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Cosmological attractors in massive gravity
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We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under
time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in
these models has an extra confining term proportional to the distance from the source. We argue that
during cosmological expansion the Universe may be driven to an attractor point with larger symmetry
which includes particular simultaneous dilatations of time and space coordinates. The confining term in
the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution
is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic
acceleration.
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I. INTRODUCTION

Recently it has been realized [1–3] that models of
modified gravity which contain Lorentz-violating graviton
mass terms may avoid all known problems of massive
gravity such as the van Dam-Veltman-Zakharov (vDVZ)
discontinuity [4,5], ghost instabilities [6] and strong quan-
tum effects at the unacceptably low energy scale [7].1 In
the most general sense by massive gravity we understand
any theory described by the following action:

S � �M2
Pl

Z
d4x

�������
�g
p

R�
Z
d4x

�������
�g
p

F; (1)

where the first term is a usual Einstein-Hilbert term and F
is, generally speaking, an arbitrary (noncovariant) function
of metric components and their derivatives. Matter fields
are assumed to be covariantly coupled to the metric. A
systematic study of the rotationally invariant theories of
massive gravity was performed in Ref. [3]. A particularly
interesting class of models found there is characterized by
a residual reparametrization symmetry

xi ! xi � �i�t�; (2)

where xi are the spatial coordinates. This class of models is
singled out by the following two properties. First, in the
vicinity of the Minkowski background these models rep-
resent consistent low-energy effective theories valid up to
the energy scale ��

������������
mMPl

p
, where m is a graviton mass.

The absence of ghosts and classical instabilities is ensured
by the symmetry requirements alone without need for any
extra fine-tuning. The second important property is that
already the lowest-dimension operators (graviton mass
terms) lead to the modification of gravity, in particular,
gravitational waves are massive. An example of a theory
mentioning that another intriguing route to solve
s may be to take into account the effects of local
10].
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which shares the first but not the second property is the
ghost condensate model [1] which, at the lowest derivative
level, is equivalent to the gauge-fixed Einstein theory.
Another class of theories with this property is discussed
in Refs. [11,12]. In what follows by massive gravity we
understand gravity theories (1) obeying symmetry (2).

The phenomenological consequences of the massive
gravity models obeying symmetry (2) were first studied
in Ref. [13]. One of the unexpected properties found there
is that massive gravitational waves may coexist with the
long-range potential between the sources. In general, the
gravitational potential in these models contains an extra
‘‘confining’’ piece which grows linearly with the distance
from the source,

� � GNM
�
�

1

r
��2r

�
; (3)

where �2 is a combination of the graviton masses (see
Sec. II) proportional to their overall scale. The analysis of
Ref. [13] was focused mainly on the case �2 � 0 when the
additional dilatation symmetry ensures that the long-range
potential is identical to that of the Einstein theory. This
relaxes the constraints coming from the Solar system and
Cavendish-type experiments, and opens up a possibility for
the graviton mass to be as large as ��10�15cm��1 without
contradiction to the existing experimental data. The relic
gravitational waves produced at inflation may constitute
today the cold dark matter in the Universe and would give a
unique monochromatic signal in the gravitational wave
detectors [13].

The purpose of the present paper is to study cosmologi-
cal solutions in the massive gravity. We address the ques-
tion of whether such solutions are phenomenologically
acceptable, and what are their generic properties. We do
not assume that parameters are tuned so that �2 � 0 from
the very beginning. It turns out, however, that for a large
class of functions F in Eq. (1) the cosmological evolution
naturally drives the system to the point�2 � 0 where there
-1 © 2005 The American Physical Society
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are no corrections to the Newtonian potential. In other
words, this point is an attractor in the solution space (it
corresponds to the restoration of an additional dilatation
symmetry). At this point the graviton mass has a finite
nonzero value, while the modification of the Friedmann
equation has a form of an extra term which behaves like a
dark energy with the equation of state depending on the
parameters of the model (properties of the function F).

The paper is organized as follows. We begin in Sec. II by
analyzing linear perturbations about the flat background
and, in particular, derive Eq. (3). In Sec. III we study
general properties of the cosmological solutions in massive
gravity. We then consider in Sec. IV the stability of the
curved solutions against perturbations of high momenta
(the Boulware-Deser instability) and argue that the stabil-
ity is achieved without fine-tuning of parameters at least
for backgrounds close to the Minkowski space. In particu-
lar, cosmological solutions found in Sec. III are stable in
the vicinity of the attractor point. In the concluding Sec. V
we discuss possible phenomenological applications and
some future directions in the studies of the massive gravity.
II. LINEARIZED THEORY NEAR MINKOWSKI
BACKGROUND

As has been argued in Ref. [3], a convenient way to
describe the Lorentz-violating models of massive gravity is
to introduce the set of four scalar ‘‘Goldstone’’ fields �0,
�i, which have a particular derivative couplings to gravity.
In terms of the metric and the Goldstone fields, the action
has a generally covariant form. The spontaneous breaking
of the covariance is achieved by assuming nonzero vacuum
expectation values of the derivatives of the Goldstone
fields. The Goldstone fields can be eliminated from the
action by a suitable coordinate transformation; in such a
‘‘unitary gauge’’ the action only depends on the metric
components.

A class of Lorentz-violating gravity models which pos-
sess the symmetry (2) and rotational invariance is repre-
sented by the action

S �
Z
d4x

�������
�g
p

��M2
PlR��4F�X;Wij; . . .��; (4)

where

X � g��@��0@��0;

Wij � g��@��
i@��

j �
g��@��0@��i 	 g��@��0@��j

X
;

(5)

dots stand for higher-derivative terms, and � is a parameter
which determines the cutoff scale of the theory. The indices
i; j are converted using �ij. Low-energy modification of
gravity takes place at the scale m��2=MPl. The function
F is arbitrary apart from the constraints following from the
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requirement that the model is free of ghosts and strong-
coupling problems [3]; we assume that it depends on a
single scale �. The coefficient in front of the Einstein-
Hilbert action is chosen for convenience.

We assume that the model (4) possesses the solution
which corresponds to the Minkowski space,

g�� � ���; �0 � 	�2t; �i � 
�2xi: (6)

Here 	 and 
 are some constants which have to be chosen
in such a way that the energy-momentum tensor of the
Goldstone fields is zero. This requirement reduces to two
Eqs. (A9) and (A10), shown in the Appendix A. Con-
sequently, this choice is possible for a generic function F.

Our current goal is to study linear perturbations about
the vacuum (6). It is convenient to work in the ‘‘unitary
gauge’’ where the Goldstone fields are set to their vacuum
values (6). In this gauge the remaining perturbations are
those of the metric, �g��,

g�� � ��� � �g��: (7)

Following the notations of Ref. [14], we parametrize �g��
as follows:

�g00 � 2’; �g0i � Si � @iB;

�gij � �hij � @iFj � @jFi � 2� �ij � @i@jE�;

where hij are the transverse and traceless tensor perturba-
tions, Si and Fi are the transverse vector perturbations,
while ’,  , B and E are the scalar perturbations. The
potential ’ is not to be confused with the Goldstone fields
�0 and �i.

The quadratic Lagrangian for perturbations has the form

L � LEH � Lm � Ls; (8)

where the three contributions are the Einstein-Hilbert term,
the mass term and the source term, respectively. The
quadratic part of the Einstein-Hilbert Lagrangian is

LEH � M2
Pl

�
�

1

4
hij�@2

0 � @
2
i �hij

�
1

2
�Si � @0Fi�@

2
j �Si � @0Fi�

� 4�’� @0B� @
2
0E�@

2
i  � 6 @2

0 � 2 @2
i  
�
:

(9)

The mass term originates from the second term in Eq. (4).
We parametrize the mass parameters according to the
notations of Ref. [2],

Lm �
M2

Pl

4
fm2

0�g
2
00 � 2m2

1�g
2
0i �m

2
2�g

2
ij �m

2
3�g

2
ii

� 2m2
4�g00�giig: (10)

The contribution proportional to �g2
0i is absent in our
-2
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model (m2
1 � 0). This is guaranteed by the symmetry (2).

In terms of tensor, vector and scalar perturbations these
mass terms read

M2
Pl

�
�

1

4
m2

2h
2
ij �

1

2
m2

2�@iFj�
2 �m2

0’
2 � �m2

3 �m
2
2��@

2
i E�

2

� 2�3m2
3 �m

2
2� @

2
i E� 3�3m2

3 �m
2
2� 

2 � 2m2
4’@

2
i E

� 6m2
4’ 

�
: (11)

The masses m2
i are expressed in terms of the first and

second derivatives of the function F, the parameter �
and the Planck mass. The overall scale of masses is set
by the ratio �2=MPl. The explicit expressions are given in
the Appendix A.

To probe the linear response of the system we add the
source T�� which is assumed to be conserved, @�T�� � 0.
The corresponding contribution to the Lagrangian can be
written as

Ls � �T00�’� @0B� @
2
0E� � Tii � �Si � @0Fi�T0i

�
1

2
hijTij:

All combinations coupled to the components of T�� are
gauge invariant. The one multiplying T00,

� 
 ’� @0B� @
2
0E;

plays the role of the Newtonian potential in the nonrela-
tivistic limit.
(a) T
ensor sector.—In the tensor sector, only the trans-
verse traceless perturbations hij are present. Their
field equation is that of a massive field with the mass
m2, in agreement with Ref. [2]. Thus, there are two
massive spin 2 propagating degrees of freedom.
(b) V
ector sector.—In the vector sector, the field equa-
tions read

�@2
j �Si � @0Fi� � �T0i; (12)

@0@
2
j �Si � @0Fi� �m

2
2@

2
jFi � @0T0i: (13)

Taking the time derivative of Eq. (12) and adding it
to Eq. (13) gives

Fi � 0;

provided that m2
2 � 0. Thus, the vector sector of our

model behaves in the same way as in the Einstein
theory in the gauge Fi � 0. There are no propagat-
ing vector perturbations and gravity is not modified
in the vector sector unless one takes into account
nonlinear effects or higher-derivative terms.
(c) S
calar sector.—The field equations for scalar per-
turbations are
084011-3
2@2
i  �m

2
0’�m

2
4@

2
i E� 3m2

4 �
T00

2M2
Pl

; (14)

2@2
i�� 2@2

i  � 6@2
0 � �3m

2
3 �m

2
2�@

2
i E

� 3�3m2
3 �m

2
2� � 3m2

4’ �
Tii

2M2
Pl

; (15)

�2@2
i @

2
0 � �m

2
3 �m

2
2�@

4
i E� �3m

2
3 �m

2
2�@

2
i  

�m2
4@

2
i ’ � �

@2
0T00

2M2
Pl

; (16)

2@2
i @0 �

@0T00

2M2
Pl

: (17)

Equation (17) implies

 �
1

@2
i

T00

4M2
Pl

�  0�x
i�; (18)

where  0�x
i� is some time-independent function.
From Eqs. (14) and (16) one finds

’ �
2m2

2m
2
4

�
 �

2�m2
3 �m

2
2�

�
@2
i  0; (19)

@2
i E �

�
3�

2m2
0m

2
2

�

�
 �

2m2
4

�
@2
i  0; (20)

where

� � m4
4 �m

2
0�m

2
3 �m

2
2�:

Finally, substituting Eqs. (18)–(20) into Eq. (15) one finds
the gauge-invariant potential �,

� �
1

@2
i

T00 � Tii
4M2

Pl

� 3
@2

0

@4
i

T00

4M2
Pl

�

�
3�

2m2
0m

2
2

�

�
m2

2

@2
i

�
1

@2
i

T00

4M2
Pl

�  0

�

�

�
1�

2m2
2m

2
4

�

�
 0; (21)

where we presented explicitly the dependence on  0 and
T��. The first two terms on the right-hand side (rhs) of
Eq. (2) are the standard contributions in the Einstein the-
ory, the first becoming the Newtonian potential in the
nonrelativistic limit. Thus, barring the  0-dependent terms,
the gauge-invariant potentials � and  in our model differ
from their analogs in the Einstein theory �E and  E by the
mass-dependent third term on the rhs of Eq. (21),

 �  E; � � �E �

�
3�

2m2
0m

2
2

�

�
m2

2

@4
i

T00

4M2
Pl

: (22)

This term vanishes if all masses uniformly go to zero,
which implies the absence of the vDVZ discontinuity.
Equation (22) is the result presented in Ref. [13]. For a
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static source, Eq. (22) leads to the modification of the
Newtonian potential of a point mass M as shown in
Eq. (3) with

�2 � �
1

2
m2

2

�
3�

2m2
0m

2
2

�

�
: (23)

This indicates the breakdown of perturbation theory at
distances r * 1=�GNM�

2�. Note, that the modification of
the Newtonian potential is absent if 3� � 2m2

0m
2
2 (and

� � 0). We will see in Sec. III that this happens in the
vicinity of the cosmological attractor, i.e. at late times of
the cosmological evolution.

The freedom of choosing the time-independent function
 0�x�, which enters the above gravitational potentials, in-
dicates the presence of the scalar mode with the dispersion
relation2 !2 � 0 [3] [cf. also Sec. IV, Eq. (45) in the limit
m2

1 ! 0]. This mode is an analogue of the ghost condensate
mode [1] and becomes dynamical with the account of
higher-derivative terms in the action (4), acquiring the
dispersion relation !2 / p4 (so that  0 becomes a slowly
varying function of time). The value of  0 is fixed by the
initial conditions. In the linear regime, the nonzero value
 0 would mean the presence of the incoming ‘‘ghost
condensate wave.’’ So, a physically reasonable choice of
 0 is  0�x

i� � 0. We will discuss in more detail a possible
role of this mode in the concluding Sec. V.

Note that the kinetic term of the ghost condensate mode
is proportional to the combination � [3] (see also Sec. IV).
Therefore, in general this combination should be nonzero
(positive), in agreement with Eqs. (19)–(22). It may hap-
pen that in some special cases one can obtain a healthy
theory even if � � 0. An interesting possibility suggested
recently in Ref. [15] is to impose an additional condition
m2

4 � m2
0 � 0. Then the ‘‘ghost condensate’’ mode does

not appear in the linearized theory at the lowest derivative
level in flat background. It acquires both kinetic and gra-
dient term at a higher-derivative level, so that an additional
symmetry t! t� �0�t� is needed to prevent this mode
from being a ghost. The gravitational potentials are non-
singular in this case despite � � 0 and have the same
structure as our Eq. (22). As we discuss in Sec. IV, the
stability of this model requires further study and is more
subtle than in the case � � 0 because of new propagating
modes that appear in curved backgrounds.

III. COSMOLOGICAL SOLUTIONS

Let us discuss flat cosmological solutions in the theory
defined by the action (4). The flat cosmological ansatz is

ds2 � dt2 � a2�t�dx2
i ; (24)

�0 � ��t�; �i � �2xi: (25)
2In what follows ! denotes frequency and p denotes the
absolute value of the spatial momentum.
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For this ansatz Wij � �a�2�ij, so the function F in (4)
depends only on X and a, F � F�X; a�. The Einstein
equations reduce to the Friedmann equation (see
Appendix A),

�
_a
a

�
2
�

1

6M2
Pl

f�m � 2�4XFX ��4Fg



1

6M2
Pl

f�m � �1 � �2g; (26)

where �m is the energy density of ordinary matter not
including Goldstone fields, and the field equation for �0,

@t�a
3
����
X
p

FX� � 0: (27)

It is straightforward to solve this system of equations for
any given function F�X; a�. After the integration, Eq. (27)
gives an algebraic equation which determines X as a func-
tion of the scale factor a. The dependence X�a� as found
from Eq. (27) determines the behavior of the Goldstone
energy density �1 � �2 as a function of a. This makes
Eq. (26) a closed equation for the scale factor a�t�.

From the point of view of cosmological applications, of
particular interest are solutions where the scale factor a�t�
goes to infinity at late times. Since the graviton masses are
linear combinations of the function F�X; a� and its deriva-
tives, one may wonder whether they remain finite or go to
zero in this limit, and whether the effective-theory descrip-
tion remains valid. Indeed, Eq. (27) implies that at late
times either X or FX go to zero. If X ! 0, then the
expressions given in the Appendix A suggest that the
graviton masses go to zero as well. This may lower
the cutoff scale of the effective theory. Similarly, some of
the masses apparently vanish if X goes to a finite value X0

such that FX�X0; a� ! 0. If X goes to infinity, this ques-
tions the validity of the low-energy effective theory by
itself.

Let us show that, in spite of the naive expectations, for a
wide class of functions F there exist solutions for which
graviton masses are finite in the limit a! 1 and the
effective-theory description remains valid. Assume that
X�a� asymptotes to some power of a at large a. This is
not a very restrictive assumption—for instance, it is sat-
isfied for any algebraic function F�X; a�. Then there exists
such � that the combination X�=a2 goes to a nonzero
constant as a! 1. Equation (27) implies that XFX �
const 	

����
X
p

=a3; this determines the dependence of the en-
ergy component �1 on the scale factor,

�1 � const
1

a3�1=�
: (28)

This relation generalizes the behavior found in the ghost
condensate models where the energy density of the ghost
condensate scales like 1=a3 (in our model the latter behav-
ior is recovered at �! 1).
-4
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For � > 1=3 the energy density �1 behaves like the dark
energy component with the negative pressure. Its equation
of state varies between that of the cold dark matter, w � 0
(for � � �1), and that of the cosmological constant,
w � �1 (for � � 1

3 ). For 0<�< 1=3 the term �1 grows
with a. It corresponds to the energy density component
with a highly negative equation of state, w<�1. Without
fine-tuning this contribution cannot be canceled by the
term �2, so that the Hubble rate diverges as a! 1 leading
to the breakdown of the low-energy effective theory and
suggesting the presence of rapid instabilities. In what
follows we assume that � does not belong to this range.
For � < 0 the energy density �1 corresponds to a fluid with
a positive pressure.

In order to see that the graviton masses remain finite and
the effective field theory description is valid in the limit
a! 1, it is convenient to replace X by a new variable Z �
X�=a2. The function F�X; a� becomes the function of Z
and a, ~F�Z; a� � F�Z1=�a2=�; a�. Note that it satisfies the
relation �Z ~FZ � XFX, where ~FZ � @ ~F=@Z. In these no-
tations Eq. (27) reads

�a3��1=��Z1��1=2�� ~FZ�Z; a� � A; (29)

where A is an integration constant. This equation deter-
mines Z as a function of a. By construction, this depen-
dence is such that Z�a! 1� � Z0, where Z0 is some
constant.

If one assumes further that the function ~F�Z; a� is regu-
lar at a! 1, then at late times one has

F�X; a� � ~F�Z; a� ! F0�Z�: (30)

In terms of the original variables this means that in the limit
a! 1 the function F�X;Wij� depends only on the combi-
nation X�Wij. This corresponds to the following dilatation
symmetry of the Goldstone action:

�0 ! ��0; �i ! ����i: (31)

In this case one has

�2 � ��4F0�Z0�;

which behaves like a cosmological constant [assuming
F0�Z0� � 0]. Likewise, at a! 1 the masses given by
Eqs. (A13)–(A17) become functions of Z0 and in general
remain finite.

In models with this kind of behavior of X�a� the effec-
tive field theory description remains valid even at X� �4

provided the value of Z is small. This is guaranteed by the
dilatation symmetry (31) which relates configurations with
different values of X. Thus, there exists a wide class of
functions F for which infinitely expanding cosmological
solutions are compatible with constant graviton masses and
allow for the effective field theory description.

Our assumptions about the function F which imply the
existence of the attractors can be summarized in the fol-
lowing expansion:
084011
F�Z;W� � F0�Z� �
X
�>0

��W�F��Z�; (32)

where � takes positive (not necessarily integer) values,
F��Z� are some regular functions of Z (for shortness we
have suppressed the indices i; j) and � is a formal expan-
sion parameter. Equation (29) implies that an attractor
point Z0 is determined by the condition

F00�Z0� � 0;

where prime denotes d=dZ. Note that the expansion (32)
does not need to hold for arbitrary values of Z and W; it is
sufficient if it is satisfied in some finite region around the
attractor point. Equation (32) provides a straightforward
way to generate simple functions F depending on both X
and W and exhibiting the attractor behavior. A simple
example of such a function is F � �Z� Z0�

2 �W.
One may wonder whether the class of functions of the

form (32) is stable under quantum corrections. To see that
this is generically the case note that the action (32) is
formally invariant under the symmetry (31) provided one
treats � as a spurion field transforming as

�! ��2�:

Let us assume � to be somewhat smaller than unity, so that
one can perform perturbation theory in this parameter.
Then the general form (32) of the action is invariant under
quantum corrections whenever expansions in � works (i.e.,
no terms proportional to negative powers of � appear due to
quantum corrections).

The models with the function F obeying Eq. (30) have
an interesting feature which is a consequence of the sym-
metry (31). It is straightforward to check that Eq. (31)
implies the following relations among graviton masses in
the Minkowski space,

m2
0 � �3�m2

4; ��m2
2 � 3m2

3� � m2
4: (33)

These relations ensure that the parameter �2 defined by
Eq. (23) is zero, i.e., the correction to the Newtonian
potential [the last term in Eq. (22)] vanishes. Thus, barring
the effects of the higher-derivative terms, at late times the
only modification of gravity at the linear level is the non-
zero mass of the two polarizations of the graviton. This
suggests that the confining term in the Newtonian potential
is unlikely to have any effect at present epoch. Indeed, the
expressions for the graviton masses given in the Appendix
A imply that the correction to the Newtonian potential goes
to zero as 1=a2�m , where �m is a minimal value of � in
Eq. (32). This parameter has to be fine-tuned to an ex-
tremely small value to allow for a substantial value of�2 at
present.

A particularly simple case occurs when the function F
depends only on the combination Z � X�Wij. If � > 1=3
or � < 0, the evolution drives the system to the point FZ �
0, in full similarity with the ghost condensate model. In the
case 0<�< 1=3 and regular F, Z has to diverge at large
-5
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a. This breaks the validity of the low-energy effective
theory.

There are three boundary values of �, which are some-
what special, namely � � 1=3; 0;1. If � � 1=3 then Z is
constant during cosmological evolution and both �1 and �2

behave like a cosmological constant. An interesting prop-
erty of this model is that a (constant) acceleration rate of
the cosmological expansion is determined by the initial
conditions in the Goldstone sector (the value of Z) rather
than by the parameters of the action.

If � � 0 then F�X;W� does not depend on X at all. In
this case Eq. (27) is satisfied automatically, and the only
unconventional component in the Friedmann Eq. (26) is the
last term �2. This term may describe arbitrary equation of
state depending on the choice of the function F0�W�. For
functions F regular when W goes to zero, this term be-
comes a cosmological constant as before.

In the case � � 1 the function F depends on the scalar
quantities X, TrW2=�TrW�2 and TrW3=�TrW�3. Flat cos-
mological solutions in such a theory have the same prop-
erties as in the ghost condensate model where the F is a
function ofX only. These theories, however, differ from the
ghost condensate model in that they describe massive
gravitons, and have different solutions in a nonflat case.

It is worth commenting on the role of the regular
Minkowski vacua which are the points in the �X;W� space
at finite (nonzero) values of X and W where the energy-
momentum tensor of matter and Goldstone fields is zero
and thus the Minkowski metric solves the Einstein equa-
tions. In the absence of matter, �m � 0, these points are
determined by Eqs. (A10) and (A11). There may exist
solutions to Eqs. (26) and (27) which asymptotically ap-
proach these points. These solutions correspond to the
scale factor going to a finite limit, so they do not describe
the current phase of the cosmological expansion.

To conclude this section we would like to stress that our
analysis may not exhaust all viable cosmological solutions
in the model with the action (4). For instance, the combi-
nation X�=a2 may be proportional to some power of loga
at late times, which is the case not covered above. Another
possibility is to consider more general cosmological ansatz
than that given by Eq. (24). Namely, one may consider the
time-dependent configuration3 of the fields �i,

�i � �2C�t�xi;

where C�t� is an arbitrary function of time. Because of the
symmetry (2) this ansatz is still homogeneous as the con-
stant shift of the spatial coordinates xi can be compensated
by the�0-dependent shift of the fields�i. The equations of
motion on this ansatz reduce to two equations: the
Friedmann Eq. (26) which remains unchanged, and the
equation for �0,
3We thank S. Sibiryakov for pointing out to us this possibility.
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X1=2

a3
@t�a

3X1=2FX� � 3
_C
C
WFW � 0: (34)

For any fixed function C�t�, Eqs. (26) and (34) determine
the dependence of X and a on time. Interestingly, in the
case when the function F is invariant under the additional
dilatation symmetry (31), Eq. (34) takes the form (29)
irrespectively of the particular shape of C�t�. Thus, while
the time dependences of X and W separately vary with the
choice C�t�, the evolution of Z and the scale factor a is
universal. Consequently, observable quantities such as the
expansion rate and the graviton masses do not depend on
the function C�t� if the symmetry (31) holds.

The situation is different if the dilatation symmetry is
absent: in general, the expansion rate depends on the
choice of the function C�t�. This ambiguity is a conse-
quence of the symmetry (2) and is related to the presence of
modes with the dispersion relation p2

i � 0. In order to fix
this ambiguity one should specify boundary conditions for
the fields �i at spatial infinity. To see this, imagine that the
space is compact. For instance, if the space is a torus of the
size L, the fields �i have to satisfy some kind of (quasi)-
periodicity condition, e.g.

�i�xi� � �i�xi � L� ��2L:

This condition implies C � const. Other boundary condi-
tions may lead to time-dependent C�t�. In this sense, the
ambiguity in choosing different functionsC�t� is analogous
to the ambiguity in choosing the vacuum state in theories
with flat directions.
IV. STABILITY

Let us discuss the stability of the cosmological solutions
obtained in the previous section. One should distinguish
two different types of instabilities which may occur in a
theory which is perturbatively stable about the flat back-
ground when the latter becomes curved. The first type of
instabilities has the characteristic wavelength and time-
scales much longer that the inverse cutoff scale ��1.
They are set either by the curvature of the background,
or suppressed by the powers of �=MPl, if these instabilities
appear due to mixing of higher-derivative terms with grav-
ity (the latter type of instability is present, e.g., in the ghost
condensate). We call these the infrared (IR) instabilities.
Depending on a particular situation, the IR instabilities, if
present, may be either dangerous or interesting phenom-
enologically (like, e.g., the Jeans instability). Their analy-
sis is clearly important for the conclusion on the
phenomenological viability of the model. However, even
if present, the IR instabilities do not question the applica-
bility of the analysis based on the low-energy effective
field theory. We do not address IR stability of our models in
the present paper.

The instabilities of a different type, which we refer to as
ultraviolet (UV) instabilities, are those which occur at
-6
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wavelengths (and/or time scales) much shorter than that of
the background curvature, approaching the scales of order
��1. Such instabilities do affect the structure of the theory
in the ultraviolet and imply the breakdown of the effective
field theory description for scales much lower than �. An
example of such an instability is the Boulware-Deser in-
stability [6] which occurs in the curved background in the
Fierz-Pauli theory of massive gravity due to the presence of
the ghost mode.4 We will see that the instabilities of this
type are absent in our models. A physical reason is that
massive gravities with symmetry (2) can be thought of as
stable scalar theories coupled to the Einstein gravity, which
is not possible in the Fierz-Pauli case.

The origin of the Boulware-Deser instability is easy to
understand within the formalism of the Goldstone fields
��. The Goldstone action which corresponds to a Lorentz-
invariant massive gravity, including the Fierz-Pauli theory,
is [cf. the second term in Eq. (4)]

SG � �4
Z �������
�g
p

d4xF�P�; (35)

where P � g���	
@��	@��
 and �	
 is a Minkowski
metric. In the Minkowski background (6), the quadratic
action for the Goldstone perturbations ��� 
 �� takes the
form

L � �2
1�P��@��

	�2 ��2
2�P��@��

��2; (36)

where the coefficients �2
i �P� are some functions of P �

	2 � 3
2 which are expressed in terms of the first and
second derivatives of the function F�P�. The particular
expressions are irrelevant for the argument; what is im-
portant is the fact that the coefficients �2

i �P� do depend on
P. The Lagrangian (36) describes the ghost-free theory
only in the case

�2
1�P� ��

2
2�P� � 0; (37)

when it is proportional to �@��� � @����2. In general, this
condition is satisfied in an isolated point P � P0.

To see the instability, consider now the perturbations
localized in the vicinity of a given point in the background
of some nontrivial solution. In the UV limit the metric can
be approximated as flat, so the perturbations in the
Goldstone sector will be described by the Lagrangian
(36). However, since Goldstone fields depend on space
4Note, however, that the statement [16] that rapid classical
instabilities are present in the Fierz-Pauli theory in the
Minkowski background is unjustified. This claim is based on
the analysis of the spatially homogeneous solutions, while to
address the issue of stability one should study dynamics of the
spatially localized excitations of finite energy. An example
illustrating this point is provided, e.g., by the massless scalar
field with the negative potential V � ���4. From the analysis
of the spatially homogeneous solutions one might conclude that
vacuum � � 0 is perturbatively unstable in this theory, which is
not the case (see, e.g. [17]).
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and time, the condition (37) will not, in general, be satisfied
(because, for instance, the value of P is time dependent for
cosmological solutions). The Fierz-Pauli theory is there-
fore UV unstable in a curved background even if this
background is locally very close to the Minkowski one.
This implies that the cutoff scale of the low-energy effec-
tive theory in the curved backgrounds generically is even
lower than in the Minkowski background, as it should be
smaller than a mass of the ghost mode. A detailed discus-
sion of the corresponding scales in the phenomenologically
relevant backgrounds can be found in [18].

Let us now repeat the same analysis for our model and
show that it is free from UV instabilities at least for back-
grounds which are close to the vacuum (6) in the UV limit.
For simplicity, consider the model obeying the dilatation
symmetry (31). The Goldstone action has the form

SG � �4
Z �������
�g
p

d4xF�Zij�; (38)

where Zij � X�Wij, and the quantities X andWij are given
by Eq. (5). Deep in the UV region where the metric can be
considered as flat, any Goldstone configuration of the form
(6) is a solution to the Goldstone field equations5. In this
background, the variable Zij takes the values depending on
the constants 	 and 
. The quadratic Lagrangian for the
Goldstone perturbations �0 and �i reads

L � M2
Plf2m

2
0�@0�0�

2 �m2
1�@i�0�

2 � 4m2
4�0@0@i�i

�m2
2�@i�j�

2 � �m2
2 � 2m2

3��@i�i�
2g; (39)

where the kinetic coefficients mi are certain functions of
Zij (and therefore, of 	 and 
). Their explicit expressions
are given in the Appendix B. Using these expressions one
can check that the kinetic coefficients satisfy the con-
straints

m2
0 � �3�m2

4; ��m2
2 � 3m2

3� � m2
4 �

1

2
m2

1; (40)

which follow from the symmetry (2). Note that these
constraints differ from Eqs. (33) because the background
we consider now does not correspond to the zero energy-
momentum tensor of the Goldstone fields. They reproduce
Eqs. (33) at m2

1 � 0.
It is convenient to decompose the Goldstone perturba-

tions into the transverse vector �Ti (@i�Ti � 0) and two
scalars �L and �0, as defined by the following relation:

�i � �Ti �
1����������
�@2

i

q @i�L:

The Lagrangian for the vector part reads
5In principle, one may consider a larger class of backgrounds,
e.g. those with �i � Bijx

j. For definiteness, we restrict our
discussion to rotationally invariant case. This choice covers, in
particular, cosmological solutions obtained above.
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L � �M2
Plm

2
2�@i�

T
j �

2: (41)

Both modes in the vector sector have the dispersion rela-
tion p2

i � 0 and do not propagate, independently of the
values of 	 and 
; this is a consequence of the symmetry
(2). There are no instabilities in this sector.

The Lagrangian for scalar perturbations �0 and �L is

L � M2
Plf2m

2
0�@0�0�

2 �m2
1�@i�0�

2 � 4m2
4�0@0

����������
�@2

i

q
�L

� 2�m2
2 �m

2
3��@i�L�

2g: (42)

In the Fourier space it can be written as

L � M2
Pl 	 �

yM�;

where � � ��0; �L� and the 2� 2 matrix M has the form

M �
�

2m2
0!

2 �m2
1p

2 �2im2
4!p

2im2
4!p 2�m2

3 �m
2
2�p

2

�
(43)

with p �
������
p2
i

q
. The eigenvectors of the matrix M corre-

spond to physical excitations. The eigenvalues can be
written as

M
 �
1

2
fT 


�������������������
T2 � 4D

p
g;

where T � Tr�M� and D � det�M�. They determine two
dispersion relations !2


�p
2� by the implicit equations

M
�!
2; p2� � 0:

The system is classically stable if !2

�p

2�> 0 for all
relevant p2. The system has no ghosts if near the mass
shell the terms linear in !2 are nonnegative,

@M
�!
2; p2�

@!2

��������!2�!2

�p

2�

� 0; (44)

for both modes.
The mode which corresponds to the eigenvalue M� has

the dispersion relation p2 � 0 and does not propagate. The
inequality (44) is marginally satisfied, so this mode does
not cause the UV instability. Note that the existence of the
scalar mode with the dispersion relation p2 � 0 is guaran-
teed by the reparametrization symmetry (2).

It is worth mentioning a physical interpretation of the
modes with the dispersion relation p2 � 0. They can be
thought of as degrees of freedom with infinite propagation
velocity (unlike the ghost condensate mode which has zero
velocity at zero-derivative level and acquires a very small
velocity due to higher-derivative terms). Physically, they
describe sound waves propagating through the rigid coor-
dinate frame selected in space by the functions �i. The
rigidity of this frame is ensured by the symmetry (2) and
SO�3� symmetry of the Goldstone action that allow to
move and rotate this frame only as a whole. Note that
infinitely fast propagating modes do not imply the violation
of causality in the absence of Lorentz invariance, but allow
084011
for instantaneous transfer of information. A recent discus-
sion of some of the properties of these modes in the toy
QED model can be found in Refs. [15,19].

The mode which corresponds to the eigenvalue M� has
the dispersion relation

!2 � v2p2;

where

v2 �
1

2

m2
1�m

2
3 �m

2
2�

m4
4 �m

2
0�m

2
3 �m

2
2�
: (45)

The absence of classical instabilities thus requires

m2
1�m

2
3 �m

2
2�

m4
4 �m

2
0�m

2
3 �m

2
2�
> 0: (46)

When this condition is satisfied, Eq. (44) which ensures the
absence of ghosts translates into the following inequality
(see Appendix B for details),

m2
0 �

m4
4

m2
3 �m

2
2

> 0; (47)

in agreement with the result of Ref. [3]. Thus, there are
neither classical instabilities nor ghosts in our model pro-
vided that both conditions (46) and (47) are satisfied. These
conditions are compatible with the constraints (40).

For a flat background m2
1 � 0, so one may worry about

UV stability of an arbitrarily close background with the
positive value of m2

1 and, consequently, negative velocity
v2 < 0. In the vicinity of the point where v2 � 0 the
higher-derivative terms in the dispersion relation become
important, so that it takes the form !2 � v2p2 � 	p4=�2,
where 	 is a coefficient of order one which we assume to
be positive. It is clear now that close to the point v2 � 0 the
instability occurs only at very low momenta, i.e., in the IR
region. The situation here is the same as in the ghost
condensate model. By analogy we expect that accounting
for mixing with gravity for higher-derivative terms leads to
the IR instability of this type already in the flat background
with m2

1 � 0.
The case � � 0 when the Goldstone action depends only

onWij requires a separate consideration. Using the expres-
sions for the graviton masses given in the Appendix A,
Eqs. (A13)–(A17), one finds that in this case m2

0 � m2
1 �

m2
4 � 0 in the Minkowski background. Therefore, this is a

theory with � � 0 discussed in the end of Sec. II. At the
one-derivative level this theory possesses a symmetry
�0 ! �0 � �0��0� apart from the symmetry �i ! �i �
�i��0�. (This symmetry should be imposed at the higher-
derivative level in order to avoid ghosts.) Naively, one may
expect that the above symmetries imply that all modes
should always have the dispersion relation p2 � 0.
However, the situation is more subtle. From Eq. (B1) of
Appendix B one finds that in the curved background only
the mass m2

0 is equal to zero, while m2
1 and m2

4 may be
-8
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FIG. 1 (color online). Limits on the gravitational wave signal
in the frequency/relative graviton abundance plane. Light shaded
region is excluded by the observations of binary pulsars [23].
Dark shaded region is excluded by the timing of the millisecond
pulsars [29]. Dashed lines show the expected sensitivity of the
Australian pulsar timing array and LISA. Frequencies higher
than that marked by the solid line correspond to graviton masses
large enough to allow for gravitons to cluster in galaxies. Note
that if all of the galactic dark matter is comprised of massive
gravitons then the gravitational wave signal corresponds to
graviton abundance �g � 105.

6We thank John March-Russel for pointing out this similarity.
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nonzero. As a result, in curved backgrounds, in addition to
two solutions with p2 � 0, �L�t� and �0�t�, there is also a
mode with the velocity

v2 �
1

2

m2
1�m

2
3 �m

2
2�

m4
4

; (48)

which is very large for backgrounds close to the
Minkowski one because m2

1 �m
2
4 are both very small. Of

these three modes, only one (�L�t�) is seen in the quadratic
action about flat background at the one-derivative level. We
believe that further analysis is needed to understand
whether the two new modes lead to the problems like
low strong-coupling scale. Note, however, that unlike in
the Fierz-Pauli case, the new modes are not ghosts, pro-
vided the condition (47) holds.

We see that the situation in our models is quite different
from that in the Fierz-Pauli theory of massive gravity.
Unlike the latter, our models are free of ghosts in a finite
region of coefficients m2

a in Eq. (39) (and, therefore, of
constants 	 and 
) which includes the point corresponding
to the flat background with m2

1 � 0. Thus, with a proper
choice of the function F and higher-derivative terms, our
models are UV stable at least for backgrounds close to the
flat one. The Boulware-Deser instability is absent.

V. DISCUSSION

In order to be more than a theoretical exercise, the theory
of Lorentz-violating massive gravity must eventually ad-
dress the fundamental puzzles of modern cosmology such
as the origin of dark matter and dark energy. The class of
models discussed in this paper provides a number of pos-
sibilities in this direction.

As follows from Sec. III, the evolution of the Universe
may naturally lead to the attractor which corresponds to the
theory possessing the dilatation symmetry (31). In this
case, the relations (33) among masses imply that the grow-
ing term in the Newtonian potential vanishes. Even in this
simplest version, the model has a number of features
interesting from the cosmological and observational points
of view. First, the massive graviton itself is a candidate for
the dark matter particle [13]. This possibility is observa-
tionally testable, the current limits being plotted in Fig. 1.
The constraints will be improved in the near future by the
data from the Australian pulsar timing array [20]. If mas-
sive gravitons do not constitute all of the dark matter, they
are still detectable in a certain range of masses because
they would produce a unique monochromatic signal in
gravitational wave detectors such as LISA [21].

Second, the Goldstone fields give two extra contribu-
tions to the Friedmann Eq. (26) which we denoted �1 and
�2 in Sec. III. For 1=3< �< 1 the first of these contribu-
tions �1 behaves like a ‘‘quintessence’’ with the equation
of state varying from w � �1 to w � �1=3 for different
values of the parameter �, which characterizes the dilata-
tion symmetry emerging in the cosmological attractor [see
084011
Eq. (33)]. The second contribution �2 behaves as a cos-
mological constant.

An interesting special situation takes place for � � 1=3.
In this case both contributions �1 and �2 have vacuum
equation of state ! � �1. As a result the acceleration rate
of the late de Sitter phase is a dynamical quantity, deter-
mined by the initial conditions in the Goldstone sector
rather than by parameters of the action. This is similar to
situation in the unimodular gravity6 [22], where cosmo-
logical constant is also a constant of integration. This
similarity appears to be not just a coincidence. The metric
determinant g is invariant under the symmetry (2) and
under the dilatation symmetry (31) with � � 1=3, so the
symmetry group of massive gravity is a subgroup of the
unimodular gravity in this case.

On the other hand there is an important difference
between massive gravity with � � 1=3 and unimodular
gravity. Namely, the only difference between unimodular
gravity and the Einstein theory (at least at the classical
level) is that in the former case solutions with arbitrary
values of cosmological constant are present independently
of the value of the vacuum energy. On the contrary, in
massive gravity the contribution of the Goldstone sector
has the form of a cosmological constant only for flat
homogeneous cosmological solutions. In particular, the
initial conditions in the Goldstone sector may vary in space
resulting in solutions with different values of the accelera-
tion rate in different parts of the Universe. Such solutions
-9
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are absent in both general relativity and unimodular grav-
ity. If nothing else, this allows the application of the
anthropic arguments [22]. There is a caveat, however. In
order to cancel a bare cosmological constant that is much
larger than �4 (where � is the cutoff scale of our model)
one needs a fine-tuning to keep the mass of the graviton
from being too large. It is not impossible to imagine an
anthropic explanation for this fine-tuning as well—accord-
ing to the estimates of Ref. [13] relic massive gravitons
with masses higher than �1015 cm��1 (upper bound from
the timing of the binary pulsars [23]) are likely to overclose
the Universe. Alternatively, one may hope that the unusual
properties of cosmological solutions in massive gravity
may be a first step towards a dynamical solution of the
dark energy problem.

The situation may become more complicated if the
model is kept away from the dilatation-symmetric attractor
by a fine-tuning of the cosmological evolution or some
other mechanism (e.g., if X�=a2 is proportional to some
power of loga at late times, instead of being a constant).
Then the potential of a pointlike source acquires—for-
mally—the linearly growing contribution, Eq. (3). There
are two distance scales associated with this contribution.
The first one, l1 � 1=m, determines the distances where the
growing term starts to dominate over the conventional one.
The second scale is l2 � �M2

Pl=Mm
2�; it depends on the

mass M of the source. At distance l2 the potential �
becomes of order unity indicating the breakdown of per-
turbation theory and possible onset of a nonlinear regime.
Note that in the gauge we are using, the metric components
that become large are

h0i � ni
t
l2
;

where ni is a unit vector in the direction of the source.
Consequently, nonlinear regime starts at the moment of
time t2 � l2 rather than at a certain distance from the
source.

To understand this qualitatively, recall that our choice of
the integration constant  0�xi� � 0 corresponds to the
initially homogeneous Universe. One can view the
Goldstone sector as a (multicomponent) fluid which is
accreted by sources after they are formed. Eventually,
this accretion results in the onset of the nonlinear regime;
qualitatively, this happens at the time of order l2 after the
formation of sources. It is tempting to speculate that this
nonlinear phase may result in the nonzero profile of the
ghost condensate mode  0 such that the linearly growing
term in the potential (21) is canceled. The corresponding
nonlinear dynamics is presumably similar to that of the
ghost condensate model and is not sufficiently understood
at the moment (see [24–26] for some proposals in this
direction). One characteristic feature of the ghost conden-
sate dynamics is the presence of strong retardation effects
[1,27,28], so one may think that the cancellation is incom-
084011
plete, leading to the logarithmically growing potential
needed to explain flat rotation curves. Note that nonlinear
effects related to the ghost condensate mode are present
even when linearly growing terms in the potential are
forbidden by dilatation symmetries, so understanding of
these effects is one of the most pressing questions for this
kind of models.
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APPENDIX A

In this appendix we calculate mass terms of the gravi-
tational field in the Friedmann background. The mass
terms come from the expansion of the second term in the
rhs of Eq. (4) in powers of the perturbation �g�� to the
quadratic order about the background metric

ds2 � g��dx�dx� � a2����d�2 � dx2�: (A1)

With the definitions (5) one has

�����������������������
��g� �g�

q
� a4 �

a2

2
��g00 � �gii� �

1

8
�g2

00

�
1

4
�g00�gii �

1

8
�g2

ii �
1

2
�g2

0i �
1

4
�g2

ij

� . . . ;

X�g� �g� � X�g�
�

1�
1

a2 �g00 �
1

a4 ��g
2
00 � �g

2
0i�

� . . .
�
;

Wij�g� �g� � W�g�
�
��ij �

1

a2 �gij �
1

a4 �gik�gkj

� . . .
�
;

where

W 
 �
1

3
�ijWij: (A2)

Because of the rotational symmetry, the derivatives of F
up to the second order are expressed in terms of the 6 scalar
quantities FX, FW , FXX, FXW , FWW1 and FWW2 which are
defined as follows:

@
@X

F�X;Wij� � FX; (A3)
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@
@Wij

F�X;Wij� � FW�ij; (A4)

@2

@X2
F�X;Wij� � FXX; (A5)

@2

@X@Wij
F�X;Wij� � FXW�ij; (A6)

@2

@Wij@Wmn F�X;W
ij� � FWW1�ij�mn

� FWW2��im�jn � �in�jm�: (A7)

The derivatives on the left-hand side of these equations are
all evaluated at the point X�g�, Wij�g�.

With these definitions, the linear contribution to the
expansion of the second term in Eq. (4) is

a2

�
1

2
F� XFX

�
�g00 � a2

�
1

2
F�WFW

�
�gii:

The corresponding Friedmann equations are

3a02

a4 � 8
G��4�2XFX � F� � �m�;

2a00

a3 �
a02

a4 � �8
G��4�2WFW � F� � pm�;

(A8)

where �m, pm are the energy density and pressure of
matter. Combination of these two equations gives the
equation of motion for the field �0,

a3
����
X
p

FX � const: (A9)

In the Minkowski background one has

F� 2XFX � 0; (A10)

F� 2WFW � 0: (A11)

For a generic function F these equations are satisfied for
some X, W.

The quadratic part of the Lagrangian Eq. (4) with respect
to metric perturbations about Friedmann background is

�4

�
1

2
X2FXX �

1

2
XFX �

1

8
F
�
�g2

00 ��4

�
1

2
F� XFX

�
�g2

0i

��4

�
XWFXW �

1

2
WFW �

1

2
XFX �

1

4
F
�
�g00�gii

��4

�
1

2
W2FWW1 �

1

2
WFW �

1

8
F
�
�g2

ii

��4fW2FWW2 �WFW �
1

4
F
�
�g2

ij; (A12)

Comparing this expression to Eq. (10) one finds for the
masses of the gravitational field in the Minkowski vacuum,
084011
m2
0 �

�4

M2
Pl

fXFX � 2X2FXXg; (A13)

m2
1 � 0; (A14)

m2
2 � �

�4

M2
Pl

f2XFX � 4W2FWW2g; (A15)

m2
3 �

�4

M2
Pl

f�XFX � 2W2FWW1g; (A16)

m2
4 � �

�4

M2
Pl

fXFX � 2XWFXWg: (A17)

APPENDIX B

In this appendix we provide some intermediate formulas
skipped in Sec. IV.

The explicit expressions for the kinetic coefficients in
the action (39) are

m2
0 � �

6�4

M2
Pl

�
�
�
��

1

2

�
FZZ� 3�2FZZ1Z2

� 2�2FZZ2Z2

�
;

m2
1 �

2�4

M2
Pl

�3�� 1�FZZ;

m2
2 �

2�4

M2
Pl

fFZZ� 2FZZ2Z
2g;

m2
3 �

2�4

M2
Pl

�
1

2
FZZ� FZZ1Z

2

�
;

m2
4 �

2�4

M2
Pl

��
��

1

2

�
FZZ� 3�FZZ1Z

2 � 2�FZZ2Z
2

�
:

(B1)

Here Z 
 �Zij�ij=3, while the scalar functions FZ, FZZ1

and FZZ2 are defined by the following relations:

@
@Zij

F�Zij� � FZ�ij;

@2

@Zij@Zmn
F�Zij� � FZZ1�ij�mn � FZZ2��im�jn � �in�jm�:

It is straightforward to check that coefficients (B1) satisfy
relations (40).

Calculation of the no-ghost condition (47) proceeds as
follows:

@M
�!2; p2�

@!2

��������!2�!2

�p

2�

�
1

2

�
T0 


TT0 � 2D0

jTj

�
�
D0

T
;

(B2)
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where prime denotes differentiation with respect to!2, and
in algebraic transformation we were taking into account,
that we are taking the derivative of the eigenvalue which is
zero on-shell. Plugging explicit expressions for D and T,
following from Eq. (43), we obtain the following condition
for the propagating mode to be not a ghost

m2
0�m

2
3 �m

2
2� �m

4
4

2m2
0v

2 �m2
1 � 2�m2

3 �m
2
2�
> 0; (B3)
084011
where v2 is given by Eq. (45). Using explicit expression
(45) one can check that at v2 > 0 this condition is equiva-
lent to (47).
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