full-subcategory of (C, I)
which is suitably "cocomplete".

(7.8) Another particular case arises from the small full subcategory 2 of Set
which becomes an internal full subcategory (2, 1) of Set with q = 3,: 1 —» 2 = 20.
The canonical internal full subcategory (7.6) of [ß°p, Set] corresponding to the
subfunctor [(ß J, ~)op, 2] of [(ß | ~)op, Set] has the form (fl, 1) where qU: 1 -*
(QU)0 = [(ß i U)op, 2]o picks out the composite (ß j t/)op ^ 1->■ 2. A crible (or

sieve) on a category ë (Giraud [16]) is a set 91 of objects such that, for all /:
A -* B, if B G 9v then A E 91. We can identify a crible SI on S with the functor
g°p _» 2 which takes the objects in 91 to 1 and the other objects to 0. So fl U is the
set of cribles on ß j U, also called cribles at U in ß. For F: ß°p -» Set, a crible on
g(F) (1.4) is easily seen to amount to a subfunctor of F. It follows from (1.2) that
(£2, 1) is the subobject classifier (see Johnstone [18]) for [ß°p, Set]; that is, every
monomorphism G >-^ F in [ß°p, Set] is isomorphic to an object in the image of the
fully faithful functor
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[ß°p, Set](F, Q) -»[<?, Set] J, F

determined by (ñ, 1). We shall see below that full sub-internal-full-subcategories of
(ii, 1) which are suitably "cocomplete" correspond to Grothendieck topologies on
ß.

(7.9) We now recall (Gabriel-Ulmer [15], Freyd-Kelly [13]) the translation of the
"model" condition (3.6) into the "orthogonality" condition. Recall that an arrow/:
A -» F in a category 68 is said to be orthogonal to an object C when the function
68(/, C): 68(F, C) -» &(A, C) is an isomorphism. Suppose ß is a small category
and U is an object of ß. Each cocone t: D => U gives a cocone "?)t: ^2) => ^ t/ in
[ß°p, Set] which, provided the domain of D is small, induces an arrow

t: col <3)2>-»<?)i/

from the colimit of the composite of D with the Yoneda embedding. For a functor
F: ß°p -» Set, io äov Ft: Fi/=> FD is a //w/7 /or F25 « precisely to say that r is
orthogonal to F in [ß°p, Set].

(7.10) On the other hand, any natural transformation a: R —» ß(-, U) corre-
sponds to an arrow g (a): g(F) —> ß j U of discrete left fibrations (1.12). Compos-
ing this with the canonical natural transformation X, we obtain a cocone \3(a):

For any functor F: ß°p —» Set, we have the canonical isomorphism

[ß°p, Set](F, F) « lim(g(F)op^ ß°p^Set).

It follows that F is orthogonal to a if and only if F takes Ag (a) to a limit cone.
Also, the colimit of g(F)—> ß-»[ß°p, Set] is isomorphic to R; so the arrow t
obtained from t = \g (a) via (7.9) is isomorphic to a.

(7.11) In the situation of (7.9) we can apply (7.10) to f: col ^ D -> ^ U. This
gives a factorization of the original cocone t as:

a->i
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where the triangle on the right-hand side is none other than the "comprehensive
factorizaton" of D into a final functor and a discrete left fibration (Street-Walters
[31]). The finality of 91 -» g (col ^D) means that we can replace r by \g(f) without
affecting the models.

(7.12) Two Gabriel theories (3.5) on the same category are said to be equivalent
when they have the same set-valued models.

(7.13) Proposition. Each Gabriel theory on a small category is equivalent to one
for which the domain functors of all the cocones are discrete left fibrations.    □

(7.14) For a Gabriel theory J on a small category ß, write J(U) for the small full
subcategory of [ß°p, Set] j ß(-, U) consisting of the objects f for t E J(U) (7.9).
Up to equivalence, to give a Gabriel theory is to give, for each U, a small full
subcategory J(U) of [ß°p, Set] { ß(-, U) (see (7.10)).

(7.15) A Gabriel theory / on ß is said to be pullback stable when, for each
a E J(U) and each /: V —> U in ß, there exists ß E /(V) for which there is a
pullback:

Rf     ^     ß(-, V)

i iß(--/)
F      ->      ß(-, U)

in [ß°p, Set]. In other words, J becomes a sub-pseudo-functor of [ß°p, Set] i ^ ~.

(7.16) Proposition. Suppose J is a pullback stable Gabriel theory on a small
category G. If the square

</>H     -* G
i i»
R     -*     ß(-, U)

a

is a pullback in [ß°p, Set] and a £/({/) (7.13) then <f> is orthogonal (7.8) to every
model of J in Set.

Proof. Since G » col^x) ß(-, V) where (V, x) £ g(G) (see (7.10)), form the
pullbacks

hx   %   e(-,v)
i í&(-jx)

R      -*     ß(-, U)
a

for each (V, x) E g(G), where 9 is induced by the fx. Since J is pullback stable,
any model F of / in Set is orthogonal to each <f>x. Since colimits in [ß°p, Set] are
universal, H is the colimit in [ß°p, Set] j F of the Hx. Since <J> is induced on
colimits by the <bx, the function [ß°p, Set](<J>, F) is induced on limits by the
functions [ß°p, Set](eí>x, F) which are all isomorphisms. So <f> is orthogonal to F.    □

(7.17) Any internal full subcategory (S, I) of [ß°p, Set] determines a pullback
stable Gabriel theory / on ß with J(U) consisting of the cocones Xg (a) (see (7.10))
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where a is such that there is a pullback:

F ->      2

e(-,u)   -+   s0
Recalling (6.7), we see that a E /(Í/) precisely when it is an admissible arrow
between discrete objects of the 2-category Cat[G°p, Set] = [Gop, Cat]. So we call J
the Gabriel theory on ß admitted by (S, I). Equivalent internal full subcategories
admit equivalent Gabriel theories.

(7.18) On the other hand, a pullback stable Gabriel theory / determines an
internal full subcategory (5, 2) of [ß°p, Set] by applying (7.5) to the pseudo-natural
transformation (see (7.15)):

/^[ß°p, Set] | ^-^[(ß |~)op,Set].

The Gabriel theory admitted by (S, I) is then equivalent to J. However, equivalent
pullback stable Gabriel theories can lead to wildly nonequivalent internal full subcate-
gories. For example, a category of models for a pullback stable Gabriel theory on 1
must be equivalent to 1, 2 or Set, yet the set of equivalence classes of internal full
subcategories of Set is not small.

(7.19) Suppose Q: ë -> ß is a discrete right fibration and F is an object of S.
Each cocone t: D => QE in ß has a unique lifting to a cocone Xr- t*(F) => E in ë
(5.3). So a Gabriel theory J on ß lifts to a Gabriel theory Js on S with
JS(E) = {XtIt G J(QE)}. Each element a of J(QE) (7.14) determines an element
a Q of /g(F) such that there is a pullback

RQ -* RQ

ë(-,E)     ->     G(Q-,QE)

in [Sop, Set].

(7.20) Proposition. In the situation of (7.19), if J is pullback stable then so is Js.

Proof. Take F E S, t: 2> => £F in J(QE), and h: E' -> E in S. Since 7 is
pullback stable there exists a cocone t': D'=> gF' in J(QE') such that f is a
pullback of r along ß(-, Qh). To this pullback apply [Qop, 1]: [ß°p, Set] ->
[Sop, Set] and pullback the result along Q: ë(-, E)^G(Q-, QE). This shows
that Xr- is a pullback of ^ along ë (-, /i). So J& is pullback stable.    □

(7.21) Proposition. For any model F: 6Dp -> Set of a Gabriel theory J on Q, the
equivalence A (7.3) restricts to an equivalence

Mod(J, Set) i F ex Mod(Js(F), Set).

Proof. In the notation of (7.2) we must show that G is a model for / if and only
if AF9 is a model for /g(F).
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Suppose G is a model of J. Take (U, s) E g(F), t: 2>=> U in 7(t/), and
x E lim(AF9)r*(U, s). Then x, E (AF9)(Di, (Ft,» and (A^X^I)*, = x,. for all f:
/ -*j in the domain of D. So 0(2)/)x, = (Ft,)í and (GD|)xy = x,. So x E lim GD.
So there exists a unique v E GU such that (Gr,)v = x,. Since F is a model of /, the
calculation (Frt)(9U)y = (02)i)(Gt,)v = (9Di)x¡ = (Ft,)j implies (9U)y = s. So y
E (AF9)(U, s). So Af0 is a model of J^p).

Suppose AF9 is a model of JS(F). Take [/ 6 6, t £ /((/) and x E lim GZ). Then
x, E GDi and (G2)|)*, = xt. So (FD£)(9Dj)Xj = (9Di)(GD£)Xj = (02>/)x,. So there
is a unique j E FU such that (Ft,)* = (9Di)x¡. This gives x E lim(AF9)r*(U, s). So
there exists a unique v E (AF9)(U, s) with ((A^t^v = x¡. So v E GÍ7 with
(Gt,)v = x,. Two such v would give the same x, s and so be equal.    □

(7.22) A crible at U in ß (7.8) can be identified with a full subcategory 91 of
ß | U for which the inclusion is a discrete left fibration, and this in turn can be
identified with the cocone in ß obtained by composing the inclusion 91 ^-» ß i U
with the canonical X (7.10). A Grothendieck topology on a small category ß is a
Gabriel theory / on ß such that each J( U) consists of cribles at U and satisfies
axioms TI), T2), T3) of SGA4 [1]. Condition TI) amounts precisely to the condi-
tion that J be pullback stable. Since the domains of all the cocones in this case are
discrete right fibrations, to give J is to give /. Moreover, / is a full subfunctor of fi
(7.8). It is not hard to see that conditions T2), T3) amount to saying that the
inclusion J —» Œ should be classified (7.8) by an arrow j: U —* fi satisfying 1 < /,
jj < j. The monad j on fi in the 2-category [ß°p, Cat] (Street [25]) is the Lawvere-
Tierney topology on the topos [ß°p, Set] (see Johnstone [18]) corresponding to / on
ß.

(7.23) A Grothendieck topos is a category which is equivalent to a category of
Set-valued models for a Grothendieck topology on a small category. It has been
shown by Gabriel-Ulmer [15] that, for a Gabriel theory J on a small category ß
which is pullback stable and such that the elements a of each J(U) are monomor-
phisms, the category Mod(J, Set) is a Grothendieck topos. In other words, if J is as in
(7.22), except that T2), T3) are not necessarily valid, then there is a Grothendieck
topology which is equivalent to /. One naturally asks the question: what are the
categories of models for pullback stable Gabriel theories? This question is
answered by Theorem (7.25) below.

(7.24) A category 68 is called internally complete (or a "closed span category" by
Day [7]) when, for each object AT of 68, the category 68 j X is cartesian closed.
Spanier's quasi-topological spaces form an internally complete category which is
not locally presentable.

(7.25) Theorem. A category 68 is locally presentable and internally complete if and
only if there exists a pullback stable Gabriel theory J on a small category such that
Mod(J, Set) ex 68. Furthermore in this case, it is possible to find a J for which the
representables are models.

Proof. Suppose J is a pullback stable Gabriel theory on a small category ß and
Mod(J, Set) ex 68. For all V E ß and a: R-+&(-, U), we have the pullback
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ß(-, V)X R       l*?       ß(-, V) X ß(-, U)

pr2l ipr2
R -+ ß(-, U)

a

By Proposition (7.16), if a E J(U) then every model F of J is orthogonal to the top
arrow 1 X a. It follows that the cartesian internal hom [ß(-, V), F] in [ß°p, Set] is
orthogonal to a. So [ß(-, V), F] is a model for J if F is. Since every F: ß°p —> Set
is a colimit of representables it follows that [F, F] is a model for /. By Theorem
(3.11), Mod(J, Set) is cartesian closed.

By Proposition (7.20), J@(F) is pullback stable and so the above argument applies
to yield Mod(JS(F), Set) cartesian closed. This implies, by Proposition (7.21), that
Mod(J, Set), and hence 68 is internally complete. That 68 is locally presentable
follows from (3.7).

Conversely, suppose 68 is locally presentable and internally complete. By (3.7),
68 oí Mod(J, Set) for some Gabriel theory / on a small category ß. It is well
known (see Gabriel-Ulmer [15], Bastiani-Ehresmann [2]) and easy (replace ß by
the full subcategory of Mod(J, Set) consisting of the reflections of the represent-
ables) that we may suppose that the representables ß(-, U) are models for /. The
objects ß(-, F)-» ß(-, U) of Mod(J, Set) | ß(-, U) are strongly generating in
[ßop, Set] i ß(-, U) so that Theorem (3.10) applies to yield that
Mod(J, Set) i ß(-, U) is closed under exponentiation in [ß°p, Set] j ß(-, U).
Now suppose we have a pullback square

Rf     Í     ß(-, V)
i |ß(-./)
F      -*      ß(-, U)

in [ß°p, Set] and a model F for J. Then the internal hom H -h> ß(-, U) of
ß(-, V) -> ß(-, U) and F X ß(-, U) -h> ß(-, t/) is such that 22 is a model for /.

Suppose a E J(U). We shall prove ß is orthogonal to F. For this, take any 9:
Rf-> F. This induces a unique Rf -h> F X ß(-, U) over ß(-, {/). Since Rf is the
product of F and ß(-, F) over ß(-, C/), this corresponds to a unique R—> H over
ß(-, £/)• Since a is orthogonal to H, this arrow factors uniquely through a to yield
ß(-, Í/)-» 22. Since ß(-, U) is a model, this arrow is a right inverse for H -*
ß(-, C/). So 0: Rf —> F corresponds to an arrow over ß(-, £/) from the terminal
object ß(-, U) to 22; that is, to an arrow from ß(-, F) to F X ß(-, [/) over
ß(-, U); that is, to an arrow <j>: ß(-, K)-» F One readily traces through to find
(/>/? = 9. So ß is orthogonal to F.

For each/: F-» t/ in ß and a E /(t/), choose a pullback ß of a along Q(-,f).
Form a new Gabriel theory /' on ß by adding to the cocones of J those cocones
arising as in (7.10) from the natural transformations ß. By (7.10) and the above J'
is equivalent to J. So & ex Mod(J', Set), the representables are models for /', and
/' is pullback stable.   □
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(7.26) Theorem. Suppose J is a pullback stable Gabriel theory on a small category
ß such that the representables are models. Then the left adjoint of the inclusion of
Mod(J, Set) in [ß°p, Set] preserves pullbacks of those pairs of arrows whose
codomains are subfunctors of models.

Proof. Let L be the left adjoint referred to; then the left adjoint of the inclusion

Mod(J, Set) i F^[ß°p, Set] | F

for a model F takes P-* F to LP -► F. Since the objects ß(-, U)^>F of
Mod(J, Set) i F strongly generate [ß°p, Set] j F, it follows from Theorems (3.10)
and (7.25) that the left adjoint to the above displayed inclusion preserves finite
products. This means L preserves pullbacks of pairs of arrows with codomains
models. If G is a subfunctor of a model F then the unit G -» LG is a monomor-
phism, so a pullback into G gives a pullback into LG (a model) and with image
under L the same as the image of the original pullback into G.    □

(7.27) Recall (SGA4 [1]) that the left adjoint for the inclusion Mod(J, Set) ->
[ß°p, Set] preserves finite limits when / is a Grothendieck topology on a small
category. The question arises as to whether all locally presentable internally-com-
plete categories are Grothendieck topoi. The answer is "no". We give two exam-
ples.2

(7.28) The category 2 is locally presentable and internally complete yet is not a
Grothendieck topos. Let J be the Gabriel theory on 1 for which 2(0) consists only of
the unique function 2 -* 1(-, 0). Then J is pullback stable and Mod(J, Set) =: 2. So
2 is locally presentable and internally complete (7.25). The monomorphism 0 —» 1
in 2 is not an equalizer, so 2 is not a topos.

(7.29) The full subcategory Mono(Set) of [2op, Set] consisting of the monomor-
phisms is locally presentable and internally complete. There is a pullback stable
Gabriel theory J on 2 for which J(0) consists only of the identity arrow and J(\)
consists only of the unique arrow F —> 2(-, 1) with F, = 2, F0 = 1. An object F of
[2op, Set] is a model for J if and only if F, -> F0 is a monomorphism. So Theorem
(7.25) applies with 68 = Mono(Set). An arrow 9: F -» G in 68 is a monomorphism if
and only if 90 (and hence 0,) is a monomorphism. Yet 9 is a regular monomor-
phism (equalizer) in 68 if and only if the square

».
F,     -h>     G,

4 i
Fo     -?     Go

"o

is a pullback. So not every monomorphism is regular; so 68 is not a topos. The
object 32: 2 -* 3 of 68 classifies the regular subobjects, so Mono(Set) is a quasi-topos
in the sense of Penon [23].

2Added in proof: P. T. Johnstone has pointed out how to use (7.25) to prove that a locally presentable
category is internally complete if and only if it is a quasi-topos [23]. The models of a pullback stable
Gabriel theory in Set are the separated objects for some Lawvere-Tierney topology on some
Grothendieck topos.
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(7.30) An internal full subcategory of [ß°p, Set] gives rise to a pullback stable
Gabriel theory on ß and then to a category of models. While this category of
models is of some interest (as in (7.29)), it does not allow us to recapture the
internal full subcategory (see (7.18)); while the category of models is an invariant
of the internal full subcategory, it is not a complete invariant. Instead of functors F:
ß°p -» Set which are orthogonal to the appropriate a: F —> ß(-, U) as in the model
condition (7.9) it is better to consider functors F: ß°p -* Cat which are cocomplete
with respect to a; this means that each arrow R ^ F has a pointwise left kan
extension (Street [27]) along a. Note that, if F factors through Set, it is cocomplete
with respect to a precisely when it is orthogonal to every pullback of a along arrows
ß(-, V) -► ß(-, U). This point will be pursued elsewhere; however, also see (9.11),
(9.12), (10.8).

8. Internal full subcategories of locally presentable categories.
(8.1) For a Gabriel theory J on a category ß and for any category %, the

assignment i/i-> Mod(JeiU, %) describes a full subfunctor of [(ß 1 ~)op, 9C]:
ß°p-> CAT (see (7.19)).

(8.2) Proposition. For a functor P: ß°p -^ Set, the natural isomorphism (1.2) of
categories

[gf(F)op, %] s[ß°P, SET](F, [(ß |~)op, %])

restricts to a natural isomorphism of categories

Mod(JS(P), %) »[ß°p, SET](F, Mod(Jei__, %)).

Proof. We must show that T: 3 (P)op -» 9C is a model for JSiF) if and only if the
corresponding N: P ^ [(ß j, ~)op, %] is such that each N,jS is a model for Jei^,.
But ((N^f = T(V, Pf)s) for/: V-* U and s E FÍ/. Also F is a model if and only
if, for all t: D —> V in J(V) and all/, s, the cone with components

T(V,(Pf)s)^T(Di,P(fri)s)

is a limit cone.   □

(8.3) Theorem. Suppose J is a Gabriel theory on a small category ß such that the
representables ß(-, U) are models for J. If S is a model for J in Cat and i:
S -» Mod(Jei_, Set) is a pseudo-natural-transformation with fully faithful compo-
nents then there exists an internal full subcategory (S, I) of Mod(J, Set) which is
unique up to isomorphism with the property that i is isomorphic to the composite:

S^Mod(J, Set)(^ ~, 5) ^ Mod(J, Set) | <8 ~

^  ModUp,, Set).
(7.21) *
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Proof. For a model F of J in Set we have the composite:

Mod(J, Set)(F, 5) = [ß°p, SET](F, S)
\e*, SETl(i, i) .

_*'    '[&P, SET](F, Mod(Je^, Set))

■3- ModUgtF^, Set) 5. Moi2(y, Set) | F,
(8.2) K   ' (7.21)

which is fully faithful and pseudo-natural in F. So it is induced by a profunctor 2
(5.18) and we obtain (S, I) as required. We recapture ¿ up to isomorphism by
substituting ß(-, U) for F.    □

(8.4) One might hope after Theorem (8.3) to obtain a "gross" internal full
subcategory for Mod(J, Set) as we did for [ß°p, Set] after Theorem (7.5). The
situation here is far less satisfactory: it is most unusual for Mod(JGi__, Set) to be a
"pseudo-model" for J in CAT (see (8.5)) let alone a model. (The reader will see this
for J as in (7.29) for example.)

(8.5) A pseudo-functor F: ß°p -> % (where % is a 2-category) is said to be a
pseudo-model for J in % when, for each t: D => U in J(U), the pseudo-natural
transformation Ft: Fi/=* FD is a "pseudo-pseudo-limit" for FD in the sense that it
induces an equivalence between the category %(X, FU) and the category of
pseudo-natural transformations and modifications from X to FD. We say that F is
essentially a model for J when it is pseudo-naturally equivalent to a functor
ß°p -» % which is a model for J in \%\. If F is essentially a model then it is a
pseudo-model but not conversely.

(8.6) Proposition. A pseudo-functor F: Q°p -» CAT is a pseudo-model for J if and
only if each a: R —» ß(-, U) in J(U) (7.14) induces an equivalence between the
category FU and the category of pseudo-natural-transformations and modifications
from R to F.   □

(8.7) A pseudo-functor F: ß°p -» CAT is a pseudo-model for a Grothendieck
topology (7.22) J on ß if and only if the corresponding left fibration over ß (5.7) is
a champ over the site (Q, J) in the sense of Giraud [16, p. 67].

(8.8) Under the conditions of Theorem (8.3), an internal full subcategory of
Mod(J, Set) amounts up to pseudo-natural equivalence to a pseudo-functor T:
ß°p -» Cat and a pseudo-natural-transformation t: T-* Mod(Je^, Set) such that T
is essentially a model for J (8.5) and the components of t are fully faithful.

(8.9) The remainder of this section will be an application of these results to
obtain internal full subcategories of the cartesian closed categories r-tplcat =
cat '(Set) (3.23) of r-tple categories (in Set).

(8.10) We shall give details for the case r = 1. Write J ' for the Gabriel theory Jcat
on A+ (3.16) so that (3.17) cat = Mod(Jx, Set) ex |Cat|. The simplicial category
Mod(Jl+l__, Set) is pseudo-naturally equivalent (7.21) to the pseudo-functor

Mod(J \ Set) i <% ~ : Aop — CAT,
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and this is none other than the pseudo-simplicial category

a*Or

90
9T

cat I 3    -~> cat I 2 r-?  cat I 1,

An object of cat J, n is a functor/: C -* n which gives rise to the following data:
(i) for all i E n, small categories C;
(ii) for all i <j, functors <>/: Ciop X O -» Set;
(iii) for all i <j < k, natural transformations <j>J <S> ^k -» <¡>k where

(tf ® <%)(<,, c) = f   C $j(a, b) X <t>l(b, c)

satisfying the appropriate associativity conditions.
The categories C are obtained by pullback of/ along i: 1 -» n, the functors 4>J

are given by <j>J(a, b) = C(a, b), and the natural transformations in (iii) are induced
by the composition functions

C(a, b) X C(b, c) -> C(a, c).

Conversely, given (i), (ii), (iii) we can construct a functor /: C -> n as follows. The
set of objects of C is the disjoint union of the sets of objects of the C. For x E C,
y E CJ the homset C(x,y) is C'(x, v) when / = j, <j>j(x,y) when i <j, and 0 when
j < i. The compositions of the C and the natural transformations (iii) provide the
composition for C. The functor /: C -» n is given by fx = / for x E C When
n = 2 we see (4.7), (4.14), (1.9) that an object of cat J, 2 is essentially a profunctor
between categories in Set.

(8.11) A pseudo-model (8.5) for J1 in % is called a.pseudo-category in %; such
structures have been considered in the context of "indexed categories" by Wood
[32]. In order to obtain a pseudo-category in CAT, for each n we consider the full
subcategory psfun(n) of cat i n consisting of those functors /: C —* n such that the
natural transformations <j>j ® </>¡¿'.-* <$>'k are isomorphisms for all / <j < k in n. Then
psfun(~) becomes a sub-pseudo-simplicial category of cat i ~ which takes the
cocones in y1 to "pseudo-pseudo-pullbacks"; so it is a pseudo-category in CAT.
One may call psfun the gross internal full sub-pseudo-category of cat. It is almost a
double category whose objects are small categories, whose vertical arrows are
functors, and whose horizontal arrows are profunctors; however, horizontal com-
position is only associative up to isomorphism. Each functor h: Cl -^> C° yields a
profunctor from C1 to C° determined by C°(~, h-): C0op X C'^Set, and
composition of functors is strictly associative. This suggests a natural full subcate-
gory of the pseudo-category psfun in CAT which we now distinguish.

(8.12) The double category fun which follows is well known (Ehresmann). We
shall describe it as a category in CAT:
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d0 do
—dp —dp

fun2       --3—* fun,      -:->    fun0
fl2     . -     l0 -^

The category fun,, is cat. The objects of fun, are arrows x: C1 -* C° in cat. The
arrows of fun, are triples (u°, a, u}): x -»y made up of the data in the following
diagram in the 2-category Cat:

D

xi        =>        [y

C°     -»     D°

Composition in fun, is given by

(v\r,v°)(u\o,u0) = (vlu\r-\-o,v°u0)

where t • | • a is the composite

°v°yul-v u x —> vyu -> zv u

The functors d0, dx: fun, -»cat are given on arrows by d0(u°, o, ux) = u\ dx(u°, o,
ul) = m°; the pullback of these two functors is fun2. The functor dx: fun2—»fun,

takes (u2, o2, ul, o\ u°) to (u2, a1 ■*■ o2, u°) where ol ■*■ a2 is the composite
,'r2012 112"^ L22u x x  -» y ux  —> yyn* ;

that dx is a functor follows from the middle-four interchange law. Associativity and
identity laws are easily checked. The objects if fun„_, (3.22) are strings

C-'C'c"-2*^2 • • • ^>C°; (8.13)
we write xj: CJ -» C for the composite x'+1x'+2 • • • xJ when / <j. The arrows of
funn_, are (2n — 1)-tuples

/..n— 1    „n—\   ,,n — 1   „n — 1 _,1    _!    _,0\ /o  \ a\\u      ,0      , u      , a      , . . . , u , o , u ). («•'t)

(8.15) There is a pseudo-natural transformation ¿: fun -» cat |~ with fully faith-
ful components which we now describe. The functor t, is the identity of cat. The
functor t„: fun„_, —»cat | n takes the object (8.13) to the functor/: C—>n de-
termined as in (8.10) by the following data:

(i) the categories C for i E n;
(ii) the functors C'(~, xj-): C'op X O -* Set for / <j;
(iii) the natural isomorphisms with the canonical components

jb C'(a, xjb) X CJ(b, xJkc) a* C'(a, x'kc).

For two strings (8.13) one sees easily that an arrow in cat j n between the
so-obtained functors into n precisely amounts to an arrow (8.14) of fun„_, between
the two strings.
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(8.16) By taking q: obj —* cat to be the top composite in the following diagram in
which the square is a pullback, we obtain a profunctor obj from cat to 1 in |CAT|

(4.7).

obj     -*     fun     —»     cat
1 id0
1       -♦     cat

l

(8.17) Corollary. Suppose j: S -* fun is a fully faithful functor between categories
in |CAT|. If S is actually a category in cat then (S, I) is an internal full subcategory
of cat where I is the pullback of q: obj —> cat along j0: S0 -» cat.    □

(8.18) Corollary (8.17) can be applied to obtain an internal full subcategory of
cat from each internal full subcategory of Set. Recall (7.1) that an internal full
subcategory of Set amounts to a small full subcategory % of Set. Write /««(%) for
the full subcategory of fun in |CAT| obtained by restricting the objects of funr, =
cat to those categories whose sets of arrows are in GlL. Corollary (8.17) yields an
internal full subcategory (/««(%), obj(%)) of cat. This means that, for all small
categories X, "pulling q: obj^) ->/mh0(%) = cai(%) back along" provides a fully
faithful functor

catCyjtot(%))-»catJ,Jr.
This is essentially the "Yoneda-like lemma" of Gray [17, pp. 290-293]. Note that
Theorem (6.4) can be applied to give a result for the more general case where A1 is a
category in cat; that is, a small double category (in particular, a 2-category).

(8.19) We shall now briefly deal with the case of general r referred to in (8.9).
Write /' for the Gabriel theory on Ar+ (3.24) for which r-tplcat = Mod(Jr, Set). An
r-tpl simplicial object M: Ar°p —» 68 in 68 is an r-tpl category in 68 if and only if, for
all ■',..., nr~ ' E A+ and all 1 < /' < r — 1, the simplicial object

M(nl,...,n'-l,-,ni+l, ...,n'-')

is a category in 68 (3.22).
(8.20) By (8.3), (8.8), to obtain an internal full subcategory of r-tplcat we must

produce an r-tpl category in cat which has a pseudo-natural transformation into the
pseudo-r-tpl-simplicial category

r-tplcat | ^ ~ : Ar+op -* CAT

with fully faithful components. A deductive procedure can be applied as in the case
r = 1 above. We shall just outline the result of the deduction.

(8.21) Write T for the cartesian closed category r-tplcat (3.24). Suppose ?T is a
T-category in the sense of Eilenberg-Kelly [10]. We shall describe an r-tple
category cu(^)) in IT-CATl whose basic ingredients are "(r + l)-cubes in 9"". In
the first instance cw(?T) is a functor

cu(T): Ar+op-» IT-CATI,

but since it is to be an r-tple category it will be determined on objects by its value
on the full subcategory of Ar+op consisting of those objects n = (n\ . . . , nr) E A'+
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with each n ' = 1 or 2. For such an n, if n7 = 1, write n(j) for the result of replacing
n7 by 2. Define cu(?T)(l, . . . , 1) to be 9". Assuming inductively that cw(?T)n is
defined we shall define the 'Y-category cuCö)n(j). The objects are the arrows x:
C1 -+C° of cu(^). For two such objects x: C1 -> C°, v: 2)'-*2)°, the r-tple
category (ci/(?T)n(y))(x, _y) is defined to be the limit in T of the diagram:

[2y,(C\2)0)]

(C\£>u) (C1, D°)

where we have written (C, D) for (cwCír)n)(C, 2)) and where 2y. denotes the r-tple
category Ar+(-, m): Ar+op -* Set with m' = 1 for /' J=j and m7 = 2. Composition in
cu(^))n(j) is induced in an obvious way from that of cu0)n. There are obvious
domain and codomain arrows d0, dx: cuCö)n(j) -» cu(^))n in Y-CAT taking x:
C1 -» C° to C1, C°, respectively. These form the underlying graph of an obvious
category in I'V-CATI.

(8.22) For the above inductive definition it was necessary to carry through the
T-category structure at each stage to get to the next stage. However we are really
interested only in the r-tple category |cm(?T)| in |CAT| obtained by composing cu(*ö)
with the underlying functor l^-CATl -> |CAT|.

(8.23) Suppose % is a full subcategory of Set. Then catr(%) (3.23) is a full
subcategory of T (8.21) and hence supports a canonical T-category structure. Put

fmr{%) = \cu(caf•(%))!;
this is an r-tple category in |CAT|, or equivalently, a category in catr(SET). Note
that funr(Gll)0= funr(^)\ = cat'C^ll).  When   % = Set   we  write  r-tplfun   for
funr(%) ana define r-tplobj by the diagram

r-tplobj r-tplcat

(8.24) When % is small, /««''(%) is a category in r-tplcat and we obtain a
profunctor objr(%) from cat'C^,) to 1 from the pullback:

objr(^l)

i
r-tplobj

catr(%)

^inclusion

r-tplcat

(8.25) Theorem. For each small full subcategory % of the category Set of sets, the
pair (/««'(%), objr{Gll)) is an internal full subcategory of the cartesian closed
category caí'(Set).    □
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(8.26) The above construction can be internalized. For any internal full subcate-
gory (S, I) of a finitely complete category 68, we can construct an internal full
subcategory (funr(S), objr(S, I)) of cat'(68).

(8.27) These internal full subcategories of the categories of multiple categories he
at the heart of the comprehension schemes at each level of the hierarchy of
r-categories; see Gray [17, pp. 306-310].

9. Locally internal categories. In this section we shall look in more detail at the
cosmos structure on [ß°p, Cat] arising via Theorem (6.5) from an internal full
subcategory of [ß°p, Set]. We shall treat the case where the internal full subcate-
gory is the realization (C, 2) of ß in [ß°p, Set] (7.7). This example provided
motivation for the work of Street [28] and Street-Walters [30]. There has been
considerable development of this theory in recent years because of the relationship
with topos theory. These connections were made by Lawvere at Perugia, Italy 1972
(although we have been unable to obtain a copy of these notes) and also by
Bénabou [4], Lawvere [20], Paré-Schumacher [22], and Celeyrette [5] (also unavaila-
ble to the author). We shall not enter the dispute as to whether it is better to work
with pseudo-functors, fibrations or indexed categories (with specified canonical
isomorphisms). All these points of view can be adequately catered for by a suitable
choice of cosmos. The main ideas are present already for the cosmos structure on
[ß°p, Cat] mentioned above, and since Cat[Q°p, Set] = [ß°p, Cat], this example fits
the context of the present paper.

(9.1) Let ß denote a finitely complete category with ß, an object of Set. Let
(C, I) denote the realization of ß in [ß°p, Set] as described in (7.7). We shall study
the cosmos structure obtained by applying Theorem (6.5) to the internal full
subcategory (C, I) of [ß°p, Set]. The underlying 2-category is [ß°p, Cat].

(9.2) In any fibrational cosmos (2.11), a split fibration F from F to A is called
admissible (or locally small) when there exist an arrow h: B —* 'S'A and an
isomorphism F = GA(A, h) over B X A. Admissible split fibrations are necessarily
discrete.

(9.3) Proposition. For a discrete fibration E from B to A in the cosmos (9.1), the
following are equivalent:

(i) F is admissible;
(ii) for all U, V E ß and all a: S(-,U)^>A,b: ß(-, V) -> F, the fibre E(a, b)

of E over a, b (2.4) is representable by an object of ß ;
(iii) for all Y,Z<E cat(G) and all a: ß(-, Y) -h> A, b: ß(-, Z) -* F, the fibre

E(a, b) of E over a, b is representable by a category in ß ;
(iv) the discrete fibration E from Aop X B to 1 corresponding to E under (4.16) is

admissible.

Proof. The functor <EA(A, -): %(B, WA) -► DSpl(B, A) for this cosmos (9.1) is
equivalent to the composite

[ß°p, Cat](v4op X F, C)^[ß°p, CAT](v4op X B, [(ß J, ~)op, Set])

^>DSpl(Aop X B, 1; [ß°p, Cat]).
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So F is admissible when F is isomorphic to an object in the image of the latter
composite. This means that, for each W E ß, ä E AW, b E BW, the functor E¡¿:
(ß i W)op -» Set taking k: T^ W to (ET)((Ak)ä, (Bk)b) should be representable.

(i) <=> (iv) This is clear since the above composite with F replaced by E agrees
with that for F.

(i) => (ii) Given a, b as in (ii), we obtain, by Yoneda, elements of AU, BV which,
using the projections, give elements of A(U X V), B(U X V). Applying the above
condition with W = U X V gives a représenter for E(a, b).

(ii) =*•(i) Apply (ii) with U = V = W and a, b corresponding to ä E AW,
b E BW. The pullback along the diagonal W —» W X IF of the représenter for
E(a, b) gives a représenter for E^¡.

(iii) => (ii) Take Y, Z discrete.
(ii) => (iii) If F satisfies (ii) so does 2 rtl F and hence, in the notation of (iii),

E(a, b)x is representable. So E(a, b) is representable by a category in ß.    □

(9.4) Corollary. An object A of the cosmos (9.1) is admissible if and only if, for
all objects U of ß and a, b of A U, there exist an object a rfl b over U and a natural
bijection between arrows

T.-+a ffi b

in ß i U and arrows (Ak)a--> (Ak)b in AT.    □

(9.5) It follows that A : ß°p -» Cat is admissible precisely when it is a (strict)
"locally internal category over ß" in the sense of Penon [24], and this is precisely
the same as saying the corresponding fibration 3(A) over ß is "localement petite"
in the sense of Bénabou [4].

(9.6) Corollary. For any category Z in Q, the object &(-, Z) of the cosmos (9.1)
is admissible.

Proof. Apply (ii) of (9.3) with F = 2 fji ß(-, Z) ac ß(-, 2 i\\ Z); the représenter
of E(a, b) is the comma object of the arrows U —> Z, V -» Z corresponding to a, b.
D

(9.7) Corollary. If Z, Z' are categories in ß, if j: Q(-, Z)-» B is admissible,
and if b: ß(-, Z') —» B is an arrow in the cosmos (9.1), then the object j i b of
[ß°p, Cat] is representable by a category in Q.

Proof. Apply (9.3) to the admissible E = j [ B.    □

(9.8) Corollary. The object C of the cosmos (9.1) is admissible if and only if ß is
internally complete (7.24).
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Proof. Recall (7.7) that CU ex G i U. For a, b E CU, the object a rji b over U
required for admissibility of C (9.4) is precisely a cartesian internal hom va. G i U
for the objects corresponding to a, b.   □

(9.9) A functor F: ß°p —> Cat is said to have small coproducts when it has the
following two properties:

(i) for all/: V -» U, the functor Ff: FU -> FK has a left adjoint F/;
(ii) for all pullback squares

W     A      V
4 1/'
v    ->     1/

/

the natural transformation Fu • Fv—* Ff • Ff (corresponding to the identity Fu • F/
= Fu • Ff) is an isomorphism.

Condition (i) arises quite often in practice (see Street [26]). Condition (ii) is the
familiar condition of Chevalley and Beck which comes up in descent theory.
Bénabou [4] says F has "petites sommes".

(9.10) Proposition. If F: ß°p -» Cat has small coproducts then, for all categories Z
in Q, the category 3f(F)Z (5.13) is monadic over FZ0 and the underlying functor of
the monad is the composite

FZ0->FZX^FZ0.
Fdo Fdx

Proof. The unit and multiplication for the monad are obtained from the counits
for the adjunctions F/0 H F/0, Fdx -H Fdx by composing on the left with Fdx and on
the right with Fd0 (besides the simplicial identities and the pseudo-functoriality of
F, F, one uses Fd2 • Fd0 » Fd0 ■ Fdx which comes from (9.9)(ii)). Objects of 3(F)Z
are categories in 3(F) which lie over Z and have d0 split cartesian; they are
determined by their underlying graph:

(<<o.l)

(Z„e,)   ^   (Z0, e0)
to. i)

where e, = (Fd0)e0, r¡: e¡ —> (Fdx)e0. So they are determined by an object e0 and an
arrow (Fdx)(Fd0)e0 -» e0. The condition that this data are an Eilenberg-Moore
algebra for the above monad is precisely the condition that the graph should
extend to a category in g (F). The remaining details are left to the reader.    □

(9.11) Street [27] says that a 2-cell

A->B
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in a finitely complete 2-category exhibits k as a pointwise left (kan) extension off
along j when, for all b : G -» F and h : G ^> X, pasting on the diagram

yields a bijection between 2-cells kb => h and 2-cells fd0 => hdx. We say X is
cocomplete with respect to j when every /: A -> X has a pointwise left extension k
alongy. Compare (7.30).

(9.12) Proposition. An object F of the cosmos (9.1) is cocomplete with respect to
all arrows Q(-,f): ß(-, V) -» ß(-, U) if and only if F has small coproducts (9.9).

Proof. To say the left extension of x: ß(-, V) —» F along ß(-,/) exists in the
2-category [ß°p, Cat] is to say that Ff exists at the object of FV corresponding to x
under the Yoneda lemma. To test pointwiseness, since ß(-, U) is discrete and the
ß(-, V) are dense in [ß°p, Set], it suffices to mount pullback squares as in (9.9)(ii)
(or rather their image under ^ ) on top of the left extension triangle and ask that
the results remain left extensions. The result follows.   □

(9.13) Let / be the Gabriel theory admitted (7.17) by the internal full subcate-
gory (C, 2) (9.1) of [ß°p, Set]. The elements of J(U) are precisely the arrows into
ß(-, U) from functors which are representable by objects of ß (7.17), (9.3). So
(9.12) shows that F has small coproducts if and only if, for each U, F is cocomplete
with respect to all elements of J( U). This explains the term "has small coproducts"
in analogy with the cosmos arising from Set and a small full subcategory 5 (for
then the elements of 7(1) are functions F —> 1 where F is a set in S, and to say a
category F is cocomplete with respect to F -» 1 is to say F has coproducts indexed
byF).

(9.14) An object X of a finitely complete 2-category % has limits (respectively,
colimits) of type 91, where 91 is a finitely presented category, when the arrow
X —> 91 <\\ X corresponding to the constant functor 91 —* %(X, AT) at 1^ has a right
(respectively, left) adjoint. For example, taking 91 to be the free category on the
graph •-»•*-•, we see what it means for A to have pullbacks. An object F of
[ß°p, Cat] has limits (colimits) of type 91 if and only if each of the categories FU
does and each Ff preserves them.
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(9.15) Theorem. Suppose F E [ß°p, Cat] has small coproducts and coequalizers.
Then:

(i) gf(F) E [cat(Q)op, Cat] (5.13) has small coproducts and coequalizers;
(ii) F is cocomplete with respect to al admissible arrows j: ß(-, Z) —» F where Z is

a category in Q?

Proof. For any functor u: Z —» Z' in ß, the vertical functors in the following
diagram are monadic (9.10).

t(F)Z'

FZ'0'-

The category g(F)Z' has coequalizers since the underlying functor of the monad
on FZ¿ preserves coequalizers. Dubuc's Adjoint-Triangle Theorem [9] applies to
yield a left adjoint 3(F)u for g (F)u. Then (i) follows easily.

To obtain a pointwise left extension off: &(-, Z)^> F alongy as in (ii) it suffices
since the objects  ß(-, Z') are dense in [ß°p, Cat] to obtain a pointwise left

do f
extension of J i b -* ß(-, Z)^>F along dx: j j b -> ß(-, Z') for each b: ß(-, Z')
-» B. By (9.7), j i b is representable by a category in ß. So it suffices to consider
the case where B = ß(-, Z'). To obtain the pointwise left extension k of /:
ß(-, Z)^F along j = ß(-, u): ß(-, Z)-* ß(-, Z'), take the object of g(F)Z
corresponding to / (5.15), apply 3(F)u to obtain an object of 3(F)Z' which
corresponds to an arrow k: ß(-, Z') —» F with the desired property.    □

(9.16) Proposition. Lei M: Q—> & be a terminal-object-preserving functor be-
tween finitely complete categories and suppose each 68 | A/t/ « cartesian closed. Let
A: ß°p -» Cat ¿e a functor which is pseudo-naturally equivalent to the pseudo-functor
68 l M— given on arrows by pullback. The object A of the cosmos (9.1) is admissible
if and only if M has a right adjoint.

Proof. Suppose M-\N. Take a, b E AU and let h : H -» MU be the cartesian
internal horn of the objects of 68 [ MU corresponding to a, b. Form the pullback

a fob      -»        NH
i iNh
U        -+      NMU

unit

Then a fob satisfies the condition of Corollary (9.4).
Conversely, suppose A is admissible. Take X E 68 and let NX —* 1 — M1 be

a fob where a, b £ A\ correspond to 1-+M1, J->M1 E 68 1 Af 1. This defines a
right adjoint A^ for M on objects.    □

9(F)"

Fu

Fu

HF)Z

■*FZn

3If B is not representable by a category in S the left extensions into F may only be pseudo-natural.
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(9.17) If ß is internally complete so too is Fro/(l, Z; ß) (see Penon [23]), and the
functor Az: ß —> Profil, Z; Q) which takes U to the projection Z X U —* Z has a
right adjoint called "limit over Z". The Yoneda lemma gives an isomorphism

[ß(-, Z)op, C] Í/ « [ß°p, Cat](ß(-, Zop X Í/), C),

which, by Theorem (5.15), is isomorphic to gf(C)(Zop X Í7), and this is equivalent
to Fro/(l, Z X U; ß) » Fro/(l, Z; ß) | AZC/ by Proposition (9.10). Applying Pro-
position (9.16) to Az consequently yields:

(9.18) Corollary. If Z is a category in the internally complete category ß then
9"lz s [ß(-, Z)op, C] is admissible in the cosmos (9.1).    □

(9.19) Recall that an object A of a cosmos was called small by Street-Walters [30,
p. 368] when both A and 9A were admissible. By Corollaries (9.6) and (9.18), when
ß is internally complete, each category Z in ß yields a small object Q(-, Z) of the
cosmos (9.1). It follows for example (by Street-Walters [30, Proposition 13, p. 362]
and Street [28, Theorem 27, p. 162]) that, for any arrow j: ß(-, Z) —» B where B is
admissible and Z is a category in ß, the arrow 9j: 9B -» 9(Q(-, Z)) has both a
right adjoint V/ and a left adjoint 3j. The objects ß(-, Z) are dense (and hence
strongly generating) in [ß°p, Cat], so the theorems of Street [28] which require a
strongly generating set of small objects all apply.

(9.20) In the situation of Proposition (9.16) when M has a right adjoint, it has
been observed by Bénabou that A (ex 68 j M~) has small coproducts if and only if
M preserves pullbacks. Since M already preserves terminal objects, M is left exact
with a right adjoint. If also 68 has coequalizers then so does each A U and each Af
preserves them (indeed, pullback along Mf has a right adjoint since each 68 i MU
is cartesian closed; Freyd [12]). Thus A is admissible, has small coproducts, and
has coequalizers. In particular this applies in the case where M is the inverse image
functor of a geometric morphism 68 —» ß between topoi.

(9.21) Write Lex for the 2-category of small finitely complete categories, finite-
limit-preserving functors, and natural transformations. Then [ß°p, Lex] is the
2-category of finitely complete objects (9.14) in [ß°p, Cat].

(9.22) Proposition. The Yoneda structure on the 2-category [ß°p, Cat] arising
(2.15) from the fibrational cosmos (9.1) restricts to a Yoneda structure on [ß°p, Lex].

Proof. Since C (9.1) is in [ß°p, Lex], so is each 9A. Iff: A -» F is admissible in
the cosmos (9.1) and F E [ß°p, Lex] one easily verifies that homB(f, 1) (2.14) is an
arrow in [ß°p, Lex]. So the data (2.14) restrict to [ß°p, Lex]. Axioms 1 and 2 of
Street-Walters [30, pp. 355 and 358] restrict because of the local fullness of the
inclusion. Since the inclusion has a left adjoint, a diagram has the absolute left
lifting property in [ß°p, Lex] if and only if it does in [ß°p, Cat]. It follows that
Axiom 3* of [30, p. 359] holds.    □

(9.23) If S: 68 —> 95 is a functor such that 68 is small and each of the sets
^(SA, B) is small, we say 5 is left exact (whether 68, 9J have finite limits or not)
when the left adjoint 3S: [68°p, Set] -h> [%"", Set] to [Sop, Set] preserves finite
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limits. If 68 has finite limits this means precisely that S takes finite limits in 68 to
finite limits in 95 .

(9.24) A profunctor F from F to 1 in a finitely complete category 68 is called flat
when, for all objects X of 68, the functor (4.18)

Px: &(X, B) -> 68 | X
is left exact. They form a full subcategory Flat(B, 68) of ProfiB, 1; 68).

(9.25) Proposition. If P is a flat profunctor from B to 1 in a finitely complete
category 68 then, for all categories A in 68, the functor (4.17), (2.9)

(rF)(l, ~): Cat(&)(A, B) -» DSpl(A, 1; Cat(&))
is left exact.

Proof. Properties of the embedding (4.3) % : Cat(68) -h> [<S°P, Cat] allow us to
reduce the problem to the case where 68 = [ß°p, Set]. Then F amounts to a
pseudo-natural transformation F -> [(ß I ~)op, Set] with left exact components
which can be replaced up to equivalence by a natural transformation p: B' -» H'
with left exact components, so that (TF)(1, ~) is isomorphic to the composite

[ß°p, Cat]C4, B) " [ß°p, Cat](.4, B')0-^ [ß°p, CAT]L4, H')

^ [3(A-)op, Set] %DSpl(A, 1; [ß0", Cat])

which is left exact.    □
(9.26) Recall that an object X of a 2-category % is called total relative to a given

Yoneda structure on % when X is admissible and the Yoneda arrow yx: X —* 9X
has a left adjoint. For any small (9.19) object A of %, the object 9'A is total (see
Street-Walters [30, Corollary 14, p. 363]). If i: Y-^ X is fully faithful, has a left
adjoint, and X is total, then Y is total [30, Proposition 27, p. 373].

(9.27) Proposition. For j: &(-, Z)—>Bas in (9.19), if the components of j are left
exact (9.23) then 3j: 9(G(-, Z))^> 9B is an arrow in [ß°p, Lex]. Moreover,
9>(ß(-, Z)) is total in the Yoneda structure (9.22) on [ß°p, Lex].

Proof. A cartesian-arrow-preserving functor between right fibrations is left exact
if and only if it induces left exact functors on fibres. Thus the cartesian-arrow-pre-
serving functor Jv: 3(Q(-, U) X Q(-, Z))-»g(ß(-, U)) X B corresponding to
ß(-, U) X j is left exact. The first sentence of the proposition then follows after
consideration of the diagram:

[ß(-, U) X ß(-, Z)op, C-] °J}U [ß(-, U) X (F-)op, C-]

[1.VJÍ JP.*eJ
[ß(-, U) X ß(-, Z)op, [(C-)op, Set]]   -   [ß(-, U) X (B-)°p, [(C-)op, Set]]

[g(ß(-, U) X ß(-, Z))op, Set] -f [g(ß(- U) X B)op, Set]
3Ju
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For the second sentence apply the first sentence withy taken to be the Yoneda
arrow of ß(-, Z) in the cosmos (9.1).    □

(9.28) For objects A, B of [ß°p, Cat], write Lex ¿A, B), Geom¿A, B)op for the full
subcategories of [ß°p, Cat](^4, B) consisting respectively of the arrows A —» F with
left exact components and the arrows A —» F with left adjoints which have left
exact components.

(9.29) Corollary. Suppose ß is internally complete, Z is a category in ß, and B is
total in the Yoneda structure (9.29) on [ß°p, Lex]. Then there is an equivalence of
categories:

Lexe(S(-, Z), B) ex Geome(B, 9(G(-, Z))),
which takes j to homB(j, 1) = 9j ■ yB.   □

(9.30) Proposition. Suppose M: ß -» 68 is a left exact functor between finitely
complete categories and suppose A : ß°p —* Cat is a functor pseudo-naturally equiv-
alent to & l M-—. For every category Z in ß there is an equivalence of categories
(see (9.24), (9.28)):

Lexe(6(-, Z),A)ex Flat(MZ, 68).
Proof. Since A ex 68 i M~, we have 3(A) ex 68 i M from which it follows

easily (5.13), (4.17) that we have 3(A)Z ex ProfiMZ, 1; 68). Theorem (5.15) then
gives an equivalence

[ß°p, Cat](ß(-, Z), A) ex ProfiMZ, 1; 68)

which restricts to that of the proposition.    □
(9.31) An object B of [ß°p, Lex] is said to be bounded when there exist a category

Y in ß (internally complete) and a fully faithful arrow i: B —> 9(G(-, Y)) with a
left adjoint / in [ß°p, Lex]. By (9.26), (9.27), such a F is total. Put 95 = Fl and let
N: ß —» 95 be the composite:

e ex Cl -* [ß(-, Y)op, C]l = 9(6(-, Y))l^Bl = 95.
diag L /,

Then A^ is left exact and has a right adjoint; also 95 I N ~ ex B. If ß is an
elementary topos then 95 is a bounded topos over ß in the sense of Diaconescu [8];
also (9.29), (9.30) combine to yield Diaconescu's result concerning the equivalence
of Flat(NZ, 95 ) and the category of geometric morphisms over ß between the two
topoi 95 and Fro/(l, Z; ß).

10. Reflective internal full subcategories.
(10.1) Suppose 68 is a finitely complete category. An internal full subcategory

(S, I) of 68 is said to be weakly reflective when each of the functors Ix: &(X, S) -+
68 i X has left adjoint Lx. It is reflective when the left adjoints Lx are pseudo-na-
tural in X.

(10.2) An ordered object of 68 is a category F in 68 for which
(d0\
\ d I   Bx ~* B° X B°

is a monomorphism.
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(10.3) Theorem. Suppose 68 is a locally small, finitely complete category which has
either small powers or small copowers. If (S, I) is a weakly reflective internal full
subcategory of 68 then S is an ordered object of 68 and q: I —» S0 is a monomorphism.

Proof. For each X, the category 68 i X has either small powers or small
copowers. Since â(X, S) is isomorphic to a reflective subcategory of 68 I X, it does
too. Since &(X, S) is small, the argument of Freyd [11, Chapter 3, Exercise D, p.
78] shows that it must be an ordered set. So S is an ordered object.

Suppose u, v: X —> I are such that qu = qv = w. Then, by the pullback property
of Ix(w), we obtain arrows U, v: X —> Ix(w) over X. These reflect to two arrows in
&(X, S) with source Lx(lx) and target w. Since S is ordered, these two arrows, and
hence u, v, are equal. So q is a monomorphism.    □

(10.4) Let 68 denote a topos with subobject classifier fi. A Lawvere-Tierney
topology on 68 is a monad j on ñ (see Johnstone [18, pp. 76-78]). Since ß is an
ordered object,y is idempotent. Let u: fl- —> il be the equalizer of ln,y, so that there
is an /: a-»a, with fu = I, uf = j. In fact, Qj is a kleisli and eilenberg-moore
object fory; so we have that u is fully faithful and/H u. There is a pullback:

2      -*      1
qi ii
a,.   ~»    a

J        u

Then (a,-, 1) is an internal full subcategory of 68 (6.8).

(10.5) Theorem. For any Grothendieck topos 68, the assignment j i-> (ty, 1) induces
a bijection between the Lawvere-Tierney topologies on 68 and the equivalence classes
of reflective internal full subcategories of 68.

Proof. Suppose (S, I) is a reflective internal full subcategory of a. By Theorem
(10.3), S is ordered and q: 2-» S0 is a monomorphism. The characteristic arrow u
of this q gives a pullback

2      -*      1
ii il
s0   ->   a0

Then Ix: (Z(X, S) -*■ 68 J, X is isomorphic to the composite
&(\,u)

&(X, S)   -»   &(X, a) ex Sub(X) -> 68 i X.
It follows that u is order preserving. Since lx and Sub(X) —> 68 | X have pseudo-
natural left adjoints, so too does 68(-, «): 68(-, S) -> 68(-, a). So u has a left
adjoint/ This gives a monad j = uf on a with (ty, 1) equivalent to (5, 2).    fj

(10.6) The author does not know whether (10.5) holds for an elementary topos
68 ; the appropriate diagonal argument eludes him.

(10.7) Proposition. Suppose (S, I) is an internal full subcategory of a finitely
complete category 68 such that S has a terminal object * (9.14) and each Ix:
&(X, S) —* 68 I Xpreserves terminal objects. Then there is a commutative diagram
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in which the square is a pullback.

Proof. We have the natural bijections:

/

X-

«-+-♦
IX(f) X

\
f

I
'q    D

(10.8) Theorem. An internal full subcategory (S, I) of a finitely complete category
68 is reflective if and only if it satisfies the hypothesis of Proposition (10.7) and S is
cocomplete with respect to every arrow of 68 (9.11).

Proof. Suppose (S, I) reflective. Then (10.7) certainly holds. So 2 = (* | S)0.
Take /: X -» Y, f: X -* S and notice that Ix(f) = dx : (* j f)0 -> X. Let k be the
image under LY of jdx: (* f)0 -> Y. For any h: Y-* S, we have natural bijections:

k- h    <-

(* ^ /)o (* i h)0

dx
->Y

(* i /)o

d,

(* ihj)0

d, hf

So A: is a left extension of / along j. That this left extension is pointwise follows
from the fact that the following commutes up to isomorphism.

&(y,s)   J-   sir
ä(t,l)| ib*

68(G, S)     *-     & i G
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Conversely, one sees that LY atj: X ^ Y can be taken to be the pointwise left
extension of X -» 1 -» S along/    □

(10.9) It follows from the above results that in a nice category 68, if we want an
internal full subcategory (S, I) of 68 which mirrors the completeness properties of
68, then the only admissible categories in 68 relative to (S, I) will be ordered
objects. We lose all the interesting categories in 68. It is too restrictive to ask that S
be cocomplete relative to all arrows of 68. More reasonable completeness condi-
tions on (S, I) (suggested by our §9 and the canonical example of Set) are the
following:

(a) S is finitely complete and finitely cocomplete in Cat(&) (9.14);
(b) 2 is flat (9.24) and coflat;
(c) S is cocomplete relative to all admissible arrows j: X —» Y in 68 with [X, S]x

admissible.
Of course one could also require S to be cartesian closed, an elementary topos,

etc., and 2 to "preserve" these essentially algebraic structures.
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