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Abstract In the present work, we consider the cosmologi-
cal constant model � ∝ α−6, which is well motivated from
three independent approaches. As is well known, the hint
of varying fine structure constant α was found in 1998. If
� ∝ α−6 is right, it means that the cosmological constant
� should also be varying. Here, we try to develop a suit-
able framework to model this varying cosmological constant
� ∝ α−6, in which we view it from an interacting vacuum
energy perspective. Then we consider the observational con-
straints on these models by using the 293 �α/α data from
the absorption systems in the spectra of distant quasars. We
find that the model parameters can be tightly constrained to
the very narrow ranges of O(10−5) typically. On the other
hand, we can also view the varying cosmological constant
model � ∝ α−6 from another perspective, namely it can be
equivalent to a model containing “dark energy” and “warm
dark matter”, but there is no interaction between them. We
find that this is also fully consistent with the observational
constraints on warm dark matter.

1 Introduction

The cosmological constant has been one of the long-standing
issues in physics and cosmology since it was introduced by
Einstein in 1917 [1] for a static universe. However, Hubble
discovered in 1929 [2] that the universe is expanding. Then
Einstein abandoned the cosmological constant as the “biggest
blunder” of his life [3]. From 1929 until the early 1990s, most
physicists and cosmologists assumed the cosmological con-
stant to be zero. Since the vacuum energy is equivalent to the
cosmological constant [4,5], an exactly zero cosmological
constant requires that the bare cosmological constant should
be exactly canceled by the vacuum energy. This is a difficult
problem [6–10] (sometimes it is called the (old) cosmologi-
cal constant problem in the literature). In 1998, the acceler-
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ated expansion of the universe was discovered [11,12], and
since then dark energy has been one of the most active fields
in cosmology [13–23]. So, the cosmological constant was
revived again, since the simplest candidate of dark energy is
a tiny positive cosmological constant. However, it is difficult
to understand why the observable cosmological constant is
about 120 orders of magnitude smaller than its natural expec-
tation of the vacuum energy [6–10,13–18]. Now, the (new)
cosmological constant problem becomes the question why
the non-zero cosmological constant is so tiny. It means that a
fine-tuning is necessary when the bare cosmological constant
is canceled by the vacuum energy [6–10,13–18]. In fact, the
cosmological constant is still an important topic in physics
and cosmology by now.

It is commonly believed that the cosmological constant
problem can only be solved ultimately in a unified theory of
quantum gravity and the standard model of electroweak and
strong interactions, which is still absent so far. Nevertheless,
many attempts have been made in the literature. One of the
interesting ideas is the so-called axiomatic approach to the
cosmological constant [24]. In this approach, the cosmolog-
ical constant is derived from four axioms, but the underlying
physical origin (say, the theory of quantum gravity) is still
unknown. It is proposed in close analogy to the Khinchin
axioms in information theory. The well-known Khinchin
axioms can uniquely derive the Shannon entropy, on which
the entire mechanism of statistical mechanics is based (see
the textbook e.g. [25]).

The Khinchin axioms in information theory [26] describe
the most desirable properties an information measure I
should have. Axiom K1 “fundamentality”: an information
measure I only depends on the probabilities pi (the fun-
damental quantities) of the events under consideration and
nothing else. Axiom K2 “boundedness”: there is a lower
bound for the information measure I . Axiom K3 “simplic-
ity”: the information measure I should take the simplest
description. Axiom K4 “invariance”: there is a suitable scale
transformation in the space of probabilities and information

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4581-z&domain=pdf
mailto:haowei@bit.edu.cn


14 Page 2 of 13 Eur. Phys. J. C (2017) 77 :14

measures that leaves the physical contents invariant. These
four Khinchin axioms look very natural and simple. How-
ever, from such natural and simple axioms, one can uniquely
fix the functional form of the Shannon information which is
extremely important for the statistical mechanics [25].

Inspired by the successful Khinchin axiomatic approach
to the Shannon entropy in information theory, Beck [24] pro-
posed four axioms in close analogy to the Khinchin axioms.
Axiom B1 “fundamentality”: the cosmological constant �

only depends on fundamental constants of nature. Axiom
B2 “boundedness”: the cosmological constant is bounded
from below, � > 0. Axiom B3 “simplicity”: the cosmolog-
ical constant � is given by the simplest possible formula
consistent with the other axioms. Axiom B4 “invariance”:
the cosmological constant � formed with potentially differ-
ent values of fundamental parameters leaves the large-scale
physics of the universe scale invariant. These four axioms
look also very natural and simple. From these natural and
simple axioms, Beck [24] derived the explicit form of the
cosmological constant,

� = G2

h̄4

(me

α

)6
, (1)

where α is the fine structure constant, G is the gravitational
constant, h̄ is the reduced Planck constant, and me is the
electron mass. Accordingly, the (observable) vacuum energy
density is given by [24]

ρ� = c4

8πG
� = G

8π

c4

h̄4

(me

α

)6
, (2)

where c is the speed of light. Numerically, this formula yields
ρ� � 4.0961 GeV/m3, which can pass the current observa-
tional constraints with flying colors. We refer to [24] for the
detailed derivations.

In fact, Beck [24] is not the first and the only one who
derived the cosmological constant given in Eq. (1). It was
independently derived from other arguments in the litera-
ture. Using the generalized Buchdahl identity, Boehmer and
Harko [27] argued that the existence of a non-negative �

imposes a lower bound on the mass M and density ρ for
general relativistic objects with radius R,

2GM ≥ �c2

6
R3, ρ = 3M

4πR3 ≥ �c2

16πG
. (3)

On the other hand, Wesson [28] argued that the mass is quan-
tized according to the rule m = (nh̄/c)

√
�/3, and the mini-

mum mass corresponding to the ground state n = 1 is given
by

mP = h̄

c

√
�

3
, (4)

which is indeed a very small mass. Boehmer and Harko [27,
29] proposed to identify the minimum mass in Eq. (3) with

the one in Eq. (4), and found that the radius corresponding
to mP is given by

RP = 481/6
(
h̄G

c3

)1/3

�−1/6 � 1.9 �
2/3
pl �−1/6, (5)

where �pl is the Planck length. Noting the radiusRP is of the
same order of magnitude as the classical radius of the electron
re = e2/(mec2) (where e is the electron charge), Boehmer
and Harko [29] further proposed to formally equate RP with
re while the term of O(1) is neglected, and then they found
that the cosmological constant is given by [29]

� = �4
pl

r6
e

= h̄2G2m6
ec

6

e12 = G2

h̄4

(me

α

)6
, (6)

in which we have used the definition α = e2/(h̄c). Clearly,
the same result given in Eq. (1) has been independently
derived from completely different arguments.

The third independent approach to derive the cosmolog-
ical constant � in Eq. (1) is the well-known Eddington–
Dirac large number hypothesis [30–33]. Nottale in 1993 [34]
(see also [24]) has written down a large number hypothe-
sis connecting cosmological parameters with standard model
parameters,

α
mpl

me
=

(
�−1/2

�pl

)1/3

, (7)

where mpl is the Planck mass. It is easy to check that Eq. (7)
is equivalent to Eqs. (1) and (6) in fact.

We note that the cosmological constant � given in Eq. (1)
is related to the fine structure constant α according to � ∝
α−6. This is interesting for us. As is well known, in the same
year 1998 when the accelerated cosmic expansion was dis-
covered, the evidence for cosmological evolution of the fine
structure constant α has also been found [35–37]. Using the
absorption systems in the spectra of distant quasars, Webb et
al. [35] found the first evidence for the time variation of α,
namely �α/α ≡ (α − α0)/α0 = (−1.1 ± 0.4) × 10−5 over
the redshift range 0.5 < z < 1.6, where α0 is the present
value of α. Three years later, they improved the evidence to
4σ , namely �α/α = (−0.72±0.18)×10−5 over the redshift
range 0.5 < z < 3.5 [36,37]. The fine structure constant α

was smaller in the past, and it is not a true constant in fact.
Nowadays, a time-varying α has been extensively discussed
in the community. There are many works on this topic in
the literature [38–41,112–114]. If the cosmological constant
� given in Eq. (1) is right, it should also be time-varying,
because � ∝ α−6. In the literature (e.g. [42–44]), there exist
some �(t) models already. However, most of them are writ-
ten by hand, e.g. � ∝ H2, � ∝ ä/a, � ∝ Rsc , � ∝ ρm ,
where H is the Hubble parameter, a is the scale factor, Rsc

is the scalar curvature, ρm is the density of matter. Differ-
ent from the �(t) models purely written by hand, the time-
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varying � ∝ α−6 given in Eq. (1) is well motivated, as is
shown above.

In the present work, we are interested to study the vary-
ing cosmological constant � ∝ α−6. In Sect. 2, we try to
develop a suitable framework to model the varying cosmo-
logical constant. In Sect. 3, we consider the observational
constraints on the varying � models. In Sect. 4, the possi-
ble connection between the varying cosmological constant
and warm dark matter is discussed. In Sect. 5, some brief
concluding remarks are given.

2 Varying cosmological constant and fine structure
constant

Here, we try to develop a suitable framework to model the
varying cosmological constant � given in Eq. (1). For conve-
nience, we instead use the vacuum energy density ρ� given
in Eq. (2), which is equivalent to � in fact. Throughout this
work, we use the terms “cosmological constant” and “vac-
uum energy” interchangeably. If the cosmological constant
is varying, we have ρ̇� = −Q �= 0, where a dot denotes the
derivative with respect to cosmic time t . To preserve the total
energy conservation equation ρ̇tot + 3H(ρtot + ptot) = 0,
a coupling between the vacuum energy and the pressureless
matter is necessary, and hence ρ̇m + 3Hρm = Q �= 0, where
ρm is the density of pressureless matter, ρtot = ρ� + ρm ,
and ptot is the total pressure. Note that the equation-of-state
parameter (EoS) of the cosmological constant w� = −1,
and the EoS of the pressureless matter wm = 0. Throughout
this work, we assume that only the fine structure “constant”
α is varying, and all the other fundamental constants h̄, G,
c, me are true constants, i.e. they do not vary indeed. Since
α = e2/(h̄c), this means that only the electron charge e is
varying. Therefore, we have ρ� ∝ � ∝ α−6. It is easy to
see that

ρ̇�

ρ�

= −6
α̇

α
, (8)

and then the total energy conservation equation can be pre-
served according to

ρ̇� = −Q = −6
α̇

α
ρ�, (9)

ρ̇m + 3Hρm = Q = 6
α̇

α
ρ�. (10)

The coupling term Q = 6ρ�α̇/α �= 0 if the fine struc-
ture “constant” α is varying. In this work, we consider a
spatially flat Friedmann–Robertson–Walker (FRW) universe
containing only the vacuum energy and the pressureless mat-
ter. H ≡ ȧ/a is the Hubble parameter, and a = (1 + z)−1

is the scale factor (we have set a0 = 1; the subscript “0”
indicates the present value of corresponding quantity; z is

the redshift). In this way, we can turn the varying cosmologi-
cal constant model into an interacting vacuum energy model.
The vacuum energy interacts with the pressureless matter by
exchanging energy between them.

Due to the interaction Q, the evolutions of ρm and ρ�

should deviate from the ones without interaction, namely
ρm ∝ a−3 and ρ� = const. If the coupling term Q is given,
one can derive the evolutions of ρm and ρ�. However, the
logic can be reversed. If the deviated evolutions of ρm and/or
ρ� are given, we can find the corresponding interaction Q
from Eqs. (9), (10), and then the evolution of α. Inspired by
e.g. [42,45–48], we consider two different types of models
to characterize the deviated evolutions of ρm and/or ρ� in
the following two subsections, respectively.

2.1 Type I models

Inspired by e.g. [46–48], the type I models are characterized
by

ρ�

ρm
= f (a), (11)

where f (a) can be any function of the scale factor a. If
f (a) ∝ a3, it corresponds to �CDM model whose ρ� =
const. and ρm ∝ a−3. From Eq. (11) and Friedmann equa-
tion H2 = 8πG(ρ� + ρm)/3, we have

	� = f

1 + f
, 	m = 1

1 + f
, (12)

where 	i ≡ 8πGρi/(3H2) (i = �, m) are the fractional
energy densities of the vacuum energy and matter, respec-
tively. Substituting ρ� = ρm f (a) into Eq. (9) and using ρ̇m
from Eq. (10), we find

Q = −Hρm	�

(
a
f ′

f
− 3

)
= −Hρ�	m

(
a
f ′

f
− 3

)
,

(13)

where a prime denotes the derivative with respect to a. From
Eqs. (12) and (13), we obtain

α̇

α
= Q

6ρ�

= − H

6(1 + f )

(
a
f ′

f
− 3

)

= − EH0

6(1 + f )

(
a
f ′

f
− 3

)
, (14)

where E ≡ H/H0. If f ∝ a3, it is easy to see that α̇ = 0,
namely α = const. On the other hand, one can recast the total
energy conservation equation ρ̇tot +3Hρtot(1+wtot) = 0 as

d ln ρtot

d ln a
= −3 (1 − 	�) , (15)
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in which we have used wtot = ptot/ρtot = 	�w� + 	mwm

and w� = −1, wm = 0. We can integrate Eq. (15) to get

ρtot = exp

(∫ a

const.
(−3 + 3	�)

dã

ã

)

= ρtot,0 exp

(∫ a

1
(−3 + 3	�)

dã

ã

)
, (16)

where const. is an integration constant. Using Eqs. (12), (16)
and H2 = 8πGρtot/3, we find

E2 ≡ H2

H2
0

= a−3 exp

(∫ a

1

3 f

1 + f

dã

ã

)
. (17)

Noting ρ� ∝ α−6 and ρ�/ρ�0 = 	�E2/	�0 =
	�E2/(1 − 	m0), we have

�α

α
≡ α − α0

α0
=

(
	�E2

1 − 	m0

)−1/6

− 1, (18)

where 	� and E2 are given in Eqs. (12) and (17), respec-
tively. It is easy to check that if f ∝ a3, we obtain �α/α = 0,
namely α = const. In summary, if the function f (a) is given,
one can get the cosmic expansion history from Eq. (17), and
the variation of the fine structure “constant” α from Eqs. (18)
or (14). Finally, it is worth noting that by definition (11), we
obtain

f0 = f (a = 1) = ρ�0

ρm0
= 1

	m0
− 1, (19)

which is useful to fix one of the model parameters in f (a).

2.2 Type II models

Inspired by e.g. [42,45,48], the type II models are character-
ized by

ρm = ρm0 a
−3+ε(a), (20)

where ε(a) can be any function of the scale factor a. Obvi-
ously, ε(a) ≡ 0 corresponds to �CDM model whose ρm =
ρm0 a−3. Substituting Eq. (20) into Eq. (10), we find that the
corresponding interaction term is given by

Q = Hρm
[
ε(a) + aε′(a) ln a

]
. (21)

Substituting Eqs. (20) and (21) into Eq. (9), we obtain

dρ�

da
= −ρm0 a

−4+ε(a)
[
ε(a) + aε′(a) ln a

]
, (22)

which can be integrated to get

ρ� = ρm0 η(a) + ρ�0, (23)

where

η(a) ≡
∫ 1

a
ã−4+ε(ã)

[
ε(ã) + ãε′(ã) ln ã

]
dã. (24)

Substituting Eqs. (20) and (23) into Friedmann equation
H2 = 8πG(ρ� + ρm)/3, we find

E2 ≡ H2

H2
0

= 	m0

[
a−3+ε(a) + η(a)

]
+ (1 − 	m0) . (25)

Using Eqs. (20), (21), and (23), we have

α̇

α
= Q

6ρ�

= EH0

6

	m0 a−3+ε(a)

1 + 	m0 [ η(a) − 1 ]

× [
ε(a) + aε′(a) ln a

]
, (26)

where η(a) and E are given in Eqs. (24) and (25), respec-
tively. On the other hand, using Eq. (23) and noting ρ� ∝
α−6, we obtain

�α

α
≡ α − α0

α0
=

[
1 + 	m0 η(a)

1 − 	m0

]−1/6

− 1, (27)

where η(a) is given in Eq. (24). So, if the function ε(a)

is given, one can get the cosmic expansion history from
Eq. (25), and the variation of the fine structure “constant”
α from Eqs. (27) or (26). In particular, if ε(a) ≡ 0, it is easy
to check that α̇ = 0 and �α/α = 0, namely α = const.

3 Observational constraints on the models

3.1 Observational data

In the literature, there are two kinds of observational data con-
cerning the variation of the fine structure “constant”, namely
the data of �α/α and the data of α̇/α. To the best of our
knowledge, most of the observational data are given in terms
of �α/α, and only a few of the observational data are given in
terms of α̇/α. On the other hand, comparing α̇/α in Eqs. (14)
and (26) with �α/α in Eqs. (18) and (27), it is easy to see that
the number of free parameters in α̇/α is always more than
the one in �α/α, namely one more free parameter H0 is
required in α̇/α while �α/α need not. Due to the above two
reasons, we only consider the observational data of �α/α in
the present work.

Here, we consider the observational �α/α dataset given
in [49], which consists of 293 �α/α data from the absorp-
tion systems in the spectra of distant quasars. This sample
includes 154 quasar absorption systems from the Very Large
Telescope (VLT) in Chile, and 141 quasar absorption sys-
tems from the Keck Observatory in Hawaii. The full numeri-
cal data of these 295 quasar absorption systems are available
in [50] or [51,52]. According to [49] and the instructions
of [50–52], two outliers (J194454+770552 at zabs = 2.8433,
and J000448-415728 at zabs = 1.5419) should be removed.
Therefore, there are 293 usable data in the final dataset, over
the absorption redshift range 0.2223 ≤ zabs ≤ 4.1798. Note
that all these 293 �α/α data are of O(10−5). The χ2 from
these 293 �α/α data is given by
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χ2
α =

∑
i

[
(�α/α)th,i − (�α/α)obs,i

]2

σ 2
i

, (28)

where σ 2
i = σ 2

stat,i + σ 2
rand,i (see Sect. 3.5.3 of [49] and

the instructions of [50–52] for the technical details of σrand

and the error budget). In fact, we have tested our two types
of models with these 293 �α/α data, and found that these
�α/α data can tightly constrain the model parameters in
f (a) or ε(a), but the constraints on the model parameter 	m0

are too loose. Therefore, other cosmological observations,
for instance, type Ia supernovae (SNIa), cosmic microwave
background (CMB), and baryon acoustic oscillation (BAO),
are required to properly constrain the model parameter 	m0.

We further consider the Union2.1 SNIa dataset [53,54]
consisting of 580 data points, which are given in terms of the
distance modulus μobs(zi ). The theoretical distance modulus
is defined by

μth(zi ) ≡ 5 log10 DL(zi ) + μ̃0, (29)

where μ̃0 ≡ 42.3841 − 5 log10 h (h is the Hubble constant
H0 in units of 100 km/s/Mpc), and

DL(z) = (1 + z)
∫ z

0

dz̃

E(z̃;p)
, (30)

in which E ≡ H/H0, and p denotes the model parameters.
The χ2 from 580 Union2.1 SNIa is given by

χ2
μ(p) =

∑
i

[ μobs(zi ) − μth(zi ) ]2

σ 2
μobs

(zi )
. (31)

The parameter μ̃0 (equivalent to H0) is a nuisance param-
eter, but it is independent of the data points. One can per-
form a uniform marginalization over μ̃0. However, there is
an alternative way. Following [55–57], the minimization can
be made by expanding χ2

μ in Eq. (31) with respect to μ̃0 as

χ2
μ(p) = Ã − 2μ̃0 B̃ + μ̃2

0C̃, (32)

where

Ã(p) =
∑
i

[
μobs(zi ) − μth(zi ; μ̃0 = 0,p)

]2

σ 2
μobs

(zi )
,

B̃(p) =
∑
i

μobs(zi ) − μth(zi ; μ̃0 = 0,p)

σ 2
μobs

(zi )
,

C̃ =
∑
i

1

σ 2
μobs

(zi )
.

Equation (32) has a minimum for μ̃0 = B̃/C̃ at

χ̃2
μ(p) = Ã(p) − B̃(p)2

C̃
. (33)

Since χ2
μ, min = χ̃2

μ, min (up to a constant), we can instead

minimize χ̃2
μ, which is independent of μ̃0.

Since using the full data of CMB and BAO to perform a
global fitting consumes a large amount of computation time
and power, we instead use the shift parameter R from the
observation of CMB, and the distance parameter A from
the measurement of BAO, which are model-independent and
contain the main information of the observations of CMB and
BAO [58,59], respectively. The shift parameter R of CMB is
defined by [58–60]

R ≡ 	
1/2
m0

∫ z∗

0

dz̃

E(z̃)
, (34)

where the redshift of recombination z∗ is determined to be
1089.90 by the Planck 2015 data [61]. On the other hand, the
Planck 2015 data have also determined the observed value
of shift parameter Robs to be 1.7382 ± 0.0088 [62]. The χ2

from CMB is given by χ2
R = (R − Robs)

2/σ 2
R . The distance

parameter A of the measurement of the BAO peak in the
distribution of SDSS luminous red galaxies [63] is given by

A ≡ 	
1/2
m0 E(zb)

−1/3
[

1

zb

∫ zb

0

dz̃

E(z̃)

]2/3

, (35)

where zb = 0.35. In [63], the value of A has been determined
to be 0.469 (ns/0.98)−0.35 ± 0.017. Here the scalar spectral
index ns is taken to be 0.9741 by the Planck 2015 data [62].
The χ2 from BAO is given by χ2

A = (A − Aobs)
2/σ 2

A.
The total χ2 from the combined �α/α, SNIa, CMB and

BAO data is given by

χ2 = χ2
α + χ̃2

μ + χ2
R + χ2

A. (36)

The best-fit model parameters are determined by minimizing
the total χ2. As in [55–57,64–70], the 68.3% confidence level
is determined by �χ2 ≡ χ2−χ2

min ≤ 1.0, 2.3, 3.53, 4.72 for
n p = 1, 2, 3, 4, respectively, where n p is the number of free
model parameters. Similarly, the 95.4% confidence level is
determined by �χ2 ≡ χ2 −χ2

min ≤ 4.0, 6.18, 8.02, 9.72 for
n p = 1, 2, 3, 4, respectively.

3.2 Observational constraints on type I models

Now, we consider the observational constraints on type I
models introduced in Sect. 2.1. At first, we choose the sim-
plest form of the function f (a), namely

f (a) = f0 a
ξ , (37)

where ξ = const. and f0 is given in Eq. (19). In this case, it
is easy to find the explicit formula of E2 in Eq. (17), namely

E2 = a−3 [
	m0 + (1 − 	m0) a

ξ
]3/ξ

= (1 + z)3 [
	m0 + (1 − 	m0) (1 + z)−ξ

]3/ξ
. (38)

If ξ = 3, it reduces to �CDM model and α = const. [nb.
Eqs. (14) and (18)]. It is natural to expect ξ will be very
close to 3, since all the 293 �α/α data given in [49–52] are of
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Fig. 1 The 68.3% and 95.4% confidence level contours in the 	m0–
μ plane for the type I model characterized by f (a) = f0 aξ given in
Eq. (37). The best-fit parameters are also indicated by the black solid
point. Note that μ = ξ − 3 is given in units of 10−5. See the text for
details

O(10−5). So, it is convenient to introduce μ = ξ−3, and then
we recast ξ = μ + 3. There are two free model parameters
	m0 and μ (which is equivalent to ξ ). By minimizing the
corresponding total χ2 in Eq. (36), we find the best-fit model
parameters 	m0 = 0.279 and μ = ξ − 3 = −1.366 × 10−5,
while χ2

min = 868.149 and χ2
min/dof = 0.994. In Fig. 1, we

also present the corresponding 68.3% and 95.4% confidence
level contours in the 	m0–μ plane. The parameter μ = ξ −3
is tightly constrained to a narrow range of O(10−5), thanks
to the 293 �α/α data of O(10−5). From Fig. 1, we note
that μ = ξ − 3 = 0 (corresponding to �CDM model and
α = const.) deviates from the best fit beyond 1σ , although it
is still consistent with the data in 2σ region. Thus, the varying
� and α are favored by the observational data.

Next, we can generalize the simplest model in Eq. (37)
by allowing ξ = ξ(a) is not a constant. Similar to the well-
known Chevallier–Polarski–Linder (CPL) EoS parameteri-
zation w = w0 + wa(1 − a) [71,72], the simplest form
for ξ(a) is CPL-like, namely ξ(a) = ξ0 + ξ1(1 − a). Not-
ing that the Taylor series expansion of any (even unknown)
function F(x) is given by F(x) = F(x0) + F1 (x − x0) +
(F2/ 2!) (x − x0)

2 + (F3/ 3!) (x − x0)
3 + . . . , the CPL-like

ξ(a) = ξ0 + ξ1(1 − a) can be regarded as the Taylor series
expansion of ξ(a) with respect to scale factor a up to first
order (linear expansion). Thus, it is well motivated to con-
sider another type I model characterized by

f (a) = f0 a
ξ(a), and ξ(a) = ξ0 + ξ1(1 − a), (39)

where ξ0, ξ1 are constants, and f0 is given in Eq. (19). If
ξ0 = 3 and ξ1 = 0, it reduces to �CDM model and α =
const. [nb. Eqs. (14) and (18)]. It is natural to expect ξ0 will

be very close to 3, since all the 293 �α/α data given in [49–
52] are of O(10−5). So, it is convenient to introduce μ0 =
ξ0 − 3, and then we recast ξ0 = μ0 + 3. There are three
free model parameters 	m0, ξ1 and μ0 (which is equivalent
to ξ0). Note that there is no analytical formula for E2 in
this case, but we can get it by using numerical integration
in Eq. (17). By minimizing the corresponding total χ2 in
Eq. (36), we find the best-fit model parameters 	m0 = 0.278,
μ0 = ξ0 − 3 = −2.650 × 10−4, and ξ1 = 3.460 × 10−4,
while χ2

min = 856.005 and χ2
min/dof = 0.982. Note that

this χ2
min is significantly smaller than the one of the model

with Eq. (37), namely 856.005 vs. 868.149, just at the price
of adding only one free model parameter. In Fig. 2, we also
present the corresponding 68.3% and 95.4% confidence level
contours in the μ0–ξ1, 	m0–μ0, and 	m0–ξ1 planes. Both the
parameters μ0 = ξ0 − 3 and ξ1 are tightly constrained to the
narrow ranges of O(10−4), thanks to the 293 �α/α data of
O(10−5). From Fig. 2, we note that μ0 = ξ0 − 3 = 0 and
ξ1 = 0 (corresponding to �CDM model and α = const.)
deviate from the best fit far beyond 2σ . Thus, the varying �

and α are favored by the observational data.

3.3 Observational constraints on type II models

Let us turn to the observational constraints on type II models
introduced in Sect. 2.2. Obviously, the simplest type II model
is given by

ρm = ρm0 a
−3+ε, (40)

where ε �= 3 is a constant. If ε = 0, it reduces to �CDM
model and α = const. [nb. Eqs. (26) and (27)]. For ε(a) =
ε �= 3, we find the analytical formulas for η(a) and E2 in
Eqs. (24) and (25), namely

η = ε

ε − 3

(
1 − a−3+ε

)

= ε

ε − 3

[
1 − (1 + z)3−ε

]
, (41)

E2 = 	m0

ε − 3

(
ε − 3a−3+ε

)
+ (1 − 	m0)

= 	m0

ε − 3

[
ε − 3(1 + z)3−ε

]
+ (1 − 	m0) . (42)

There are two free model parameters, namely 	m0 and ε.
By minimizing the corresponding total χ2 in Eq. (36), we
find the best-fit model parameters 	m0 = 0.279 and ε =
0.430×10−6, while χ2

min = 870.391 and χ2
min/dof = 0.997.

In Fig. 3, we also present the corresponding 68.3% and 95.4%
confidence level contours in the 	m0–ε plane. The parameter
ε is tightly constrained to a narrow range of O(10−6), thanks
to the 293 �α/α data of O(10−5). From Fig. 3, we see that
ε = 0 (corresponding to �CDM model and α = const.) is
fully consistent with the observational data (in fact it is close

123



Eur. Phys. J. C (2017) 77 :14 Page 7 of 13 14

0.24 0.26 0.28 0.3 0.32

m0

3

2.8

2.6

2.4

0.24 0.26 0.28 0.3 0.32

m0

3

3.2

3.4

3.6

3.8

4

1
10

4

6 5 4 3 2 1 0 1

0
10

4
μ

μ0 10 4

0

2

4

6

8

ξ 1
10

4

ξ

Fig. 2 The 68.3% and 95.4% confidence level contours in the μ0 −ξ1,
	m0–μ0 and 	m0–ξ1 planes for the type I model characterized by
f (a) = f0 aξ0+ξ1(1−a) given in Eq. (39). The best-fit parameters are

also indicated by the black solid points. Note that μ0 = ξ0 − 3 and ξ1
are given in units of 10−4. See the text for details

to the best fit). So, � and α can be non-varying in the type II
model characterized by Eq. (40).

Next, we consider another type II model characterized by
a CPL-like ε(a), namely

ε(a) = ε0 + ε1(1 − a), (43)

where ε0 and ε1 are constants. If ε0 = ε1 = 0, it reduces to
the �CDM model and α = const. [nb. Eqs. (26) and (27)].
As mentioned above, this CPL-like ε(a) = ε0 + ε1(1 − a)

can be regarded as the Taylor series expansion of ε(a) with
respect to the scale factor a up to first order (linear expan-
sion), and hence it is well motivated. There are three free
model parameters, namely 	m0, ε0, and ε1. Note that there
are no analytical formulas for η(a) and E2 in this case, but we

can get η(a) by using numerical integration in Eq. (24) and
then E2 in Eq. (25) is ready. By minimizing the correspond-
ing total χ2 in Eq. (36), we find the best-fit model parameters
	m0 = 0.279, ε0 = 6.421×10−5 and ε1 = −6.962×10−5,
while χ2

min = 857.605 and χ2
min/dof = 0.983. Note that

this χ2
min is significantly smaller than the one of the model

with Eq. (40), namely 857.605 vs. 870.391, just at the price
of adding only one free model parameter. In Fig. 4, we also
present the corresponding 68.3% and 95.4% confidence level
contours in the ε0–ε1, 	m0–ε0, and 	m0–ε1 planes. Both
the parameters ε0 and ε1 are tightly constrained to the nar-
row ranges of O(10−5), thanks to the 293 �α/α data of
O(10−5). From Fig. 4, we note that ε0 = ε1 = 0 (corre-
sponding to �CDM model and α = const.) deviate from the
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best fit far beyond 2σ . This indicates that the varying � and
α are favored by the observational data.

4 Varying cosmological constant and warm dark matter

In the previous sections, we turned the varying cosmological
constant model into an interacting vacuum energy model.
The vacuum energy interacts with the pressureless matter
by exchanging energy between them. In this section, we
would like to view this model from another perspective. As
is shown in e.g. [73], an interacting dark energy model can
be equivalent to a warm dark matter model without interac-
tion between dark energy and dark matter, while these two
different kinds of models can share both the same cosmic
expansion history and growth history. To keep things simple,
here we only consider the models from the side of expansion
history.

Although the cold dark matter (CDM) model is very
successful in many fields, it has been seriously challenged
recently. We refer to e.g. [74,75] for the detailed reviews
on these challenges. Recently, warm dark matter (WDM)
remarkably rose as an alternative of CDM. We refer to
e.g. [76–78] for several comprehensive reviews. The lead-
ing WDM candidate is the keV scale sterile neutrino. In fact,
the keV scale WDM is an intermediate case between the
eV scale hot dark matter (HDM) and the GeV scale CDM.
Unlike CDM which is challenged on the small/galactic scale,
it is claimed that WDM can successfully reproduce the astro-
nomical observations over all the scales (from small/galactic
to large/cosmological scales) [76–78]. One of the key dif-
ferences between WDM and CDM is their EoS. WDM has

a fairly small but non-zero EoS, while the EoS of CDM is
exactly zero. In the literature, many attempts have been made
to determine the EoS of dark matter (see e.g. [79–88]), and
it is found that the EoS of WDM are of O(10−6), O(10−5)

or O(10−3) (depending on the working assumptions and the
observational data in use).

Let us come back to the starting point Eqs. (9) and (10), and
view them from another perspective. In the form of Eqs. (9)
and (10), the vacuum energy (whose EoS is w� = −1) inter-
acts with the cold dark matter (whose EoS iswm = 0) through
an interaction Q = 6ρ�α̇/α �= 0. Now, we recast them as

ρ̇� + 3Hρ�

(
1 + weff

�

)
= 0,

ρ̇m + 3Hρm

(
1 + weff

m

)
= 0, (44)

where

wdm ≡ weff
m = − Q

3Hρm
, 1 + wde ≡ 1 + weff

� = Q

3Hρ�

.

(45)

In this new form, the varying cosmological constant model
becomes a model containing “dark energy” (whose EoS
wde �= −1) and “warm dark matter” (whose EoS wdm �= 0),
but there is no interaction between them. Since the observa-
tional data concerning the time variation of α are ofO(10−5),
it is natural to expect that wdm ∼ 1 + wde ∼ O(10−5) or
smaller.

For type I models introduced in Sect. 2.1, substituting
Eq. (13) into Eq. (45), we have

wdm = 	�

3

(
a
f ′

f
− 3

)
, 1 + wde = −	m

3

(
a
f ′

f
− 3

)
,

(46)

where 	� and 	m are given in Eq. (12). Thus, it is easy to
find the evolutions of wdm and wde if f (a) is given. In the
top panels of Fig. 5, we plot wdm and 1 + wde as functions
of the scale factor a for the type I models with f (a) = f0 aξ

in Eq. (37) and f (a) = f0 aξ0+ξ1(1−a) in Eq. (39), while the
corresponding best-fit model parameters obtained in Sect. 3.2
are taken. As expected above, they are of order 10−6 or
10−5. Thus, the effective “warm dark matter” from type I
models of the varying cosmological constant � ∝ α−6 is
fully consistent with the observational constraints on WDM
(e.g. [79–88,109]).

For type II models introduced in Sect. 2.2, substituting
Eqs. (21), (20), and (23) into Eq. (45), we get

wdm = −1

3

[
ε(a) + aε′(a) ln a

]
, (47)

1 + wde = 	m0

3

a−3+ε(a)

1 + 	m0 [ η(a) − 1 ]

[
ε(a) + aε′(a) ln a

]
,

(48)
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where η(a) is given in Eq. (24). Thus, it is easy to find
the evolutions of wdm and wde if ε(a) is given. In the
case of ε(a) = ε = const., there is an explicit formula
in Eq. (41) for η(a). However, in the case of ε(a) =
ε0 + ε1(1 − a), we should get η(a) by using numerical
integration in Eq. (24). In the bottom panels of Fig. 5, we
plot wdm and 1 + wde as functions of the scale factor a
for the type II models with ε = const. in Eq. (40) and
ε(a) = ε0 + ε1(1 − a) in Eq. (43), while the correspond-
ing best-fit model parameters obtained in Sect. 3.3 are taken.
Clearly, they are of order 10−5 or 10−7. Again, the effec-
tive “warm dark matter” from type II models of the vary-
ing cosmological constant � ∝ α−6 is also fully consis-
tent with the observational constraints on WDM (e.g. [79–
88,109]).

5 Concluding remarks

In this work, we considered the cosmological constant model
� ∝ α−6, which is well motivated from three independent
approaches as mentioned in Sect. 1. As is well known, in the
passed 18 years, the hint of varying fine structure constant
α was found, and the observational data of varying α were
accumulated. Nowadays, a time-varying α has been exten-
sively discussed in the community. If � ∝ α−6 is right, it
means that the cosmological constant � should also be vary-
ing. In this work, we tried to develop a suitable framework
to model this varying cosmological constant � ∝ α−6, in
which we view it from an interacting vacuum energy per-
spective. We proposed two types of models to describe the
evolutions of � and α. Then we considered the observa-
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details

tional constraints on these models, by using the 293 �α/α

data from the absorption systems in the spectra of distant
quasars, and the data of SNIa, CMB, and BAO. We found
that the model parameters can be tightly constrained to the
narrow ranges of O(10−5) typically, thanks to the 293 �α/α

observational data of O(10−5). In particular, three of four
models considered in this work favor the varying � and α,
while �CDM model and α = const. deviate from the best
fit beyond 2σ or at least 1σ . On the other hand, we can also
view the varying cosmological constant model � ∝ α−6

from another perspective, namely it can be equivalent to a
model containing “dark energy” (whose EoS wde �= −1)
and “warm dark matter” (whose EoS wdm �= 0), but there is
no interaction between them. We derived the effective EoS
of “warm dark matter” and “dark energy”, and found that
they are fully consistent with the observational constraints
on warm dark matter. In summary, we consider that the vary-
ing cosmological constant model � ∝ α−6 is viable and
deserves further studies.

Some remarks are in order. First, although the cosmolog-
ical constant � ∝ α−6 is derived from three independent
approaches as mentioned in Sect. 1 (see also e.g. [110,111]),
the underlying fundamental theory for it is still unknown.
Varying fundamental constants require new physics [38]. It is
commonly believed that the cosmological constant problem
can only be solved ultimately in a unified theory of quantum
gravity and the standard model of electroweak and strong
interactions, which is still absent so far. Nevertheless, we
consider that the studies on such a cosmological constant
� ∝ α−6 might shed new light on the possible ways to the
unknown underlying theory.

Second, we have tightly constrained the model parame-
ters besides 	m0, namely ξ , ξ0, ξ1, ε, ε0 and ε1, to the nar-
row ranges of O(10−5) typically, mainly by using the 293
�α/α observational data from the absorption systems in the
spectra of distant quasars. In fact, these parameters were con-
fronted with only the observations of SNIa, CMB, and BAO
in e.g. [48], and the corresponding constraints are of O(1).
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So, the significant leap fromO(1) toO(10−5) shows the great
power of the 293 �α/α observational data. In fact, these 293
�α/α data have been used in many issues (see e.g. [89,90]).
We advocate the further uses of these �α/α observational
data in relevant studies.

Third, in addition to the well-known evidence of the time
variation in the fine structure constant α, it was claimed
that α is also spatially varying [49,91]. If � ∝ α−6 is
right, the cosmological constant should be not only time-
dependent but also space-dependent. This might bring about
new features to this field, and deserve further detailed stud-
ies. For example, it is claimed that there exists a pre-
ferred direction in the CMB temperature map (known as
the “Axis of Evil” in the literature) [92–95], the distribu-
tion of SNIa or gamma-ray bursts [96–104], and the quasar
optical polarization data [105–108]. If the cosmological con-
stant � ∝ α−6 is also space-dependent, it might be respon-
sible for the possible anisotropy in the (accelerated) expan-
sion of the universe. We leave this interesting issue to future
work.

Fourth, besides the 293 �α/α data from the absorption
systems in the spectra of distant quasars, there are more
�α/α observational data from other types of observations,
for examples, atomic clocks, Oklo natural nuclear reactor,
meteorite dating, CMB, big bang nucleosynthesis. We refer
to e.g. [38] for a comprehensive review. Thus, it is interest-
ing to consider the constraints from these observational data.
Since these data are subtle in some sense [38,40,41], we also
leave this to future work.

Fifth, let us turn to the varying cosmological constant
model itself. In the present work, we considered four par-
ticular parameterizations of the functions f (a) and ε(a). In
fact, one can instead consider other parameterizations, for
instance, f (a), ξ(a) or ε(a) characterized by c0 + c1 ln a
or c0ac1 [48]. On the other hand, in the present work we
assumed that only the fine structure constant α is varying,
and the other fundamental constants G, c, h̄, me do not vary
indeed. However, the varying G, c, h̄, me models do exist
in the literature (see e.g. [38] for a comprehensive review).
Since the cosmological constant � given in Eqs. (1) or (2)
also depends on G, c, h̄, and me, there are diverse variants
of the varying cosmological constant model in fact. These
variants might bring about new features. Since this is beyond
the scope of the present work, we again leave it to future
work.

Sixth, it is worth noting that the data analysis based on
Eq. (36) can only give a rough indication and cannot be used
to infer that any of the models considered in the present work
is better than �CDM (we thank Prof. Dominik Schwarz for
pointing out this issue), because (a) the SNIa light curve fit-
ters assumed �CDM. So, if one wants to fit a model other
than �CDM, the light curve fitting procedure should be

redone within the new model. (b) the use of the parame-
ters R and A from CMB and BAO measurements is crude,
since they cannot take some complicated effects (e.g. the inte-
grated Sachs–Wolfe effect) into account. (c) Eq. (36) implic-
itly assumes that �α/α data, SNIa, CMB, and BAO have
equal statistical weight, but this is questionable. In addition,
a full Markov Chain Monte Carlo (MCMC) analysis of the
CMB data should be used to further test the models con-
sidered in this work (we thank Prof. Dominik Schwarz for
pointing out this issue), and we leave it to future work.

Finally, it is important to clarify the two different (but
equivalent) perspectives on the varying cosmological con-
stant model considered in this work. The first perspective is
to regard the varying cosmological constant as a fluid not
interacting with dark matter. In fact, this is the case consid-
ered in Sect. 4. The conservation equation of this fluid is given
by Eq. (44), in the form of ρ̇de + 3Hρde (1 + wde) = 0. In
this case, we stress that the EoS of this fluid is not wde = −1.
As is clearly shown in e.g. Fig. 5, the EoS of this fluid is time-
dependent, rather than constant. Indeed, the EoS of this fluid
wde �= −1 in this case. So, one cannot say ρde = const.
We have not assumed wde = −1 in this perspective indeed,
and we refer to Sect. 4 for detailed discussions. On the
other hand, the second perspective on the varying cosmo-
logical constant model is considered in Sects. 2 and 3. In
this case, one can regard the varying cosmological constant
as a fluid interacting with dark matter (different from the
first perspective considered in Sect. 4). Now, the conserva-
tion equation of this fluid is given by Eq. (9), in the form
of ρ̇� + 3Hρ� (1 + w�) = −Q �= 0. Yes, we assumed
the EoS of this fluid w� = −1 in the second perspec-
tive considered in Sects. 2, 3, and then ρ̇� = −Q �= 0.
However, due to the non-zero Q, again one cannot say
ρ� = const. In fact, the two perspectives considered in
Sect. 4 and Sects. 2–3 are completely independent. There
is no inconsistency in each independent perspective. One
should not mix up these two different perspectives consid-
ered in this work, otherwise confusion and misunderstanding
might arise.
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