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ABSTRACT

We present the power spectrum of the reconstructed halo density field derived from a sample

of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) Seventh Data

Release (DR7). The halo power spectrum has a direct connection to the underlying dark matter

power for k ≤ 0.2 h Mpc−1, well into the quasi-linear regime. This enables us to use a factor of

∼8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h Mpc−1, as was

adopted in the SDSS team analysis of the DR4 LRG sample. The observed halo power spectrum

for 0.02 < k < 0.2 h Mpc−1 is well fitted by our model: χ2 = 39.6 for 40 degrees of freedom for
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the best-fitting � cold dark matter (�CDM) model. We find �mh2(ns/0.96)1.2 = 0.141+0.010
−0.012

for a power-law primordial power spectrum with spectral index ns and �bh
2 = 0.022 65 fixed,

consistent with cosmic microwave background measurements. The halo power spectrum also

constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective

distance to z = 0.35: rs/DV (0.35) = 0.1097+0.0039
−0.0042. Combining the halo power spectrum

measurement with the Wilkinson Microwave Anisotropy Probe (WMAP) 5 year results, for the

flat �CDM model we find �m = 0.289 ± 0.019 and H 0 = 69.4 ± 1.6 km s−1 Mpc−1. Allowing

for massive neutrinos in �CDM, we find
∑

mν < 0.62 eV at the 95 per cent confidence level.

If we instead consider the effective number of relativistic species Neff as a free parameter,

we find N eff = 4.8+1.8
−1.7. Combining also with the Kowalski et al. supernova sample, we find

�tot = 1.011 ± 0.009 and w = −0.99 ± 0.11 for an open cosmology with constant dark

energy equation of state w. The power spectrum and a module to calculate the likelihoods are

publicly available at http://lambda.gsfc.nasa.gov/toolbox/lrgdr/.

Key words: cosmology: observations – large-scale structure of Universe – galaxies: haloes –

galaxies: statistics.

1 IN T RO D U C T I O N

The past decade has seen a dramatic increase in the quantity and

quality of cosmological data, from the discovery of cosmological

acceleration using supernovae (SNe; Riess et al. 1998; Perlmutter

et al. 1999) to the precise mapping of the cosmic microwave back-

ground (CMB) with the Wilkinson Microwave Anisotropy Probe

(WMAP; Page et al. 2003; Nolta et al. 2009) to the detection of

the imprint of baryon acoustic oscillations (BAO) in the early Uni-

verse on galaxy clustering (Cole et al. 2005; Eisenstein et al. 2005).

Combining the most recent of these three cosmological probes,

Komatsu et al. (2009) detect no significant deviation from the mini-

mal flat � cold dark matter (�CDM) cosmological model with adia-

batic, power-law primordial fluctuations and constrain that model’s

parameters to within a few per cent.

The broad shape of the power spectrum of density fluctuations

in the evolved Universe provides a probe of cosmological param-

eters that is highly complementary to the CMB and to probes of

the expansion history (e.g. SNe, BAO). The last decade has also

seen a dramatic increase in the scope of galaxy redshift surveys.

The PSCz (Saunders et al. 2000) contains ∼15 000 Infrared Astro-

nomical Satellite (IRAS) galaxies out to z = 0.1, the 2dF Galaxy

Redshift Survey (2dFGRS; Colless et al. 2001, 2003) collected

221 414 galaxy redshifts with median redshift 0.11, and the Sloan

Digital Sky Survey (SDSS; York et al. 2000) is now complete with

929 555 galaxy spectra (Abazajian et al. 2009) including both main

galaxies (〈z〉 ∼ 0.1; Strauss et al. 2002) and luminous red galaxies

(LRGs; z ∼ 0.35; Eisenstein et al. 2001). To harness the improve-

ment in statistical power available now from these surveys requires

stringent understanding of modelling uncertainties. The three ma-

jor components of this uncertainty are the non-linear gravitational

evolution of the matter density field (e.g. Zel’dovich 1970; Davis,

Groth & Peebles 1977; Davis & Peebles 1977), the relationship be-

tween the galaxy and underlying matter density fields (‘galaxy bias’;

e.g. Kaiser 1984; Rees 1985; Cole & Kaiser 1989), and redshift-

space distortions (e.g. Davis & Peebles 1983; Kaiser 1987; Hamilton

1998 for a review).

Several major advances have enabled previous analyses of 2dF-

GRS and SDSS to begin to address these complications. Progress

in N-body simulations (e.g. Heitmann et al. 2008), analytical meth-

ods (see Carlson, White & Padmanabhan 2009 for an overview and

comparison of many recent methods) and combinations thereof

(e.g. Smith et al. 2003; Eisenstein, Seo & White 2007b) have

allowed significant progress in the study of the non-linear real-

space matter power spectrum. Recent power spectrum analyses have

accounted for the luminosity dependence of a scale-independent

galaxy bias (Tegmark et al. 2004a; Cole et al. 2005), which

can introduce an artificial tilt in P(k) in surveys which are not

volume-limited (Percival, Verde & Peacock 2004). Cresswell &

Percival (2009) have recently examined the scale dependence of

galaxy bias as a function of luminosity and colour. Tegmark et al.

(2004a) applied a matrix-based method using pseudo-Karhunen–

Loève eigenmodes to measure three power spectra from the SDSS

galaxy distribution, allowing a quantification of the clustering

anisotropy and a more accurate reconstruction of the real-space

power spectrum than can be obtained from the angle-averaged

redshift-space power spectrum. Non-linear redshift-space distor-

tions, caused in part by the virialized motions of galaxies in their

host dark matter haloes, create features known as Fingers-of-God

(FOGs) along the line of sight in the redshift-space galaxy den-

sity field (Davis & Peebles 1983; Gramann, Cen & Gott 1994).

Both Tegmark et al. (2004a) and Cole et al. (2005) apply cluster-

collapsing algorithms to mitigate the effects of FOGs before com-

puting power spectra. Previous analyses have fitted galaxy power

spectra to linear (Percival et al. 2001) or non-linear matter models

(Spergel et al. 2003; Tegmark et al. 2004b), but did not attempt to

model the scale dependence of the galaxy bias. Cole et al. (2005)

introduced a phenomenological model to account for both matter

non-linearity and the non-trivial relation between the galaxy power

spectrum P gal(k) and matter power spectrum:

Pgal(k) =
1 + Qk2

1 + Ak
Plin(k) , (1)

where Plin denotes the underlying linear matter power spectrum. For

the 2dFGRS analysis, Cole et al. (2005) fit A using mock galaxy

catalogues and derive expected central values of Q. In the fit to

the observed galaxy power spectrum, they allow Q to vary up to

twice the expected value, which is supported by halo model cal-

culations of the cosmological dependence of the galaxy P(k). This

approach appears to work well for the case of 2dFGRS galaxies

because it was calibrated on mock catalogues designed to match

the properties of this galaxy population; however, its application
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to the LRG sample in Tegmark et al. (2006), where the best-fitting

Q was much larger than for 2dFGRS galaxies, is questionable (see

Reid, Spergel & Bode 2009; Yoo et al. 2009, but also Sánchez &

Cole 2008). Moreover, Percival et al. (2007) and Cresswell & Per-

cival (2009) have demonstrated that modelling the scale-dependent

galaxy bias is required to obtain a good fit for the observed galaxy

power spectrum.

In this paper, we focus our efforts on accurately modelling the

relationship between the galaxy and matter density fields for the

SDSS LRG sample. Several authors have studied this relation us-

ing the small- and intermediate-scale clustering in the SDSS LRG

sample (Zehavi et al. 2005a; Masjedi et al. 2006; Kulkarni et al.

2007; Wake et al. 2008; Zheng et al. 2009; Reid & Spergel 2009)

and galaxy–galaxy lensing (Mandelbaum et al. 2006). The LRG se-

lection algorithm in the SDSS (Eisenstein et al. 2001) was designed

to provide a homogenous galaxy sample probing a large volume

with a number density, n̄LRG, which maximizes the effective survey

volume V eff(k) on the large scales of interest, k ∼ 0.1 h Mpc−1 .

V eff is given by (Feldman, Kaiser & Peacock 1994; Tegmark 1997)

Veff(k) =
∫

d3r

[

n(r)P (k)

1 + n(r)P (k)

]2

, (2)

where P(k) denotes the measured galaxy power spectrum, n̄(r) the

average galaxy number density in the sample at position r and

the integral is over the survey volume. The total error on P(k) is

minimized (i.e. Veff is maximized) when n̄P ∼ 1, which optimally

balances cosmic variance and shot noise for a fixed number of galax-

ies. The LRG sample has proven its statistical power through the

detection of the BAO (Eisenstein et al. 2005; Percival et al. 2007).

However, parametrizing the LRG power spectrum with a heuris-

tic model for the non-linearity (equation 1) and marginalizing over

fitting parameters limit our ability to extract the full cosmological

information available from the power spectrum shape and can in-

troduce systematic biases (Sánchez & Cole 2008; Verde & Peiris

2008; Dunkley et al. 2009; Reid et al. 2009).

On sufficiently large scales, we expect galaxies to be linearly

biased with respect to the underlying matter density field (Mo &

White 1996; Scherrer & Weinberg 1998). However, an often over-

looked consequence of a sample with n̄LRGPLRG ∼ 1 is that errors

in the treatment of the shot noise can introduce significant changes

in the measured shape of P LRG(k) and can be interpreted as a scale-

dependent galaxy bias. In the halo model picture, the LRGs occupy

massive dark matter haloes, which themselves may not be Poisson

tracers of the underlying matter density field, as they form at the

high peaks of the initial Gaussian density distribution (e.g. Bardeen

et al. 1986). Moreover, an additional shot-noise-like term is gen-

erated when multiple LRGs occupy individual dark matter haloes

(Peacock & Smith 2000; Cooray & Sheth 2002). Our approach is

to first eliminate the one-halo contribution to the power spectrum

by identifying groups of galaxies occupying the same dark matter

halo and then to calibrate the relation between the power spectrum

of the reconstructed halo density field, P halo(k, p), and the underly-

ing matter power spectrum, P DM(k), using the N-body simulation

results presented in Reid et al. (2009). As a result, the effects of

non-linear redshift-space distortions caused by pairs of galaxies

occupying the same halo are diminished. However, a further com-

plication is that LRGs occupy the massive end of the halo mass

function, and velocities of isolated LRGs within their host haloes

could still be quite large. The details of the relation between LRGs

and the underlying matter distribution can then have a significant

impact on the non-linear corrections to the power spectrum.

The Seventh Data Release (DR7) LRG sample has sufficient

statistical power that the details of the relation between LRGs and

the underlying matter density field become important and need to be

reliably modelled before attempting a cosmological interpretation

of the data. This paper offers the following three sequential key

improvements to the modelling of LRG clustering compared with

Eisenstein et al. (2005) and Tegmark et al. (2006).

(i) We reconstruct the underlying halo density field traced by the

LRGs before computing the power spectrum, while Tegmark et al.

(2006) apply an aggressive FOG compression algorithm. The re-

constructed halo density field power spectrum deviates from the un-

derlying matter power spectrum by <4 per cent at k = 0.2 h Mpc−1,

while the Tegmark et al. (2006) power spectrum differs by ∼40 per

cent at k = 0.2 h Mpc−1 (Reid et al. 2009).

(ii) We produce a large set of mock LRG catalogues drawn from

N-body simulations of sufficient resolution to trace a halo mass

range relevant to LRGs without significant errors in the small-scale

halo clustering and velocity statistics (see appendix A of Reid et al.

2009). We present novel consistency checks between the mock and

observed LRG density fields in halo-scale higher order clustering,

FOG features and the effective shot noise.

(iii) We use these tests along with the halo model framework

to determine tight bounds on the remaining modelling uncertainties

and marginalize over these in our likelihood calculation. In contrast,

Eisenstein et al. (2005) assume no uncertainty in their model LRG

correlation function, and Tegmark et al. (2006) marginalize over Q

in equation (1) with only an extremely weak prior on Q.

This paper represents a first attempt to analyse a galaxy redshift

survey with a model that accounts for the non-linear galaxy bias and

its uncertainty; other approaches that utilize the galaxy distribution

rather than the halo density field are in development (Yoo et al.

2009).

In this paper, we present and analyse a measurement of the power

spectrum of the reconstructed halo density field from the SDSS DR7

LRG sample. DR7 represents a factor of ∼2 increase in effective

volume over the analyses presented in Eisenstein et al. (2005) and

Tegmark et al. (2006), and covers a coherent region of the sky. Sec-

tion 2 describes the measurement of the reconstructed halo density

field power spectrum, P̂halo(k), along with the window and covari-

ance matrices used in our likelihood analysis. Section 3 describes

the details of our model for the reconstructed halo power spectrum,

P halo(k, p). In Section 4, we summarize the tests we have performed

for various systematics in our modelling of the relation between the

galaxy and dark matter density field. We quantify the expected level

of uncertainty through two nuisance parameters and present several

consistency checks between the model and observed reconstructed

halo density field. In Section 5, we discuss the cosmological con-

straints from P̂halo(k) alone as well as in combination with WMAP5

(Dunkley et al. 2009) and the Union SN data set (Kowalski et al.

2008). Section 6 compares our findings with the results of previ-

ous analyses of galaxy clustering, and Section 7 summarizes our

conclusions.

In a companion paper (Percival et al. 2010, hereafter P10) we

measure and analyse BAO in the SDSS DR7 sample, of which the

LRG sample considered here is a subset. BAO are detected in seven

redshift shells, leading to a 2.7 per cent distance measure at redshift

z = 0.275, and a measurement of the gradient of the distance–

redshift relation is quantified by the distance ratio of z = 0.35 to z =
0.2. We show in Section 5 that the results from these measurements

are in agreement with our combined results from BAO and the

shape of the power spectrum calculated using just the LRGs. The

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 404, 60–85
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Table 1. Definitions of power spectra entering our likelihood calculation; p denotes the cosmological parameters.

P (k) Definition Reference

P̂LRG(k) Measured angle-averaged redshift-space power spectrum of the LRGs –

P̂halo(k) Measured power spectrum of the reconstructed halo density field –

P lin(k, p) Linear power spectrum computed by CAMB Lewis et al. (2000)

P DM(k, p) Theoretical real-space non-linear power spectrum of dark matter –

P nw(k, p) Theoretical linear power spectrum without BAO (‘no wiggles’) Eisenstein & Hu (1998)

P damp(k, p) Theoretical linear power spectrum with damped BAO (equation 10) Eisenstein et al. (2007b)

P halo(k, p) Model for the reconstructed halo power spectrum (equation 16) Reid et al. (2009)

P halo,win(k, p) P halo(k, p) convolved with the survey window function (equation 5) Percival et al. (2007)

and directly compared with P̂halo(k) in the likelihood calculation (equation 6)

results from these different analyses will be correlated because

of the overlapping data used, so they should not be combined in

cosmological analyses. The best data set to be used will depend on

the cosmological model to be tested. While the inclusion of 2dFGRS

and main SDSS galaxies in P10 provides a higher significance

detection of the BAO, we show in Section 5.4 that the full power

spectrum information provides tighter constraints on both massive

neutrinos and the number of relativistic species.

Throughout the paper, we make use of two specific cosmological

models. The simulation set described in Reid et al. (2009) and used

to calibrate the model P halo(k, p) adopts the WMAP5 recommended

�CDM values: (�m, �b, ��, ns, σ 8, h) = (0.2792, 0.0462, 0.7208,

0.960, 0.817, 0.701). We refer to this model throughout the paper as

our ‘fiducial cosmological model’. To convert redshifts to distances

in the computation of the P̂halo(k), we adopt a flat �CDM cosmology

with �m = 0.25 and �� = 0.75. Throughout, we refer to the power

spectrum of several different density fields and several theoretical

spectra. Table 1 summarizes their definitions.

2 DATA

2.1 LRG sample

The SDSS (York et al. 2000) is the largest galaxy survey ever pro-

duced; it used a 2.5 m telescope (Gunn et al. 2006) to obtain imaging

data in five passbands u, g, r , i and z (Fukugita et al. 1996; Gunn

et al. 2006). The images were reduced (Stoughton et al. 2002; Pier

et al. 2003; Ivezić et al. 2004) and calibrated (Hogg et al. 2001;

Smith et al. 2002; Tucker et al. 2006; Padmanabhan et al. 2008),

and galaxies were selected for follow-up spectroscopy. The second

phase of the SDSS, known as SDSS-II, has recently finished, and

the DR7 (Abazajian et al. 2009) sample has recently been made

public. The SDSS project is now continuing with SDSS-III where

the extragalactic component, the Baryon Oscillation Spectroscopic

Survey (BOSS; Schlegel, White & Eisenstein 2009), has a differ-

ent galaxy targeting algorithm. DR7 therefore represents the final

data set that will be released with the original targeting and galaxy

selection (Eisenstein et al. 2001; Strauss et al. 2002).

In this paper we analyse a subsample containing 110 576 LRGs

(Eisenstein et al. 2001), which were selected from the SDSS imag-

ing based on g, r and i colours, to give approximately 15 galaxies per

square degree. The SDSS also targeted a magnitude-limited sample

of galaxies for spectroscopic follow-up (Strauss et al. 2002). The

LRGs extend this main galaxy sample to z ≃ 0.5, covering a greater

volume. Our DR7 sample covers 7931 deg2 (including a 7190 deg2

contiguous region in the North Galactic Cap), with an effective

volume of V eff = 0.26 Gpc3 h−3, calculated with a model power

spectrum amplitude of 104 h−3 Mpc3. This power spectrum ampli-

tude is approximately correct for the LRGs at k ∼ 0.15 h Mpc−1. For

comparison, the effective volume of the sample used by Eisenstein

et al. (2005) was V eff = 0.13 Gpc3 h−3, and V eff = 0.16 Gpc3 h−3

in Tegmark et al. (2006); this work represents a factor of ∼2 in-

crease in sample size over these analyses. The sample is the same as

that used in P10, and its construction follows that of Percival et al.

(2007), albeit with a few improvements.

We use SDSS Galactic extinction-corrected Petrosian magni-

tudes calibrated using the ‘übercalibration’ method (Padmanabhan

et al. 2008). However, we find that the power spectrum does not

change significantly when one adopts the old standard calibration

instead (Tucker et al. 2006). Luminosities are K-corrected using the

methodology of Blanton et al. (2003a,b). We remove LRGs that are

not intrinsically luminous by applying a cut M0.1r < −21.8, where

M0.1r is our estimate of the absolute magnitude in the r band for a

galaxy at z = 0.1. The sample selection is only dependent on galaxy

luminosity through a low-luminosity limit imposed to remove low-

redshift intrinsically faint galaxies. The distribution of galaxies re-

moved is not affected by evolutionary corrections (which would

be wrong for these galaxies, if we assumed that they were LRGs).

Galaxy luminosities were used to estimate luminosity-dependent

biases, and not including an evolutionary correction matches the

luminosities used in constructing such models (e.g. Tegmark et al.

2004a).

Spectroscopic LRG targets were selected using two colour–

magnitude cuts (Eisenstein et al. 2001). The tiling algorithm en-

sures nearly complete samples (Blanton et al. 2003a). However,

spectroscopic fibre collisions prohibit simultaneous spectroscopy

for objects separated by <55 arcsec, leaving ∼7 per cent of targeted

objects without redshifts (Masjedi et al. 2006). We correct for this

effect as in Percival et al. (2007): for an LRG lacking a spectrum but

55 arcsec from an LRG with a redshift, we assign both galaxies the

measured redshift. If the LRG lacking a redshift neighbours only a

galaxy from the low-redshift SDSS main sample, we do not assign

it a redshift. These galaxies are assumed to be randomly distributed

and simply contribute to the analysis by altering the completeness,

the fraction of targeted galaxies with good redshifts, in a particular

region. The impact of the fibre-collision correction is addressed in

Appendices B3 and B4.

Fig. 1 compares the number density as a function of redshift for

the LRG selection used in this paper (and in Percival et al. 2007),

and the one used in Tegmark et al. (2006) and presented in Zehavi

et al. (2005a). The main differences are that our selection includes

a small number of galaxies at z < 0.15, and our cut on the intrinsic

luminosity of the LRGs slightly reduces the number density of

galaxies at high z. The different selections produce a similar number

of galaxies per unit volume, and we expect no difference between

the samples on the large-scale structure statistics of interest here.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 404, 60–85
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Figure 1. Fits to the redshift distributions for the LRG selection used in

this work (solid curves) and the Zehavi et al. (2005a) −23.2 < Mg < −21.2

sample used in Tegmark et al. (2006) (dashed curves). Upper panel: n(z)

versus redshift in units of 10−4 (h−1 Mpc)−3. We also show the observed

number density of haloes in bins of �z = 0.005 (see Section 2.2 for details).

Lower panel: N (< z) =
∫

dzn(z)dV /dz (arbitrary overall normalization).

2.2 Recovering the halo density field

In real space, the impact of more than one LRG per halo on the

large-scale power spectrum can be accurately modelled as an ad-

ditional shot-noise term (Cooray & Sheth 2002; Reid et al. 2009).

However, this picture is much more complicated in redshift space

because the velocity dispersion of the LRGs shifts them along the

line of sight by ∼9 h−1 Mpc (Reid et al. 2009), and the distribution

of intrahalo velocities has long tails. This shifting causes power to

be shuffled between scales and causes even the largest scale modes

along the line of sight to be damped by these FOG features (Davis

& Peebles 1983; Peacock & Dodds 1994; Seljak 2001). We sub-

stantially reduce the impact of these effects by using the power

spectrum of the reconstructed halo density field.

We follow the counts-in-cylinders (CiC) technique in Reid et al.

(2009) to identify LRGs occupying the same halo and thereby es-

timate the halo density field. Two galaxies are considered neigh-

bours when their transverse comoving separation satisfies �r⊥ ≤
0.8 h−1 Mpc and their redshifts satisfy �z/(1 + z) ≤ �vp/c = 0.006

(�vp = 1800 km s−1). A cylinder should be a good approximation

to the density contours of satellites surrounding central galaxies in

redshift space, as long as the satellite velocity is uncorrelated with

its distance from the halo centre and the relative velocity dominates

the separation of central and satellite objects along the line of sight.

Galaxies are then grouped with their neighbours by a Friends-of-

Friends (FoF) algorithm. The reconstructed halo density field is de-

fined by the superposition of the centres of mass of the CiC groups.

We refer to the power spectrum of the reconstructed halo density

field as P̂halo(k); it is our best estimate of the power spectrum of the

haloes traced by the LRGs. For comparison we also compute the

power spectrum without applying any cluster-collapsing algorithm,

P̂LRG(k).

Our reconstructed halo density field contains 104 337 haloes de-

rived from 110 576 LRGs. The observed number density of haloes

is shown in Fig. 1. For redshifts where the number density of LRGs

is ∼10−4 (h−1 Mpc)−3, the total number density drops by ∼6 per

cent. At the high end of the redshift distribution, there is nearly a

one-to-one correspondence between LRGs and haloes; that is, there

are very few satellite galaxies in the sample.

2.3 Calculating power spectra, window functions

and covariances

In this paper, we focus on using the angle-averaged power spectrum

to derive constraints on the underlying linear theory power spec-

trum. On linear scales, the redshift-space power spectrum is pro-

portional to the real-space power spectrum (Kaiser 1987; Hamilton

1998). Our halo density field reconstruction mitigates the effects of

FOGs from objects occupying the same halo. Though we do not ex-

plore it here, we expect that our halo density field reconstruction will

be useful to an analysis of redshift-space anisotropies (e.g. Hatton

& Cole 1999).

The methodology for calculating the power spectrum of the re-

constructed halo density field, P̂halo(k), is based on the Fourier

method of Feldman et al. (1994). The halo density is calculated by

throwing away all but the brightest galaxy where we have located

a set of galaxies within a single halo. This field is converted to an

overdensity field by placing the haloes on a grid and subtracting an

unclustered ‘random catalogue’, which matches the halo selection.

To calculate this random catalogue, we fit the redshift distributions

of the halo sample with a spline model (Press et al. 1992), and the

angular mask was determined using a routine based on a HEALPIX

(Górski et al. 2005) equal-area pixelization of the sphere as in

Percival et al. (2007). This procedure allows for the variation in ra-

dial selection seen at z > 0.38, which is caused by the spectroscopic

features of the LRGs moving across the wavebands used in the target

selection (see P10 for a fuller analysis). The haloes and randoms are

weighted using a luminosity-dependent bias model that normalizes

the fluctuations to the amplitude of L∗ galaxies (Percival et al. 2004).

To do this, we assume that each galaxy used to locate a halo is biased

with a linear deterministic bias model and that this bias depends on

M0.1r according to Tegmark et al. (2004a) and Zehavi et al. (2005b),

where M0.1r is the Galactic extinction and K-corrected r-band ab-

solute galaxy magnitude. This procedure is similar to that adopted

by P10. The LRGs are strongly biased and the model of Tegmark

et al. (2004a) gives an effective relative bias for the LRG galaxy

sample, which we correct for in the power spectrum calculation, of

〈b/b⋆〉 = 1.9. For the best fitting WMAP5+P̂halo(k)�CDM cosmol-

ogy presented in Section 5.3, which has σ 8 = 0.82, the measured

halo power spectrum amplitude implies b⋆ ∼ 1.3 if we assume that

the LRG clustering amplitude is constant in comoving coordinates

(e.g. Percival et al. 2007). Section 3.1 of Eisenstein et al. (2005)

demonstrates that deviations from this assumption in the real sam-

ple have a negligible impact on the measured scale dependence of

LRG clustering.

The power spectrum was calculated using a 10243 grid in a se-

ries of cubic boxes. A box of a length of 4000 h−1 Mpc was used

initially, but we then sequentially divide the box length into half

and apply periodic boundary conditions to map galaxies that lie

outside the box. For each box and power spectrum calculation, we

include modes that lie between one-fourth and one-half the Nyquist

frequency (similar to the method described by Cole et al. 2005)

and correct for the smoothing effect of the cloud-in-cell assignment

used to locate galaxies on the grid (e.g. chapter 5 in Hockney &

Eastwood 1981). The power spectrum is then spherically averaged,

leaving an estimate of the ‘redshift-space’ power. The upper panel

of Fig. 2 shows the shot-noise-subtracted bandpowers measured
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Figure 2. Upper panel: measured P̂halo(k) bandpowers. Error bars indicate√
Cii (equation 3). Middle panel: correlations between data values cal-

culated using LN catalogues, assuming our fiducial cosmological model.

Lower panel: the normalized window function for each of our binned power

spectrum values with 0.02 < k < 0.2 h Mpc−1. Each curve shows the rela-

tive contribution from the underlying power spectrum as a function of k to

the measured power spectrum data. The normalization is such that the area

under each curve is unity. For clarity, we only plot curves for every other

band power.

from the halo density field, calculated in bands linearly separated

by �k = 0.004 h Mpc−1. This spacing is sufficient to retain all of

the cosmological information.

The calculation of the likelihood for a cosmological model given

the measured bandpowers P̂halo(k) requires three additional compo-

nents determined by the survey geometry and the properties of the

galaxy sample: the covariance matrix of measured bandpowers Cij,

the window function W (ki, kn) and the model power spectrum as

a function of the underlying cosmological parameters, P halo(k, p).

The calculation of model power spectra is considered in Section 3.

The covariance matrix and corresponding correlation coefficients

between bandpowers i and j are defined as

Cij = 〈P̂halo(ki)P̂halo(kj )〉 − 〈P̂halo(ki)〉〈P̂halo(kj )〉 (3)

corr(ki, kj ) =
Cij

√

CiiCjj

. (4)

The covariance matrix was calculated from 104 lognormal (LN) cat-

alogues (Coles & Jones 1991; Cole et al. 2005); tests using smaller

numbers of mock catalogues give consistent results and demon-

strate convergence of Cij. Catalogues were calculated on a (512)3

grid with a box length of 4000 h−1 Mpc as in P10, where LN cata-

logues were similarly used to estimate covariance matrices. Unlike

N-body simulations, these mock catalogues do not model the growth

of structure, but instead return a density field with an LN distribu-

tion, similar to that seen in the real data. The window functions for

these catalogues were matched to that of the halo catalogue. The in-

put power spectrum was a cubic spline fit matched to the data power

spectra, multiplied by a damped �CDM BAO model calculated us-

ing CAMB (Lewis, Challinor & Lasenby 2000). The recovered LN

power spectra were clipped at 5σ to remove extreme outliers which

contribute less than 0.05 per cent of the simulated power spectra,

and are clearly non-Gaussian. This covariance matrix calculation

matches the procedure adopted by P10. The middle panel of Fig. 2

shows the correlations expected between bandpowers calculated

using this procedure. While computing the covariance matrix from

realistic N-body mock LRG catalogues is still infeasible, Reid et al.

(2009) showed that up to the wavenumbers considered in this paper,

the covariance matrix model of Hamilton, Rimes & Scoccimarro

(2006) containing the usual Gaussian term and a beat-coupling term

to the largest scale modes provides a good fit to realistic N-body

mock catalogues of several times the volume of the SDSS DR7.

Both of these terms are naturally included in the LN catalogues.

As described in Cole et al. (2005), the window function can be

expressed as a matrix relating the theory power spectrum for cosmo-

logical parameters p and evaluated at wavenumbers kn, P halo(kn, p),

to the central wavenumbers of the observed bandpowers ki:

Phalo,win(ki, p) =
∑

n

W (ki, kn)Phalo(kn, p) − W (ki, 0). (5)

The term W (ki, 0) arises because we estimate the average halo

density from the sample, and is related to the integral constraint in

the correlation function (Percival et al. 2007). The window function

allows for the mode coupling induced by the survey geometry.

Window functions for the measured power spectrum (equation 15

of Percival et al. 2004) were calculated as described in Percival

et al. (2001, 2007) and Cole et al. (2005): an unclustered random

catalogue with the same selection function as that of the haloes was

Fourier transformed using the same procedure adopted for our halo

overdensity field described above. The shot noise was subtracted,

and the power spectrum for this catalogue was spherically averaged

and then fitted with a cubic spline, giving a model for W (ki, kn).

For ease of use, this is translated into a matrix by splitting input and

output power spectra into bandpowers as in equation (5).

The window functions W (ki, kj) and the corresponding corre-

lation coefficients for every other bandpower are shown in the

lower panel of Fig. 2. In addition to the window coupling for

nearby wavenumbers, there is a beat coupling to survey-scale modes

(Hamilton et al. 2006; Reid et al. 2009); that is, density fluctuations

on the scale of the survey couple to the modes we can measure

from the survey. However, this effect predominantly changes only

the amplitude of P̂halo(k), which is marginalized over through the

bias parameter b2
0 in equation (15). Fig. 2 can be compared with

fig. 10 in Percival et al. (2007), where the windows and correlations

were presented for the SDSS DR5 data. For the DR5 plot, variations

in the amplitude were removed leaving only the small-k difference

couplings. The power spectrum, window functions and inverse co-

variance matrix are electronically available with the likelihood code

we publicly release (see Section 5).

2.4 P̂halo(k) likelihood

We assume that the likelihood distribution of the power spectrum

bandpowers is close to a standard multivariate Gaussian; by the cen-

tral limit theorem, this should be a good approximation in the limit
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of many modes per band. The final expression for the likelihood for

cosmology p is then

−2 ln L( p) = χ 2( p) =
∑

ij

�iC
−1
ij �j , (6)

where �i ≡ [(P̂halo(ki) − Phalo,win(ki, p)].

A single comoving distance–redshift relation χfid(z), that of a flat,

�m = 0.25 cosmology, is assumed to assign positions to the galaxies

in our sample before computing P̂halo(k). Rather than recomputing

P̂halo(k) for each comoving distance–redshift relation to be tested,

Percival et al. (2007) and P10 account for this when evaluating the

likelihood of other cosmological models by altering the window

function. DV (z, p) (Eisenstein et al. 2005) quantifies the model

dependence of the conversion between (RA, Dec., z) and comoving

spatial coordinates when galaxy pairs are distributed isotropically:

DV (z) =
[

(1 + z)2DA(z)2 cz

H (z)

]1/3

, (7)

where DA(z) is the physical angular diameter distance. Follow-

ing Tegmark et al. (2006), we partially correct for the discrepancy

between the fiducial model χfid(z) and the χ (z) of the model to

be tested by introducing a single dilation of scale. To first order,

changes in the cosmological distance–redshift model alter the scale

of the measured power spectrum through DV (z), so we introduce a

scale parameter that depends on this quantity:

ascl(z) =
DV (z)

Dfiducial
V (z)

. (8)

Strictly, we should allow for variations in ascl across the redshift

range of the survey, as in P10. However, to first approximation

we can simply allow for a single scale change at an effective red-

shift for the survey zeff . When comparing P̂halo(k), computed using

χfid(z), with a model comoving distance–redshift relation χ (z, p),

in practice we use1

�i =
(

P̂halo(ki) − Phalo,win(ki/ascl, p)
)

. (9)

In Appendix A2, we verify that this approximation is valid for our

sample with zeff = 0.313.

In our cosmological analysis, we include modes up to kmax =
0.2 h Mpc−1, where the model power spectrum deviates from the

input linear power spectrum by <15 per cent. We also impose a

conservative lower bound at kmin = 0.02, above which Galactic ex-

tinction corrections (see the analysis in Percival et al. 2007), galaxy

number density modelling and window function errors should be

negligible.

P10 present a detailed analysis demonstrating that the BAO con-

tribution to the likelihood surface is non-Gaussian; this is in large

part due to the relatively low signal-to-noise ratio of the BAO sig-

nature in our sample. Therefore, to match expected and recovered

confidence intervals, P10 find that the covariance matrix of the

LRG-only sample must be inflated by a factor 1.12 = 1.21. Though

our likelihood surface incorporates constraints from the shape of the

power spectrum, for which the original covariance matrix should be

accurate, we conservatively multiply the entire covariance matrix

by this factor required for the BAO constraints throughout the analy-

sis. Therefore, our constraints likely slightly underestimate the true

constraints available from the data. This factor is already included

in the electronic version we release with the full likelihood code.

1 This correction was incorrectly applied in previous versions of COSMOMC

and is corrected in the code we release. This correction is primarily important

for constraining the BAO scale rather than the turnover scale, and so previous

analyses with COSMOMC should be minimally affected.

3 M O D E L L I N G TH E H A L O P OW E R

SPECTRUM

We consider three effects that cause the shape of P halo(k, p) to

deviate from the linear power spectrum, P lin(k, p), for cosmolog-

ical parameters p. We will assume that these modifications of the

linear power spectrum can be treated independently. These effects

are the damping of the BAO, the change in the broad shape of the

power spectrum because of non-linear structure formation and the

bias because we observe galaxies in haloes in redshift space rather

than the real-space matter distribution. We also need to consider

the evolution of these effects with redshift. While in principle the

first two effects result from the same non-linear gravitational evolu-

tion, we find that in practice the analytic approximations we use are

more accurate when these effects are treated separately since the

amplitude of BAO damping depends on the tracer or whether one

is considering them in real or redshift space. The nuisance param-

eters we introduce account for any small cosmology dependence

of the smooth component of the relationship between the halo and

underlying matter power spectra.

Reid et al. (2009) construct a large set of mock LRG catalogues

based on N-body simulations evaluated at a single cosmological

model pfid. We use these catalogues to calibrate the model halo

power spectrum and make detailed comparisons between the ob-

served and mock density fields in Appendix B.

3.1 BAO damping

The primary effect of non-linear structure formation and peculiar

velocities on the BAOs is to damp them at large k. Eisenstein et al.

(2007b) showed that this can be accurately modelled as a Gaussian

smoothing, where

Pdamp(k, p, σ ) = Plin(k, p)e− k2σ2

2 + Pnw(k, p)

(

1 − e− k2σ2

2

)

.

(10)

Here P lin(k, p) is the linear matter power spectrum computed by

CAMB (Lewis et al. 2000) and shown in the upper left-hand panel

of Fig. 3 for our fiducial cosmological model. P nw(k, p), defined

by equation (29) of Eisenstein & Hu (1998), is a smooth version of

P lin(k, p) with the baryon oscillations removed. The upper right-

hand panel of Fig. 3 shows the ratio P lin(k)/P nw(k) for our fiducial

cosmology. The amplitude of the damping is set by σ and depends

on the cosmological parameters, whether the power spectrum is in

real or redshift space and whether we are considering the matter or a

tracer like the LRGs. We fix σ halo, i.e. the value of σ appropriate for

the reconstructed halo density field, using fits to the reconstructed

halo density field power spectrum in the mock LRG catalogues

presented in Reid et al. (2009) and shown here in Fig. 4. We have

checked that the likelihood surface is unaltered when σ halo is varied

by ±10 per cent (i.e. the error on the mock catalogue fit to σ halo), and

also in the �CDM case when σ is allowed to vary with cosmology

p according to the dependence given in Eisenstein et al. (2007b).

In Appendix A3, we also show that using a spline fit to Plin instead

of the Eisenstein & Hu (1998) formula for Pnw does not affect the

likelihood surface in the region of interest.

3.2 Non-linear structure growth

As the small perturbations in the early Universe evolve, gravitational

instability drives the density field non-linear, and power on small

scales is enhanced as structures form. HALOFIT (Smith et al. 2003)

provides an analytic formalism to estimate the real-space non-linear
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Figure 3. Upper left-hand panel: power spectra for the fiducial cosmol-

ogy. The solid curve is P lin(k) and the dashed curve is P nw(k)rhalofit, the

non-linear power spectrum from HALOFIT using P nw(k) as the input. Upper

right-hand panel: P lin(k)/P nw(k). Lower left-hand panel: P DM(k)/P damp(k,

σDM) measured in N-body simulation snapshots at zMID, reported in Reid

et al. (2009), compared with the smooth correction predicted by HALOFIT,

rhalofit. Lower right-hand panel: rhalofit at {zNEAR, zMID, zFAR} = {0.235,

0.342, 0.421}.

matter power as a function of the underlying linear matter power

spectrum. While equation (10) accounts for the effects of non-linear

growth of structure on the BAO features in P halo(k, p), HALOFIT

provides a more accurate fit to the smooth component of the non-

linear growth in the quasi-linear regime (k ≤ 0.2) when evaluated

with an input spectrum P nw(k, p) rather than the linear matter power

spectrum containing BAO wiggles:

rhalofit(k, p) ≡
Phalofit,nw(k, p)

Pnw(k, p)
(11)

PDM,halofit(k, p) = Pdamp(k, p, σDM( p))rhalofit(k, p). (12)

Equation (12) is our modified HALOFIT model real-space power spec-

trum, using equation (10) to account for BAO damping and HALOFIT

for the smooth component. The lower left-hand panel of Fig. 3

shows that P DM(k)/P damp(k, σ DM) and rhalofit agree at the ∼1.5 per

cent level for k ≤ 0.2 in our fiducial cosmology. Since we normalize

the final model using our N-body mock catalogues at the fiducial

cosmology pfid, in practice HALOFIT only provides the cosmolog-

ical dependence of the non-linear correction to the matter power

spectrum:

rDM,damp(k, p) =
rhalofit(k, p)

rhalofit(k, pfid)

PDM(k, pfid)

Pdamp(k, pfid, σDM)
. (13)

rDM,damp(k, p) is our model for the ratio of the non-linear mat-

ter power spectrum to the damped linear power spectrum. The

normalization of rDM,damp (second term on the right-hand side of

equation 13) accounts for the small offset between the N-body and

HALOFIT results in Fig. 3 at the fiducial cosmology. In the space of

cosmologies consistent with the data, the small cosmology depen-

dence of this correction is primarily through σ 8. In Section 5.2,

Figure 4. BAO-damping times polynomial fits to P halo(k, pfid)/b2
i P lin(k,

pfid) for our mock NEAR, MID and FAR LRG reconstructed halo density

field subsamples in Reid et al. (2009); {zNEAR, zMID, zFAR} = {0.235,

0.342, 0.421} and the b2
i values are chosen so that this ratio is unity as

k → 0. The smooth component of these fits (dashed curves) enters our

model P halo(k, p) through equations (13) and (14), while the amplitude of

the BAO suppression σ 2
halo enters in equation (10). Lower right-hand panel:

ratio of the shape of the smooth components for the NEAR and FAR redshift

subsamples to the MID redshift subsample.

we find that the LRG-only likelihood surface is independent of the

assumed value of σ 8 over the range of 0.7–0.9.

3.3 Halo bias

In our likelihood calculation we marginalize over the overall am-

plitude of P̂halo(k), so in this section we are concerned only with

the scale dependence of the relation between the reconstructed halo

and matter power spectra. Smith, Scoccimarro & Sheth (2007) show

that the scale dependence of halo bias in real space is large for the

most massive haloes, but should be rather weak for the halo mass

range which hosts the majority of the LRGs; Matsubara (2008)

demonstrates this analytically in redshift space in the quasi-linear

regime. Indeed, Reid et al. (2009) find that the power spectrum of

the (redshift-space) reconstructed halo density field is nearly lin-

early biased with respect to the underlying real-space matter power

spectrum for k < 0.2 h Mpc−1 and our fiducial �CDM model, and

we assume that this should remain approximately true in the narrow

range of cosmologies consistent with the data. For the fiducial cos-

mology, we can use our simulations to calibrate the relation between

the halo and matter spectra:

rhalo,DM(k, pfid) =
Phalo(k, pfid)/Pdamp(k, pfid, σhalo)

PDM(k, pfid)/Pdamp(k, pfid, σDM)
. (14)

This is our model for the smooth component of the bias between the

halo and dark matter power spectra. To account for any dependence

of rhalo,DM(k, p) on the cosmological model and other remaining

modelling uncertainties, we introduce a smooth multiplicative cor-

rection to the final model P halo(k, p) containing three nuisance

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 404, 60–85



68 B. A. Reid et al.

parameters b0, a1 and a2:

Fnuis(k) = b2
0

(

1 + a1

(

k

k⋆

)

+ a2

(

k

k⋆

)2
)

, (15)

where we set k⋆ = 0.2 h Mpc−1. The parameter b0 is the effective

bias of the LRGs at the effective sample redshift, zeff , relative to

L⋆ galaxies (equation 18 of Percival et al. 2004). In Section 4 we

will use consistency checks between the observed and mock cata-

logue galaxy density fields as well as the halo model framework to

establish the allowed region of a1–a2 parameter space. An allowed

trapezoidal region in a1–a2 space is completely specified through

two parameters, u0.1 and u0.2. These two parameters specify the

maximum absolute deviation allowed by F nuis(k)/b2
0 away from 1

for k ≤ 0.1 (u0.1) and 0.1 ≤ k ≤ 0.2 (u0.2). We have verified that for

the two largest systematic uncertainties discussed in Section 4, the

effective shot-noise subtraction and power damping by central LRG

intrahalo velocities, the form of F nuis(k) in equation (15) adequately

describes the deviations from the fiducial model. When evaluating

the likelihood of a particular cosmological model we marginalize

analytically over b0 using a flat prior on b2
0 ≥ 0, and we marginalize

numerically over the allowed a1–a2 region with a flat prior in this

region. We discuss the impact of these priors on the cosmological

constraints in Appendix C.

3.4 Model fits and evolution with redshift

Our final model halo power spectrum at fixed redshift treats each

of the three non-linear effects independently: equation (10) con-

verts the linear power spectrum to the damped linear power spec-

trum, rDM,damp converts the damped linear power spectrum to the

real-space non-linear matter power spectrum, rhalo,DM converts the

real-space non-linear matter power spectrum to the redshift-space

reconstructed halo density field power spectrum (assuming that this

relation is cosmology independent) and F nuis(k) allows for smooth

deviations from our model due to modelling errors, uncertainties

and unaccounted cosmological parameter dependencies:

Phalo(k, p) = Pdamp(k, p)rDM,damp(k, p)

× rhalo,DM(k, pfid)Fnuis(k). (16)

For this multiplicative model, the P DM(k, pfid)/P damp(k, pfid, σ DM)

terms from equations (13) and (14) cancel, so calibration of the

model only requires fits to σ halo and P halo(k, pfid)/P damp(k, pfid,

σ halo) using the mock catalogues.

The model in equation (16) is strictly only valid at a single

redshift. In order to match our model to the observed redshift

distribution of the LRGs and their associated haloes, we use the

mock halo catalogues constructed in Reid et al. (2009) at three

redshift snapshots. These are centred on the NEAR (zNEAR =
0.235), MID (zMID = 0.342) and FAR (zFAR = 0.421) LRG sub-

samples of Tegmark et al. (2006). Fig. 4 shows our fits to P halo(k,

pfid)/P lin(k, pfid) for each redshift snapshot. The model in equa-

tion (16) can be rewritten as

Phalo(k, pfid)

Plin(k, pfid)
=

Phalo(k, pfid)

Pdamp(k, pfid)

Pdamp(k, pfid)

Plin(k, pfid)
. (17)

The first term on the right-hand side is the ‘smooth’ component

and equal to rDM,damp(k, pfid) rhalo,DM(k, pfid), while the second term

describes the BAO damping and only depends on σ halo in equa-

tion (10). We first fit for σ halo by including modes between k =
0 h Mpc−1 and k = 0.2 h Mpc−1 in the fit and marginalizing over

an arbitrary fourth-order polynomial to account for any smooth

deviations from Pdamp with k. We find σ halo, NEAR = 9.3 h−1 Mpc,

σ halo, MID = 9.2 h−1 Mpc and σ halo, FAR = 9.2 h−1 Mpc. These num-

bers are roughly consistent with the results presented in Eisenstein

et al. (2007b) and are somewhat degenerate with the smooth poly-

nomial correction in this approach.

After fixing these values for σ halo, we calibrate the smooth com-

ponent of the model. For k ≤ 0.2 we fit P halo(k, pfid)/P damp(k, pfid,

σ halo) to a second-order polynomial, and a fourth-order polynomial

for k ≤ 0.5. This component of the fit is shown in the first three

panels of Fig. 4 by the dotted curves, while the solid lines show the

full fit to P halo(k, pfid)/P lin(k, pfid). Both the BAO damping and a

smooth increase in power with k are well described by our fits out

to k = 0.5 h Mpc−1. We refer the interested reader to Reid et al.

(2009) for further details.

Our final model for the reconstructed halo power spectrum is a

weighted sum over our model P halo(k, p) (equation 16) from each

of the NEAR, MID and FAR redshift slices fitted in Fig. 4:

Phalo(k, p) =
∑

i=NEAR,MID,FAR

wiPhalo(k, p, zi) , (18)

where wi specifies the weight of each redshift subsample. The lower

right-hand panel of Fig. 3 shows that the smooth correction for the

non-linear matter power spectrum varies by <1 per cent over the

redshift range of the LRGs. Moreover, the lower right-hand panel

of Fig. 4 shows that the relative shape of the power spectrum of the

reconstructed halo density field varies by ±∼2.5 per cent between

the redshift subsamples, so moderate biases in the determination of

these weights will induce negligible changes in the predicted shape

P halo(k, p).

In the limit that most pairs of galaxies contributing power to

mode k come from the same redshift, the fractional contribution to

the power spectrum from a large redshift subsample is

w(zmin, zmax) ∝
∫ zmax

zmin

n2(z)
w2(z)

b2(z)

dV

dz
dz , (19)

where n(z), b(z) and w(z), respectively, specify the average number

density, bias and weight of the sample at redshift z as defined in

Percival et al. (2004). Since the integrand is slowly varying with

redshift, this approximation should be fairly accurate. We derive

weights wNEAR = 0.395, wMID = 0.355 and wFAR = 0.250.

3.5 Comparison with fiducial model Phalo(k, pfid)

Our fiducial P halo(k, p) model is calibrated on simulations with the

WMAP5 recommended parameters (Komatsu et al. 2009): (�m, �b,

��, ns, σ 8, h) = (0.2792, 0.0462, 0.7208, 0.960, 0.817, 0.701). For

the 45 observed bandpowers satisfying 0.02 < k < 0.2 h Mpc−1,

χ 2 = 44.0 if we hold nuisance parameters a1 = a2 = 0 and choose

b0 to minimize χ 2; our fiducial model is therefore sufficiently close

to the measured P̂halo(k) to be used to calibrate the cosmology-

dependent model. The best-fitting nuisance parameters within the

allowed range that we determine in Section 4.3, a1 = 0.172 and

a2 = −0.198, lower the χ 2 to 40.9 for 42 d.o.f. The best-fitting

model to the LRG-only likelihood presented in Section 5.1 is lower

by only �χ 2 ≈ 1.7 for the same treatment of the three nuisance

parameters.

4 QUA N T I F Y I N G M O D E L U N C E RTA I N T I E S

A N D C H E C K S F O R SY S T E M AT I C S

While the non-linear evolution of a collisionless dark matter den-

sity field can be accurately studied using N-body simulations, there
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remain many uncertainties in the mapping between the galaxy and

matter density field. We first review the generic halo model pre-

dictions for a galaxy power spectrum, which provide the context

for exploring the uncertainties in the relation between the galaxy

and matter density fields. We summarize the results of Appendix B,

which presents our modelling assumptions and consistency checks

between the mock catalogue and SDSS DR7 LRG density fields that

constrain the level of deviation from our modelling assumptions.

The ultimate goal of this section is to establish physically motivated

constraints on the nuisance parameters a1 and a2 in equation (15)

by determining u0.1 and u0.2 defined in Section 3.3. These nuisance

parameter constraints will then be used to compute cosmological

parameter constraints in Section 5.

4.1 Galaxy power spectra in the halo model

In the simplest picture for a galaxy power spectrum in the halo

model, one considers a separation of the pairs into galaxies occu-

pying the same dark matter halo, which contribute to P 1h(k), and

those occupying different dark matter haloes, which contribute to

P 2h(k) (Cooray & Sheth 2002):

Pgal(k) = P 1h
gal(k) + P 2h

gal(k) (20)

P 1h
gal =

∫

dM n(M)
〈Ngal(Ngal − 1)|M)〉

n̄2
gal

(21)

P 2h
gal(k) = b2

galPDM(k). (22)

On large scales, treating the haloes as linear tracers of the under-

lying matter density field (equation 22) and ignoring the spatial

extent of haloes in equation (21) are good approximations (Reid

et al. 2009). Therefore, in real space, the dominant effect of the

inclusion of satellite galaxies is an excess shot noise given by equa-

tion (21), though they also upweight highly biased halo pairs and

slightly increase bgal as well. However, in redshift space, satellite

galaxies are significantly displaced along the line of sight from their

host haloes by the FOGs, and power is shuffled between scales, and

even the largest scale modes along the line of sight are damped by

the FOG smearing. There will be residual non-linear redshift-space

distortions in the reconstructed halo density field from imperfect re-

construction and potentially from peculiar motion of isolated LRGs

in their host haloes as well.

4.2 Summary of tests for systematics and remaining

uncertainties

In the context of the halo model, both uncertainty in the distribution

of galaxies in groups as it enters equation (21) and uncertainty in

the structure of the FOG features will introduce uncertainty in the

relation between the reconstructed halo and matter density fields,

and thus their power spectra. Appendices B1 and B2 discuss the

modelling assumptions we have used to derive the Reid et al. (2009)

mock LRG catalogues from N-body simulation halo catalogues and

state the expected impact on the relation between the reconstructed

halo and matter power spectra.

Appendix B3 introduces several distinct consistency checks of

the uncertainties in Appendices B1 and B2. In Section 2.2, we define

the CiC group finder by which we identify haloes. We demonstrate

that this group finder produces group multiplicity functions that are

in good agreement between the mock and observed LRG density

fields, once fibre collisions are accounted for. While this agree-

ment demonstrates that our mock catalogues reproduce small-scale

higher order clustering statistics and FOG features of the observed

density field, this is not a consistency check since the mocks were

designed to match these statistics. We find consistency when we

compute a second CiC group multiplicity function allowing a wider

separation between pairs perpendicular to the line of sight (�r⊥ =
1.2 h−1 Mpc). If the observed satellite galaxies were significantly

less concentrated than in our mock catalogues, we would detect

these galaxies when �r⊥ increases from 0.8 to 1.2 h−1 Mpc. From

this comparison, we conclude that residual shot-noise errors from

inaccurate halo density field reconstruction are ∼2 per cent of the

total shot-noise correction and do not dominate our systematic un-

certainty. The second consistency check between the mock and

observed LRG catalogues is the distribution of line-of-sight sepa-

rations between pairs of galaxies in the same CiC group (Fig. B2).

This check probes the accuracy of our model of the FOG features

coming from galaxies occupying the same halo, and the agree-

ment we find indicates that the residual FOG features in the recon-

structed observed and mock halo density fields will be in satisfactory

agreement. Appendix B4 presents the difference between the power

spectra with and without the halo density field reconstruction pre-

processing step [P̂halo(k) and P̂LRG(k), respectively]. This difference

agrees with the mock catalogues, provided one carefully accounts

for the impact of fibre collisions. In other words, while the treat-

ment of fibre collisions can substantially impact P̂LRG(k), P̂halo(k)

is unaffected. In Appendix B5, we demonstrate that the luminos-

ity weighting used to compute P̂halo(k) but not accounted for in

the mock catalogues does not alter the effective shot-noise level of

P̂halo(k). Appendix B6 presents evidence that the cosmology depen-

dence of the model P halo(k, p) is sufficiently accurate. Finally, we

note that Lunnan et al. (in preparation) have compared the Reid et al.

(2009) mock catalogue genus curve with the observed genus curves

(Gott et al. 2009) and find good agreement with no free parameters.

As discussed in detail in Appendix B2, the vast majority of LRGs

(∼94 per cent) are expected to reside at the centre of their host dark

matter haloes (Zheng et al. 2009; Reid et al. 2009). The principal

modelling uncertainty we identify in Appendix B is the velocity of

these central LRGs within their host haloes; substantial intrahalo ve-

locities for these galaxies will suppress power in a scale-dependent

manner (Fig. B1). Note that none of the tests from Appendix B can

directly constrain the level of central LRG velocity dispersion.

4.3 Constraints on Fnuis(k)

In Section 3.3, we introduced a quadratic function F nuis(k) to ac-

count both for errors in our modelling at the fiducial cosmology

and for any errors in the cosmology dependence of our model.

We parametrized the amplitude of the total modelling uncertainty

through u0.1 and u0.2. These parameters, which we determine in

this subsection, specify the maximum fractional deviation from the

model power spectrum at k = 0.1 h Mpc−1 and k = 0.2 h Mpc−1,

respectively. We choose these values of k because k ≤ 0.1 is usually

considered safely in the linear regime, while k = 0.2 h Mpc−1 is the

maximum wavenumber we attempt to model.

The dominant uncertainty in our model is in the relation be-

tween the power spectrum of the reconstructed halo density field

and the underlying matter power spectrum, which we describe by

equation (14). At k = 0.1 h Mpc−1 in the mock catalogues, the re-

constructed halo density field and the redshift-space central galaxy

power spectra agree well below the per cent level. The total one-halo

correction P 1h in real space is 7–10 per cent. If we conservatively

assume that the halo reconstruction algorithm incorrectly subtracts

the real-space one-halo term by 20 per cent, then the systematic
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error at k = 0.1 h Mpc−1, u0.1, is allowed to be 2 per cent. At k =
0.2 h Mpc−1, the same error would translate to 5 per cent in real

space, though in redshift space this term is mitigated. In Appendix

B4, we find that the shape difference of P̂halo(k) and P̂LRG(k) is only

18 per cent at k = 0.2 h Mpc−1 and only 8 per cent after accounting

for the shot noise introduced by the fibre-collision corrections. If

we assume that our modelling and treatment of the one-halo con-

tribution to the FOGs are accurate at the ∼50 per cent level, we

can estimate a conservative error at k = 0.2 h Mpc−1 of 5 per cent.

Therefore, for all the modelling uncertainties considered so far,

u0.1 = 0.02 and u0.2 = 0.05 encompass the estimated uncertainties.

In Appendix B2, we find that a large amount of central galaxy

misidentification or central-halo velocity bias can reduce the am-

plitude of P halo(k, p) by a smoothly varying function of k at a level

that exceeds these fiducial bounds on u0.1 and u0.2. Our approach

to mitigating the impact of uncertain central LRG peculiar veloci-

ties is twofold. First, for all of the analysis in Section 5 we adopt

more conservative bounds for the nuisance function: u0.1 = 0.04

and u0.2 = 0.10, which nearly encompass the change in power spec-

trum shape in Fig. B1 for the extreme velocity dispersion model.

Furthermore, we calibrate a second model from the mocks with

extreme velocity dispersion, and in Appendix C we determine the

cosmological parameter constraints with this model to establish the

level of remaining systematic uncertainty in our final results.

5 C O S M O L O G I C A L C O N S T R A I N T S

In this section we explore the cosmological constraints derived from

the power spectrum of the reconstructed halo density field, P̂halo(k).

We first consider constraints obtained from P̂halo(k) alone and then

combine the LRG likelihood with WMAP5 and the Union SN sample

(Kowalski et al. 2008) to explore joint constraints in several cosmo-

logical models. Throughout, we make use of the COSMOMC package

(Lewis & Bridle 2002) to compute cosmological constraints using

the Markov Chain Monte Carlo (MCMC) method. A stand-alone

module to compute the P̂halo(k) likelihood described in Section 2.4

is made publicly available.2

5.1 Constraints from the halo power spectrum

In this subsection, we examine the cosmological constraints derived

from the P̂halo(k) alone and in combination with a prior on �mh2

from WMAP5. In the model P halo(k, p), the scalefactor ascl in equa-

tion (8) is evaluated at zeff = 0.313. For comparison with other

works, we scale our constraint on DV (0.313) using the fiducial

distance–redshift relation, for which DV (0.35)/DV (zeff) = 1.106;

the variation of this ratio with cosmological parameters is negligi-

ble. Following Eisenstein et al. (2005), we consider two free pa-

rameters: �mh2 and DV (0.35). In this subsection, we hold �bh
2 =

0.022 65, ns = 0.960 and σ 8 = 0.817 fixed at their values in the

fiducial cosmological model and assume a flat �CDM model; in

Section 5.2, we relax these assumptions.

For the 45 bandpowers satisfying 0.02 < k < 0.2 h Mpc−1, χ 2 is

minimized when DV (0.35) = 1396 and �mh2 = 0.136 with best-

fitting nuisance parameters a1 = 0.160 and a2 = −0.181: χ 2 =
39.6 for 40 degrees of freedom (d.o.f). Thus, the assumed model

power spectrum and covariance matrix provide a reasonable fit to

the observed spectrum. In a �CDM model, this point corresponds

to h = 0.67 and �m = 0.30. Fig. 5 shows χ 2 contours in the

2 http://lambda.gsfc.nasa.gov/toolbox/lrgdr/

Figure 5. Constraints from the LRG DR7P̂halo(k) for a �CDM model with

�bh
2 = 0.022 65 and ns = 0.960 fixed. The dotted contours show �χ2 =

2.3 and 6.0 contours for the P̂halo(k) fit to a no-wiggles model. The solid

contours indicate �χ2 = 2.3, 6.0 and 9.3 contours for kmax = 0.2 h Mpc−1

and our fiducial P halo(k, p) model. The three dashed lines show the best-

fitting and ±1σ values rs/DV (0.35) = 0.1097 ± 0.0036 from P10.

�mh2–DV (0.35) parameter space, while Table 2 reports marginal-

ized one-dimensional constraints for several combinations of these

parameters.

The information in P̂halo(k) can be roughly divided into broad-

shape information and information from the BAO scale. Since in

this subsection ns is fixed, the shape information is the location of

the turnover in the power spectrum set by matter-radiation equal-

ity, which constrains �mh2DV ; information from the BAO scale

constrains r s/DV . Here, rs is the sound horizon at the baryon-

drag epoch, which we evaluate using equation (6) of Eisenstein &

Hu (1998). These two scales correspond to constraints on h�0.93
m

and h�−0.37
m , respectively, in a �CDM cosmology (Tegmark et al.

2006).

To isolate information from the power spectrum turnover and

exclude that of the BAO scale, we alter our model so that P damp(k,

p) = P nw(k, p) in equation (10). The dashed lines in Fig. 5

show the constraints when using this ‘no-wiggles’ model. Most

of the available shape information comes from large scales with

k < 0.1 h Mpc−1; we demonstrate this in Table 2 by fitting the

P damp(k, p) = P nw(k, p) model with the �mh2 prior to the data

up to kmax = 0.1 h Mpc−1 and kmax = 0.2 h Mpc−1. The number of

independent modes is proportional to (k3
max − k3

min); thus between

k = 0.1 h Mpc−1 and k = 0.2 h Mpc−1, there are about seven times

more modes than between kmin and 0.1 h Mpc−1. Nevertheless, the

constraint on �mh2DV (0.35) only improves by ≈10 per cent with

the inclusion of modes between kmax = 0.1 h Mpc−1 and kmax =
0.2 h Mpc−1 and does not shift appreciably. This also indicates that

our modelling in the quasi-linear regime 0.1 < k < 0.2 h Mpc−1

does not bias or substantially improve this constraint.

If we reintroduce the BAO features in the model P halo(k, p),

then the degeneracy between DV (0.35) and �mh2 is partially bro-

ken (solid contours in Fig. 5), and the constraints grow tighter as

we include additional modes. This is understandable as the region

0.1 < k < 0.2 h Mpc−1 includes the location of the second BAO.

The constraints on both r s/DV (0.35) and �mh2DV (0.35) listed in

Table 2 improve with kmax. The mean value of �mh2DV (0.35) is
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Table 2. One-dimensional constraints from the LRG P̂halo(k) likelihood or in combination with the WMAP5 �mh2 constraint

�mh2 = 0.1326 ± 0.0063 (‘+ prior’, below the line). We vary the kmax (units of h Mpc−1) included in the fit, the nuisance

function constraints (fiducial versus weak Fnuis), velocity dispersion in the model (fiducial versus ‘VD’) and whether the BAO

features are included in the model (fiducial versus ‘NW’). All constraints have assumed the �CDM relation between �m,

H 0, and DV , �bh
2 = 0.022 65, ns = 0.96 and σ 8 = 0.817. In the last column, we show A0.35 ≡

√

�mH 2
0 DV (0.35)/0.35c

(Eisenstein et al. 2005). Models with weak Fnuis constraints or central galaxy velocity dispersion are discussed in Appendix C.

The kmax = 0.2 h Mpc−1 constraints highlighted in bold are our main results and the other cases are shown for comparison.

Data/model �mh2 DV (0.35) (Mpc) rs/DV (0.35) �mh2DV (0.35) (Mpc) A0.35

kmax = 0.2 0.141+0.010
−0.012 1380+61

−73 0.1097+0.0039
−0.0042 194+10

−10 0.493+0.017
−0.017

kmax = 0.15 0.142+0.010
−0.012 1354+64

−77 0.1118+0.0043
−0.0046 191+10

−11 0.485+0.018
−0.018

kmax = 0.1 0.145+0.014
−0.016 1329+104

−116 0.1136+0.0070
−0.0072 192+11

−12 0.480+0.025
−0.024

kmax = 0.2 weak Fnuis 0.139+0.015
−0.017 1384+64

−77 0.1099+0.0039
−0.0040 192+17

−16 0.490+0.020
−0.020

kmax = 0.2 VD 0.148+0.011
−0.013 1365+63

−76 0.1096+0.0040
−0.0043 202+11

−11 0.499+0.018
−0.018

kmax = 0.2 + prior 0.135+0.004
−0.006 1411+44

−58 0.1085+0.0036
−0.0036 189.9+7.5

−7.5 0.493+0.016
−0.016

kmax = 0.15 + prior 0.135+0.004
−0.006 1387+48

−61 0.1104+0.0040
−0.0039 186.6+7.9

−7.9 0.485+0.017
−0.017

kmax = 0.1 + prior 0.134+0.005
−0.007 1394+67

−81 0.1101+0.0053
−0.0053 187.1+9.3

−9.2 0.487+0.022
−0.022

kmax = 0.2 weak Fnuis + prior 0.133+0.005
−0.007 1404+44

−58 0.1095+0.0036
−0.0037 186.1+8.4

−8.2 0.487+0.017
−0.017

kmax = 0.2 VD + prior 0.136+0.004
−0.006 1417+44

−58 0.1078+0.0035
−0.0035 192.9+7.4

−7.8 0.498+0.016
−0.017

kmax = 0.1 NW + prior 0.134+0.005
−0.007 1436+143

−150 0.1076+0.010
−0.011 192+17

−17 0.500+0.047
−0.045

kmax = 0.2 NW + prior 0.134+0.005
−0.007 1463+134

−142 0.1054+0.0092
−0.0095 196+15

−15 0.510+0.044
−0.042

consistent with what we find using the P damp(k, p) = P nw(k, p)

model with the WMAP5 �mh2 prior, and does not shift substan-

tially with increasing kmax. Because the BAO features break the

degeneracy between �mh2 and DV (0.35), the LRG P̂halo(k) pro-

vides an independent constraint on �mh2. For ns = 0.96, we find

�mh2 = 0.141+0.010
−0.012, which is consistent with the WMAP5 con-

straint, �mh2 = 0.1326 ± 0.0063, but with a 70 per cent larger

error.

Fig. 5 shows that the LRG-only constraints derived with kmax =
0.2 h Mpc−1 are consistent with the intersection of the power spec-

trum shape constraint (dotted lines) combined with constraints on

r s/DV (0.35) from P10: the best-fitting and ±1σ lines, 0.1097 ±
0.0036 are shown as dashed lines. Note that these are one-parameter

1σ errors. Table 2 shows excellent agreement for this quantity for the

LRG-only constraints, with r s/DV (0.35) = 0.1097+0.0039
−0.0042 for kmax =

0.2 h Mpc−1. This agreement reinforces the argument in Appendix

A2 that our neglect of the model dependence of the window func-

tion does not introduce significant bias in the DV (0.35) constraint.

Moreover, this constraint does not change if we adopt very weak

constraints on the nuisance function, |F nuis(0.1 h Mpc−1)|/b2
0 < 0.2

and |F nuis(0.2 h Mpc−1)|/b2
0 < 0.5 or use the extreme central galaxy

velocity dispersion model instead. We show in Appendix C that the

largest known source of systematic uncertainty, the central galaxy

velocity dispersion, impacts the cosmological parameter constraints

at well below the statistical errors, and can be safely neglected for

this analysis. We also demonstrate that our results are robust to the

treatment of the nuisance parameters a1 and a2.

We estimate the significance of the detection of the BAO feature

as the difference between the best-fitting χ 2 for the fiducial and

no-wiggles models when a1, a2 and b2
o are chosen to minimize χ 2;

we find �χ 2
BAO = 8.9. The resulting constraint on r s/DV (0.35) is

much tighter than is available from the shape information alone. To

see this result, in Table 2 we combine the LRG P̂halo(k) likelihood

with a WMAP5 prior on �mh2. The constraint from the shape alone,

obtained by fitting the no-wiggles model, gives a constraint on

r s/DV that is consistent with the constraint from the model including

BAOs, but with a factor of ∼2.3 larger errors. Finally, we note that

P10 estimate the total BAO detection significance to be �χ 2 = 13.1;

it is substantially larger than the value we find due to the inclusion

of lower redshift galaxies from both the SDSS main sample and

2dFGRS.

Finally, Table 2 also reports our constraint on A0.35 (Eisenstein

et al. 2005):

A0.35 ≡
√

�mH 2
0

DV (0.35)

0.35c
. (23)

This parameter is tightly constrained by the P̂halo(k) measurement

and is independent of H0.

5.2 Dependence of LRG-only constraints

on the cosmological model

In Section 5.1, the cosmological parameters �bh
2, ns and σ 8 were

fixed at their WMAP5 recommended values. For our purposes, rs

changes negligibly as a function of �bh
2 since this parameter is

so tightly constrained by CMB data. The parameters �mh2 and ns

both affect the linear power spectrum and are degenerate in shifting

the contours along the constant r s/DV direction, as illustrated in

the upper panel of Fig. 6. This degeneracy is well described as

�mh2(ns/0.96)1.2 = 0.141, in good agreement with the degeneracy

between these parameters found in Eisenstein et al. (2005).

In Fig. 5, we have assumed the �CDM relation between �m, h

and DV . This determines the scale at which to apply the non-linear

corrections, which are at fixed k values in units of h Mpc−1. In the

lower panel of Fig. 6, we show that this assumption is not restrictive.

The dashed curve fixes h = 0.7 and assumes no relation between

h and DV , which also depends on �k and w. Varying σ 8 by ±0.1,

which enters the HALOFIT calculation of the smooth component of

the non-linear matter power spectrum in equation (11), changes the

contours in Fig. 5 negligibly.
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Figure 6. Upper panel: change in the �χ2 = 2.3 contour as ns is varied, with

all other parameters as in Fig. 5. ns = 1.02 (dashed), ns = 0.96 (solid) and

ns = 0.90 (dotted). The degeneracy is well described as �mh2(ns/0.96)1.2 =
0.14. Lower panel: the impact of assuming a �CDM relation between �m,

h and DV (solid contours) compared with applying the non-linear correc-

tions at h = 0.7 and assuming no relation between �m, h and DV (0.35)

(dashed contours). As in Fig 5, the lines show the constraints for constant

rs/DV (0.35) from P10.

5.3 Combined constraints with WMAP5 and Union SN

As probes of the redshift–distance relation, the three cosmological

data sets we use in this section are highly complementary for con-

straining the geometry of the Universe and the equation of state

of dark energy: WMAP5 effectively constrains the distance to the

surface of last scatter and �mh2, SN data constrain angular diam-

eter distance ratios up to z ∼ 1 and P̂halo(k) sets joint constraints

on r s/DV (0.35) and �mh2(ns/0.96)1.2. In Fig. 7, we show the inter-

section of these constraints for two models assuming a power-law

primordial power spectrum and no massive neutrinos. The blue

bands indicate the WMAP5 constraints and the green bands show

constraints using the Union SN sample (Kowalski et al. 2008). For

the P̂halo(k), we show the constraint on A0.35 (open bands), which

has assumed ns = 0.96 and �bh
2 = 0.022 65 and is independent

Figure 7. WMAP5, Union SN sample and the LRG P̂halo(k)A0.35 constraint

on the geometry of the Universe. Upper panel: curvature varies and w = −1

is fixed. The dashed line shows a flat universe, �m + �� = 1. Lower panel:

w varies (assumed independent of redshift), and a flat universe is assumed.

The dashed line indicates a cosmological constant, w = −1. WMAP5 and

Union SN contours are MCMC results, while for P̂halo(k), we approximate

�χ2 = 2.3 and �χ2 = 6 contours by showing A0.35 ±
√

2.3σA0.35
and

A0.35 ±
√

6.0σA0.35
from the constraints in the top row of Table 2.

of H0. In the upper panel, we have assumed w = −1 and allow

curvature to vary. The three independent constraints intersect near

�m = 0.3 and a flat universe (dashed line). In the lower panel, we

assume flatness but allow w to vary; again the contours intersect

near �m = 0.3 and w = −1, a cosmological constant.

In this section, we combine these probes using the MCMC

method to obtain constraints on four cosmological models: a flat

universe with a cosmological constant (�CDM), a �CDM uni-

verse with curvature (o�CDM), a flat universe with a dark en-

ergy component with constant equation of state w (wCDM) and

a wCDM universe with curvature (owCDM). In each model,

we combine the constraints from P̂halo(k) with the WMAP5
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Table 3. Marginalized one-dimensional constraints (68 per cent) for WMAP5+LRG for flat �CDM, �CDM with curvature (o�CDM),

flat wCDM (wCDM), wCDM with curvature (owCDM) and wCDM with curvature and including constraints from the Union SN

sample. Here τ is the optical depth to reionization, ns is the scalar spectral index and A05 is the amplitude of curvature perturbations

at k = 0.05/Mpc; these parameters are constrained directly by the CMB only. We place uniform priors on the parameters varied in the

MCMC chains, with the exception of ASZ: [�bh
2, �ch

2, θ , ns, ln (1010A05), τ , ASZ]. θ is the approximate angular diameter distance to

recombination (standard in the COSMOMC package) and ASZ is the amplitude of the SZ power spectrum contribution. We use the hard prior

0 < ASZ < 2 as in the WMAP5 analysis. Where constraints are presented, �k and w are also varied; other parameters listed have been

derived from this complete set. In all models in this table, we have also assumed the standard contribution from N eff = 3.04 massless

neutrino species to the relativistic energy density. We relax these assumptions about neutrinos in Section 5.4.

Parameter �CDM o�CDM wCDM owCDM owCDM+SN

�m 0.289 ± 0.019 0.309 ± 0.025 0.328 ± 0.037 0.306 ± 0.050 0.312 ± 0.022

H0 69.4 ± 1.6 66.0 ± 2.7 64.3 ± 4.1 66.7+5.9
−5.6 65.6 ± 2.5

DV (0.35) 1349 ± 23 1415 ± 49 1398 ± 45 1424 ± 49 1418 ± 49

rs/DV (0.35) 0.1125 ± 0.0023 0.1084 ± 0.0034 0.1094 ± 0.0032 0.1078+0.0033
−0.0034 0.1081 ± 0.0034

�m – −0.0114+0.0076
−0.0077 – −0.009 ± 0.012 −0.0109 ± 0.0088

w – – −0.79 ± 0.15 −1.06 ± 0.38 −0.99 ± 0.11

�� 0.711 ± 0.019 0.703 ± 0.021 0.672 ± 0.037 0.703+0.057
−0.058 0.699 ± 0.020

Age (Gyr) 13.73 ± 0.13 14.25 ± 0.37 13.87 ± 0.17 14.27 ± 0.52 14.24 ± 0.40

�tot – 1.0114+0.0077
−0.0076 – 1.009 ± 0.012 1.0109 ± 0.0088

100 �bh
2 2.272 ± 0.058 2.274 ± 0.059 2.293+0.062

−0.063 2.279+0.066
−0.065 2.276+0.060

−0.059

�ch
2 0.1161+0.0039

−0.0038 0.1110 ± 0.0052 0.1112+0.0056
−0.0057 0.1103+0.0055

−0.0054 0.1110+0.0051
−0.0052

τ 0.084 ± 0.016 0.089 ± 0.017 0.088 ± 0.017 0.088 ± 0.017 0.088 ± 0.017

ns 0.961 ± 0.013 0.962 ± 0.014 0.969 ± 0.015 0.965 ± 0.016 0.964 ± 0.014

ln (1010A05) 3.080+0.036
−0.037 3.068 ± 0.040 3.071+0.040

−0.039 3.064 ± 0.041 3.068 ± 0.039

σ 8 0.824 ± 0.025 0.796 ± 0.032 0.735 ± 0.073 0.79 ± 0.11 0.790+0.045
−0.046

results3 (Dunkley et al. 2009). In the last model, we also present con-

straints in combination with both WMAP5 and the Union SN sample

(with systematic errors included as in Kowalski et al. 2008). These

three data sets are considered independent; therefore, the individual

likelihoods can be multiplied when evaluating the total likelihood

of a given cosmological model. Marginalized one-dimensional pa-

rameter constraints are presented in Table 3.

The best-fitting �CDM fit to the WMAP5+LRG likelihoods is

(�m, �b, ��, ns, σ 8, h) = (0.291, 0.0474, 0.709, 0.960, 0.820,

0.690) with best-fitting nuisance parameters a1 = 0.172 and a2 =
−0.198. This model has χ 2

LRG = 40.0 when fitting to 45 bandpowers,

and is shown with the data in Fig. 8. In this model, adding the

information from P̂halo breaks the partial degeneracy between �m

and H0 in the WMAP5 data and reduces the uncertainties in each

by a factor of ∼1.6 compared to WMAP5 alone: �m = 0.289 ±
0.019 and H 0 = 69.4 ± 1.6 km s−1 Mpc−1 (�m = 0.258 ± 0.03

and H 0 = 71.9+2.6
−2.7 km s−1 Mpc−1 for WMAP5). The constraint on

σ 8 also tightens by 30 per cent because of the σ 8 − �mh2 partial

degeneracy in the WMAP5 data. Note that since we marginalize

over the galaxy bias, we have no constraint on σ 8 directly from the

LRGs.

In Fig. 9 we show the effect of opening the cosmological pa-

rameter space to include curvature and a constant dark energy

equation of state w. Solid contours show the �CDM constraint

in each panel for comparison. The dashes show WMAP5-only con-

straints. Without the �CDM assumption, WMAP5 cannot constrain

�m and H0 separately from �mh2. In each of these models, the inclu-

sion of the P̂halo(k) information can break the degeneracy through

the BAO constraint on r s/DV . Table 3 shows that the cold dark

matter density, �ch
2, constraint improves by ∼15 per cent com-

pared to the WMAP5-only constraint (∼±0.0063) due to the power

spectrum shape information in the non-�CDM models. Moreover,

3 http://lambda.gsfc.nasa.gov/product/map/current/likelihood_info.cfm

the r s/DV (0.35) constraint does not deviate substantially from the

P̂halo(k)+�mh2 prior constraint presented in Table 2. In the con-

text of power-law initial conditions, P̂halo(k) information does not

improve constraints on the spectral index ns.

Allowing curvature relaxes the constraints on �m and H0 to the

WMAP5-only �CDM errors on these parameters, while tightly con-

straining �tot = 1 − �k to 1.0114+0.0077
−0.0076 (−0.027 < �k < 0.003

with 95 per cent confidence). If instead we assume flatness but al-

low the dark energy equation of state as an additional parameter w

(assumed constant), w is constrained to −0.79 ± 0.15. Since the

effective LRG sample redshift is zeff = 0.313, allowing w to deviate

from −1 significantly degrades the z = 0 constraints, �m and H0.

When both �k and w vary, there remains a large degeneracy

between �m, H 0 and w. Curvature is still tightly constrained and

consistent with flatness at the per cent level: �tot = 1.009 ± 0.012.

Fig. 10 demonstrates that SNe can break the degeneracy in this

model. The combination of all three data sets simultaneously con-

strains �k within 0.009 and w to 11 per cent, while still improving

constraints on �m and H0 compared with WMAP5 alone in the

�CDM model. Allowing �k �= 0 and/or w �= −1 all act to increase

�m and decrease H0 compared with the �CDM model. The upper

panel of Fig. 10 shows that the �CDM model is only ∼1σ away

from the best fit. The full set of constraints on all parameters is

reported in Table 3.

5.4 Additional constraints from the broad P̂halo(k) shape

For the models considered thus far, we have shown that gains

in cosmological parameter constraints from adding constraints

on the broad shape of P̂halo(k) to WMAP5 results are moderate:

∼15 per cent improvement in �ch
2 for all the models considered in

Table 3. On the other hand, when the constraints on �bh
2 and �ch

2

from WMAP5 are used, our constraint on the BAO scale provides a

much more precise determination of DV at the effective redshift of

the survey than the shape information alone.
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Figure 8. Points with errors show our measurement of P̂halo(k). We show
√

Cii as error bars; recall that the points are positively correlated. We plot the

best-fitting WMAP5+LRG �CDM model (�m, �b, ��, ns, σ 8, h) = (0.291, 0.0474, 0.709, 0.960, 0.820, 0.690) with best-fitting nuisance parameters a1 =
0.172 and a2 = −0.198 (solid curve), for which χ2 = 40.0; the dashed line shows the same model but with a1 = a2 = 0, for which χ2 = 43.3. The BAO inset

shows the same data and model divided by a spline fit to the smooth component, P smooth, as in fig. 4 of P10. In Section 5.1, we find that the significance of the

BAO detection in the P̂halo(k) measurement is �χ2 = 8.9.

In more extended models than we have thus far considered, we

may expect the additional shape information to allow tighter con-

straints. The cosmological parameters most closely constrained by

the broad P(k) shape are those which affect the shape directly

or which affect parameters degenerate with the shape: these are

expected to be the power spectrum spectral slope ns, its running

dns/d ln k, neutrino mass mν and the number of relativistic species

Neff . Thus far in our analysis, we have assumed dns/d ln k = 0,

mν = 0 and N eff = 3.04.

One intuitively expects the measurement of P̂halo(k) to improve

constraints on the primordial power spectrum. In a �CDM model

where both running of the spectral index and tensors are allowed,

WMAP5 still places relatively tight constraints on the primordial

power spectrum: ns = 1.087+0.072
−0.073 and d ln ns/d ln k = −0.05 ± 0.03.

The measurement reported in this paper probes at most �ln k ∼ 2

and covers a range corresponding to ℓ ∼ 300–3000; this range

overlaps CMB measurements but extends to smaller scales. Over

this k-range and for this model, WMAP5 constrains the P(k) shape

to vary by ∼8 per cent from variations in the primordial power

spectrum. Due to the uncertainties in the relation between the galaxy

and underlying matter density fields, our nuisance parameters alone

allow P halo(k, p) to vary by up to 10–14 per cent over this region.

Therefore, we do not expect significant gains on ns or d ln ns/d ln k

from our measurement.

The effect of massive neutrinos in the CMB power spectrum is

to increase the height of the high ℓ acoustic peaks: free streaming

neutrinos smooth out perturbations, thus boosting acoustic oscilla-

tions. In the matter power spectrum instead, neutrino free streaming

gives a scale-dependent suppression of power on the scales that

large-scale structure measurements currently probe (Lesgourgues

& Pastor 2006). This makes these two observables highly comple-

mentary in constraining neutrino masses with cosmology.

We start by comparing the constraints from WMAP5+P̂halo(k)

and WMAP5+BAO (using the P10 BAO likelihood) in the �CDM

model with three degenerate massive neutrino species. In particular,

we vary the �CDM parameters (as in Table 3) and
∑

mν . While

WMAP5 alone finds
∑

mν < 1.3 eV with 95 per cent confidence,

WMAP5+P̂halo(k) yields
∑

mν < 0.62 eV, which is a significant

improvement over
∑

mν < 0.78 eV (WMAP5+BAO). The upper

panel of Fig. 11 compares the likelihood for mν for WMAP5 data

alone (dashed) and in combination with P̂halo(k).

A change in the number of relativistic species in the early uni-

verse changes the epoch of matter-radiation equality and thus shifts

the CMB acoustic peaks. The CMB constrains the redshift of
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Figure 9. WMAP5+LRG constraints on �mh2, �m and H0 for �CDM (solid black contours), o�CDM (shaded green contours), wCDM (shaded red contours)

and owCDM (shaded blue contours) models. The first three panels show WMAP5-only constraints (dashed contours) and WMAP5+LRG constraints (coloured

contours) in the �mh2–�m plane as the model is varied. In the lower right-hand panel, we show all constraints from WMAP5+LRG for all four models in the

�m–h plane, which lie within the tight �mh2 ≈ 0.133 WMAP5-only constraints.

matter-radiation equality through the ratio of the third to first peak

heights (Komatsu et al. 2009). If the effective number of relativistic

species Neff is allowed to vary, this constraint defines a degener-

acy between �ch
2 and Neff (Dunkley et al. 2009). Note that the

physical quantity that is being constrained is the physical energy

density in relativistic particles. In the standard model, this is given

by photons and neutrinos but N ν should really be considered an

‘effective’ number of relativistic neutrino species: N eff = 3.04 for

standard neutrinos. Departures from this number can be interpreted

also in terms of decay of dark matter particles, quintessence, exotic

models and additional hypothetical relativistic particles such as a

light majoron or a sterile neutrino.

In the �CDM model, which specifies a rigid relation between

the angular diameter distance at last scattering measured by the

CMB and low-redshift distance scales, the degeneracy between

Neff and �ch
2 can be broken by a low-redshift constraint such

as a direct measurement of H0. However, in the �CDM model,

the WMAP5 constraints on r s/DV (0.2) and r s/DV (0.35) are not

altered when Neff is included as a free parameter. Fig. 11 shows

that the one-dimensional constraints on Neff do not improve with

the inclusion of the P10 BAO likelihood. However, Neff will also

impact the matter power spectrum, which probes the horizon size

at matter-radiation equality (e.g. Eisenstein & Hu 1998). Moreover,

the full P̂halo(k) likelihood retains information about the amplitude

of the BAOs, which also vary with Neff through the ratio �b/�m.

The WMAP5 data set a tight constraint on �bh
2 independent of

Neff , while �ch
2 and Neff are degenerate, thus giving a degeneracy

between �b/�m and Neff . Therefore, P̂halo(k) is an excellent probe

of Neff : WMAP5+P̂halo(k) yields N eff = 4.8+1.8
−1.7 in the �CDM model

(parameters as in Table 3) with Neff added as a free parameter. For

comparison, Komatsu et al. (2009) find N eff = 4.4 ± 1.5 when

combining WMAP, BAO, SNe and the Hubble Space Telescope key

project (Freedman et al. 2001). The lower panel of Fig. 11 compares

the likelihood for Neff for WMAP5 data alone with a prior N eff ≤ 10

(dashed) and in combination with P̂halo(k) (solid); in the latter case,

there is a �2σ upper bound on Neff , independent of the N eff ≤ 10

hard prior.

6 C OMPARI SON W I TH OTHER ANALYSES

6.1 Comparison with previous galaxy clustering results

There have been several previous analyses of the clustering of the

SDSS LRG spectroscopic sample. Eisenstein et al. (2005) use the

correlation function of the DR3 SDSS LRG sample to derive con-

straints on �mh2 = 0.133(ns/0.96)−1.2 ± 0.011 and DV (0.35) =
1381 ± 64 Mpc, where we have adjusted their constraints to match

our assumed values of �bh
2 and ns; recall that these constraints

are not independent. Comparison with their fig. 7 indicates that

our model is slightly more than 1σ away from their best fit. Our

analysis prefers larger �mh2 and lower r s/DV . In interpreting this

comparison, one should consider the differences in modelling and
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Figure 10. For the owCDM model we compare the constraints from

WMAP5+LRG (blue contours), WMAP5+SN (green contours) and

WMAP5+LRG+SN (red contours). In the upper panel, the vertical line

indicates a flat universe (�k = 0) and the horizontal line indicates a cosmo-

logical constant (w = −1). In both the panels, we overplot the WMAP5+SN

68 per cent contour (solid black) and WMAP5+LRG (dotted black) for ease

of comparison.

the fact that we have a factor of ∼2 larger volume. Given this larger

volume, naively we would expect an improvement on the con-

straints by a factor of ∼
√

2. Comparison with Table 2 shows that

our LRG-only constraints on �mh2 and DV have approximately the

same uncertainty as Eisenstein et al. (2005). This is partly because

we conservatively increased our covariance matrix by a factor of

1.21 to account for the non-Gaussianity in the BAO contribution

to the likelihood surface (see the discussion in Section 2.4). How-

ever, this increase will artificially weaken the constraint from the

shape. Marginalization over the two nuisance parameters a1 and

a2 to account for our uncertainty in the P halo(k, p) as well as our

conservative cut at kmin also slightly weakens the constraint from

the power spectrum shape.

Tegmark et al. (2006) report cosmological constraints from a

somewhat larger LRG sample (SDSS DR4) and combine their re-

Figure 11. P̂halo(k) improves constraints on neutrinos in the �CDM model

through both the BAO scale and the broad power spectrum shape con-

straints. We show the one-dimensional cumulative probability for WMAP

alone (dashed), WMAP+P10 BAO (dotted) and WMAP+P̂halo(k) (solid) for

the neutrino mass (upper panel) and the one-dimensional likelihood for the

effective number of relativistic species Neff (lower panel). The decrease at

large Neff for the WMAP and WMAP+BAO constraints is a result of the

hard prior N eff ≤ 10.

sults with WMAP3 data. To compare LRG-only constraints, we use

the value derived from the Tegmark et al. (2006) power spectrum

in Sánchez & Cole (2008): �mh = 0.173 ± 0.017 for ns = 1.0

and h = 0.72. For a �CDM model scaled to ns = 1.0, our LRG-

only constraints yield �mh = 0.200+0.012
−0.011. Restricting our analysis

to kmax = 0.1 h Mpc−1 to match Tegmark et al. (2006), we find

�mh = 0.195 ± 0.013. Besides the increase in sample volume, the

discrepancy between these results could be due to differences in

the FOG compression and the degeneracy between their nuisance

parameter Q (see equation 1) and cosmological parameters. A de-

tailed comparison of our modelling approaches is given in Reid

et al. (2009). Note that Sánchez et al. (2009) have also recently
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completed an analysis of the LRG correlation function, but they do

not present a constraint from their shape measurement with which

we can compare.

Our results agree with analyses of photometric LRG samples.

Padmanabhan et al. (2007) find �m = 0.30 ± 0.03 for h = 0.7 and

ns = 1 and Blake et al. (2007) find �mh= 0.195 ± 0.023 for h= 0.75

and ns = 1. Our constraint is also consistent with determinations

from other galaxy samples. For the 2dFGRS sample, Cole et al.

(2005) find �mh = 0.168 ± 0.016 for fixed ns = 1.0 and h = 0.72;

allowing a 10 per cent Gaussian uncertainty in h yields �mh =
0.174 ± 0.019, which is within 1σ of our LRG-only constraint. Our

results are also in good agreement with the SDSS main sample:

Tegmark et al. (2004a) find �mh = 0.213 ± 0.023, again with fixed

ns = 1.0 and h = 0.72.

6.2 Comparison with P10

The P10 constraints overlap significantly with our analysis. We

showed in Section 5.1 that our LRG-only constraint on r s/DV (0.35)

is in very good agreement with the determination in P10. When

combined with the WMAP5 constraint on �mh2 (lower portion

of Table 2), our use of the shape information in P̂halo(k) allows

∼10 per cent improvement on r s/DV (0.35). Moreover, the shape

information provides a tighter constraint on �ch
2. However, the

P10 inclusion of SDSS main and 2dFGRS galaxies allows an

additional constraint on r s/DV (0.2), which generally makes the

P10 constraints on �m and H0 tighter. Our constraints on �k and

w are comparable to P10. Across the models we have studied,

WMAP5+P̂halo(k) constraints yield lower values of H0 than the P10

results. This is driven by the P10 r s/DV (0.2) constraint, which pulls

the overall distance scale slightly lower compared to r s/DV (0.35)

alone, but does not signal any inconsistency between these anal-

yses. Also note that the correlation function analysis of the DR7

LRG sample by Kazin et al. (2009) shows good agreement with the

power spectrum analysis in P10.

6.3 Comparison with Riess et al. (2009) H0

Riess et al. (2009) recently released a new determination of the

Hubble constant using a differential distance ladder: H 0 = 74.2 ±
3.6 km s−1 Mpc−1. This value is consistent at the ∼1σ level with

the WMAP5+P̂halo(k) result for the �CDM model, H 0 = 69.4 ±
1.6 km s−1 Mpc−1. Table 3 shows that if we allow �k �= 0 and/or

w �= −1, the mean value of H0 decreases to ∼64–67 km s−1 Mpc−1.

Therefore, combining the Riess et al. (2009) measurement with our

constraints should reduce the uncertainties further and push the best-

fitting model closer to �CDM. P10 present constraints including

the Riess et al. (2009) H0 constraint for the owCDM model; the

impact should be similar when using P̂halo(k) rather than the P10

BAO constraints.

7 C O N C L U S I O N S

In this paper, we have presented the power spectrum of the recon-

structed halo density field derived from a sample of LRGs from

the SDSS DR7. The size of the LRG DR7 sample has sufficient

statistical power that the details of the relation between LRGs and

the underlying linear density field become important and need to be

reliably modelled before attempting a cosmological interpretation

of the data. Here, we have adopted the method of Reid et al. (2009),

which applies a pre-processing step to the measured galaxy density

field to reconstruct the halo density field before computing the halo

power spectrum. On the scales of interest, this power spectrum has

a more direct and robust connection to the underlying linear, real-

space power spectrum than the power spectrum of the LRG galaxies

themselves.

We calibrate our method using N-body simulations with volume

and resolution suitably tuned to trace the halo mass range relevant to

LRGs and provide several consistency checks between the observed

and mock galaxy density fields to support our approach to model the

LRG sample’s clustering properties. In particular, we demonstrate

the validity of our modelling of the small-scale clustering and FOG

features by matching the observed and mock catalogue higher order

statistics probed by the CiC group multiplicity function as well as

the relative line-of-sight velocities between galaxies occupying the

same halo. We discuss and quantify the sources of systematic error

remaining in our modelling. For the LRG sample, with n̄P ∼ 1,

both the shot-noise subtraction and the large velocity dispersions of

their host haloes can introduce uncertainty. We identify the largest

source of systematic uncertainty to be the velocity dispersion of

central LRGs within their host haloes and find its effects on cosmo-

logical parameters to be safely smaller than the size of the statistical

errors. We are able to derive quantitative bounds on our model un-

certainties and propagate these through the cosmological analysis

by introducing nuisance parameters with tightly controlled allowed

ranges, based on our understanding of the sources of non-linearity

in the spectrum.

Based on our modelling of the LRG sample, we are able to extend

our model for P̂halo(k) to k = 0.2 h Mpc−1, increasing the number

of available modes by a factor of ∼8 over an analysis restricted to

kmax = 0.1 h Mpc−1, as was the case in the SDSS team’s DR4 analy-

sis (Tegmark et al. 2006). This allows us to simultaneously constrain

the broad-band shape of the underlying linear power spectrum and

detect the BAO signal with �χ 2 = 8.9, though most of the shape

information is confined to k < 0.1 h Mpc−1.

If we fix ns and �b h2, P̂halo(k) alone constrains both �mh2 =
0.141+0.010

−0.012 and DV (0.35) = 1380+60
−73. The agreement of our con-

straint on �mh2 at zeff ∼ 0.31 with the one derived from the CMB

at z ∼ 1000 provides a remarkable consistency check for the stan-

dard cosmological model. When P̂halo(k) is combined with WMAP5,

the error on �ch
2 is reduced by ∼15 per cent, and the constraint

on DV (0.35) allows us to place tight constraints on both �m and

H0, as well as �k or w. If we also include the Union SN sam-

ple, all four parameters can be tightly constrained: �m = 0.312 ±
0.022, H 0 = 65.6 ± 2.5 km s−1 Mpc−1, �k = −0.0109 ± 0.008

and w = −0.99 ± 0.11, which are consistent with �CDM at the

∼68 per cent confidence level. Finally, we show that the shape

information in P̂halo(k) can improve constraints on both massive

neutrinos and the number of relativistic species Neff in a �CDM

model. In combination with WMAP5, we find
∑

mν < 0.62 eV

at the 95 per cent confidence level, a 20 per cent improvement on

the bound from the WMAP5+BAO likelihood from P10. While the

constraints on r s/DV encapsulated in the P10 BAO likelihood do

not improve WMAP5 constraints on Neff , both the power spectrum

shape and BAO amplitude depend on Neff . Combining the WMAP5

and P̂halo(k) constraints yields N eff = 4.8+1.8
−1.7.

This paper represents a first attempt to analyse the LRG red-

shift survey with a model that accounts for the non-linear galaxy

bias and non-linear redshift-space distortions introduced by the so-

called one-halo term, and to propagate the uncertainty in the mod-

elling through the cosmological constraints. We expect that the

technique introduced here to estimate the halo density field will be

useful to further refinements such as reconstruction of the baryon

acoustic peak (Eisenstein et al. 2007a) and measurement of β from
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redshift-space distortions. The modelling efforts presented in this

paper are rather specific to the SDSS LRG sample. However, similar

techniques to probe the relation between the galaxy and underly-

ing matter density fields as well as to quantify its uncertainty will

be required in the analysis of larger data sets from future galaxy

surveys.

AC K N OW L E D G M E N T S

BAR gratefully acknowledges support from NSF grant

OISE/0530095 and FP7-PEOPLE-2007-4-3-IRG while this work

was being completed and thanks Raul Jimenez for useful discus-

sions and computing power. WJP is grateful for support from the

UK Science and Technology Facilities Council, the Leverhulme

trust and the European Research Council. LV acknowledges sup-

port from FP7-PEOPLE-2007-4-3-IRG n 20218 and MICINN grant

AYA2008- 03531. DNS acknowledges NSF grants AST-0707731

and OISE05-30095. DJE was supported by National Science Foun-

dation grant AST-0707225 and NASA grant NNX07AC51G. Sim-

ulated catalogues were calculated and analysed using the COSMOS

Altix 3700 supercomputer, a UK-CCC facility supported by HEFCE

and STFC in cooperation with CGI/Intel. We acknowledge the use

of the Legacy Archive for Microwave Background Data Analysis

(LAMBDA). Support for LAMBDA is provided by the NASA Of-

fice of Space Science. We also acknowledge the use of the CAMB,

CMBFAST, COSMOMC and WMAP5 likelihood codes.

Funding for the SDSS and SDSS-II has been provided by the Al-

fred P. Sloan Foundation, the Participating Institutions, the National

Science Foundation, the U.S. Department of Energy, the National

Aeronautics and Space Administration, the Japanese Monbuka-

gakusho, the Max Planck Society and the Higher Education Funding

Council for England. The SDSS web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium

for the Participating Institutions. The Participating Institutions are

the American Museum of Natural History, Astrophysical Institute

Potsdam, University of Basel, Cambridge University, Case West-

ern Reserve University, University of Chicago, Drexel University,

Fermilab, the Institute for Advanced Study, the Japan Participation

Group, Johns Hopkins University, the Joint Institute for Nuclear As-

trophysics, the Kavli Institute for Particle Astrophysics and Cosmol-

ogy, the Korean Scientist Group, the Chinese Academy of Sciences

(LAMOST), Los Alamos National Laboratory, the Max-Planck-

Institute for Astronomy (MPIA), the Max-Planck-Institute for As-

trophysics (MPA), New Mexico State University, Ohio State Univer-

sity, University of Pittsburgh, University of Portsmouth, Princeton

University, the United States Naval Observatory and the University

of Washington.

RE F EREN C ES

Abazajian K. et al., 2009, ApJS, 182, 543

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15

Blake C., Collister A., Bridle S., Lahav O., 2007, MNRAS, 374, 1527

Blanton M. R., Lin H., Lupton R. H., Maley F. M., Young N., Zehavi I.,

Loveday J., 2003a, AJ, 125, 2276

Blanton M. R. et al., 2003b, ApJ, 592, 819

Carlson J., White M., Padmanabhan N., 2009, Phys. Rev. D, 80, 043531

Cole S., Kaiser N., 1989, MNRAS, 237, 1127

Cole S. et al., 2005, MNRAS, 362, 505

Coles P., Jones B., 1991, MNRAS, 248, 1

Colless M. et al., 2001, MNRAS, 328, 1039

Colless M. et al., 2003, preprint (astro-ph/0306581)

Cooray A., Sheth R., 2002, Phys. Rep., 372, 1

Coziol R., Andernach H., Caretta C. A., Alamo-Martı́nez K. A., Tago E.,

2009, AJ, 137, 4795

Cresswell J. G., Percival W. J., 2009, MNRAS, 392, 682

Davis M., Peebles P. J. E., 1977, ApJS, 34, 425

Davis M., Peebles P. J. E., 1983, ApJ, 267, 465

Davis M., Groth E. J., Peebles P. J. E., 1977, ApJ, 212, L107

Dunkley J. et al., 2009, ApJS, 180, 306

Eisenstein D. J., Hu W., 1998, ApJ, 496, 605

Eisenstein D. J. et al., 2001, AJ, 122, 2267

Eisenstein D. J. et al., 2005, ApJ, 633, 560

Eisenstein D. J., Seo H.-J., Sirko E., Spergel D. N., 2007a, ApJ, 664, 675

Eisenstein D. J., Seo H.-J., White M., 2007b, ApJ, 664, 660

Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23

Freedman W. L. et al., 2001, ApJ, 553, 47

Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider D.

P., 1996, AJ, 111, 1748
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APPEN D IX A : TESTING MODEL

APPROX IM ATIONS

In this appendix, we present tests to demonstrate the validity of

several assumptions of our model P halo(k, p).

A1 Isotropy tests

Both our P halo(k, p) model (equation 16) and the ascl approximation

(equation 8) assume that the power spectrum modes are distributed

isotropically with respect to the line of sight. We check this assump-

tion in the SDSS DR7 LRG galaxy sample using pairs of galaxies

separated by �rmin = 15 h−1 Mpc to �rmax = 150 h−1 Mpc, binned

into nine equal bins in �r of a width of 15 h−1 Mpc. We consider

the angles between the galaxy pair separation vector and the local

line-of-sight vector defined between the observer and each of the

galaxies in the pair. These two angles will be equal in the limit

of a pair with �r ≪ max(χ 1, χ 2), where χ 1 and χ 2 are the dis-

tances to the two galaxies and �r is the separation between them.

We find that 〈cos2 φ〉 − 0.333 is −0.01 for the smallest separation

bin (15 h−1 Mpc < �r < 30 h−1 Mpc) and +0.005 in the largest

separation bin. Fig. A1 shows the full distribution versus | cos φ|.
The small increase for pairs perpendicular to the line of sight for

the smallest separation bin is due to non-linear redshift-space dis-

tortions (FOGs), inducing a potentially large separation in redshift

space between nearby pairs of galaxies in real space. The few per

0 0.2 0.4 0.6 0.8 1

0.19

0.2

0.21

Figure A1. P (| cos φ|) versus cos φ where φ is the angle between the

galaxy pair separation vector and the line of sight defined by the observer

and one of the galaxies in the pair (see text). The smallest separation bin

(15 h−1 Mpc <�r < 30 h−1 Mpc) shows the largest deviation from isotropy,

with an ∼5 per cent preference for pairs perpendicular to the line of sight

compared to along the line of sight due to FOGs. The larger separation bins

extend to 150 h−1 Mpc and are nearly isotropic, but with a few per cent

excess of pairs directly along the line of sight.

cent deviations from isotropy will induce negligible variations in the

shape of the angle-averaged P halo(k, p), since the lower left-hand

panel of fig. 7 in Reid et al. (2009) indicates only an ∼5 per cent

change to the power spectrum shape between real and redshift space

at k = 0.2 h Mpc−1.

A2 DV approximation

As in Section 3.4, we use the approximation that pairs of galaxies

contributing to P̂halo(k) in the k-range of interest are located at the

same redshift to compute the effective survey redshift:

zeff =

∫

zn2(z) w2(z)

b2(z)

dV

dz
dz

∫

n2(z) w2(z)

b2(z)

dV

dz
dz

, (A1)

where n(z), b(z) and w(z), respectively, specify the average number

density, bias and weight of the sample at redshift z as defined in

Percival et al. (2004). We find zeff = 0.313 and use this redshift

to evaluate ascl in equation (8). The effective redshift changes by

only �z = 0.004 if one instead weights by the expected number of

galaxies at redshift z. Given the distribution of pairs in the small sep-

aration limit (equation 19) we estimate the fractional bias remaining

after the correction in equation (8) is applied as

δDV

DV

≈

∫

(

DV (z)

DV (zeff )

Dfiducial
V

(zeff )

Dfiducial
V

(z)
− 1

)

n2(z) w2(z)

b2(z)

dV

dz
dz

∫

n2(z) w2(z)

b2(z)

dV

dz
dz

. (A2)

For a �CDM model, the fractional bias on the distance scale is

<0.1 per cent in the range �m = 0.2–0.4 and the rms change is

<1.2 per cent. This additional variance about the peak is negligible

for the BAO scale of ∼100 h−1 Mpc since this is much smaller than

the damping scale σ BAO ∼ 9 h−1 Mpc. We find very similar results

for the bias and rms damping if we instead integrate over the full

distribution of isotropic pairs instead of using the DV approximation

in equation (A2).
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Figure A2. Comparison of the LRG-only likelihood surface computed with

the analytic approximation of Pnw in equation (29) of Eisenstein & Hu

(1998) (solid, as in Fig. 5) compared with the result when using the b-spline

fit described in Appendix A3 (dashed).

Testing this approximation in more general models is more sub-

tle, since DV (z) depends on H 0, �m, �k and w. We instead do a

consistency check: for �mh2 constrained by WMAP5, DV (zeff) con-

strained by WMAP5+P̂halo(k), �k = 0 and −2 < w < −0.5, the

maximum fractional bias is ∼0.5 per cent and the maximum rms

change is 3.5 per cent; a similar analysis for −0.025 < �k < 0.025

and w = −1 shows much smaller deviations. We therefore conclude

that in the range of models considered here, a single scalefactor ascl

can accurately account for the effects of the model redshift–distance

relation on the interpretation of the measured power spectrum.

A3 Comparing Pnw approximations

In the models without massive neutrinos, we have used the

Eisenstein & Hu (1998) formula (equation 29) to compute Pnw,

which enters our model in equation (10). However, for more gen-

eral models such as those containing massive neutrinos or which

vary the number of relativistic species, it is more convenient to use a

spline to obtain a smooth version of Plin without BAO features. We

fit a cubic b-spline to P lin k1.5 in order to minimize the slope in the

k region of interest. There are eight equally spaced nodes starting at

k = 0.0175 Mpc−1 and ending at k = 0.262 Mpc−1 and an additional

node at k = 0.0007 Mpc−1. Note that we fix the location of the nodes

in units of Mpc−1 since the linear power spectrum is fixed in those

units for fixed �mh2 and �bh
2. Fig. A2 shows that the LRG-only

likelihood surfaces computed with these two approximations agree

well in the region preferred by WMAP5: �mh2 = 0.133 ± 0.0063.

APP ENDIX B: QUANTIFYING MODEL

U N C E RTA I N T I E S A N D C H E C K S

FOR SYSTEMATICS: DETA ILS

In this appendix, we aim to quantify the sources of systematic

uncertainty in the model P halo(k). The model is calibrated on the

mock catalogues of Reid et al. (2009). In Appendices B1 and B2,

we present the detailed assumptions we have made to produce the

mock catalogues from the N-body simulation halo catalogues and

discuss the expected impact of these assumptions on the predicted

relation between the reconstructed halo and matter density fields.

Appendices B3–B6 present consistency checks between the ob-

served and mock catalogue LRG density fields that address the

modelling uncertainties. In Section 4.3, the results of these tests are

used to establish quantitative bounds on the nuisance parameters in

equation (15) to be used in our cosmological parameter analysis.

B1 Halo model parametrization

In Reid et al. (2009), we adopt the following parametrization for the

average number of LRGs in a halo of mass M (Zheng et al. 2005):

〈N (M)〉 = 〈Ncen〉(1 + 〈Nsat〉) (B1)

〈Ncen〉 =
1

2

[

1 + erf

(

log10 M − log10 Mmin

σlogM

)]

(B2)

〈Nsat〉 =
(

M − Mcut

M1

)α

. (B3)

For our adopted fiducial cosmological model, we find σ logM ∼
0.6–0.9 in order to match the amplitude of the observed large-

scale clustering of the LRGs; the exact parameter values used to

generate the mock catalogues are given in Reid et al. (2009). Since

the scale dependence of halo bias varies with halo mass at the

∼10 per cent level at k = 0.15 h Mpc−1 (Smith et al. 2007), changes

in the distribution of LRGs with halo mass that preserve the large-

scale clustering amplitude could result in few per cent changes in

the non-linear bias of the haloes traced by the LRGs. Changes in

the distribution of halo biases traced by the LRGs could also alter

the relation between the CiC and true group multiplicity function,

which would introduce further uncertainty in the relation between

the reconstructed and underlying halo density fields.

B2 Distribution of mock galaxies within haloes

In the mock catalogues of Reid et al. (2009) used to calibrate our

model P halo(k, p), we have assumed a sharp distinction between

‘central’ and ‘satellite’ galaxies. The first or ‘central’ LRG in each

halo is assumed to sit at the halo centre and move with the mean

velocity of the halo dark matter; roughly 94 per cent of the LRGs

in our sample are central galaxies (Zheng et al. 2009; Reid et al.

2009). For the ∼6 per cent of LRGs that are ‘satellites’, we assume

that they trace the phase-space distribution of the halo dark matter

so that their positions and velocities are assigned to be those of a

random dark matter particle in the halo.

We do not evaluate the impact of errors in our assumed real-

space distribution of galaxies in their haloes on the fidelity of the

halo density field reconstruction; the impact will be negligible in the

case where there is a single LRG per halo. However, if the observed

galaxies have a significantly different real-space distribution in their

haloes than we have assumed, the relationship between the recon-

structed halo density field and underlying matter density field will

be different in the observed and mock galaxy catalogues. We test our

assumed spatial distribution in Appendix B3 by checking for con-

sistency between the observed and mock catalogues for CiC group

multiplicity functions, measured with two distinct sets of cylinder

parameters. Furthermore, we can use equation (21) (where the mea-

sured CiC group multiplicity function specifies 〈N gal(N gal − 1)〉) as

an upper limit on the error on the shot-noise term due to differences

between the model and observed reconstructed halo density fields.

We consider two possible sources of deviation from our assumed

galaxy distribution within haloes. The first is that on occasion an

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 404, 60–85
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isolated LRG in our sample is not the ‘central’ galaxy in its halo,

but a satellite galaxy, while the ‘central’ galaxy in that halo is not

selected by our sample cuts. We call this situation ‘central misiden-

tification’, and denote its probability f cen,err, assumed independent

of halo mass for simplicity. The brightest LRGs are indeed cen-

trally concentrated, with ∼80 per cent of them within ∼0.2 rvir of

the X-ray peak (Ho et al. 2009). Lin & Mohr (2004) similarly find

that 80 per cent of the brightest cluster galaxies (BCGs) in their X-

ray-selected cluster sample are within ∼0.1rvir, and in the ∼8 per

cent of cases where the BCG is outside 0.5rvir, the second ranking

galaxy in the group is within 0.1rvir. In some of these cases, both

the first and second brightest galaxies would be identified as LRGs;

van den Bosch et al. (2007) showed that the luminosity difference

between first and second brightest galaxies in massive groups is

typically small. In this situation, there would be no error in our cat-

alogues since we are not assigning luminosities to our mock LRGs.

From these studies we would expect f cen,err < 0.2 for the halo mass

scales probed by these studies, M > 1014 M⊙, and it is reasonable

to assume that this holds at lower masses where there are fewer

massive galaxies per halo. We therefore choose f cen,err = 0.2 as

our ‘optimistic’ value in the cases we consider in Fig. B1. Using

a galaxy group and cluster catalogue from the SDSS (Yang et al.

2007), Skibba et al. (2010) find that the fraction of clusters in which

the central galaxy is fainter than the brightest satellite is ≈30 per

cent in the mass range M ∼ 1013–1014 M⊙ and ≈40 per cent for

M ∼ 1014–1015 M⊙. It is not clear what these results imply for the

LRG galaxy sample, but the parameter f cen,err aims to encompass

this case. We choose f cen,err = 0.4 as our ‘conservative’ estimate

for the cases we consider in Fig. B1.

The second situation we consider is the breakdown of our assump-

tion that the central galaxy has no peculiar motion with respect to

the mean velocity of the halo dark matter. Any offset with respect

to the halo centre implies that central galaxies are moving with re-

0 0.05 0.1 0.15 0.2
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Figure B1. We compare three models including central galaxy velocity

dispersion to our fiducial model with no central galaxy velocity dispersion

(f cen,err = bvel = 0) by showing the ratio of P halo(k, pfid) for the models.

The dashed curve has f cen,err = 0.2, bvel = 0 (‘optimistic’); the long dashed

curve has f cen,err = 0.4, bvel = 0 (‘conservative’); and the dash–dotted curve

has f cen,err = 0.2, bvel = 0.6 (‘extreme’). The straight lines show our fiducial

(solid) and conservative (dotted) nuisance parameter constraints determined

in Section 4.3.

spect to the halo centre (van den Bosch et al. 2005; Skibba et al.

in preparation). We call this situation central-halo velocity bias and

parametrize the amplitude as b2
vel = σ 2

cen/σ
2
DM, the ratio of the mean

square velocity of the central galaxy to the halo dark matter. Skibba

et al. (in preparation) find bvel ∼ 0.1 once central misidentifica-

tion has been accounted for. This small value is negligible for our

purposes, so we set bvel = 0 in the ‘optimistic’ and ‘conservative’

cases we consider in Fig. B1. However, Coziol et al. (2009) find

bvel ∼ 0.3 for brightest cluster members. This quantity is difficult

to extract from observations, and it is not clear how the literature

results apply to the LRG sample because of the colour–magnitude

cuts defining the LRG selection. We set bvel = 0.6 in the ‘extreme’

case we consider in Fig. B1.

On the large scales of interest, the effect of non-zero f cen,err or bvel

is to give the mock galaxies a velocity with respect to the halo centre.

In Fig. B1, we show the impact of non-zero central galaxy velocities

on the recovered P halo(k, p) for the three cases we described above.

In the ‘optimistic’ case, we set (f cen,err, bvel) = (0.2, 0); in the

‘conservative’ case, we set (f cen,err, bvel) = (0.4, 0); and in the

‘extreme’ case, we set (f cen,err, bvel) = (0.2, 0.6). To construct mock

catalogues in each of these cases we leave the real-space distribution

of galaxies fixed. To mimic central misidentification, we replace the

central galaxy’s velocity with the velocity of a randomly selected

dark matter particle halo member. For the central-halo velocity bias,

we replace the central galaxy velocity with bvelvran, where vran is the

velocity of a randomly selected dark matter particle halo member.

For comparison, we also outline both our fiducial nuisance function

constraints (2 per cent deviation at k = 0.1 h Mpc−1 and 5 per cent at

k = 0.2 h Mpc−1) and the conservative nuisance function constraints

(4 per cent deviation at k = 0.1 h Mpc−1 and 10 per cent at k =
0.2 h Mpc−1) established in Section 4.3. The ‘optimistic’ case is well

within the fiducial nuisance constraints and the ‘conservative’ case

is well within the conservative nuisance constraints. The ‘extreme’

case, however, exceeds the conservative nuisance constraints for

k > 0.17 h Mpc−1. In Section 5, we also evaluate the cosmological

parameter constraints when P halo(k, p) is calibrated using the power

spectrum of the ‘extreme’ velocity dispersion model in order to

derive a limit on the systematic errors on our final results.

B3 Comparison of mock and observed CiC group statistics

In Table B1, we present CiC group multiplicity functions normal-

ized by the number of galaxies per sample for two sets of cylinder

parameters: �r⊥ ≤ 0.8 h−1 Mpc, �vp = 1800 km s−1 [these are the

Table B1. The observed and mock catalogue CiC group multiplicity func-

tions of groups with ngroup galaxies for our fiducial group finding parameters

�r⊥,max = 0.8 h−1 Mpc, �vp = 1800 km s−1 and for a bigger �r⊥,max =
1.2 h−1 Mpc. The final row shows the ratio of the one-halo shot noise P 1h

LRG

(equation 21) to the standard shot-noise correction 1/nLRG.

ngroup NCiC,obs(n) NCiC,mock(n) Nbig,obs(n) Nbig,mock(n)

2 5283 4717 6432 6280

3 539 658 899 1076

4 110 124 198 252

5 26 28.2 39 71.4

6 7 7.68 27 22.9

7 1 2.32 5 8.65

8 3 0.78 5 3.34

9 0 0.30 0 1.39

10 0 0.10 0 0.66

P 1hn̄gal 0.144 0.143 0.205 0.225

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 404, 60–85



82 B. A. Reid et al.

parameters used to define our CiC groups and reconstructed halo

density field for P halo(k, pfid)] and �r⊥ ≤ 1.2 h−1 Mpc, �vp =
1800 km s−1. The second CiC multiplicity function computed with

larger �r⊥ is used to demonstrate consistency between the mock

and observed catalogues. If the observed satellite galaxies were sig-

nificantly less concentrated than in our mock catalogues, we would

detect these galaxies when �r⊥ is increased.

The observed groups contain 2158 LRGs that were assigned red-

shifts by the fibre-collision correction. According to Reid & Spergel

(2009), where colours are used as a redshift indicator, up to ∼36

per cent of these may be erroneous assignments; correcting this

would remove ∼780 galaxies from the observed groups. We find

that 6.2 per cent of the observed galaxies are ‘satellite’ galaxies

using the reconstructed haloes, or 5.5 per cent if we apply a cor-

rection for erroneous fibre-collision assignments, while our mock

catalogues have 5.9 per cent. The structures of the multiplicity

functions are generally similar. Since our mock catalogues were

designed to match the multiplicity function for LRGs selected as

in Zehavi et al. (2005a), the level of agreement is as expected. We

verify that the agreement extends to the multiplicity function when

we adjust the group finding parameter �r⊥ to be 50 per cent larger.

Accounting for the possible contamination from fibre-collision cor-

rections, which is likely to manifest mostly at ngroup = 2, we see

that in general the observed distribution is smaller than in the mock

catalogues at all multiplicities and for both values of �r⊥. This

result may be understood as one or more of three possibilities: the

mocks having too many satellites altogether, different amounts of

contamination from interlopers due to errors in the small-scale two-

halo redshift-space correlation function or a tighter distribution of

satellite galaxies about the central one in the mocks. An error of

the first kind would result in no error in the reconstructed density

field; errors of the other kinds would result in small changes to the

effective shot noise or FOG features in the density field. The last

line in Table B1 shows that the difference in the effective one-halo

term derived from the mock and observed catalogues using equa-

tion (21) is <2 per cent of the total shot-noise correction. Since the

difference between P 1hn̄gal measured at �r⊥ ≤ 0.8 h−1 Mpc and

�r⊥ ≤ 1.2 h−1 Mpc is less for the observed catalogues compared

with the mocks, we cannot be missing significant contributions to

P 1h due to a less concentrated distribution of the satellite galaxies

in the observed haloes compared with the simulated ones; rather,

the increase in the number of groups comes from the increase in

contamination from galaxies residing in nearby haloes. Our final

conservative nuisance parameter bounds, discussed in Section 4.3,

allow an error of the order of 40 per cent in the one-halo shot-noise

subtraction. Also note that because the maximum line-of-sight sep-

aration (�vp = 1800 km s−1 or ∼20 h−1 Mpc) is so large, the model

CiC multiplicity functions are nearly identical when we consider

the model with ‘extreme’ central galaxy velocity dispersion. Fi-

nally, adding some spatial dispersion of the central galaxies would

slightly reduce the number of CiC groups for an otherwise fixed

catalogue; this may bring the models and observations into even

closer agreement.

We compute the line-of-sight separation of galaxies in the same

CiC group as a probe of the accuracy of our model galaxy veloci-

ties at the high halo mass end, where there is more than one LRG

per halo. The comparison is complicated by the presence of fibre-

collision-corrected galaxies, since their redshifts are artificially set

to that of another galaxy in their group. We discard all such groups

and discard an equal fraction at each ngroup in our mock sample. The

resulting distributions are shown in Fig. B2. The fiducial mocks with

no central galaxy velocity dispersion appear to fit the data better,

Figure B2. Solid line with error bars is the observed probability that a

galaxy has a member of its CiC group with a separation �rLOS along the

line of sight for pairs of galaxies identified as pairs by the CiC criteria,

once all groups containing a fibre-collision galaxy are removed. Error bars

indicate fractional errors of 1/
√

N (�(rLOS), giving a sense of the Poisson

level of uncertainty in the measurement without considering the contribution

from cosmic variance. The dashed line is the expected distribution for our

model with no central galaxy velocity dispersion and the dot–dashed line is

for the model with central galaxy velocity dispersion. Note that �rLOS =
1 h−1 Mpc corresponds to �v ≈ 115 km s−1 for the redshift distribution of

our sample.

though neither matches the observed sharpness of the rise at small

separations. Note that the fiducial mock catalogues with no velocity

dispersion are determined only by the observed NCiC(ngroup); no free

parameters have been adjusted to match the observed velocity dis-

tribution. This comparison indicates that the residual FOG features

in the reconstructed observed and mock halo density fields will be

in satisfactory agreement.

B4 Comparison of P̂halo(k) and P̂LRG(k)

In this subsection we examine the difference between the observed

redshift-space monopole spectrum P̂LRG(k) (no density field pre-

processing of FOG features) and the power spectrum of the recon-

structed halo density field, P̂halo(k), and compare with our mock

galaxy catalogues. This comparison provides an additional consis-

tency check between the mock and observed LRG catalogues and

quantifies the effect of the halo density field reconstruction step on

the measured power spectrum shape.

We consider

�P (k) = PLRG(k) − b2
relPhalo(k), (B4)

where brel is a constant that parametrizes the enhancement of the

overall bias when satellite galaxies are included, since they occupy

the most highly biased regions. In real space on large scales, �P (k)

would be a simple shot noise, but in redshift space we expect the

detailed �P (k) to result from the transfer of power between scales

caused by the FOGs, making �P (k) dependent on the underlying

power spectrum shape. We will ignore this possible <10 per cent

level modification to the expected �P (k) since we have demon-

strated good agreement between the shape of the mock and ob-

served halo power spectra. The lower short dashed curve in Fig. B3
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Figure B3. The solid curve is the difference between the observed spectra

P̂halo(k) and P̂LRG(k), the lower short-dashed curve is the predicted dif-

ference from our simulated catalogues and the upper short-dashed curve

is the same curve but scaled by a factor of 1.5. The scale dependence of

�P (k) is smaller for the observed spectra than for the simulation results.

Furthermore, there is some uncertainty in the appropriate value of brel,

which changes the shape of �P (k). However, at high k, the prediction is

robust to changes in brel since P (k) is small. The long-dashed curves show

�P mock(k) + 200(h−1 Mpc)3 for several values of brel. This demonstrates

that the difference between P̂halo(k) and P̂LRG(k) is consistent with the dif-

ference measured in the simulated catalogues if the excess shot noise from

fibre collisions is accounted for. Moreover, the difference between the ob-

served halo and LRG spectra is large compared with the statistical errors on

the bandpowers.

shows the predicted �P (k) from our mock catalogues, the upper

short dashed curve shows the predicted �P (k) scaled by a factor of

1.5 and the solid curve shows �P (k) for the observed spectra. The

observed �P (k) is clearly flatter as a function of k than the shape

expected from our mock catalogues (dashed curves).

A crucial difference between the observed and mock LRG den-

sity fields is the application of fibre-collision corrections discussed

in Section 2.1 in the observed density field. 2158 galaxies without

spectra were added to the LRG sample and assigned the redshift

of the nearest LRG, while the CiC group multiplicity results in

Table B1 indicate that 6857 galaxies are ‘satellite’ galaxies. First,

since ∼36 per cent of the fibre-collision corrections are erroneous

(Reid & Spergel 2009), we expect an additional shot noise of

∼125 (h−1 Mpc)3 from these galaxies (equation 21), which are not

represented in our mock catalogues. Secondly, the fibre-collision-

corrected galaxies that are physically associated with a neighbour-

ing LRG will change the distribution of �P (k) relative to the mocks

because their line-of-sight separation from the neighbouring galaxy

has been eliminated. The long dashed curves in Fig. B3 shows that

we can match the observed �P (k) as a sum of the mock cata-

logue �P (k) and a shot noise of 200 (h−1 Mpc)3. The �P (k) for

the observed spectra is consistent with a constant power for k <

0.2 h Mpc−1 and amounts to a significant difference between the

two spectra: ∼8 per cent at k = 0.1 h Mpc−1 and ∼18 per cent at

k = 0.2 h Mpc−1. Therefore, differences in the pre-processing of the

LRG density field can lead to changes in P (k) much larger than the

statistical errors on the measurements, which could then be prop-

agated to errors in the derived cosmological parameters. Note that

the reconstructed halo density field is basically unaffected by errors

in the close-pair fibre-collision correction applied to the data, since

these galaxies are all assigned to haloes already containing other

LRGs.

In summary, the difference between P̂halo(k) and P̂LRG(k) can

be understood once we account for the effects of fibre collisions,

and the model predictions P halo(k, p) are robust to any uncertainty

associated with these effects.

B5 The effect of luminosity weighting on P̂halo(k)

A further subtle difference between the mock and observed halo

power spectra is that the mock catalogues were evaluated using

a redshift snapshot with constant n̄LRG, and luminosities were not

assigned to the mock LRGs; each reconstructed halo is weighted

equally when computing the overdensity field. To verify that the

luminosity weighting used to compute the P̂halo(k) does not signif-

icantly alter the relative amplitude of the shot noise to total power

compared with our mock catalogues, we recompute P̂halo(k) from

the data with luminosity-independent weights from Feldman et al.

(1994):

b(L) = 1 (B5)

w(r, L) =
1

1 + Pon̄LRG

, (B6)

where Po = 10 000 (h−1 Mpc)3. Fig. B4 shows the ratio of the

observed spectra with our fiducial weights compared with the

luminosity-independent weights. The good agreement even at large

k where the power is small indicates that there is no significant differ-

ence from the shot-noise subtraction between these two weightings;

we find no statistically significant change in the power spectrum

shape. Moreover, the change in the windowed theory power spec-

trum due to the change in weights is negligible (<0.1 per cent),

indicating that the window function will not be sensitive to the

Figure B4. Ratio of the power spectra computed using the weights in equa-

tion (B6) to the standard Percival et al. (2004) weighting scheme after

rescaling the overall normalization. We also overplot P lin(k)/P nw(k) for

our fiducial model to demonstrate no correlation between the small shifts in

the measured power spectrum and expected BAO feature. Errors show the

fractional errors on P̂halo(k),
√

Cii/P̂halo(k).
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particular weighting choices of Section 2 for reconstructed haloes

containing more than one galaxy. While the luminosity weighting

is critical for the SDSS main sample (Tegmark et al. 2004a), Fig. 1

shows that the LRGs are close to volume-limited over much of the

redshift range of the sample; it is therefore unsurprising that the

Feldman et al. (1994) and Percival et al. (2004) weighting schemes

produce nearly identical power spectra for the LRG sample.

B6 Checking the cosmological dependence of the model

Our model uses HALOFIT to describe the cosmological parameter de-

pendence of the non-linearity in the matter power spectrum, and is

calibrated from N-body simulations at the fiducial cosmology (equa-

tion 13). Below k = 0.1 h Mpc−1, the dark matter power spectrum is

linear at the 1 per cent level, apart from the BAO damping, and it is

only ∼15 per cent larger than the linear one at k = 0.2 h Mpc−1. Us-

ing the publicly available WMAP5 �CDM MCMC chain, we find

P halofit(k)/P lin(k) changes by ∼±2 per cent for k ≤ 0.2 in the space

of cosmologies allowed by the WMAP5 data alone; the error on this

small correction will therefore be well below 1 per cent. Therefore,

we expect the model of the non-linear matter power spectrum to be

accurate at the <1 per cent level at k = 0.1 h Mpc−1 and ∼1 per cent

at k = 0.2 h Mpc−1.

We use the LRG catalogues from Reid & Spergel (2009) eval-

uated at the WMAP3 preferred cosmological parameters (�m, �b,

��, ns, σ 8, h) = (0.26, 0.044, 0.74, 0.95, 0.77, 0.72) at z = 0.2 with

Lbox = 1 h−1 Gpc to test the cosmological dependence of our model

P halo(k, p) in equation (13). We plot a mock catalogue power spec-

trum P halo,WMAP3(k)/P nw(k, pWMAP3) against our P halo(k, p) model

predictions for a NEAR subsample in Fig. B5 to demonstrate the

agreement in both the BAO features and overall shape of the devia-

tion out to k = 0.55 h Mpc−1. χ 2 = 96.6 for 86 d.o.f. (k ≤ 0.55) and

χ 2 = 29.1 for 31 d.o.f. (k ≤ 0.2). This provides further evidence

that the cosmological dependence of our model P halo(k, p) is suffi-

ciently accurate for the SDSS DR7 data, which probe a somewhat

smaller volume.

Figure B5. Agreement between P halo,WMAP3(k)/P nw(k, pWMAP3) mea-

sured from the catalogues in Reid & Spergel (2009) based on an N-body

simulation z = 0.2 snapshot with WMAP3 cosmological parameters (points

with error bars) versus the model prediction from equation (16) at zNEAR =
0.235.

APPENDI X C : EFFECTS O F C ENTRAL

GALAXY VELOCI TY DI SPERSI ON

A N D N U I S A N C E PA R A M E T E R S

In Section 4, we established that the largest remaining known source

of systematic uncertainty is the central galaxy velocity dispersion.

To test the impact of this uncertainty on the cosmological con-

straints, we re-evaluate the P̂halo(k) likelihood surface using the

‘extreme’ velocity dispersion model in Appendix B2 to calibrate

the model P halo(k, p). The maximum likelihood points for the fidu-

cial, no velocity dispersion model (cross) and the ‘extreme’ velocity

dispersion model (‘X’) are shown in the upper left-hand panel of

Fig. C1. The systematic shift in the contours between the zero and

extreme central velocity dispersion models is small compared to

the width of the �χ 2 = 2.3 constraint (dotted curve). When we

marginalize over nuisance parameters b2
o, a1 and a2, �χ 2 between

the maximum likelihood model values for the zero and extreme

velocity dispersion models is ∼0.3. If one instead adopts the a1, a2

and b2
o values which minimize χ 2, the shift decreases to �χ 2 ∼ 0.1;

the difference is because the preferred nuisance parameters a1 and

a2 in the no velocity dispersion model are closer to the boundary of

the allowed values. These �χ 2 values are approximately the same

when considering a fit to the model with or without BAO wiggles.

This shift is small compared to the statistical errors, and since the

velocity dispersion model considered is extreme compared with the

available estimates in the literature (Coziol et al. 2009; Skibba et al.

in preparation), we can safely neglect this systematic uncertainty in

the present analysis.

Within our fiducial nuisance parameter bounds and using

our fiducial model with no central galaxy velocity dispersion,

we have verified that the effect of the nuisance parameters

in equation (15) is small on the P̂halo(k) cosmological pa-

rameter constraints. The preferred nuisance parameters are off-

centre in the allowed a1–a2 space, although not at the bound-

ary: 〈F nuis(0.1 h Mpc−1)/b2
0〉 = 0.016 and 〈(Fnuis(0.1 h Mpc−1)−

Fnuis(0.2 h Mpc−1))/b2
0〉 = 0.060, where we have computed a

likelihood-weighted average over the DR7-only constraints. The

upper right-hand panel of Fig. C1 shows �χ 2 = 2.3, 6.0 and 9.3

contours where a1 = a2 = 0 and b2
o is varied to minimize χ 2 (dashed

contours) compared to our fiducial marginalization over b2
o, a1 and

a2 (solid contours). Allowing nuisance parameters to account for

our imperfect modelling induces both a small shift and widening of

the likelihood surface. The difference in the contours is negligible

when χ 2 is evaluated instead at the values a1 and a2 that minimize

χ 2. Therefore the hard boundary we impose in a1–a2 space does

not seriously affect the likelihood contours, and a1 and a2 are not

strongly degenerate with the cosmological parameters constrained

by P̂halo(k) when a1 and a2 are tightly constrained by the arguments

in Section 4.3.

However, when one substantially relaxes the constraints on the

nuisance function, the constraints from the power spectrum shape

degrade. The lower right-hand panel of Fig. C1 shows how the χ 2 =
2.3, 6.0 and 9.3 constraints relax when a1 and a2 are chosen to min-

imize χ 2 such that F nuis(k = 0.1 h Mpc−1)/b2
0 < 0.2 and F nuis(k =

0.2 h Mpc−1)/b2
0 < 0.5. While the constraints on r s/DV (0.35) are

unchanged, the shape information is degraded. The effects of the

scale-dependent halo bias are well below these allowed deviations

(Smith et al. 2007), and we have argued that our reconstruction of

the halo density field should leave much smaller uncertainties as

well. The dashed contours in the lower right-hand panel of Fig. C1

show a further broadening of the constraints when a1 and a2 are

varied without restriction to minimize χ 2. For comparison with
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Figure C1. Effects of velocity dispersion and nuisance parameters on constraints from the LRG DR7P̂halo(k) for a �CDM model. In each panel, we hold

�bh
2 = 0.022 65 and ns = 0.960 fixed. Upper left-hand panel: �χ2 = 2.3 and 6.0 contours for the P̂halo(k) fit to a no-wiggles model with no central velocity

dispersion (solid) and extreme velocity dispersion (dashed). The �χ2 = 2.3 for the fiducial model with BAO features is shown for comparison by the dotted

line. The cross shows the maximum likelihood point for our fiducial model, while the ‘X’ shows it for the extreme velocity dispersion model. The solid line

indicates rs/DV (0.35) = 0.1097, demonstrating that adopting the velocity dispersion model shifts the likelihood surface along constant rs/DV (0.35). Upper

right-hand panel: �χ2 = 2.3, 6.0 and 9.3 contours. The solid contours use our fiducial marginalization over b2
o, a1 and a2 (as in Fig. 5), while in the dotted

contours fix a1 = a2 = 0 and b2
o to the value which minimizes χ2. Lower left-hand panel: the solid contours as in Fig. 5, while the dashed contours take the

minimum χ2 value for which |F (k = 0.1 h Mpc−1)|/b2
0 < 0.2 and |F (k = 0.2 h Mpc−1)|/b2

0 < 0.5. Lower right-hand panel: the solid contours as in Fig. 5,

while the dashed contours minimize χ2 with no restrictions on a1 and a2. For comparison with the fiducial nuisance restrictions, the solid lines enclose the

region where for the best-fitting χ2, |F (k = 0.1 h Mpc−1)|/b2
0 < 0.04 and the dashed lines enclose |F (k = 0.2 h Mpc−1)|/b2

0 < 0.1.

the adopted nuisance restrictions, the lower right-hand panel of

Fig. C1 also shows the regions where the best-fitting nuisance pa-

rameters satisfy |F nuis(k = 0.1 h Mpc−1)|/b2
0 < 0.04 (solid lines) and

|F nuis(k = 0.2 h Mpc−1)|/b2
0 < 0.1 (dashed lines). The width of this

region is smaller than the statistical errors derived from the shape

constraint, which are shown in the upper left-hand panel. Conse-

quently, it is unsurprising that our marginalized likelihood contours

with the fiducial nuisance restrictions deviate only slightly from the

contours where a1 = a2 = 0. Finally we note that for the mod-

els with and without velocity dispersion, the likelihood-weighted

best-fitting nuisance functions have small deviations from the one

at k = 0.1 h Mpc−1 (<2 per cent), the region containing most of

the shape information. The two models differ in the quasi-linear

regime: 〈(Fnuis(0.1 h Mpc−1) − Fnuis(0.2 h Mpc−1))/b2
0〉 = −0.033

for the velocity dispersion model and 0.060 without velocity disper-

sion. However, we cannot distinguish between velocity dispersion

and other modelling uncertainties to explain the shape of the nui-

sance function preferred by the data. Moreover, using the velocity

dispersion model does not improve the overall χ 2 of the fit.

We conclude that, for this data set, the statistical errors are com-

fortably larger than the errors from modelling uncertainties.
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