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Abstract. The 21cm emission of neutral hydrogen is a potential probe of the matter
distribution in the Universe after reionisation. Cosmological surveys of this line intensity will
be conducted in the coming years by the SKAO and HIRAX experiments, complementary
to upcoming galaxy surveys. We present the first forecasts of the cosmological constraints
from the combination of the 21cm power spectrum and bispectrum. Fisher forecasts are
computed for the constraining power of these surveys on cosmological parameters, the BAO
distance functions and the growth function. We also estimate the constraining power on
dynamical dark energy and modified gravity. Finally we investigate the constraints on the
21cm clustering bias, up to second order. We take into account the effects on the 21cm
correlators of the telescope beam, instrumental noise and foreground avoidance, as well as the
Alcock-Paczynski effect and the effects of theoretical errors in the modelling of the correlators.
We find that, together with Planck priors, and marginalising over clustering bias and nuisance
parameters, HIRAX achieves sub-percent precision on the ΛCDM parameters, with SKAO
delivering slightly lower precision. The modified gravity parameter γ is constrained at 1%
(HIRAX) and 5% (SKAO). For the dark energy parameters w0, wa, HIRAX delivers percent-
level precision while SKAO constraints are weaker. HIRAX achieves sub-percent precision
on the BAO distance functions DA, H, while SKAO reaches 1 − 2% for 0.6 . z . 1. The
growth rate f is constrained at a few-percent level for the whole redshift range of HIRAX
and for 0.6 . z . 1 by SKAO. The different performances arise mainly since HIRAX is a
packed inteferometer that is optimised for BAO measurements, while SKAO is not optimised
for interferometer cosmology and operates better in single-dish mode, where the telescope
beam limits access to the smaller scales that are covered by an interferometer.
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1 Introduction

The tightest constraints on cosmological parameters have been provided by cosmic microwave
background (CMB) anisotropies as measured by Planck [1] and by large-scale structure (LSS)
surveys such as SDSS and DES. Next-generation LSS surveys with DESI [2], Euclid [3], LSST
[4], SKAO [5] and HIRAX [6], combined with CMB data, will significantly improve over the
current measurements.

The post-reionisation 21cm emission line of neutral hydrogen (HI) is a tracer of the
underlying matter distribution. Detecting individual 21cm-emitting galaxies is a difficult
task, especially at higher redshifts, given the weakness of the line. If instead we measure the
integrated emission in each pixel, we can perform large-volume surveys of the HI fluctuations
– known as 21cm (equivalently, HI) intensity mapping surveys [7]. Such spectroscopic surveys
are planned with SKAO-MID (hereafter referred to as SKAO) and HIRAX, which we consider
here. They will provide an exciting and important complementary probe to the traditional
optical/ infra-red LSS surveys, with completely different systematics. In addition to their
wide sky areas, these surveys will together cover the redshift range 0 < z . 3, beyond the
range accessed by cosmological galaxy surveys.

Cosmological constraints are typically performed using the power spectrum. The addi-
tion of the bispectrum is known to improve constraining power (to varying degrees) and to
break parameter degeneracies, as has been shown in recent work on BOSS galaxy surveys
[8–11]. (For recent work on the galaxy bispectrum, see e.g. [12–16].) Regarding 21cm in-
tensity mapping, the combination of the power spectrum and bispectrum has been used to
investigate future constraints on primordial non-Gaussianity [17, 18]. Here we use the same
combination to forecast constraints from 21cm intensity mapping surveys on standard cos-
mological parameters, dark energy parameters and a modified gravity parameter. We also
derive constraints on redshift-dependent BAO (baryon acoustic oscillation) distances and on
the growth rate function.

In contrast to galaxy surveys, HI intensity mapping is contaminated by huge foregrounds,
similar to the CMB. Within the simplified framework of Fisher forecasting, we follow the
usual approach of foreground avoidance (e.g. [17, 19]), since foreground cleaning requires
substantial numerical simulations (e.g. [20]). Another difference lies in the noise: for HI
intensity mapping on linear/ quasi-linear scales, the shot noise can be neglected since it is
dominated by instrumental noise. Apart from these two differences we apply a fairly standard
analysis, based on the tree-level power spectrum and bispectrum, but with modifications to
incorporate nonlinear redshift-space distortions, which affect smaller scales than the tree-
level limit. We also apply ‘theoretical errors’ to the covariances in order to take account
of inaccuracies in the modeling. In our Fisher analysis, we marginalise over all nuisance
parameters.

Our overall finding is that the upcoming HI intensity mapping surveys can deliver
exquisite precision on the cosmological parameters and functions, as well as on the clus-
tering bias parameters, with HIRAX out-performing SKAO, based on the different designs of
the two surveys.

The remainder of the paper is organised as follows. Section 2 presents the theoretical
analysis of the redshift-space power spectrum and bispectrum, including the clustering biases
and the Alcock-Paczynski (AP) effect. Details of the HI intensity mapping surveys are pre-
sented in Section 3, including the telescope specifications, the associated instrumental noise
and the effect of the telescope beam. We make clear the differences between interferometer
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surveys (HIRAX and its precursor) and single-dish surveys (SKAO and its precursor). In
Section 4 we discuss in some detail the Fisher analysis and the various parameters that are
included with the relevant priors. The theoretical error contribution to the covariances is
also summarised. Our results are presented in Section 5, in the form of tables, contour plots
and plots of redshift-dependent errors. We also interpret these results and comment on the
differences between the interferometer and single-dish surveys. Finally, Section 6 summarises
our main results.

2 Theoretical Model

The HI power spectrum and bispectrum in redshift space will be modelled perturbatively by
using the Standard Perturbation Theory (SPT), which assumes that the dynamics of long-
wavelength density and velocity perturbations are driven by the hydrodynamics of an Eulerian
pressureless perfect fluid (see [21] for a review). Moreover, a complete bias and redshift space
distortions (RSD) expansion, up to the lowest non-vanishing order in the perturbations, will
be considered. A phenomenological non-perturbative description will be used for the so-called
fingers-of-God effect (FoG) [22], caused by the virialized motions of galaxies, which cannot
be described within the framework of SPT. Gaussian initial conditions will be considered
throughout this work, while the analysis will be restricted within the linear/semi-linear regime,
where the tree-level power spectrum and bispectrum provide an adequate description.

2.1 Matter power spectrum and bispectrum

The power spectrum of the Bardeen gauge-invariant primordial gravitational potential is
defined in Fourier space by

〈Φ(k)Φ(k′)〉 = (2π)3δD(k + k′)PΦ(k), (2.1)

where PΦ(k) is related to the power spectrum of the primordial curvature perturbations,
generated during inflation. For the standard single-field slow-roll inflationary scenario, their
distribution should be nearly perfect Gaussian. The primordial perturbations Φ are in turn
related to the linear dark matter density contrast through the Poisson equation, δL

m(k, z) =
M(k, z)Φ(k), where

M(k, z) =
2c2D(z)

3ΩmH2
0

T (k) k2. (2.2)

Here D(z) is the growth factor of the linearly evolved density contrast, normalised to unity
today (i.e. D(0) = 1), and T (k) is the matter transfer function normalized to unity at large
scales, k → 0. The linear matter power spectrum (PLm(k, z) = M2(k, z)PΦ(k)) will be com-
puted with the numerical Boltzmann code CAMB [23].

For Gaussian initial conditions, higher-order correlators are non-zero due to the non-
linearities induced by gravity. The most important is the bispectrum, i.e. the Fourier trans-
form of the three-point function:1

〈δm(k1)δm(k2)δm(k3)〉 = (2π)3δD(k1 + k2 + k3)Bm(k1, k2, k3). (2.3)

Here the Dirac delta function ensures the conservation of momentum.
The fiducial cosmology is given by the average values of the flat ΛCDM model, measured

by the Planck mission. In particular we use the base_plikHM_TTTEEE_lowl_lowE_lensing
column of the Planck 2018 results [1].

1We use the ordering k3 ≤ k2 ≤ k1.
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2.2 Neutral hydrogen bias

Cosmological forecasting from future HI IM surveys (see Section 3 for details) requires a
robust description of the relation between the statistics of observed tracers and the underlying
distribution of dark matter, i.e. the clustering bias.

The density contrast of halos δh can be expressed perturbatively as a series of operators,
constructed out of all possible local gravitational observables [24–26] (i.e. operators formed
by the tidal tensor ∂i∂jΦ and its derivatives, where Φ can be the Newtonian gravitational
potential or the velocity potential Φυ), satisfying rotational symmetry and the equivalence
principle (see e.g. [27] for a review). For Gaussian initial conditions and the spacial scales
considered here, the complete set of terms up to second order is needed. The Eulerian halo
density overdensity can be written as

δE
h (x, τ) = bE1 (τ)δm(x, τ)+εE(x, τ)+

bE2 (τ)

2
δ2

m(x, τ)+
bEs2(τ)

2
s2(x, τ)+εE

δ (x, τ)δm(x, τ) , (2.4)

where τ is conformal time, x are spatial comoving coordinates in the Eulerian frame, s2 =
sijs

ij is the simplest scalar that can be formed from the tidal field, εE is the leading stochastic
field [28–30] and εE

δ is the stochastic field associated with the linear bias. These fields take
into account the stochastic relation between the galaxy density and any large-scale field.
The higher-order derivative term, which encapsulates short-scale dynamics and is present at
second-order, is excluded from the expansion since the spacial scales considered here are much
larger than the Langrangian radius of halos hosting the galaxies of interest.

Applying the general bias expansion, described before, to the neutral hydrogen, an
additional ingredient is needed, namely the description on how HI is distributed within the
dark matter halos. This can be achieved within the framework of the halo model [31–33]. In
this approach, HI is assumed to occupy regions within the halos, with a negligible contribution
outside of them. The HI density is then defined as [34, 35]:

ρHI(z) =

∫
dM nh(M, z)MHI(M, z), (2.5)

whereMHI is the average HI mass within the halo of total massM at redshift z. The halo mass
function, nh(M, z), is considered to be the best-fit results of [36], which originate from fitting
to N-body simulations. For MHI we use a halo occupation distribution (HOD) approach [37]
and follow the model of [35]:

MHI(M, z) = C(z)(1− Yp)
Ωb

Ωm
e−Mmin(z)/M M q(z), (2.6)

where C is a normalization constant, Yp = 0.24 is the helium fraction, Mmin is the halo
mass below which the amount of HI in halos is exponentially suppressed, and q controls the
efficiency of generating or destroying neutral hydrogen inside halos. The power-law is in
agreement with the numerical results from hydrodynamic simulations of [38, 39], while the
presence of the exponential cut-off ensures the suppression of HI in low-mass halos [34, 40, 41].
The fiducial values of the HOD free parameters are q = 1 and Mmin = 5× 109M�/h.

The HI bias coefficients are given by

biHI(z) =
1

ρHI(z)

∫ ∞
0

dM nh(M, z)bhi (M, z)MHI(M, z), (2.7)
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where the index i corresponds to the subscripts of the bias terms in the expansion of Equa-
tion (2.4). For the linear halo bias we use the the fitting function of [42], while for the
quadratic bias the analytic expression is derived after using the mass function of [36] and the
peak-background split argument [17, 43]. In [43] it is shown that both expressions are in good
agreement with numerical results for the HI mass ranges considered here. The second-order
tidal field bias coefficient is related to the linear bias by bEs2 = −4(bE1 − 1)/7 [44].

2.3 Power spectrum and bispectrum in redshift space

The distance of a luminous object is determined by its motion with the Hubble flow, which
is affected by its peculiar velocity. This effect is known as a redshift space distortion [45–
47] and can be taken into account by mapping the real space correlator to redshift space.
Here we will consider the flat-sky approximation, i.e. the line-of-sight vector ẑ is a constant
unit vector. In the non-perturbative regime, the velocity dispersion of objects during the
virialisation process make structures appear more elongated along the line of sight, compared
to real space, i.e. the FoG effect. It is treated here phenomenologically, by introducing an
exponential damping factor, which models the suppression of clustering power in redshift
space.

The tree-level expressions for the HI power spectrum and bispectrum in redshift space
are given by:

PHI(k, z) = T̄ (z)2
[
DP

FoG(k, z)Z1(k, z)2Pm(k, z) + Pε(z)
]

+ PN(k, z), (2.8)

BHI(k1,k2,k3, z) = T̄ (z)3

{
DB

FoG(k1,k2,k3, z)

×
[
2Z1(k1, z)Z1(k2, z)Z2(k1,k2, z)P

L
m(k1, z)P

L
m(k2, z) + 2 perm

]
+ 2Pεεδ(z)

[
Z1(k1, z)P

L
m(k1, z) + 2 perm

]
+Bε(z)

}
. (2.9)

In HI IM, PN is the instrumental noise (see Section 3), where it is assumed to be Gaussian
(see [19] for a discussion) and therefore it is only present in the two-point correlator. The
background temperature is T̄ = 188 ΩHI(z)h(1+z)2H0/H(z) µK, where the cosmic evolution
of the HI density is modelled as ΩHI(z) = 4×10−4(1 + z)0.6 [48]. The general redshift kernels
up to second order and for Gaussian initial conditions are:

Z1(ki) = b1 + fµ2
i , (2.10)

Z2(ki,kj) = b1F2(ki,kj) + fµ2
ijG2(ki,kj) +

b2
2

+
bs2

2
S2(ki,kj)

+
1

2
fµijkij

[
µi
ki
Z1(kj) +

µj
kj
Z1(ki)

]
, (2.11)

where f is the linear growth rate, µi = k̂i ·ẑ, µij = (µiki+µjkj)/kij and k2
ij = (ki+kj)

2. Note
that we suppressed the redshift dependence for brevity. The kernels F2(ki,kj) and G2(ki,kj)

are the second-order symmetric SPT kernels [21], while S2(k1,k2) = (k̂1 · k̂2)2 − 1/3 is the
tidal kernel [44, 49]. The FoG damping factors are [50, 51]

DP
FoG(k, z) = exp

[
− k2µ2 σP (z)2

]
, (2.12)

DB
FoG(k1,k2,k3, z) = exp

[
−
(
k2

1µ
2
1 + k2

2µ
2
2 + k2

3µ
2
3

)
σB(z)2

]
, (2.13)
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where the damping parameters σP and σB have fiducial value equal to the linear velocity
dispersion συ. The stochastic terms (i.e. Pε, Pεεδ and Bε) approach their asymptotic constant
values as k → 0. For the scales considered here, the Poisson distribution characterises fully
the correlation of these components, hence these predictions will be used as fiducial values
for the shot-noise contributions. In the HI halo model formalism (Section 2.2), the shot noise
term is given by [35]

PSN(z) =
1

neff(z)
=

1

ρHI(z)

∫
d lnM nh(M, z)M2

HI. (2.14)

The effective number density can in turn be used for the fiducial values of all the stochastic
contributions [27, 52]:

Pε ≡ PSN, Pεεδ =
b1

2neff
, Bε =

1

n2
eff

. (2.15)

The redshift-space bispectrum is characterized by five variables: three to define the
triangle shape (e.g. the sides k1, k2, k3) and two to characterize the orientation of the
triangle relative to the line of sight. The angles characterising this orientation are, following
[53], the polar angle θ of k1, with cos θ = µ ≡ k̂1 · ẑ and the azimuthal angle φ around
k1. Then the cosines of the angles that the wave-vectors make with the line of sight are:
µ1 = µ, µ2 = µ cosx12 +

√
1− µ2 sinx12 sinφ and µ3 = −(k1/k3)µ1 − (k2/k3)µ2, where

cosx12 = k̂1 · k̂2. Then BHI(k1,k2,k3, z) = BHI(k1, k2, k3, µ1, φ, z). Here we focus on the
monopole of the tree-level bispectrum, obtained after taking the average over all directions.
In [54], it is shown that the lowest-order bispectrum multipoles do not suffer from a significant
loss of information on most of the cosmological parameters and bias coefficients (see also [55]
for a discussion).

In this work we stay mostly within the perturbative regime, slightly venturing into
mildly nonlinear scales for low redshift. For the power spectrum, the tree-level description is
sufficient. Nonetheless, in order to improve the precision of the matter modelling, instead of
using the linear power spectrum PL

m to describe Pm in Equation (2.8), we use the non-linear
matter power spectrum, PNL

m , from the updated version of the HMCode augmented halo
model [56]. The HMCode approach provides more accurate predictions, over a large range of
scales, relative to the usual Halofit model [57, 58], as shown in [56, 59]. In addition, a general
feature of the Halofit approach is the poor performance in predicting the derivatives of the
power spectrum with respect to some cosmological parameters [60]. This indicates that the
usage of Halofit, in a Fisher matrix error forecast, hides inaccuracies and should be used with
extreme caution. In order to avoid the possibility of unreliable Fisher information matrix
calculation, we use the HMCode, evaluated with the latest version2 of CAMB, to describe
the non-linear matter power spectrum.

For the bispectrum, the tree-level modelling provides an adequate description for the
high-order clustering of HI on the scales considered here [8, 61–67]. Nonetheless, for both
correlators, we will take into account the parameter shift due the exclusion of higher-order
contributions in the matter and bias expansions, at the Fisher matrix level, through the
‘theoretical errors’ approach (see Section 4.4).

2.4 Alcock-Paczynski effect

Another source of anisotropies in the observed galaxy clustering, in addition to RSD, is the
AP effect [68], which occurs when the fiducial cosmology, used to convert the observed an-

2https://camb.readthedocs.io/en/latest/
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gular coordinates and redshifts to physical distances, differs from the true one. This leads
to an artificial anisotropic distortion of the inferred galaxy distribution, which modulates the
amplitude and shape of the power spectrum and bispectrum. The radial and transverse dis-
tortions are proportional to the Hubble parameter H(z) and angular diameter distance DA(z)
respectively. This provides additional information on probing the underlying cosmology, and
this effect is taken into account in our forecasts.

The AP distortions rescale the radial and transverse components of k (fiducial cos-
mology) as, q‖ = k‖[Htrue(z)/Hfid(z)] and q⊥ = k⊥[DA,fid(z)/DA,true(z)], where q is the
wave-vector in the true cosmology. The relation between the fiducial (k, µ) and the true (q,
ν) is given by:

q(k, µ) = kα(µ) , ν(k, µ) =
µ

α(µ)

Htrue

Hfid
, (2.16)

α(µ) =

[(
Htrue

Hfid

)2

µ2 +

(
DA,fid

DA,true

)2 (
1− µ2

)]1/2

, (2.17)

where here and below we suppress the redshift dependence for clarity. The observed power
spectrum with AP effect [69] and bispectrum with AP effect [70] are

P obs
HI (k, µ, z) =

(
Htrue

Hfid

)(
DA,fid

DA,true

)2

PHI

(
q, ν, z

)
, (2.18)

Bobs
HI (k1, k2, k3, µ1, φ, z) =

(
Htrue

Hfid

)2( DA,fid

DA,true

)4

BHI (q1, q2, q3, ν1, φ, z) . (2.19)

Note that for the Fisher matrix calculations, only Htrue and DA,true are varied (i.e. free pa-
rameters), where their fiducial values are taken to be those that correspond to the fiducial
cosmology, while Hfid and DA,fid remain fixed.

3 HI intensity mapping surveys

Radio telescopes can probe the Universe in two distinct ways: in interferometer (IF) mode,
by correlating the signal from all dishes/dipole stations and outputting directly the Fourier
transformation of the sky; or single-dish (SD) mode, by providing separate maps of the
sky, which are added together to reduce noise, and the final summed map is then Fourier
transformed.

The surveys considered here include current and near-future surveys: MeerKAT3, a 64-
dish already-operational precursor for SKAO4 (which will have 64+133 dishes), functioning
in SD mode, and HIRAX5 [6], which will have initially 256 dishes and then 1024, operating
in IF mode.

In the case of a line intensity mapping survey the noise component on relevant scales
is dominated by the thermal noise from the instrument, while the shot-noise contribution
remains minimal [71]. In IF mode, a Gaussian model of instrumental noise is given by [72, 73]

P IF
N (k⊥, z) = Tsys(z)

2χ(z)2λ(z)
(1 + z)

H(z)

[
λ(z)2

Ae

]2
1

2nb(u, z) tsurvey

Sarea

θb(z)2
, (3.1)

3www.sarao.ac.za/science/meerkat/
4www.skatelescope.org
5hirax.ukzn.ac.za
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IF Survey HIRAX-256 HIRAX-1024
redshift 0.775− 2.55 0.775− 2.55
Ndish 256 1, 024
Ddish [m] 6 6
Dmax [km] 0.25 0.25
Sarea [deg2] 15, 000 15, 000
tsurvey [hrs] 17, 500 17, 500

Table 1: Details for the interferometer-mode surveys with HIRAX (from [6]).

SD Survey MeerKAT SKAOa

L Band UHF Band Band 1 Band 2
redshift 0.1b−0.58 0.4c−1.45 0.35d−3.05 0.1b−0.49
Ndish 64 64 197 197
Ddish [m] 13.5 13.5 15 15
Sarea [deg2] 4, 000 4, 000 20, 000 20, 000
tsurvey [hrs] 4, 000 4, 000 10, 000 10, 000

Table 2: As in Table 1, for the single-dish mode surveys with MeerKAT (from [75]) and
SKAO (from [5]). Notes: (a) The 64 MeerKAT dishes included in SKAO will keep their
original specifications. For simplicity we neglect this difference and assume all dishes have
SKAO specifications (see [76] for an accurate treatment). (b) Band covers redshift range
z = 0− 0.1 which we neglect due to nonlinear effects. (c) 0.4 ≤ z ≤ 0.58 is excluded to avoid
double-counting Fisher information in overlapping redshift bins, when using the available
information from both bands. (d) As in (c), we exclude 0.35 ≤ z ≤ 0.49.

where tsurvey is the integration time, Sarea is the survey sky area, and λ(z) = λ21(1 + z) is
the observed wavelength of the 21cm line. The field of view of a dish with diameter Ddish

is θ2
b, where θb(z) = 1.22λ(z)/Ddish is the FWHM of the beam of an individual dish. The

effective area Ae = ηπ(Ddish/2)2 depends on the efficiency η; for HIRAX we take η = 0.7.
The system temperature Tsys is the receiver temperature Trx = 50 K for HIRAX plus the
sky temperature Tsky, which is taken from Appendix D of [74]. The survey specifications are
presented in Table 1.

The baseline density nb is defined in the image plane, where we assume azimuthal
symmetry. At an observed wavelength λ, the physical baseline corresponding to u is L = uλ.
nb vanishes beyond the maximum baseline. For HIRAX, we take the baseline distributions
from simulations of the array6, presented in Appendix A.

For surveys in SD mode, the power spectrum of the instrumental noise is [7]:

P SD
N (k⊥, z) = Tsys(z)

2χ(z)2λ(z)
(1 + z)

H(z)

Sarea

η NpolNdish tsurvey β⊥(k⊥, z)2
, (3.2)

where we assume that the dishes have a single feed and that the efficiency for both surveys
is η = 1, while the polarisation per feed is Npol = 2. The system temperatures for MeerKAT

6We thank Warren Naidoo for providing the simulated data used in [6].
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and SKAO follow [5]. The transverse effective beam is given in Fourier space by [19]

β⊥(k, µ, z) = exp

[
−k

2
⊥χ(z)2θb(z)2

16 ln 2

]
. (3.3)

Due to the very high frequency resolution of IM experiments, the effective beam in the radial
direction may be neglected [19].

Cosmological survey specifications for MeerKAT are taken from [75] and for SKAO from
[5], and are presented in Table 2. Note that, in the analysis that follows, we assume that
the full surveys will be done in each band for the two telescopes. The Fisher information
matrix from the two bands of MeerKAT, as well as SKAO, will be added together, effectively
treating MeerKAT and SKAO as two single-band surveys. To avoid double counting the
information that lies within the overlapping redshift bins, we exclude redshifts within the
range of 0.4−0.58 in the case of the MeerKAT UHF-Band and 0.35−0.49 for SKAO Band 1.

Note that the computation of thermal noise depends not only on the technical survey
specifications, but also on the cosmological parameters via H(z) and the comoving distance
χ(z).

The foreground emission from the Galaxy and astrophysical sources is orders of magni-
tude larger than the desired cosmological 21cm signal [20, 77–80]. This effect contaminates
the long-wavelength radial Fourier modes, so that modes with k‖ < k‖,min are inaccessible
[77, 78, 81–85]. The separation of the signal from the foreground emission is a great challenge.
However, the radio foregrounds are mainly very spectrally smooth free-free and synchrotron
emission from our Galaxy and other unresolved sources. This characteristic makes possible the
separation from the cosmological signal, which varies along the line-of-sight due to the under-
lying density field, without significant losses up to some small value of k‖,min [77, 78, 84, 85].
Reconstruction techniques have been developed, to recover the long radial modes that are lost
to foregrounds, by using the measured short modes. In the context of HI intensity mapping,
this has been applied in [86–88], while in [78, 89–95] it shown that by using the forward model
reconstruction framework, modes up to k‖ ' 0.01 h/Mpc can be almost perfectly recovered.

We follow a foreground-avoidance approach and impose a hard cut-off on k‖, keeping in
the Fisher analysis only the modes that satisfy:

k‖ ≥ k‖,min where k‖,min = 0.01 h/Mpc . (3.4)

In order to assess the effect of this foreground cut on constraining the parameters of interest,
we also consider the idealised case k‖,min = 0 and the less optimistic case k‖,min = 0.05 h/Mpc
(see Section 6 for a discussion).

In the case of an interferometer, an additional instrumental effect arises via the leakage
of foregrounds to transverse modes, due to the chromatic response of the interferometer itself
[84, 85, 96–99]. This is not a fundamental astrophysical limitation, but a technical issue: with
excellent baseline-to-baseline calibration it can, in principle, be removed [98]. Here we take
the effect into account by excluding all modes lying in the ‘foreground wedge’, i.e. requiring
that:

k‖ ≥ Awedge(z) k⊥ . (3.5)

The wedge factor Awedge is determined by the source furthest from the zenith that can corrupt
the data [97]:

Awedge(z) =
χ(z)H(z)

c(1 + z)
sin
[
0.61Nw θb(z)

]
, (3.6)
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Figure 1: Maximum Fourier mode corresponding to minimum scale for perturbative analysis.

where sources up to Nw primary beam sizes away from the zenith can have an effect. We
take Nw = 1.

Foreground avoidance in the form used here is reasonable in the context of a simple Fisher
forecast approach. However, this approach does not incorporate the systematics that further
complicate foreground removal, including for example polarisation leakage, radio frequency
interference, and beam effects. A complete treatment needs to include foreground removal
and systematics in the data pipeline; see e.g. [6, 20, 100–104] for recent work in this direction.

4 Methodology

4.1 Fisher matrix

The Fisher matrix formalism is used to predict constraints on cosmological parameters and
distance measures. In a redshift bin at zi, the Fisher matrices of the HI IM power spectrum
is [105, 106],

FPαβ(zi) =
1

2

∑
k

∫ 1

−1
dµ
∂P obs

HI (k, zi)

∂θα

∂P obs
HI (k, zi)

∂θβ

1

∆P 2(k, zi)
, (4.1)

while for the bispectrum

FBαβ(zi) =
1

4π

∑
k1,k2,k3

∫ 1

−1
dµ1

∫ 2π

0
dφ
∂Bobs

HI (k1,k2,k3, zi)

∂θα

∂Bobs
HI (k1,k2,k3, zi)

∂θβ

1

∆B2(k1,k2,k3, zi)
.

(4.2)
Here θα are the parameters to be constrained, the sum over triangles has kmin ≤ k3 ≤ k2 ≤
k1 ≤ kmax, and k1, k2 and k3 satisfy the triangle inequality. The bin size ∆k is taken to be
the fundamental frequency of the survey, kf = 2π/L, where for simplicity we approximate
the survey volume as a cube, L = V

1/3
survey. In the case of the bispectrum, we exploit the

azimuthal symmetry of the RSD tree-level expression to change the φ integration limits to
[π/2, 3π/2] and to multiply the integral by a factor of 2, speeding up the numerical calculations
significantly.

The minimum value of the wavenumber is kmin = kf , i.e. the largest scale available to the
survey, while the maximum value kmax corresponds to the smallest scale where the theoretical
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ΛCDM Extensions
Ωbh

2 Ωch
2 h ns 109As w0 wa γ

0.02237 0.12 0.6736 0.9649 2.1 −1 0 0.55

Table 3: Fiducial ΛCDM cosmological parameters, as measured by Planck [1], and fiducial
parameters for the extensions considered here.

model is reliable (see Figure 1). We follow [18] and set

kmax(z) = 0.75 kNL(z) where kNL(z)−2 =
1

6π2

∫ ∞
0

dk PL
m(k, z). (4.3)

Here kNL is given by the one-dimensional velocity dispersion. The choice of kmax confines
the analysis within the perturbative regime, where the tree-level description offers a good
agreement with numerical results [61–65].

The full set of parameters, which encapsulate the main contributions of uncertainty in
our model, consists of 5 cosmological parameters and 11 further parameters in each redshift
bin i:

θ(zi) =
{

Ωb,Ωc, h, As, ns;DA(zi), H(zi), f(zi),

b1(zi), b2(zi), bs2(zi), σP (zi), σB(zi), Pε(zi), Pεεδ(zi), Bε(zi)
}
. (4.4)

We assume redshift bins are independent, so that e.g. ∂P (k, zi)/∂θα(zj) = 0. Then the total
Fisher matrix is

F tot
αβ =

Nz∑
i=1

Fαβ(zi). (4.5)

Here Nz is the number of redshift bins: HIRAX – Nz = 17; MeerKAT L, UHF bands –
Nz = 5, 8; SKAO 1, 2 bands – Nz = 26, 5. The choices for Nz listed here, result in redshift
bins of width ∆z ' 0.1 for all surveys. For the redshift-independent cosmological parameters,
the summation over all redshift bins is performed as in Equation (4.5), leading to a 5 × 5
block in the final F tot

αβ , which corresponds to the summed contribution from the total redshift
range. Hence, this process will take the 5 + 11 square Fisher matrix from each redshift and
combine them all to form the total Fisher matrix, which includes all redshift bins and has
dimension 5 + 11Nz. Further details can be found in [3].

The stochastic bias contributions Pε, Pεεδ and Bε, as well as the FoG parameters σP
and σB, are considered nuisance parameters and are marginalised over. Once the final total
Fisher matrix is constructed, its inverse yields the minimum error on a parameter as σ(θα) =√

(F−1)αα, in the case of the power spectrum and bispectrum. The forecasts from the
summed power spectrum and bispectrum signal are also considered, by adding together the
corresponding total Fisher matrices, i.e. FP+B

αβ = FPαβ + FBαβ . The cross-Fisher between the
power spectrum and bispectrum is neglected, since its impact on the final constraints, for the
parameters of interest, is minimal [55].

4.2 Cosmological models

After marginalising over the nuisance parameters, the constraints on the remaining redshift-
independent and redshift-dependent parameters, containing the key cosmological information,
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are transformed into constraints on parameters of the cosmological model. The baseline model
is the spatially flat ΛCDM model, defined by 5 parameters:

ΛCDM :
{

Ωb,Ωc, h, ns, As

}
. (4.6)

To investigate further the constraining power of future HI IM surveys on deviations from the
ΛCDM model, we consider two minimal extensions:

• modification of the equation of state of the dark energy:

wde(z) = w0 + wa
z

1 + z
; (4.7)

• modification in the growth rate of large-scale structure, via the growth index γ [107, 108]:

f(z) =
[
Ωm(z)

]γ
, (4.8)

where a significant deviation from γ = 0.55 indicates either modified gravity or non-
standard (e.g. clustering) dark energy.

The extension models are defined by

w0waCDM :
{

Ωb,Ωc, h, ns, As, w0, wa
}
, (4.9)

γCDM :
{

Ωb,Ωc, h, ns, As, γ
}
. (4.10)

Fiducial parameter values for all models are shown in Table 3.
The projection from the Fisher matrix of the initial parameter set θα in Equation (4.4)

(after marginalising the nuisance) into the parameters θ̃A of the models in Equations (4.6),
(4.9) and (4.10), is performed via the Jacobian transformation,

F̃AB =
(
JT F tot J

)
AB

=
∑
α,β

JAα F
tot
αβ JβB where JAα =

∂θα

∂θ̃A
. (4.11)

The precision of a particular survey on two specific parameters can be quantified through a
figure of merit (FoM) [109], which is inversely proportional to the area of the 2σ contour of
the two parameters, after marginalising over the rest. The ‘dark energy’ FoM is usually taken
as the FoM for w0 and wa:

FoMw0wa =
[
det
(
F̃w0wa

)]1/2
. (4.12)

4.3 Statistical error

In a Gaussian approximation to the covariances of the power spectrum and bispectrum, the
off-diagonal terms and the cross-covariance of P and B are neglected. Then the variances for
the two correlators are [110, 111]:

∆P 2(k, z) =
4π2

Vsurvey(z)k2∆k(z)
PHI(k, z)

2 , (4.13)

∆B2(k1,k2,k3, z) = s123 π kf(z)
3 PHI(k1, z)PHI(k2, z)PHI(k3, z)

k1k2k3 [∆k(z)]3
. (4.14)
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Here PHI includes the thermal noise and s123 = 6, 2, 1, for equilateral, isosceles and non-
isosceles triangles respectively. In addition, for degenerate configurations, i.e. ki = kj + km,
the bispectrum variance should be multiplied by a factor of 2 [27, 64].

The Gaussian approximation is assumed to be accurate enough up to linear and mildly
nonlinear scales and for high-density samples considered here, for both power spectrum and
bispectrum, following [64, 112–115]. Off-diagonal terms of the covariances are related to
higher-order loop corrections [110], making the numerical implementation extremely tedious.
They become important at small scales, where the Gaussian approximation breaks down. In
the case of the bispectrum, these corrections affect even the variance and can have a significant
effect on cosmological parameters [64].

It has also been shown that non-Gaussian contributions in the form of off-diagonal
terms in the bispectrum covariance and a non-zero cross-covariance, become important even
on large scales for squeezed configurations, and neglecting these contributions can lead to
serious under-estimation of errors on local primordial non-Gaussianity [116–118]. We do not
consider primordial non-Gaussianity here and we expect that the effect on our error estimates
is smaller. Nevertheless, further work is needed in order to include non-Gaussian effects for
robust error estimates on all cosmological parameters.

As a first step in this direction, we include non-Gaussian corrections to the diagonal part
of the bispectrum covariance, following the prescription of [64]:

∆B2
NL(k1,k2,k3) =∆B2(k1,k2,k3)

+
s123 π k

3
f

k1k2k3 (∆k)3

[
PHI(k1)PHI (k2)PNL

HI (k3) + 2 perm
]
, (4.15)

where we omit the z-dependence for brevity. The nonlinear power spectrum PNL
HI (k) is given

by Equation (2.8) after the replacement: Pm(k) → PNL
m (k) − PL

m(k), where PNL
m is the non-

linear matter power spectrum, described in Section 2.3.

4.4 Theoretical error

At small scales the statistical error becomes minimal, allowing for an increased signal and
tighter constraints on cosmological and distance parameters, especially in the case of the
bispectrum [119, 120]. However, on these scales the perturbative approach fails to describe
the clustering of tracers. Even within the perturbative regime, as we approach non-linear
scales, higher-order loop corrections become important. Introducing a sharp kmax cut-off
excludes all scales beyond the validity of the chosen model. Nonetheless, the importance of
loop corrections is gradual, indicating that neglecting them introduces biases at any kmax.
In the Fisher matrix analysis performed here, the uncertainty from excluding next-to-leading
order corrections will be taken into account via the theoretical error approach introduced in
[121].

In this formalism, theoretical errors are defined as the difference between the chosen
perturbative order (e.g. , tree-level) and the next higher-order (e.g. , 1-loop). The theoretical
error acts as correlated noise, forming the following covariance for the power spectrum:

CEP = EP (k, z)EP (k′, z) exp

[
−(k − k′)2

2 ∆k2

]
, (4.16)

while for the bispectrum

CEB = EB(k1,k2,k3, z)EB(k′1,k
′
2,k
′
3, z) exp

[
−

3∑
i=1

(ki − k′i)2

2 ∆k2

]
. (4.17)
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These theoretical error covariances are added to the statistical variances, presented in the
previous section, to form the final covariances that are used in the Fisher matrix formalism.
The correlation length ∆k cannot be very small because the theoretical error covariance
would be uncorrelated between the different momentum configurations. Here we use the
value ∆k = 0.05 h/Mpc, proposed by [122], which is motivated by the scales of the BAO
wiggles. Note that the final theoretical error covariance is independent of the value of the
correlation length, as long as the size of the k-bin is much smaller than ∆k. This is true for
the surveys we consider here, since the chosen binning size in the momentum space is the
fundamental frequency, and kf � ∆k.

The envelopes EP and EB are given from the fitting to the desired high-order correction.
For the power spectrum we use the envelope, fitted to the explicit 2-loop calculations [121]:

EP (k, z) = D(z)4PHI(k, z)

(
k

0.45 h/Mpc

)3.3

, (4.18)

where PHI is given by Equation (2.8), but without the thermal noise contribution. For the
bispectrum, we use again an envelope fitted against the 2-loop calculations [121]:

EB(k1,k2,k3, z) = 3D(z)4BHI(k1,k2,k3, z)

(
kT

0.45 h/Mpc

)3.3

, (4.19)

where BHI(k1,k2,k3, z) is given by Equation (2.9) and kT = (k1 + k2 + k3)/3.
Note that the theoretical error approach, briefly described here, does not take into ac-

count FoG effect, which is not captured by perturbation theory and can become important at
the loop correction level (see [123] for a discussion). Nonetheless, due to the scales considered
here, the exclusion of FoG effects from the theoretical error approach is not expected to affect
significantly the error covariances.

The analysis here is mostly confined to scales where the tree-level description gives
accurate predictions. Hence, we do not expect the theoretical uncertainties to significantly
affect our forecasts. Nonetheless, the inclusion of theoretical errors is done in order to have,
as much as possible, a complete characterisation of the covariance included in the Fisher
formalism.

4.5 Priors

The forecast results produced in this work, come from the Fisher information matrices. This
is equivalent to assuming that all the information on the parameters comes from the like-
lihood, while very diffused priors are adopted. Therefore, the Fisher matrix results will be
combined with the information on cosmological parameters coming from the observation of
CMB performed by Planck [1]. In order to do this, we use the Markov chain that samples
the posterior, from the Planck webpage7, which corresponds to each fiducial cosmological
model considered (Section 4.2). From the chains we compute the covariance matrix that
corresponds to the subset of parameters considered here and proceed to invert the matrix in
order to get the Planck Fisher matrix. The latter is then summed to the Fisher matrices of
the power power spectrum and bispectrum, as well as their joined case. Effectively, we treat
the Planck likelihood as a multivariate Gaussian, which is sufficient for the free cosmological
parameters considered here.

7http://pla.esac.esa.int/pla/#cosmology
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5 Results

In the previous sections we outline the model, the surveys and methodology used to produce
our forecasts. In this section we summarize the results on estimating the constraints on
cosmological parameters coming from next-generation HI intensity experiments, in the case
of the ΛCDM, γCDM and w0waCDMmodels, as well as on redshift dependent quantities,
like cosmic distances and bias parameters. For all parameters, the forecasts are derived from
the HI power spectrum, bispectrum and their joint signal (see Section 4 for details), while
Planck priors are considered throughout, unless otherwise stated.

5.1 Cosmological parameters

Here we present our results on the standard ΛCDM cosmological model, by combining the
Planck measurements with the forecasts coming from HI intensity mapping surveys in single-
dish mode (MeerKAT and SKAO) and in interferometer mode (HIRAX-256 and HIRAX-
1024). In the case of the SD mode experiments which operate in two frequency bands, the
combined signal from both bands is considered (see Table 2). We exclude the redshift bins
within the range 0.4 ≤ z ≤ 0.58 (MeerKAT UHF band) and 0.35 ≤ z ≤ 0.49 (SKAO band
1), in order to avoid double-counting the information within the overlapping redshifts. The
marginalised relative errors on each ΛCDM cosmological parameter are presented in Table 4
(SD mode) and Table 5 (IF mode), while the 2D contours of the forecasts are shown in
Figure 2.

The MeerKAT survey, once combined with Planck , provides percent-level constraints on
all cosmological parameters, where the HI power spectrum and bispectrum give very similar
relative errors (see Table 4). Due to the CMB external information, the summed signal
from the two- and three-point correlators offers only a small improvement. As indicated by
the panels in Figure 2, MeerKAT provides a marginal advantage over the Planck constraints
(grey shaded contour) for most of the cosmological parameters, where the power spectrum
constraints are only slightly better than those by the bispectrum.

SKAO produces moderately improved results compared to MeerKAT for all parameters,
due to the larger volume and redshift range probed by SKAO, which increases the Fourier
space resolution, thus improving the overall signal of the summary statistics considered. This
is more evident for Ωc and As. In the case of the latter, SKAO reduces the Planck errors
two-fold (see bottom panels of Figure 2). Similarly to MeerKAT, the HI power spectrum and
bispectrum of SKAO yield approximately equal relative errors, and the summed signal of the
two correlators produces a more notable improvement compared to MeerKAT.

SD mode is capable of probing better the large clustering scales [19], rendering a power
spectrum analysis more appropriate. Nonetheless, the effect of the beam and the survey spec-
ifications allows for similar constraints from both correlators, once the Planck measurements
are considered. From the marginalised 2D contours in Figure 2, we see that the bispectrum
and power spectrum have almost the same correlations between parameters, due to the dom-
ination of the CMB signal. Adding the two- and three-point statistics offers a moderate
improvement on all cosmological parameters, besides the spectral index, whose forecasts are
seemingly unaffected by the inclusion of the bispectrum. This is evident for both SD surveys,
as shown in Table 4.

The power spectrum is known to suffer from degeneracies between cosmological and bias
parameters. Adding the information from the bispectrum introduces new shape dependencies
that break various parameter degeneracies, improving the overall forecasts on cosmological
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MeerKAT SKAO

[%] P B P+B P B P+B

ΛCDM

σ(Ωb)/Ωb 0.92 (0.87) 0.92 (0.84) 0.81 (0.75) 0.66 (0.61) 0.64 (0.58) 0.56 (0.52)
σ(Ωc)/Ωc 1.81 (1.68) 1.8 (1.62) 1.54 (1.37) 1.13 (1.0) 1.1 (0.92) 0.86 (0.74)
σ(h)/h 0.56 (0.52) 0.56 (0.5) 0.47 (0.42) 0.35 (0.31) 0.34 (0.29) 0.27 (0.23)
σ(ns)/ns 0.39 (0.38) 0.39 (0.38) 0.37 (0.37) 0.35 (0.34) 0.35 (0.34) 0.33 (0.32)
σ(109As)/109As 0.93 (0.92) 1.01 (0.95) 0.82 (0.78) 0.48 (0.47) 0.6 (0.54) 0.42 (0.39)

γCDM

σ(Ωb)/Ωb 0.95 (0.88) 0.95 (0.85) 0.83 (0.75) 0.66 (0.61) 0.65 (0.58) 0.56 (0.52)
σ(Ωc)/Ωc 1.88 (1.7) 1.9 (1.65) 1.59 (1.37) 1.14 (1.0) 1.12 (0.92) 0.87 (0.74)
σ(h)/h 0.58 (0.53) 0.59 (0.51) 0.49 (0.43) 0.35 (0.31) 0.35 (0.29) 0.27 (0.23)
σ(ns)/ns 0.39 (0.38) 0.39 (0.38) 0.37 (0.37) 0.35 (0.34) 0.35 (0.34) 0.33 (0.32)
σ(109As)/109As 1.22 (1.17) 1.26 (1.17) 1.13 (1.06) 0.65 (0.63) 0.88 (0.77) 0.58 (0.54)
σ(γ)/γ 12.67 (11.8) 14.89 (12.69) 10.73 (9.45) 6.11 (5.7) 8.11 (6.57) 5.05 (4.45)

w0waCDM

σ(Ωb)/Ωb 5.06 (4.86) 5.01 (4.5) 3.95 (3.6) 2.48 (2.34) 2.55 (2.21) 1.86 (1.68)
σ(Ωc)/Ωc 5.11 (4.88) 4.99 (4.44) 3.93 (3.54) 2.46 (2.27) 2.49 (2.11) 1.78 (1.55)
σ(h)/h 2.26 (2.17) 2.23 (2.0) 1.75 (1.59) 1.07 (1.01) 1.11 (0.95) 0.78 (0.69)
σ(ns)/ns 0.42 (0.42) 0.42 (0.42) 0.42 (0.41) 0.4 (0.4) 0.4 (0.4) 0.39 (0.38)
σ(109As)/109As 1.44 (1.42) 1.42 (1.38) 1.33 (1.29) 1.05 (1.04) 1.1 (1.06) 0.93 (0.9)
σ(w0)/w0 31.63 (30.29) 35.04 (31.43) 25.41 (23.3) 13.69 (12.78) 16.42 (14.13) 10.41 (9.3)
σ(wα)/wα 103.46 (99.03) 130.64 (117.1) 86.18 (79.42) 40.56 (37.75) 55.86 (48.32) 32.35 (29.06)

FoM 10.8 (11.9) 7.8 (9.8) 17.3 (20.7) 73 (82) 44.7 (59) 120.5 (147)
FoMnPp 5.5 (6.2) 5.5 (7.3) 11.9 (14.8) 52.7 (60.4) 39 (52.7) 99.5 (123)

Table 4: Forecasts of marginalised 1σ relative errors (in %) on cosmological parameters in
ΛCDM, γCDM and w0waCDM , for SD surveys MeerKAT and SKAO, using the combined
signal of both bands of each survey (see Table 2), avoiding double-counting in overlapping
redshift bins. Columns display constraints from power spectrum (P), bispectrum (B) and
combination (P+B). Main results correspond to the k‖,min = 0.01 h/Mpc foreground cut; the
idealised case (k‖,min = 0) is in parenthesis. All results assume Planck priors (see Section 4.5).
Last row shows the FoM (see Section 4.2) for dark energy parameters w0, wa. FoMnPp is the
FoM without Planck priors.

parameters. For instance, the bispectrum helps to break the notorious As and b1 degeneracy
present in the power spectrum, since its amplitude scales like A2

sb
3
1. In addition, the degener-

acy between As and f is broken in a similar way. The importance of adding the bispectrum to
the power spectrum data has been shown previously [8, 55, 66, 123–126]. Despite the initial
expectations of a minimal contribution to the cosmological constraints, when SD surveys are
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HIRAX-256 HIRAX-1024

[%] P B P+B P B P+B

ΛCDM

σ(Ωb)/Ωb 0.39 (0.37) 0.64 (0.61) 0.38 (0.36) 0.32 (0.32) 0.43 (0.42) 0.31 (0.3)
σ(Ωc)/Ωc 0.39 (0.23) 1.11 (1.03) 0.37 (0.23) 0.24 (0.22) 0.48 (0.46) 0.22 (0.2)
σ(h)/h 0.12 (0.08) 0.35 (0.32) 0.12 (0.08) 0.07 (0.07) 0.16 (0.15) 0.07 (0.07)
σ(ns)/ns 0.15 (0.15) 0.34 (0.34) 0.15 (0.14) 0.08 (0.08) 0.25 (0.24) 0.08 (0.08)
σ(109As)/109As 0.22 (0.22) 0.38 (0.36) 0.22 (0.22) 0.17 (0.17) 0.24 (0.23) 0.17 (0.17)

γCDM

σ(Ωb)/Ωb 0.39 (0.37) 0.64 (0.61) 0.39 (0.36) 0.32 (0.32) 0.43 (0.42) 0.31 (0.31)
σ(Ωc)/Ωc 0.4 (0.25) 1.12 (1.03) 0.38 (0.25) 0.29 (0.23) 0.49 (0.46) 0.25 (0.21)
σ(h)/h 0.13 (0.09) 0.35 (0.32) 0.12 (0.09) 0.1 (0.08) 0.16 (0.15) 0.09 (0.08)
σ(ns)/ns 0.17 (0.15) 0.34 (0.34) 0.16 (0.15) 0.1 (0.09) 0.25 (0.24) 0.09 (0.09)
σ(109As)/109As 0.24 (0.24) 0.56 (0.5) 0.24 (0.23) 0.17 (0.17) 0.28 (0.27) 0.17 (0.17)
σ(γ)/γ 2.41 (2.04) 16.3 (14.62) 2.34 (1.93) 1.21 (1.0) 7.51 (6.84) 1.13 (0.97)

w0waCDM

σ(Ωb)/Ωb 1.04 (0.96) 3.61 (3.38) 1.01 (0.93) 0.74 (0.69) 1.81 (1.69) 0.68 (0.64)
σ(Ωc)/Ωc 0.95 (0.79) 3.53 (3.3) 0.92 (0.77) 0.75 (0.66) 1.79 (1.66) 0.69 (0.61)
σ(h)/h 0.43 (0.38) 1.61 (1.51) 0.42 (0.37) 0.31 (0.29) 0.8 (0.75) 0.29 (0.27)
σ(ns)/ns 0.25 (0.23) 0.4 (0.39) 0.24 (0.22) 0.2 (0.18) 0.33 (0.33) 0.19 (0.17)
σ(109As)/109As 0.45 (0.45) 0.99 (0.96) 0.45 (0.44) 0.34 (0.3) 0.64 (0.61) 0.33 (0.29)
σ(w0)/w0 4.65 (4.1) 18.36 (17.08) 4.5 (3.99) 3.13 (2.86) 8.67 (8.03) 2.88 (2.64)
σ(wα)/wα 12.6 (10.86) 46.79 (43.68) 12.14 (10.53) 6.91 (6.32) 20.74 (19.32) 6.39 (5.85)

FoM 904 (1091) 56 (62) 993 (1209) 3033 (3566) 298 (334) 3494 (4155)
FoMnPp 775 (990) 33 (39) 873 (1119) 2712 (3276) 194 (226) 3134 (3848)

Table 5: As in Table 4 but for the IF surveys considered here.

considered, the HI bispectrum of MeerKAT and SKAO is capable of breaking or limiting the
various degeneracies between parameters and thereby provides the improvement seen in the
joint forecasts. This is in agreement with recent findings for optical surveys [8, 66].

The importance of adding the bispectrum can be also seen in cosmological models with
a larger parameter space, since there are more degeneracies to break. This is true for the
γCDM and w0waCDMmodels, where the addition of the bispectrum provides a significant
improvement on all cosmological parameters, with the exception of ns. Naturally, this is
more evident in the case of the model with the most free-parameters (i.e. w0waCDM ), where
the bispectrum not only provides an important contribution but actually dominates the joint
forecasts for Ωb, Ωc and H0.

In the case of HIRAX, we consider the early-phase 256-element array and the future
planned 1024-element array. For both setups, combining the HIRAX Fisher matrices with
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Figure 2: Marginalised 2D contours of 1σ errors for ΛCDM parameters. Panels below the
diagonal give SD surveys, panels above give IF surveys. Colour and line-type are shown at the
top. All results include Planck priors; Planck results are presented for comparison. Contours
correspond to the foreground cut, k‖,min = 0.01 h/Mpc.

the Planck likelihoods, the errors on all ΛCDM parameters improve significantly, achieving
sub-percent level, as shown by the contours of the upper triangular panels in Figure 2. The
constraints are mainly driven by the HI power spectrum, as is evident from the joint forecasts
in Table 5, rendering the bispectrum contribution complementary. The combined signal from
the two correlators for HIRAX-1024 provides the tightest constraints presented in this work.
In particular, the joint power + bispectrum without any prior information, has a precision
comparable to the recent Planck results.

The improvement in the forecasts between the initial and final arrays is attributed to
the higher number of elements and the amplitude of the baseline distribution nb, as given in
Appendix A. This leads to a decrease in the instrumental noise [Equation (3.1)] and therefore
an increase in the range of available modes for the two- and three-point statistics.

In IF surveys the bispectrum has an advantage over the power spectrum, since IF mode
can probe large to intermediate scales, forming a notable number of triangles and pushing the
available modes to higher k values, where the bispectrum signal is significantly boosted. This
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has been found to be true for parameters like the amplitude of primordial non-Gaussianity and
bias in [18]. Despite this, for the cosmological parameters considered here, the full potential of
the bispectrum is reduced in HIRAX. This is more evident in the high-noise case of HIRAX-
256, where the bispectrum has negligible contribution to the final summed forecasts. HIRAX-
1024, keeping all other survey specifications fixed, improves the bispectrum constraints more
than it does the power spectrum, reducing the difference between the forecasts from the two
correlators for all cosmological parameters.

Contrary to what was argued in the SD case, the other cosmological models do not
benefit appreciably from the bispectrum information. In the ΛCDM case, bispectrum con-
straints could be completely neglected. The reason lies in the instrumental noise of HIRAX,
which damps the signal from relevant triangle configurations, reducing the potential of the
bispectrum to break degeneracies and its contribution to constraints.

The HIRAX survey characteristics offer an important advantage to the power spectrum,
within the considered scale range, which provides sub-percent precision for all cosmological
parameters, significantly improving over current CMB limits. Even without appreciable con-
tribution from the bispectrum, the HIRAX forecasts are the tightest, significantly better than
SKAO. In particular, the HIRAX-1024 power spectrum constraints are far stronger than those
from SKAO power spectrum + bispectrum. This is despite the fact that SKAO spans a wider
sky area and greater redshift range. The reason is SKAO’s low dish density (which increases
the instrumental noise) and strong beam effects (which reduces the range of k modes on the
most important scales).

An overall conclusion is that the synergy between the LSS and CMB data is crucial in
achieving robust measurements on cosmological parameters from future surveys.

5.2 Modified gravity

Beyond the ΛCDM framework, the background and the perturbations can be modified. Mod-
ification of general relativity (GR) has been proposed as an alternative source for the ac-
celerating expansion of the Universe observed at low redshifts [127–131]. There is a rich
phenomenology for such models. We choose the simplest and extensively used way to probe
modified growth of perturbations by testing for deviations in the growth index γ (see Equa-
tion (4.8)) from its GR value γ = 0.55 (which applies to ΛCDM and also dynamical dark
energy models that are non-clustering and non-interacting).

The bottom row of Figure 3 presents the marginalised 2-D contours for γ and the other
cosmological parameters for SD surveys, while the last column is for IF surveys. Relative
errors on γ are presented in Table 4 (SD surveys) and Table 5 (IF surveys). Note that the
CMB data serve as priors only on the ΛCDM parameters (see Section 4.2), in order to have a
clear understanding on the capabilities of each survey to robustly constrain modified gravity
models.

In the case of SD experiments, the growth index can be constrained with the modest
precision of ∼ 10 − 14% by MeerKAT and ∼ 5 − 8% by SKAO. The power spectrum yields
tighter constraints than the bispectrum, in agreement with the behaviour observed for the
remaining cosmological parameters, discussed in Section 5.1. Adding the bispectrum improves
the power spectrum results for the two surveys by a few percent, as indicated by the joint
forecasts shown in Table 4. SKAO shrinks the errors on γ by a factor of 2 relative to MeerKAT.

In the case of HIRAX, both power and bispectrum deliver a few-percent precision on
γ, with the power spectrum being the main contributor, while the bispectrum has a comple-
mentary role, with forecasts that are almost 8 times less stringent. HIRAX-1024, combined
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Figure 3: As in Figure 2 but for the γCDMmodel.

with Planck , will be capable of reaching a 1% precision on γ, which would be important for
eludicating the nature of gravity and any possible deviations from GR.

The marginalised contours of γ in Figure 3 indicate that the inclusion of the growth
index in the final parameter space has a minimal impact on the ΛCDM parameters. This
is true for both correlators, whose contours seem to follow the same behaviour, and for
all parameters, except for the amplitude of the primordial power spectrum, which exhibits
sizeable degeneracies with γ. This is more evident in the case of the SD surveys, where for
SKAO the errors on As increase by ∼ 30%, as shown by the relative errors of the power
spectrum and bispectrum presented in Table 4. For HIRAX, the γ − As degeneracy has a
small effect on the constraints of both parameters.
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5.3 Dark energy

Current observations are consistent with a cosmological constant Λ, a non-dynamical dark
energy model with a constant equation of state, wΛ = −1. In this section, we assess the
sensitivity of future and current HI experiments to departures from a cosmological constant,
by using a dynamical dark energy fluid described by the redshift-dependent equation of state
given in Equation (4.7) (and with sound speed of 1, which ensures that the dark energy does
not cluster).

Figure 4 presents the marginalised forecasts on w0waCDM , where the contours on w0, wa
are in the two bottom rows and two right-most columns, for the case of SD and IF surveys re-
spectively. The relative errors on w0 and wa, together with the other cosmological parameters,
are shown in Tables 4 and 5.

In the case of SD surveys, power spectrum and bispectrum provide comparable con-
straints on w0, where power-spectrum errors are a few percent smaller. Overall, MeerKAT
achieves a moderate 25% combined precision on w0, while SKAO delivers ∼ 10%. This is
not true for wa, due to the substantial degeneracies between w0 and wa, as well as between
the dark energy parameters and Ωb, Ωc and H0, as evident in the marginalised contours of
Figure 4. MeerKAT has no constraining power on wa, while SKAO achieves ∼ 30% precision.

On the other hand, both versions of HIRAX achieve a significant improvement over
the SD surveys. The constraints on w0 and wa originate solely from the power spectrum,
with negligible contribution from the bispectrum. Although degeneracies between w0, wa and
cosmology remain (see upper triangle panels of Figure 4), HIRAX provides enough signal to
produce the most stringent constraints in this work, reaching a few percent precision, when
combining both correlators, on both parameters in the 1024-array setup.

In order to assess the potential of surveys in constraining dynamical dark energy, we use
the FoM in Equation (4.12). We take the initial Fisher matrix with free parameters given by
Equation (4.4) for all redshift bins (i.e. 5 + 11Nz parameters), marginalise over the nuisance
parameters and project the derived Fisher (with 5 + 6Nz parameters) to the parameter space
of Equation (4.9), and then marginalise out all parameters except w0 and wa. The subsequent
FoMw0,wa results are reported in the bottom rows of Tables 4 and 5. These results include
the CMB measurements, which are accounted for as priors on the ΛCDM parameters, while
the FoM results, without the Planck priors, are also presented under the label FoMnPp.

For MeerKAT, the power spectrum and bispectrum have a similar contribution, where
the addition of the bispectrum improves FoM by a factor of two. A similar improvement
from the inclusion of the bispectrum is observed for SKAO, but in this case the FoM from
the power spectrum surpasses that from the bispectrum by ∼ 35%. These findings indicate
a partial breaking of degeneracies between the linear bias and primordial scalar amplitude
and growth rate, when bispectrum measurements are included – which then improves the
constraining power on w0, wa. Adding CMB information improves the FoM further, since As

is very well determined by Planck . The enhancement for MeerKAT is ∼ 50%, for SKAO it
is ∼ 25%.

In the case of HIRAX, the power spectrum provides the largest FoM, with the bispectrum
contributing ∼ 10%, highlighting again the inferior role of the bispectrum in HIRAX forecasts.
Once CMB data are added, the FoM from the HIRAX-256 power spectrum and combined
correlators improves by ∼ 15%, while from the bispectrum by a factor of 1.7. For HIRAX-
1024, the improvement on FoM is ∼ 12% for the power spectrum and combined correlators,
while for the bispectrum it is by a factor of ∼ 1.5. These findings indicate that the bispectrum
of HIRAX on its own is inadequate to break degeneracies between the considered parameters
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Figure 4: As in Figure 2 but for the w0waCDMmodel.

and therefore CMB data are necessary to improve the FoM, via the constraining power of
Planck on As. The improvement provided by Planck in the HIRAX FoM is more significant
for the correlator with the poorest signal, i.e. the bispectrum. Combining the signal from
both correlators for HIRAX-1024 with the CMB measurements, yields the highest FoM of
this work, exceeding by far the FoM of Planck and that of recent LSS surveys (e.g. [55]). The
HIRAX-1024 bispectrum alone surpasses by a significant amount the FoM from the SKAO
combined correlators, in the case of the SD experiments (see Tables 4 and 5).
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Figure 5: Forecasts of marginalised relative errors on f (bottom rows), H (middle) and DA

(top), from power spectrum (blue), bispectrum (green) and combined (red). For MeerKAT
and SKAO (two left columns), the low-z (solid lines) and high-z (dashed) bands are shown.
Upper (k‖,min = 0.01 h/Mpc) and lower (k‖,min = 0) boundaries of shaded regions correspond
to the standard and idealised foreground assumptions. Gaps in SD survey curves arise since
information is taken at the midpoints of the last low-z and first high-z bins (taking into
account the removal of the lowest Band 1 bins to avoid double counting).

5.4 Distance and growth rate measurements

Figure 5 displays the marginalised relative errors on the Hubble parameter, angular diameter
distance and growth rate for all surveys considered here. Planck priors are used for the
ΛCDM parameters throughout this section. The shaded regions give the upper and lower
bounds corresponding to k‖,min = 0.01 h/Mpc and k‖,min = 0 foreground cuts, discussed in
Section 3. The model assumed is the standard ΛCDM, where the mapping from H(z) and
DA(z) to the cosmological parameters, via the Jacobian transformation in Equation (4.11), is
not performed. In other words, the results presented in this section utilise the Fisher matrix
of the initial parameter vector [Equation (4.4)], which is reduced to a 5 + 6Nz square matrix
after marginalising over the nuisance parameters.

For the SD surveys, the precision on the BAO distance scale parameters is well below
10% for most of the redshift range. In particular for MeerKAT, the constraints from the two
correlators are mostly on the same level; for low redshifts, the bispectrum provides smaller
errors (by a few percent). The reverse is observed for higher redshifts and specifically for most
of the UHF band, where constraints from the power spectrum dominate. The inclusion of
the bispectrum improves significantly the power spectrum results, especially for low redshifts,
keeping the precision of the joint constraints at percent level for 0.4 . z . 0.6. SKAO
forecasts follow a similar pattern, providing the tightest constraints around z ∼ 0.6, with
errors larger at z & 1.5. This is more evident for the angular diameter distance, where the
high redshift bins of Band 1 offer no constraining power, for both correlators.
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The SD forecasts highlight the importance of including the bispectrum when measur-
ing the BAO distance parameters, especially for the low-z bands, where instrumental noise
allows access to enough scales for the bispectrum signal to break parameter degeneracies,
improving on the power spectrum constraints. This behaviour is reversed for z & 0.8, where
the bispectrum signal does not make an important contribution. At the higher redshifts, the
limitations of SD surveys (effects of beam and instrumental noise) degrade both statistics,
especially the bispectrum. Angular diameter distance is afflicted the most, leading to very
poor constraints for z & 2. On the other hand, the relative error on the Hubble parameter
are mostly . 10%, reaching percent precision around z ∼ 0.6 for both SD surveys. The effect
of the standard and idealised foreground cuts is minimal for the Hubble parameter, for the
whole redshift range and both surveys. This is true as well for the angular diameter distance
at low redshifts, while beyond z ∼ 1 the absence of a foreground cut has a notable effect.

Similarly to the cosmological parameters presented in the previous sections, HIRAX
provides the most stringent constraints on H and DA, at sub-percent level for most of the
redshift range, in the 256 and 1024 cases. Although IF surveys have the additional effect of
the foreground wedge, they do not lose signal due to a wide beam at high z and are able to
access more of the smaller scales where signal is higher. The power spectrum consistently
gives the tightest constraints, especially at high redshifts. Adding the bispectrum improves
the results only marginally. For HIRAX-1024, the joint constraints saturate gradually for
z & 1.2. These forecasts are significantly better than for the SD surveys, in particular the
high redshifts, where HIRAX achieves almost a two orders of magnitude improvement over
SKAO. The HIRAX errors on the BAO distance parameters are basically unaffected by the
presence of a foreground cut. This is perhaps not surprising, since IF mode surveys gain most
of the signal from the intermediate and small scales.

Note that the results consider the information from CMB, which is added as priors
on the ΛCDM parameters, improving the signal and breaking various degeneracies between
parameters. This leads to a significant improvement of the overall forecasts on DA and H,
for all surveys considered, especially for the bispectrum results, which is almost an order of
magnitude. The effect on the power spectrum is more limited (by a factor of 2-3), but still
noticeable. The results without the priors are not shown here for brevity.

Constraints on the growth rate f in the case of MeerKAT are modest: below 10% for
0.4 . z . 0.8. SKAO reaches precision of < 4% for 0.6 . z . 0.8. For both SD surveys
at higher redshift, the constraints worsen; for z & 1 there is effectively no constraining
power. At low z the two correlators provide similar forecasts, and the bispectrum provides
an improvement of ∼ 10%, mainly due to the partial breaking of the well known degeneracies
between f , As and linear bias. The tree-level power spectrum is insufficient to achieve this
alone and therefore the contribution from the bispectrum can help, as shown in [8, 66], at
least for surveys where the three-point statistics has enough signal. At higher z, due to the
SD beam, the contribution of the bispectrum is negligible and the forecasts are driven solely
by the power spectrum.

This is also the case for HIRAX: the bispectrum contribution is minimal, but good
enough to be competitive by itself, reaching a few percent precision for the entire redshift
range. The power spectrum and the joint results provide a precision . 3% at all z for HIRAX-
256, while HIRAX-1024 doubles the precision at z & 1. The presence of a foreground cut has
a small effect at all z for HIRAX, with a larger effect for the SD surveys, especially at high z.
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Figure 6: As in Figure 5 but for the bias parameters described in Section 2.2.

5.5 Bias parameters

Marginalised relative errors on the linear and second-order HI bias parameters (see Section 2.2)
are presented in Figure 6.

The SD surveys have modest constraining power on b1, with maximum precision of a
few percent achieved around z ∼ 0.5 − 0.6. For both surveys, the constraints are driven by
the power spectrum, with only a small contribution from the bispectrum. The joint errors
are < 10%, until z ∼ 1 for both MeerKAT and SKAO. In the case of the second-order
bias parameters, MeerKAT has no constraining power, while SKAO produces errors below
100% only at low redshifts, based effectively only on the bispectrum. SKAO is unusable for
measuring b2 and bs2 .

The second-order bias parameters appear only in the tree-level modelling of the bispec-
trum, so that for the scales and models considered here, the bispectrum is the sole contributor
of signal. Indeed, the main effect expected from a bispectrum analysis is the measurement of
bias parameters, as shown in [8, 55, 66, 123]. However, the SD bispectrum does not contain
enough information to constrain b2 and bs2 , due to unresolved degeneracies between b1 and b2
and between b1 and bs2 . Nonetheless, the forecasts from the joint estimation yield a significant
improvement (although still non-competitive), due to the precise SD constraints on b1 by the
power spectrum, which is enough to partially break degeneracies.

For HIRAX, the forecasts again display a great improvement over the SD surveys. The
bispectrum plays even less of a role in constraining linear bias than for the SD surveys. The
precision on b1 from the power spectrum and joint statistics is roughly constant over the
redshift range at ∼ 1% for HIRAX-256 and sub-percent for HIRAX-1024. The bispectrum,
despite its negligible effect in these constraints, has enough information by itself to constrain
b1 at a few percent level, reaching ∼ 2.5% at z & 1 for HIRAX-1024. At high-z we see that
the bispectrum benefits from the larger kmax values, keeping the errors nearly constant. By
contrast, the HIRAX-256 bispectrum shows rapidly growing errors at high z, the reason being
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that it is not a close-packed array like HIRAX-1024.
For b2, the HIRAX-256 bispectrum provides poor constraints, while for bs2 there is

effectively no precision from the bispectrum. Fitting simultaneously the power spectrum and
bispectrum improves the results, due to the high precision on b1 contributed by the power
spectrum, which breaks degeneracies between the bias parameters. Specifically, the error on
b2 reaches ∼ 20% for z & 1.5, while the precision on bs2 is within 40 − 80%, which is an
improvement of a factor of ∼ 2.5. HIRAX-1024, with its close-packed array, significantly
enhances precision, with a steady improvement towards high z, up to saturation. Bispectrum
on its own reaches ∼ 15% on b2 and ∼ 40% on bs2 . The errors grow at lower z, to the point
where HIRAX-1024 is unable to constrain bs2 . Adding the power spectrum information again
significantly improves precision: ∼ 3% at high z for b2, and ∼ 20%, except at the lowest z for
bs2 . Once again, HIRAX-1024 provides significant better constraints than SKAO.

The presence of a foreground cut has negligible effects on bias parameter precision for
the power spectrum and joint statistics, while there is a more evident effect on the bispectrum,
in particular on the b2 constraints coming from the SD surveys and HIRAX-256.

Including the CMB measurements on the ΛCDM parameters improves the constraints
on the linear bias significantly, mainly due to the breaking of degeneracies between b1 and
As. The Planck priors affect the power spectrum forecasts the most. MeerKAT low- and
high-z bins show a ∼ 40% improvement, with ∼ 50% for the intermediate bins. For SKAO,
priors mainly affect the constraints for z < 2, with an improvement of ∼ 10 − 20%. The
effect of CMB priors on the bispectrum contraints is less but still noticeable: ∼ 40 − 60%
for MeerKAT, mainly at z . 1; ∼ 15 − 20% for SKAO at z < 1.5. The remaining redshift
bins are unaffected by CMB priors, mostly due to the low bispectrum signal at high-z in SD
surveys. The improvements from the joint power spectrum and bispectrum signal on b1 are
affected the least: ∼ 10− 15%, with a maximum around z ∼ 0.5− 0.6, for MeerKAT; a few
percent at z < 1.5 for SKAO. The improvement is minimal for both IF arrays, and both
correlators. For HIRAX-256 on b1, it is 1−5% for the power spectrum and joint signal, while
the bispectrum results improve by 3 − 10%, the best at low z. For HIRAX-1024, there is a
marginal few-percent improvement for all z and both correlators.

On the other hand, b2 and bs2 show minimal improvement for all surveys considered
here and both correlators, since b2 and bs2 are least correlated with cosmological parameters.
Most of the signal is from the bispectrum, while the inclusion of priors mainly benefit the
power spectrum via breaking parameter degeneracies.

6 Conclusions

In this work we examine the potential of upcoming HI intensity mapping surveys, using
single-dish and interferometer modes, in constraining cosmology. These surveys enable us
to probe the high-redshift Universe across wide sky area, increasing by a significant amount
the observed volumes and therefore the cosmological signal of the chosen summary statistics.
This could improve current measurements on cosmological and nuisance parameters. The
question we try to address is: how much information is contained in the redshift space two-
and three-point statistics of HI IM experiments, to constrain cosmological quantities?

The complete analytical tree-level model is used for the power spectrum and bispectrum,
valid up to linear/quasi-linear clustering scales. For the power spectrum of the underlying
matter field we use the non-linear treatment of the HMCode halo model [56], while for the
matter bispectrum we use the tree-level prediction from standard perturbation theory. The
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general clustering bias prescription (Section 2.2) and redshift-space mapping (Section 2.3) are
used up to the lowest non-vanishing order, i.e. up to leading (power spectrum) and second
order (bispectrum). Additionally, the FoG effect is included via an exponential damping
factor [Equations (2.12) and (2.13)], and the AP effect is incorporated in the standard way
(Section 2.4). The modelling used here is a consistent approach for both statistics, since we
keep the analysis well within the perturbative regime by only considering scales that satisfy
k ≤ kmax [Equation (4.3)]. At low redshift, where non-linearity is stronger (i.e. smaller kmax),
we venture marginally into the quasi-linear regime. Due to this we also consider theoretical
uncertainties in our analysis (Section 4.4). The addition of the theoretical errors to the
covariance matrix takes into account the effect of neglecting higher-order effects from the
chosen model, which in turn makes the parameter forecasts insensitive to the choice of the
kmax value. We also take into account instrumental effects: telescope beam, instrumental
thermal noise, foreground avoidance via radial and wedge cuts (see Section 3).

The analysis uses the Fisher matrix formalism to forecast constraints on cosmological
parameters, modified gravity, dark energy, distance measurements and clustering bias coeffi-
cients, marginalising over FoG and stochastic bias parameters. We employ the signals from
the HI power spectrum, HI bispectrum, and their combination. The results from the HI
surveys are also combined with Planck constraints on the ΛCDM parameters, in the form of
priors. The main results of this work are:

(1) Upcoming HI IM surveys with a packed-array interferometer like HIRAX-1024, in com-
bination with Planck measurements, could improve significantly the precision on ΛCDM
parameters, reaching sub-percent levels (see Table 5).

(2) For the SD surveys, the power spectrum and bispectrum in redshift space have similar con-
straining power on cosmological parameters, with the power spectrum being marginally
better (Figure 2). Consequently, combining the information of the two correlators has a
minimal impact on cosmological constraints relative to considering the power spectrum
alone. For HIRAX surveys, the bispectrum contribution can be neglected (Table 5).

(3) Synergy between HI surveys and CMB data is crucial for the SD surveys, in order to
achieve stringent cosmological constraints. Only the summed signal from both SKAO
bands can provide a meaningful improvement over Planck measurements, while MeerKAT
offers negligible constraining power (Figure 2).

(4) For the SD surveys the bispectrum contribution is larger, but still below the power spec-
trum. However, once the priors are considered, the benefit from combining the signal of
the two correlators is modest (Table 4).

(5) Combining HI surveys with CMB observations delivers strong potential for constraining
the growth index γ. HIRAX-1024 could provide percent precision measurements from
the combined signal of both correlators, while SKAO achieves ∼ 5% (Table 5). The
bispectrum contribution is more important for SD surveys in constraining γ, while for IF
experiments it is negligible (Figure 3).

(6) The dark energy equation-of-state parameters w0 and wa are not well constrained by
the SD mode surveys. By contrast, HIRAX-1024 could constrain them with few-percent
precision (Figure 4).
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(7) The power spectrum and bispectrum of the SD surveys provide similar forecasts, and
considering both improves the dark energy FoM by a factor ∼ 1.5 − 2 relative to the
power spectrum alone. The FoM of HIRAX is mainly driven by the power spectrum
signal (see bottom rows of Tables 4 and 5).

(8) The combination of HIRAX and Planck reaches sub-percent precision on DA(z) and H(z)
for the combined signal (Figure 5). This could be important for elucidating the nature
of the so-called ‘Hubble tension’ [132].

(9) For the SD surveys, constraints on DA(z) and H(z) are at 3−10% precision for MeerKAT
(except for DA at z & 1), while SKAO achieves 1− 2% over the low z of Band 1.

(10) In the case of the growth rate f(z), HIRAX can produce few-percent precision for the
entire redshift range. SKAO can only do this in the low redshift slices (Figure 5).

(11) An accurate assessment of the potential of future HI IM surveys to constrain cosmology,
requires precision on the linear clustering bias parameter. HIRAX can achieve < 2%
precision on b1 using the HI power spectrum; the bispectrum alone reaches few-percent
precision, rendering its contribution negligible. A similar trend is shown for the SD
surveys, where few-percent precision is achieved only at low redshifts.

(12) The quadratic bias parameters, within the tree-level analysis used here, can be constrained
only by the HI bispectrum. Thus, the SD surveys, due to their intrinsic limitations (see
Section 3), are unable to provide useful constraints. On the other hand, HIRAX-1024,
which as an IF survey achieves stronger bispectrum constraints, can deliver precision of
∼ 5% on b2 and ∼ 18%, on bs2 (Figure 6).

(13) The standard and idealised values chosen for the radial mode cut-off in the foreground
avoidance, have a minimal effect on most parameter forecasts and surveys considered here.
In particular, the presence of a foreground cut seems to have a moderate effect mainly
on the constraints of the growth rate and the non-linear bias, coming from the large
redshift bins of the SD surveys. For these surveys and redshifts, this is also true for the
angular diameter distance. We additionally checked the result of a harder foreground cut
k‖,min = 0.05 h/Mpc, finding a negligible change in the errors, compared to the idealised
case, for most of the parameters and surveys. More precisely, the only notable change
is a 5 − 10% increase in the angular diameter distance and growth rate errors from the
high redshift bins of the SD surveys, while for the non-linear bias parameter the increase
is within 2− 5%.

The superior performance that is forecast for HIRAX is not unexpected. Constraining
power on cosmological parameters and on the BAO distance and growth rate functions, relies
on access to the higher signal on smaller scales. An interferometer such as HIRAX covers
these scales particularly well, whereas SD surveys progressively lose these scales as redshift
increases, due to the telescope beam [18, 19]. Indeed, HIRAX is designed as a BAO intensity
mapping ‘machine’ [6]. By contrast, the SKAO interferometer was not designed with HI
intensity mapping in mind, so that SKAO is better in single-dish mode for intensity mapping
cosmology [5]. For cosmological constraints that require access to very large scales, such
as measuring the turnover of the power spectrum [133], or probing local primordial non-
Gaussianity via scale-dependent bias [134], SKAO in SD mode is more capable than an
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interferometer like HIRAX [18]. Finally, we should point out that pilot intensity mapping
surveys (with the associated data pipeline construction) are already underway on the SKAO
precursor MeerKAT [101–103, 135, 136], while the HIRAX 256-dish precursor is not yet
constructed.
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A Baseline distribution for HIRAX

An idealised theoretical model is proposed in [74] for the baseline density of close-packed
square (HIRAX-like) and hexagonal (PUMA-like) arrays. First, the image-plane density is
related to the physical density:

nb(u, z) = λ(z)2 nphys
b (L) where L = uλ . (A.1)

Then a fitting formula for the model of the physical baseline density is given as [74]

nphys
b (L) =

(
Ns

Ddish

)2 a1 + a2 (L/Ls)

1 + a3 (L/Ls)a4
exp

[
−
(
L

Ls

)a5]
, (A.2)

where Ls = NsDdish and N2
s = Ndish. For HIRAX, Ns = 16 and 32 in the early and full stages

respectively. The maximum baseline is the diagonal of the square array: Dmax ≈
√

2Ls [137].
The parameters in Equation (A.2) for a square closely-packed array like HIRAX are [74]

aI =
(
0.4847 , −0.3300 , 1.3157 , 1.5974 , 6.8390

)
. (A.3)

Instead of using an idealised model, we use the results from simulations of the HIRAX
array [6]. These simulations are shown by the red curves in Figure 7 for 1024 (left) and 256
(right) dishes. The baseline density that follows from the fitting formula Equation (A.2) is the
blue curve. It is apparent that the fitting formula (blue) does not provide a very good match
to the simulations (red). Different models of the baseline density nb should each satisfy the
constraint that the total number of baselines is Ndish(Ndish − 1)/2 ≈ N2

dish/2. This implies
that ∫

duunb ≈
N2

dish

4π
, (A.4)

where we used d2u = 2π udu, assuming azimuthal symmetry. The relation Equation (A.4)
is satisfied by the simulated (red) and idealised (blue) curves in Figure 7.
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Figure 7: Comparison between the simulated baseline density (red) and the idealised model
Equation (A.2) (blue), for HIRAX-1024 (left) and HIRAX-256 (right).
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