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We place observational constraints on the Galileon ghost condensate model, a dark energy proposal in

cubic-order Horndeski theories consistent with the gravitational-wave event GW170817. The model

extends the covariant Galileon by taking an additional higher-order field derivative X2 into account. This

allows for the dark energy equation of state wDE to access the region −2 < wDE < −1 without ghosts.

Indeed, this peculiar evolution of wDE is favored over that of the cosmological constant Λ from the joint

data analysis of cosmic microwave background (CMB) radiation, baryonic acoustic oscillations (BAOs),

supernovae type Ia (SNIa), and redshift-space distortions (RSDs). Furthermore, our model exhibits a better

compatibility with the CMB data over the Λ-cold-dark-matter (ΛCDM) model by suppressing large-scale

temperature anisotropies. The CMB temperature and polarization data lead to an estimation for today’s

Hubble parameterH0 consistent with its direct measurements at 2σ. We perform a model selection analysis

by using several methods and find a statistically significant preference of the Galileon ghost condensate

model over ΛCDM.

DOI: 10.1103/PhysRevD.100.063540

I. INTRODUCTION

The late-time cosmic acceleration has been firmly

confirmed by several independent observations including

SNIa [1–3], CMB [4–6], and BAOs [7–9]. Although the

cosmological constant Λ is the simplest candidate for the

source of this phenomenon, it is generally plagued by

the problem of huge difference between the observed dark

energy scale and the vacuum energy associated with

particle physics [10]. In the ΛCDM model, there have

been also tensions for today’s Hubble expansion rate H0

constrained from the Planck CMB data [5] and its direct

measurements at low redshifts [11].

In the presence of a scalar field ϕ, the negative pressure

arising from its potential or nonlinear kinetic energy can

drive the cosmic acceleration. If we allow for derivative

interactions and nonminimal couplings to gravity, Horndeski

theories [12] are the most general scalar-tensor theories with

second-order equations of motion ensuring the absence of

Ostrogradski instabilities [13,14]. The gravitational-wave

event GW170817 [15] together with its electromagnetic

counterpart [16] show that the speed of gravity ct is close to

that of light with the relative difference ∼10−15. If we strictly

demand that ct ¼ 1, the Horndeski Lagrangian is of the form

LH ¼ G4ðϕÞRþG2ðϕ; XÞ þG3ðϕ; XÞ□ϕ, where R is the

Ricci scalar, G4 is a function of ϕ, and G2, G3 depend on

both ϕ and X ¼ ∂μϕ∂
μϕ [17–21].

Theories with the nonminimal coupling G4ðϕÞR include

fðRÞ gravity and Brans-Dicke theories, but we have not yet

found any observational signatures for supporting nonmi-

nimally coupled dark energy models over the cosmological

constant. The minimally coupled quintessence and k-essence

with the Lagrangian L ¼ M2

plR=2þ G2ðϕ; XÞ, whereMpl is

the reduced Planck mass, predicts wDE > −1 under the

absence of ghosts, but there has been no significant obser-

vational evidence that these models are favored overΛCDM.

The cubic-order Horndeski Lagrangian G3ðϕ; XÞ□ϕ

allows an interesting possibility for realizing wDE < −1

without ghosts. In cubic Galileons with the Lagrangian L ¼
M2

plR=2þ a1X þ 3a3X□ϕ [22,23], where a1 and a3 are

constants, there exists a tracker solution along which

wDE ¼ −2 during the matter era [24]. This behavior of

wDE is in tension with the joint data analysis of SNIa, CMB,

and BAO [25]. The dominance of cubic Galileons as a dark

energy density at low redshifts also leads to the enhance-

ment of perturbations incompatible with measurements of

the cosmic growth history [26,27].

The above problems of Galileons are alleviated by taking

a scalar potential VðϕÞ [28,29] or a nonlinear term of X in
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G2ðϕ; XÞ into account [30]. In particular, the latter model

can lead to wDE in the range −2 < wDE < −1. Moreover,

the Galileon is not necessarily the main source for late-time

cosmic acceleration in this case, so it should be compatible

with cosmic growth measurements. In this letter, we show

that the cubic Galileon model with a nonlinear term in X
exhibits a novel feature of being observationally favored

over ΛCDM.

II. MODEL

We study the Galileon ghost condensate (GGC) model

given by the action

S ¼
Z

d4x
ffiffiffiffiffiffi

−g
p �

M2

pl

2
Rþ a1Xþ a2X

2 þ 3a3X□ϕ

�

þSM;

ð1Þ

where a1;2;3 are constants. For the matter action SM, we

consider perfect fluids minimally coupled to gravity. The

existence of term a2X
2 leads to the modified evolution of

wDE and different cosmic growth history compared to those

of the cubic Galileon (which corresponds to a2 ¼ 0). The

ghost condensate model [31] can be recovered by taking the

limit a3 → 0 in Eq. (1).

On the flat Friedmann-Lemaître-Robertson-Walker

(FLRW) background given by the line element ds2 ¼
−dt2 þ a2ðtÞδijdxidxj, we consider nonrelativistic matter

(density ρm with vanishing pressure) and radiation (density

ρr and pressure Pr ¼ ρr=3) for the action SM. To discuss

the background cosmological dynamics, it is convenient to

introduce the dimensionless variables

x1 ¼ −
a1 _ϕ

2

3M2

plH
2
; x2 ¼

a2 _ϕ
4

M2

plH
2
; x3 ¼

6a3 _ϕ
3

M2

plH
; ð2Þ

where H ¼ _a=a, and a dot represents the derivative with

respect to the cosmic time t. Then, the Friedmann equation

can be expressed in the form Ωm þΩr þ ΩDE ¼ 1 where

Ωm ¼ ρm=ð3M2

plH
2Þ, Ωr ¼ ρr=ð3M2

plH
2Þ, and

ΩDE ¼ x1 þ x2 þ x3: ð3Þ

The variables x1, x2, x3, and Ωr correspond to density

parameters associated with the Lagrangians a1X, a2X
2,

3a3X□ϕ, and radiation, respectively. Equation (3) evalu-

ated today allows us to eliminate one free parameter,

leaving the model with two extra parameters compared

to ΛCDM.

The dynamical system can be expressed in the form

x0
1
¼ 2x1ðϵϕ − hÞ; x0

2
¼ 2x2ð2ϵϕ − hÞ;

x0
3
¼ x3ð3ϵϕ − hÞ; Ω

0
r ¼ −2Ωrð2þ hÞ; ð4Þ

where ϵϕ ¼ ϕ̈=ðH _ϕÞ, h ¼ _H=H2, and a prime represents a

derivative with respect toN ¼ ln a. The explicit expressions
of ϵϕ and h are given in Eqs. (4.16) and (4.17) of Ref. [30]

(with x4 ¼ 0). The dark energy equation of state is

wDE ¼ 3x1 þ x2 − ϵϕx3

3ðx1 þ x2 þ x3Þ
: ð5Þ

On the future de Sitter fixed point we haveΩDE ¼ 1, and

wDE ¼ −1 with ϵϕ ¼ 0, so there are two relations xdS
1

¼
−2þ xdS

3
=2 and xdS

2
¼ 3 − 3xdS

3
=2. Even though xdS

1
is

negative for xdS
3

≪ 1, the ghost can be avoided by the

positive xdS
2

term.

If the condition x3≫fjx1j;x2g is satisfied in the early cos-
mological epoch, we have wDE≃−ϵϕ=3≃1=4−Ωr=12>0.

On the other hand, in the limit x2 → 0, there exists a tracker

solution satisfying the relation x3 ¼ −2x1 (or equivalently,
ϵϕ ¼ −h) [24,30]. In this case, Eq. (5) reduces to wDE ¼
−1þ 2h=3 and hence wDE ≃ −2 during the matter era. The

existence of positive x2 can lead to wDE larger than −2, so

the approach to the tracker is prevented by the term a2X
2.

Indeed, after x2 catches up with x3, the solutions tend to

approach the de Sitter attractor with x3 subdominant to jx1j
and x2 at low redshifts [30]. In this way, the background

dynamics temporally entering the region −2 < wDE < −1

can be realized by the model (1) with a2 ≠ 0.

III. COSMOLOGICAL PERTURBATIONS

For the GGC model (1), the propagation of tensor

perturbations is the same as that in general relativity

(GR). As for scalar perturbations, we consider the per-

turbed line element on the flat FLRW background:

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ðtÞð1 − 2ΦÞδijdxidxj; ð6Þ

whereΨ andΦ are gravitational potentials. In Fourier space

with the coming wave number k, we relate Ψ and ΨþΦ

with the total matter density perturbation ρΔ ¼
P

i ρiΔi

(where i ¼ m; r;…), as [32–34]

− k2Ψ ¼ 4πGNa
2μða; kÞρΔ; ð7Þ

−k2ðΨþΦÞ ¼ 8πGNa
2
Σða; kÞρΔ; ð8Þ

where GN ¼ ð8πM2

plÞ−1 is the Newtonian gravitational

constant. The dimensionless quantities μ and Σ characterize

the effective gravitational couplings felt by matter and light,

respectively. Applying the quasistatic approximation

[35,36] for perturbations deep inside the Hubble radius

to the model (1), it follows that [30]

μ ¼ Σ ¼ 1þ x2
3

Qsc
2
sð2 − x3Þ2

; ð9Þ

SIMONE PEIRONE et al. PHYS. REV. D 100, 063540 (2019)

063540-2



where

Qs ¼
3ð4x1 þ 8x2 þ 4x3 þ x2

3
Þ

ð2 − x3Þ2
; ð10Þ

c2s ¼
2ð1þ 3ϵϕÞx3 − x2

3
− 4h − 6Ωm − 8Ωr

3ð4x1 þ 8x2 þ 4x3 þ x2
3
Þ : ð11Þ

To avoid ghosts and Laplacian instabilities, we require that

Qs > 0 and c2s > 0. Then, for x3 ≠ 0, μ and Σ are larger

than 1, so both Ψ and ΨþΦ are enhanced compared to

those in GR. Since μ ¼ Σ, there is no gravitational slip

(Ψ ¼ Φ). For the subhorizon perturbations, the matter

density contrast Δ approximately obeys

Δ̈þ 2H _Δ − 4πGNμρΔ ¼ 0; ð12Þ

so the cosmic growth rate is larger than that in GR. In the

likelihood analysis, we solve full perturbation equations

without resorting to the quasistatic approximation.

IV. METHODOLOGY OF

COSMOLOGICAL PROBES

To confront the GGC model with observations, we use

the Planck 2015 data of CMB temperature anisotropies and

polarizations [5,6]. For the Planck likelihood, we also vary

the nuisance parameters exploited to model foregrounds as

well as instrumental and beam uncertainties. We consider

the former dataset in combination with data from the CMB

lensing reconstruction [37], to which we refer as “Planckþ
Lensing”. We include the BAO data from the 6dF galaxy

survey [8] and the SDSS DR7 main galaxy sample [9].

Furthermore, we employ the combined BAO and RSD

data from the SDSS DR12 consensus release [38], together

with the JLA SNIa sample [3]. The latter dataset is called

“PBRS.”

Wemodify the public available Einstein-Boltzmann code

EFTCAMB [39,40] by implementing a background solver

and mapping relations for the chosen model following the

prescription in Refs. [41–44]. The built-in stability module

allows us to identify the viable parameter space by

imposing the two stability conditions Qs > 0 and c2s > 0.

These results will be used to set priors for the data analysis.

We impose flat priors on the initial values of two model

parameters: x
ðiÞ
1

∈ ½−10;10�× 10−16, x
ðiÞ
3

∈ ½−10;10�×10−9

at the redshift z ¼ 105. We performed a test simulation

in which the prior ranges are increased by one order of

magnitude and found no difference for the likelihood

results.

V. OBSERVATIONAL CONSTRAINTS

In Tables I and II, we show today’s values x
ð0Þ
1
, x

ð0Þ
2
, x

ð0Þ
3
,

and H0, σ
ð0Þ
8
, Ω

ð0Þ
m constrained from the Planck and PBRS

datasets, together with bounds on the latter three parameters

in ΛCDM. In Fig. 1, we also plot two-dimensional obser-

vational bounds on six parameters by including the

Planckþ Lensing data as well. In GGC, the Planck data

alone lead to higher values of H0 than that in ΛCDM.

The former model is consistent with the Riess et al. bound

TABLE I. Marginalized values of the model parameters x
ð0Þ
1
,

x
ð0Þ
2
, x

ð0Þ
3

and their 95% CL bounds, obtained by Planck and

PBRS datasets. In parenthesis we show maximum likelihood

values.

Parameter Planck PBRS

x
ð0Þ
1

−1.27þ0.22
−0.15 ð−1.26Þ −1.35þ0.1

−0.07ð−1.27Þ
x
ð0Þ
2

1.70þ0.45
−0.73 ð1.64Þ 1.95þ0.18

−0.31 ð1.74Þ
x
ð0Þ
3

0.28þ0.5
−0.3 ð0.34Þ 0.09þ0.2

−0.1 ð0.23Þ

TABLE II. Marginalized values of H0, σ
ð0Þ
8
, Ω

ð0Þ
m and their

95% CL bounds.

Parameter Case Planck PBRS

H0 GGC 69.3þ3.6
−3.0 ð70Þ 68.1� 1.1ð68.4Þ

ΛCDM 67.9� 2.0ð67.6Þ 68� 1ð68Þ
σ
ð0Þ
8

GGC 0.86� 0.04ð0.87Þ 0.84� 0.03ð0.85Þ
ΛCDM 0.841� 0.03ð0.83Þ 0.84� 0.03ð0.84Þ

Ω
ð0Þ
m

GGC 0.30� 0.04ð0.28Þ 0.305� 0.01ð0.30Þ
ΛCDM 0.30� 0.03ð0.31Þ 0.31� 0.01ð0.31Þ

FIG. 1. Joint marginalized constraints (68% and 95% CLs) on

six model parameters x
ð0Þ
1
, x

ð0Þ
2
, x

ð0Þ
3
, H0, σ

ð0Þ
8
, Ω

ð0Þ
m obtained with

the Planck, Planckþ Lensing, and PBRS datasets.
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H0 ¼ 73.48� 1.66 km s−1 Mpc−1 derived by direct mea-

surements of H0 using Cepheids [11]. With the PBRS and

CMB lensing datasets, we find that the bounds on H0, σ
ð0Þ
8

and Ω
ð0Þ
m are compatible between GGC and ΛCDM. We do

not include the data of direct measurements of H0 and

weak lensing, as they can be affected by the statistical

analysis [45] and nonlinear perturbation dynamics [46],

respectively.

The values of x
ð0Þ
1

and x
ð0Þ
2

constrained from the data are

of order 1, with x
ð0Þ
1

< 0 and x
ð0Þ
2

> 0. We find the upper

limit x
ð0Þ
3

< 0.118 (68% CL) from the PBRS data. This

bound mostly arises from the fact that the dominance of x3
over x2 at low redshifts leads to the enhanced integrated

Sachs-Wolfe (ISW) effect on CMB temperature anisotro-

pies. The most stringent constraints on model parameters

are obtained with the Planckþ Lensing datasets. In Fig. 2,

we plot the CMB TT power spectra for GGC as well as for

ΛCDM and cubic Galileons (G3), given by the best-fit to

the Planck data. The G3 model corresponds to x2 ¼ 0, so

that the Galileon density is the main source for cosmic

acceleration. In this case, the TT power spectrum for the

multipoles l < Oð10Þ is strongly enhanced relative to

ΛCDM and this behavior is disfavored from the Planck

data [27].

In GGC, the a2X
2 term in (1) can avoid the dominance of

x3 over x2 around today. Even if x
ð0Þ
3

≪ x
ð0Þ
2
, the cubic

Galileon gives rise to an interesting contribution to the

CMB TT spectrum. As we see in Fig. 2, the best-fit GGC

model is in better agreement with the Planck data relative to

ΛCDM by suppressing large-scale ISW tails. Taking the

limit x
ð0Þ
3
→ 0, the TT spectrum approaches the one in

ΛCDM. The TT spectrum of G3 in Fig. 2 can be recovered

by taking the limit x
ð0Þ
3

≫ x
ð0Þ
2
.

In Fig. 3, we depict the evolution of Σ and j _Ψþ _Φj for
GGC, G3 and ΛCDM, obtained from the PBRS best-fit. In

G3, the large growth of Σ from 1 leads to the enhanced ISW

effect on CMB anisotropies determined by the variation of

ΨþΦ at low redshifts. For the best-fit GGC, the deviation

of Σ from 1 is less significant, with _Ψþ _Φ closer to 0. In the

latter case, the TT spectrum is suppressed with respect to

ΛCDM. This is why the intermediate value of x
ð0Þ
3

around

0.1 with x
ð0Þ
2

¼ Oð1Þ exhibits the better compatibility with

the CMB data relative to ΛCDM.

As we see in Fig. 4, the best-fit GGC corresponds to the

evolution of wDE approaching the asymptotic value −1

from the region −2 < wDE < −1. This overcomes the

problem of G3 in which the wDE ¼ −2 behavior during

FIG. 2. Top panel: Best-fit CMB temperature-temperature (TT)

power spectra DTT
l

¼ lðlþ 1Þ=2πCTT
l

at low multipoles l for

ΛCDM, GGC, and G3 (cubic Galileons), as obtained in the

analysis of the Planck dataset. The best-fit values for G3 are

taken from Ref. [27]. For comparison, we plot the data

points from Planck 2015. Bottom panel: Relative difference of

the best-fit TT power spectra, in units of cosmic variance

σl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2lþ 1Þ
p

CΛCDM
l

.

FIG. 3. Best-fit evolution of Σ (top) and j _Ψþ _Φj (bottom)

versus z at k ¼ 0.01 Mpc−1 for ΛCDM, GGC, and G3 derived

with the PBRS dataset.

FIG. 4. Best-fit evolution of wDE versus z for ΛCDM, GGC,

and G3 derived with the PBRS dataset.
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the matter era is inconsistent with the CMBþ BAOþ
SNIa data [25]. This nice feature of wDE in GGC again

comes from the combined effect of x2 and x3.

VI. MODEL SELECTION

The GGCmodel has two extra parameters with respect to

ΛCDM, to allow for a better fit to the data. In order to

determine whether GGC is favored over ΛCDM, we make

use of the deviance information criterion (DIC) [47]:

DIC ¼ χ2effðθ̂Þ þ 2pD; ð13Þ

where χ2effðθ̂Þ ¼ −2 lnLðθ̂Þ with θ̂ being parameters maxi-

mizing the likelihood function L, and pD ¼ χ̄2effðθÞ−
χ2effðθ̂Þ. Here, the bar denotes an average over the posterior

distribution. We observe that the DIC accounts for both the

goodness of fit, χ2effðθ̂Þ, and for the Bayesian complexity of

the model, pD, which disfavors more complex models. For

the purpose of model comparisons, we compute

ΔDIC ¼ DICGGC − DICΛCDM; ð14Þ

from which we infer that a negative (positive) ΔDIC would

support GGC (ΛCDM).

We also consider the Bayesian evidence factor (log10 B)
along the line of Refs. [48,49] to quantify the support for

GGC over ΛCDM. A positive value ofΔ log10 B indicates a

statistical preference for the extended model and a strong

preference is defined for Δ log10 B > 2.

In Table III, we list the values of Δχ2eff , ΔDIC and

Δ log10 B computed with respect to ΛCDM for each dataset

considered in this analysis. For Planck and PBRS both

ΔDIC and Δ log10 B exhibit significant preferences for

GGC over ΛCDM. This suggests that not only the CMB

data but also the combination of BAO, SNIa, RSD datasets

favors the cosmological dynamics of GGC like the best-fit

case shown in Figs. 3 and 4. With the Planckþ Lensing

data the χ2eff and Bayesian factor exhibit slight preferences

for GGC, while the DIC mildly favours ΛCDM. The model

selection analysis with the CMB lensing data does not give

a definite conclusion for the preference of models. We note

that, among the likelihoods used in our analysis, the CMB

lensing alone assumes ΛCDM as a fiducial model [37].

This might source a bias towards the latter.

VII. CONCLUSION

We have shown that, according to the two information

criteria, GGC is significantly favoured over ΛCDM with the

PBRS datasets. This property holds even with two additional

model parameters than those in ΛCDM. According to our

knowledge, there are no other scalar-tensor dark energy

models proposed so far showing such novel properties.

This surprising result is attributed to the properties that, for

x
ð0Þ
3

≪ x
ð0Þ
2

¼ Oð1Þ, (i) suppressed ISW tails relative to

ΛCDM can be generated, and (ii) wDE can be in the region

−2 < wDE < −1 at low redshifts. The GGC model deserves

for being tested further in future observations of WL, ISW-

galaxy cross-correlations, and gravitational waves.
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