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Cosmological de Sitter Solutions of the
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Abstract. Exponentially expanding space–times play a central role in con-
temporary cosmology, most importantly in the theory of inflation and in
the dark energy driven expansion in the late universe. In this work, we
give a complete list of de Sitter solutions of the semiclassical Einstein
equation (SCE), where classical gravity is coupled to the expected value
of a renormalized stress–energy tensor of a free quantum field in the
Bunch–Davies state. To achieve this, we explicitly determine the stress–
energy tensor associated with the Bunch–Davies state using the recently
proposed “moment approach” on the cosmological coordinate patch of
de Sitter space. From the energy component of the SCE, we thus obtain
an analytic consistency equation for the model’s parameters which has
to be fulfilled by solutions to the SCE. Using this equation, we then in-
vestigate the number of solutions and the structure of the solution set
in dependency on the coupling parameter of the quantum field to the
scalar curvature and renormalization constants using analytic arguments
in combination with numerical evidence. We also identify parameter sets
where multiple expansion rates separated by several orders of magnitude
are possible. Potentially for such parameter settings, a fast (semi-stable)
expansion in the early universe could be compatible with a late-time
“Dark Energy-like” behavior of the universe.

Mathematics Subject Classification. 83C47, 83C56, 81T20.

1. Introduction

In modern cosmology, the ΛCDM is considered the standard model as it ex-
plains a large amount of observational data (see, e.g., [51] and references
therein). However, one of its predictions is the presence of dark energy or,
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equivalently, a positive cosmological constant. While matter in this model hap-
pens to be purely classical, it is one possible option that dark energy may nat-
urally emerge from quantum effects, that is, if the matter content is modeled
by a quantum field.

Physicists have put a lot of effort into deriving a satisfactory quantum
theory of gravity. For an extensive survey on a wide range of quantum cos-
mological effects, we refer to Schander and Thiemann [45]. The semiclassi-
cal Einstein equation (SCE) takes a rather moderate approach. In particular,
gravity is avoided to be quantized and modeled by a classical metric formalism
governed by an Einstein equation. The energy content, on the other hand, is
modeled by quantum fields. The latter are then coupled to classical gravity
via the expected value of the stress–energy tensor in a quantum state ω and
the SCE reads

Gμν + Λgμν = κ
〈
T ren

μν

〉
ω
. (1)

Hereby, gμν is the metric,1 Gμν = Rμν − 1
2R gμν is the Einstein curvature

tensor (consisting of the Ricci curvature tensor Rμν and its trace R) and Λ
is the cosmological constant. T ren

μν is the renormalized quantum stress–energy
(QSE) tensor of one or multiple quantum field(s), coupling to the geometry of
the underlying space–time with a strength controlled by the parameter κ. We
restrict to free scalar fields φ governed by the Klein–Gordon equation

(� + ξR + m2)φ = 0 (2)

with mass m and curvature coupling ξ. � = −gμν∇μ∇ν denotes the d’Alem-
bertian of the metric gμν .

The SCE has been introduced in a series of articles from the late 1970s
by Davies, Fulling et al. which culminated in [13]. The problem of finding a
suitable QSE tensor was then axiomatized by Wald [52] and further refined by
Christensen [9,10], coming up with a properly covariant regularization scheme.
The SCE (for cosmological settings) was approached by numerical algorithms
and special analytic solutions have been found, e.g., by Anderson [3–6] or Suen
and Anderson [49], as well as Starobinski [47]. Another modern view on the
physical content of the SCE was provided by Flanagan and Wald in [19]. We
refer to the monographs by Birrel and Davies [7], Fulling [22] and Wald [54]
for a comprehensive view on the research on the SCE up to the 1990s. In 2003,
Moretti [39] defined a covariantly conserved QSE tensor as demanded in one of
Wald’s axioms, whereas in 2004, the same QSE was derived from a completely
different point of view in [30].

A mathematical theory of solutions, tailored to cosmological settings,
began to be developed in the late 2000s. In their work [11], the authors Dap-
piaggi, Fredenhagen and Pinamonti observed a distinguished behavior in their
solutions which they call de Sitter-type behavior and we will pick up this dis-
cussion a bit later. Ongoing, the first result toward a mathematical solution
theory, providing local existence and uniqueness results for the trace of the
SCE, was formulated in the seminal article [42] by Pinamonti. This approach

1We use the signature convention (−, +, +, +).
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was further refined, particularly studying global properties of solutions and
their continuability, by Pinamonti and Siemssen in [43,46]. These works, sim-
ilarly to many of the older references cited above, focused the conformally
coupled case. The review articles by Fredenhagen and Hack [20] and by Hack
[26,28] built bridges between purely mathematical solution theory and the
modern physicists’ approaches to cosmology. The results of [43] were recently
generalized to non-conformally coupled fields by Meda et al. in [38]. Therein,
the SCE is reformulated as a fixed-point equation of a certain operator on
a suitable Banach space, which allows to conclude short-time existence and
uniqueness of solutions by a fixed-point theorem. Moreover, in the same pe-
riod of time Eltzner and Gottschalk [15] managed to write the SCE into one
dynamical system for both the scaling factor (of the underlying Friedman–
Lemâıtre–Robertson–Walker (FLRW) space–time and the expectation values
of Wick products of the field and its derivatives). This result was further re-
fined and reformulated in a rigorous framework in [24], where the authors prove
(global) existence and uniqueness of solutions. The latter approach, however,
has the disadvantage of a somewhat implicit definition of the initial state.

Recently, the SCE has been used to derive special cosmological mod-
els. Sanders constructed in [44] maximally symmetric states on a given static
(cosmological) space–time of positive (spatial) curvature. Moreover, in [23] the
authors of the present article have used the techniques of [24] to study a class of
cosmological expansion models driven by a massless scalar field in a Minkowski-
like state, motivated by some observation on the Minkowski vacuum state on
Minkowski space. A recent paper by Juárez-Aubry [32] studies the SCE on
static and ultrastatic, not necessarily spatially homogeneous space–times as an
initial value problem for the state. This work was recently extended to more
generic settings and applied to so-called quantum state collapse scenarios in
[33]. A noteworthy recent result is given in [29], where the author studies the
ordinary differential equations for H = ȧ

a arising from the conformally cou-
pled and massless SCE and to a certain extend classifies the corresponding
dynamical systems in terms of the topological properties of their phase por-
traits. Another work on special solutions is [31], also by Juárez-Aubry. There
the author finds solutions of the SCE which coincide with the classical vac-
uum solutions for a positive cosmological constant Λ, that is, the de Sitter
solution with constant curvature R = Λ or, equivalently, a(t) = exp(

√
Λ/3 t).

In particular, the expectation value of the QSE tensor is taken with respect
to the so-called Bunch–Davies state as first introduced by Bunch and Davies
in [8] and further discussed by Allen in [2]. By isometrically embedding a
cosmological space–time with pure de Sitter expansion into de Sitter space,
this distinguished Bunch–Davies state can be pulled back and indeed yields
a global state on the given de Sitter-type cosmological space–time. However,
searching for these particular (vacuum) solutions of the SCE corresponds to
solving

〈
T ren

μν

〉
ω

= 0. (Note that Gμν + Λgμν = 0 vanishes for the currently
discussed metric/scale factor a.) Thus , [31] is studying the parameter set for
which the presence of the Bunch–Davies vacuum state has no back-reaction
effect to the space–time. While this approach is suitable for the treatment of
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the so-called cosmological constant problem (as in [31]), it does not cover all
cases where a de Sitter expansion and the Bunch–Davies state on the resulting
space–time yield a solution to the cosmological SCE. In particular, it omits
situations when the presence of the vacuum state does have a back-reaction
effect.

Another perspective on studying exponential late-time behavior of cosmo-
logical expansions deals with the topic of so-called energy conditions. These
kinds of considerations are based on an observation by Wald [53] from ’83,
namely that FLRW solutions to the Einstein equation with positive Λ gen-
erally approach the respective exponential vacuum solution with Hubble rate√

Λ/3, provided the stress–energy tensor fulfills specific energy conditions in
terms of two inequalities. Wald’s article can be viewed as establishing a rig-
orous argument linking dark energy/a positive cosmological constant with a
late-time de Sitter phase and thereby proving a no-singularity theorem (at
late times) from these conditions. However, QSE tensors usually do not fulfill
the conditions of [53] in a pointwise manner and the focus has shifted toward
studying whether the observation of [53] (and also other observations concern-
ing space–time singularities) remain(s) true if the stress–energy tensor fulfills
similar weaker conditions, for example where now the stress–energy tensor is
averaged along time-like geodesics. For further reading, we refer to some recent
articles on this topic, e.g., to Fewster and Kontou [16], Fewster and Smith [17],
Fewster and Verch [18] and, in particular, to the comprehensive introduction
by Kontou and Sanders in [34].

Apart from late-time de Sitter solutions, many authors also discuss infla-
tion, i.e., solutions with a de Sitter phase at early time. An inflationary phase
in the universe’s expansion was originally suggested as a solution to the so-
called cosmic horizon problem [25,35,36]. The main architects of inflationary
physics in its modern shape are Guth, Linde and Starobinski, with their most
noteworthy articles on that topic [25,36,48], respectively, all from the early
1980s. In particular, Starobinski addresses the compatibility of an inflationary
phase with semiclassical gravity, and with this purpose notes the existence of
pure de Sitter expansion solutions to the SCE as mentioned above. Moreover,
considerable progress was made by Mukhanov [40] and others to explain the
scale free spectrum of cosmological structures. For comprehensive discussions
we refer to the reviews of Liddle [35] and of Hack [28], where the latter in
particular discusses inflationary models in view of modern algebraic quantum
field theory.

Our present work is dedicated to finding all solutions to the cosmological
SCE whose scaling factor describes a purely exponential expansion, driven by a
massless or massive scalar field in the (pullback) Bunch–Davies vacuum state.

The physical motivation is to identify parameter settings, where for both
an inflationary phase and a late-time de Sitter phase there are two (or more)
exact solutions of the aforementioned kind which approximate the universe’s
expansion during these phases. Suppose that in future work one can show
that the solution with a larger Hubble rate is unstable toward perturbations,
that the solution with smaller rate is stable and that these two solutions are
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connected by a trajectory in phase space. Then, one would show that a scalar
quantum field is capable to drive both inflation and a late-time dark energy-
dominated expansion. Note that such stability/instability behavior of de Sitter
solutions has been found for simplified semiclassical models in [11,29] (cf. the
discussion in Sect. 7).

On the other hand, a complete list of de Sitter solutions to the cosmo-
logical SCE with the (pullback) Bunch–Davies state is interesting in its own
right since these solutions frequently occur in semiclassical cosmology (e.g.,
[11,14,23,47]). Hereby the pullback Bunch–Davies state can be viewed as dis-
tinguished by its symmetry behavior on (the entire, non-cosmological) de Sitter
space. Moreover, Degner [14] finds that on cosmological de Sitter space–times
any “state of low energy” (a physically distinguished class of states introduced
in [41]) converges to the Bunch–Davies state in a suitable sense. Note that
while we are mostly interested in the cosmological setting in order to make
sense of any stability features, we also obtain, as a by-product, a list of all pa-
rameters for which (the entire) de Sitter space and thereon the (non-pullback)
Bunch–Davies solve the SCE.

We summarize our results in the following main theorem:

Theorem 1.1. For H > 0, consider the cosmological space–time with flat spatial
sections defined by a(t) = exp(Ht) and thereon a free scalar quantum field φ in
the state obtained by pulling back the Bunch–Davies vacuum on de Sitter space
with radius 1

H along cosmological coordinates. The field dynamics is governed
by the Klein–Gordon equation (2) with parameters m and ξ. Then:

(i) The semiclassical Einstein equation (1) with coupling κ and cosmologi-
cal constant Λ for this field and state breaks down into a (non-dynamic)
consistency equation for the parameters H, m, ξ, κ, Λ and the renormal-
ization constants originating in φ’s stress–energy tensor. Of these param-
eters, only four are independent.

(ii) Viewing the consistency equation as a constraint on (ξ,H)-pairs with two
(effective) remaining parameters, the solution set can be parameterized by
analytic curves in the ξ-H-plane. In numbers, these are one or two curves
if m = 0, or two or three curves if m > 0.

(iii) The large-H and small-H asymptotics of the solution curves can be ex-
plicitly worked out.

Note that, by time reflection invariance, values H < 0 correspond to
the positive values −H > 0. The well-known H = 0-Minkowski case is not
discussed here. In particular, with the knowledge of part (iii) of the theorem
we can conclude:

Corollary 1.2. There exist parameter settings m, ξ, κ, Λ and renormalization
constants, such that multiple H-values solve the consistency equation. More-
over, the model of Theorem 1.1 in the case m > 0 is flexible enough such
that for any two prescribed positive values of H (with a sufficiently large ratio)
there exist a set of remaining parameters such that both given H-values are
solutions.
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While the last statement on the m > 0-case remains true for an arbitrary
triple of positive numbers, we are mostly interested in tuning parameters to
obtain two prescribed solutions for the reason discussed above. Also, we note
that while the massless model is not as flexible as the massive one, it remains
true that for any (sufficiently) large prescribed value HI (approximating an
inflationary phase), there can be found a value of curvature coupling ξ such
that HI is a solution and, moreover, a second solution can be found close to
Hvac =

√
Λ/3 (if Λ > 0).

While in the following, the results are stated more precisely and tailored
to the respective cases, Theorem 1.1 and Corollary 1.2 immediately follow from
Proposition 3.2, Theorems 4.4, 5.3 and 7.1 as well as the discussions in Sects. 2
and 7.

Moreover, note that some intermediate results were merely accessible by
numerically evaluating certain functions. Typically, we need a statement of
the form h(x) > 0 for all x ∈ I for some analytic function h : I → R on
an interval I ⊂ (0,∞) and we proceed as follows: As a first step, using as-
ymptotic expansions we prove that there exist x1, x2 ∈ I such that h(x) > 0
for all x ∈ (inf I, x1) ∪ (x2, sup I). Thereafter, we numerically evaluate h on a
sufficiently dense and sufficiently widespread grid in a way that we can iden-
tify any precomputed asymptotic expansion. Finally, we observe that all nu-
meric values of h in consideration are positive and, knowing that h is analytic
(and assuming that analytic functions cannot behave “too wild”), we have no
doubt that the respective assertions are true, although they are not rigorously
proven. In order to stick with the theorem-/proof-style and the proposition
labeling throughout the text, we capture the respective assertions in Assump-
tions I, II and III. These are then followed (at appropriate positions in the
text) by “proof-paragraphs” which are opened by the phrase “Numerical ev-
idence for...” and closed by a rotated “q.e.d.-box’ � in order to distinguish
them from purely analytic proofs. Thereafter, we formulate any proposition
depending on the numeric evidence as that it is implied by one or more of
these assumptions. We emphasize that Corollary 1.2 following from Theorem
(7.1) does not depend on any such numerical evidence.

Our paper is organized as follows: The second section contains the deriva-
tion of the consistency equation for the special case of cosmological de Sit-
ter space–times and free scalar fields in the (pullback) Bunch–Davies vacuum
state. As a main tool, we utilize the ‘moments’ approach to the SCE in [24].
Note that while the consistency equation as such could have been derived
faster using the results of [50], we particularly develop a viewpoint in which
the de Sitter solution correspond to a phase space trajectory for the SCE as a
dynamical system.

The third section is dedicated to the massless case, where the consistency
equation simplifies into an explicitly solvable polynomial equation. After solv-
ing the equation and plotting the solution sets in the ξ-H-plane, we discuss
the asymptotics of the solution curves.
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In Sects. 4, 5 and 6, we study the massive case. First, in Sect. 4, we exploit
the fact that the solution set is the zero set of an analytic function. In par-
ticular, we show that any solution to the consistency equation belongs to an
analytic solution curve which is extendible into the asymptotics of the equa-
tion. Second, in Sect. 5 we explicitly evaluate the asymptotics of said analytic
function, completing the argument as it is presented in Theorem 1.1. Section 6
then graphically presents the solution set as obtained by numeric evaluation,
confirming the results of the previous sections.

Section 7, finally, uses the results of the previous sections in order to
show the existence of parameter settings for potential inflationary models as
in Corollary 1.2.

In the last section, we present our conclusion and discuss some open
problems for future research.

2. The Semiclassical Einstein Equation on de Sitter Space–Time

In this section, we derive the consistency condition for the parameters under
which the cosmological SCE admits a solution with a pure de Sitter expansion
law, driven by a scalar field in the (pullback) Bunch–Davies state.

2.1. The Energy Equation as a Cosmological Model

A priori, (1) is actually a system of 16 equations and by the symmetries of
both the Einstein and the stress–energy tensor, these reduce to ten independent
equations. For a (flat) cosmological FLRW metric,

g = −dt2 + a(t)2
(
dy2

1 + dy2
2 + dy2

3

)
(3)

with scaling factor a(t) and a state ω that shares the space–time symmetries
only two of these ten equations are independent, for example the 00- and one
of the jj-components (j = 1, 2, 3). These two independent equations can be
captured in the so-called energy and trace equations,

G00 − Λ = κ
〈
T ren

00

〉
ω

and gμνGμν + 4Λ = κgμν
〈
T ren

μν

〉
ω
, (4)

respectively. Note that by the above assumptions on g and ω the stress–energy
tensor is of the form

〈
T ren

μν

〉
ω

= diag
(
〈 � 〉ω, a2〈 p 〉ω, a2〈 p 〉ω, a2〈 p 〉ω

)
(5)

with the (expected) energy density 〈 � 〉ω =
〈
T ren

00

〉
ω

and pressure 〈 p 〉ω =
1
a2

〈
T ren

jj

〉
ω

(with a spatial index j) which both no longer depend on the spatial
coordinates. Consequently, the metric degrees of freedom in (4) are governed
by an ODE. Moreover, note that the condition of covariant conservedness,
∇μ

〈
T ren

μν

〉
ω

= 0, for a stress–energy tensor of the form (5) can be rewritten
into2

〈 �̇ 〉ω + 3
ȧ

a

(
〈 � 〉ω + 〈 p 〉ω

)
= 0.

2We denote derivatives of a with respect to cosmological time t by dots, i.e., ȧ, ä and so on.
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It is well known that this so-called continuity equation and the energy equation
imply the trace equation (whenever ȧ 
= 0) and hence, also the full Einstein
equation. As in quantum field theories, the stress–energy tensor is covariantly
conserved by construction (cf. the discussion in Sect. 2.3); it thus suffices to
consider the energy equation instead of the full Einstein equation.

2.2. De Sitter Space and the Bunch–Davies State

De Sitter space is the four-dimensional one-sheet hyperboloid of a certain ra-
dius as a pseudo-Riemannian submanifold of five-dimensional Minkowski space
M = R

5, oriented around the time axis of the latter. Formally, endow M with
the coordinates z0, z1, z2, z3, z4 : R → M (with time axis along the z0 coordi-
nate), then de Sitter space is the set

dSH =
{

(z0, z1, z2, z3, z4) ∈ M
∣∣ − z2

0 +
4∑

i=1

z2
i = 1

H2

}

for some parameter H > 0, with the pullback Lorentzian metric via the
canonical embedding dSH → M. The group of isometries of dSH is given by
the full Lorenz group O(4, 1) and dSH , as a submanifold of M, is left invariant
under this group’s action. In particular, the induced pullback metric is left
invariant as well.

We choose the coordinates (t, y1, y2, y3) such that

z0 = 1
H sinh(Ht) + 1

2HeHt
(
y2
1 + y2

2 + y2
3),

zi = eHtyi (i = 1, 2, 3),

z4 = 1
H cosh(Ht) − 1

2HeHt
(
y2
1 + y2

2 + y2
3),

which cover d̃SH = { (z0, z1, z2, z3, z4) ∈ dSH | z0 + z4 > 0 }, the so-called
cosmological patch of dSH . Pulling the metric of M back to d̃SH through
these coordinates we obtain the metric

g = −dt2 + e2Ht(dy2
1 + dy2

2 + dy2
3)

= 1
H2τ2 (−dτ2 + dy2

1 + dy2
2 + dy2

3)
(6)

on R
4 or R

4
τ>0, respectively, where for the latter representation of the metric

we defined the conformal-time coordinate

τ(t) =
∫ ∞

t

1
a(t′)

dt′ =
1
H

e−Ht.

Hence, (the cosmological patch of) de Sitter space can be regarded as flat
FLRW-type space and comparing (6) with (3) we identify the scale factor
a(t) = eHt in cosmological time t, yielding a(τ) = 1

Hτ in conformal time τ . In
the following, we will sloppily speak of R

4
τ>0, endowed with the metric (6), as

cosmological de Sitter space or simply as de Sitter space–time.
Generally in algebraic QFT, one major difficulty is to define a state of

the field algebra. On de Sitter space dSH there exists a preferred choice of
such, namely the Bunch–Davies state ωBD [2,8]. Among all O(4, 1)-invariant
states discussed in [2], the Bunch–Davies state is the only Hadamard state,
suggesting it as a natural choice of vacuum state. Note that, in order for the
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Bunch–Davies state to exist, we have to assume that the effective de Sitter
mass of the field is positive, m2 + 12ξH2 > 0 (cf. [2]).

As a quasi-free state [54], the Bunch–Davies state is determined by its
two-point function

ωBD
2 (y, z) =

2(6ξ − 1)H2 + m2

8π cos(πν) 2F1

(
3
2 + ν, 3

2 − ν; 2; 1
2 (1 + Z(y, z))

)
(7)

(y, z ∈ dSH), where 2F1 is the hypergeometric function, ν =
√

9
4 − 12ξ − m2

H2

and Z(y, z) is the chord length between y and z,

Z(y, z) = Z((τy,y), (τz, z)
)

=
τ2
y + τ2

z − (y − z)2

2τyτz

(in conformal-time cosmological coordinates). For this particular representa-
tion of the Bunch–Davies state’s two-point function, we refer to [46]; see also
[2] for a similar representation.

As a remark, we note that ν is not necessarily real. In [2] the formula (7) is
derived as the solution of the Klein–Gordon equation, where in the symmetric
setting of dSH the latter reduces to an ODE for Z. By the series expansion
of 2F1 (cf., e.g., 15.1.1 in [1]), we obtain

2F1(a, ā; 2; z) =
∞∑

n=0

|Γ(a + n)|2
|Γ(a)|2

zn

n!(n + 1)!
(8)

(utilizing Γ(z̄) = Γ(z), Γ is the Gamma function) and it is immediate that
2F1(a, ā; 2; ·) is a real-valued function for real z (wherever (8) converges, im-
plying the same for any analytic continuations of (8)). Moreover, (8) shows
that 2F1(a, ā; 2; ·) does not depend on which branch of the complex square
root we choose in the case where ν is a purely imaginary number. In fact, in
Appendix A we shortly discuss on the level of the stress–energy tensors that
the expression

〈
T ren

μν

〉
ωBD (as introduced in the next section) with parameters

12ξ + m2

H2 < 9
4 (such that ν is a positive real) is analytically continuated by

the same expression with parameters 12ξ + m2

H2 ≥ 9
4 (such that ν vanishes or

is either imaginary square root).

2.3. The Consistency Equation in the Moment-Based Approach

Starting from the shape of ωBD
2 from above, we can, in principle, evaluate

all terms constituting
〈
T ren

μν

〉
ω

following [39,52]. By inserting the de Sitter
expansion a(τ) = 1

Hτ and ωBD
2 into the SCE, the dynamic aspect is eliminated

and we obtain an equation for the parameters of the model, similarly as in
[31]. Note that the latter reference restricts to the case H =

√
Λ/3, i.e., to

solutions of
〈
T ren

μν

〉
ω

= 0. One approach is to use the stress–energy tensors
of a scalar field on (the entire) de Sitter space from [50]. However, since we
are mainly interested in the cosmological setting in which a formulation of the
SCE as a dynamical system is elaborated, we follow the approach of [24] and
view the SCE on a flat FLRW space–time as a dynamical system for both the
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scaling factor a and a sequence of “moments” derived from the state’s two-
point function via a specific “cosmological” parametrix. Up to some details (cf.
Remark 4.1), both approaches result in studying the very same consistency
equations for the parameters.

In the following, we will shortly recapitulate both on the general quan-
tization procedure of a scalar field with the particular goal of a well-defined,
covariantly conserved

〈
T ren

μν

〉
ω

and on the approach of [24]. This rather serves
as an introduction of relevant notation than as a complete description; for
details, we refer the reader to the pertinent literature cited in Sect. 1.

We start from the classical stress–energy tensor

Tμν = (1 − 2ξ)(∇μφ)(∇νφ) − 1
2 (1 − 4ξ)gμν(∇σφ)(∇σφ) − 1

2gμνm2φ2

+ ξ
(
Gμνφ2 − 2φ∇μ∇νφ − 2gμνφ�φ

)

of a classical scalar field φ governed by the Klein–Gordon equation (2). The
QSE tensor of φ after quantization is then obtained by replacing φ and its
derivatives with their respective quantum counterparts, that is, by the coinci-
dence limit of (derivatives of) the regularized two-point function of a Hadamard
state ω. If we denote by H̃(y, z) the (possibly truncated) distributional kernel
of the Hadamard parametrix, the coincidence limit of the regularized two-point
function is given by [ω2 − H̃] := limz→y

(
ω2(y, z) − H̃(y, z)

)
with the (un-

regularized) two-point function ω2(y, z) = ω(φ(y)φ(z)). Accordingly, we have
[(∇μ ⊗ ∇ν)(ω2 − H̃)] := limz→y(∇μ)y(∇ν)z

(
ω2(y, z) − H̃(y, z)

)
and so on. As

usual, a conserved renormalization scheme such as Moretti’s [39] is mandatory
and thus

〈
T ren

μν

〉
ω

additionally contains a trace anomaly term 1
4π2 gμν [ν1] (with

the coincidence limit of the Hadamard coefficient ν1). By this scheme, the
QSE tensor indeed obeys ∇μ

〈
T ren

μν

〉
ω

= 0. Finally, we add the renormalization
freedom c1m

4gμν + c2m
2Gμν + c3Iμν + c4Jμν in terms of four independent

parameters c1, c2, c3, c4. We refer to [44,46] and references therein for precise
formulas regarding H̃, ν1, Iμν and Jμν . Note that for an explicit expression for
H̃ one has to introduce a length scale, the so-called Hadamard length scale, in
order to make the arguments of some occurring logarithmic dependencies unit
free. However, one purpose (among others) of the renormalization freedom is
that changes in this length scale can be compensated by changes in c1 and c2.
Concluding, the QSE tensor is of the form

〈
T ren

μν

〉
ω

= (1 − 2ξ)
[
(∇μ ⊗ ∇ν)(ω2 − H̃)

]

− 1
2 (1 − 4ξ)gμν

[
(∇σ ⊗ ∇σ)(ω2 − H̃)

]− 1
2gμνm2

[
ω2 − H̃

]

+ ξ
(
Gμν

[
ω2 − H̃

]− 2
[
(1 ⊗ ∇μ∇ν)(ω2 − H̃)

]

− 2gμν

[
(1 ⊗ �)(ω2 − H̃)

])

+
1

4π2
gμν

[
ν1

]
+ c1m

4gμν + c2m
2Gμν + c3Iμν + c4Jμν . (9)

Back in the cosmological setting (3), under the assumption that ω2(y, z)
at points y = (τ,y) and z = (τ̂ , z) merely depends on r = |y−z|, the derivatives
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of ω2 relevant for (9) are stored in a vector

G(τ, r) :=

⎛

⎝
Gϕϕ(τ, r)
G(ϕπ)(τ, r)
Gππ(τ, r)

⎞

⎠ := lim
τ̂→τ

⎛

⎝
1

1
2 (∂τ̂ + ∂τ̂ )

∂τ̂∂τ̂

⎞

⎠ a(τ)a(τ̂)ω2(τ, τ̂ , r). (10)

The components of G can be viewed as “semi-coincidence limit” of ω2, i.e.,
the coincidence limit in direction of the τ -coordinate, and these limits exist by
the Hadamard property of ω whenever r 
= 0. The singular structure of ω2 is
then represented by the singular structure of G(τ, ·) in the limit r → 0. The
Klein–Gordon equation for ω2 implies for G that

∂τG =

⎛

⎝
0 2 0

Δr − V 0 1
0 2(Δr − V ) 0

⎞

⎠G (11)

with the (spatial) Laplacian Δr = r−2∂rr
2∂r and the potential3 V = (6ξ −

1)a′′
a + a2m2.

For an expression of the (full) coincidence limit of the regularized two-
point function [ω2 − H̃], one defines H̃(τ, r) by the analog of formula (10)
replacing ω2 by H̃. Note that the Hadamard parametrix also depends only
on r = |y − z|. The regularized two-point function and its derivatives from
(9) may now be written as certain (linear combinations of) components of
limr→0

(G(·, r) − H̃(·, r)), that is, they are obtained by completing the coinci-
dence limit along the spatial coordinate directions.

The main innovation of [24] is now to introduce a new “cosmological”
parametrix H. In principle, it is constructed somewhat similar to H̃ (or H̃,
resp.), but adapted to cosmological coordinates. Formally, fix an arbitrary
length scale μ and define for j ∈ Z≥−1 so-called homogeneous distributions,
i.e., the functions h2j : (0,∞) → R,

h−2(r) := − 1
π2r4

, h0(r) :=
1

2π2r2
,

h2j(r) :=
(−1)j

2π2

r2(j−1)

Γ(2j)

(
log

( r

μ

)
− ψ(0)(2j)

)

with the Digamma function ψ(0) = log(Γ)′. Moreover, define

Hn(τ, r) :=

⎛

⎝
Hϕϕ,n(τ, r)
H(ϕπ),n(τ, r)
Hππ,n(τ, r)

⎞

⎠ :=

⎛

⎝
0
0

γ−1(τ)

⎞

⎠h−2(r) +
n∑

j=0

⎛

⎝
αj(τ)
βj(τ)
γj(τ)

⎞

⎠h2j(r)

(12)
with some sequences (αj)j≥0, (β)j≥0, (γ)j≥-1 of functions αj , βj , γj : (0,∞) →
R. Similar to the Hadamard parametrix, the sum may be truncated at a suffi-
ciently large order without affecting the final result, so one can omit questions

3Opposed to the convention in footnote 2, we denote derivatives of a with respect to con-
formal time τ by primes, i.e., a′, a′′ and so on. Confusions in higher derivatives a(j) are
excluded.
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of convergence of (12) as n → ∞. In [24], these functions are found such that
H fulfills the Klein–Gordon system

∂τH∞ =

⎛

⎝
0 2 0

Δr − V 0 1
0 2(Δr − V ) 0

⎞

⎠H∞ = O(r∞). (13)

Hereby, the function class O(r∞) is to be read as that a truncation of (12) at
some n yields an error in O(rm(n)) with m(n) → ∞ as n → ∞.

As a next step, we replace the regularized expressions for the two-point
function and its derivatives in (9), i.e., [ω2 − H̃], [(∇μ ⊗ ∇ν)(ω2 − H̃)] and so
on, by the respective (linear combinations of) components of

lim
r→0

(G − H̃)
= lim

r→0

(G − H)
+ lim

r→0

(H − H̃)
,

where indeed both limits on the RHS do exist. limr→0

(H − H̃)
does not

depend on the precise choice of ω, and can be computed to result in a smooth
function on the underlying space–time depending on a and its derivatives only.
G−H may be called the regularized two-point function in the H-regularization
scheme. Finally, define the moments of ω by

mn := lim
r→0

Δn
r

(G − H)
,

that is, they can be thought of as (even-order, radial) Taylor coefficient of
the (radially symmetric) function G(τ, ·) − H(τ, ·). With (11) and (13) also
G − H fulfills the (O(r∞)-approximate) Klein–Gordon system (13) and we
can reformulate the latter into a linear evolution equation for the function
τ 
→ m(τ) = (m0(τ),m1(τ),m2(τ), . . . ) valued in a suitable Banach space
of sequences. In this setting the SCE can be written as

{
A′(τ) = V

(
A(τ),m(τ)

)

m′(τ) = W
(
A(τ)

) ·m(τ)
(14)

with A = (a, a′, a′′, a′′′) and some dynamic vector fields V and W , and the
authors of [24] prove existence and uniqueness of the solutions. Note that
the second line of (14) is a mere consequence of the Klein–Gordon equation,
particularly it is independent of whether a is a solution to any cosmological
model or not. The first line of (14) is, usually, obtained from the traced SCE,
constrained by the energy equation (4). However, by the discussion in Sect. 2.1
we can use the energy equation for the first line of (14) in the context of a
pure de Sitter expansions (where ȧ 
= 0 as well as a′ 
= 0 hold globally). In this
case, A is of the form A = (a, a′, a′′).

Performing the replacements described above, the energy evaluates to

0 =
(

6(3c3 + c4) +
1

960π2
− 6ξ − 1

96π2
− (6ξ − 1)2

32π2
log(aλ0)

)

·
(

2
a(3)a′

a4
− (a′′)2

a4
− 4

a′′(a′)2

a5

)
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− (6ξ − 1)2

16π2

a′′(a′)2

a5
+

1
960π2

(a′)4

a6
+
(

Λ
κ

− m4

(
c1 +

1
32π2

log(aλ0)
))

a2

+
(

− 3
κ

+ m2
(
3c2 − 1

96π2
− 6ξ − 1

16π2

(
1 + log(aλ0)

))) (a′)2

a2

+
m2

2
mϕϕ,0 + (6ξ − 1)

(
− (a′)2

2a4
mϕϕ,0 +

a′

a3
m(ϕπ),0

)

+
1

2a2

(
mππ,0 −mϕϕ,1

)
, (15)

where λ0 is the ratio of the Hadamard length scale and the length scale μ. For
more details, we refer the interested reader to [24]. Note that to obtain (15)
from the latter reference we have merely included a possibly nonvanishing Λ.

As a side remark, note that the representation in (15) nicely shows how
precise choices of both the involved length scales do not matter and any changes
can be absorbed into the renormalization constants.

A more or less straightforward computation yields the first moments of
the Bunch–Davies state’s two-point function (7) on a cosmological de Sitter
space–time with a(τ) = 1

Hτ as

mϕϕ,0 = − 2(1 − 6ξ)H2 − m2

16 H2π2τ2

[
1 + log

(
μ2

4τ2

)
+ ψ

(0)( 3
2 − ν

)
+ ψ

(0)( 3
2 + ν

)
]

mϕϕ,1 = − 2(1 − 6ξ)H2 − m2

128 H2π2τ4

·
[
18 + 84ξ + 7 m2

H2 + 6(12ξ + m2

H2 )
(

log
(

μ2

4τ2

)
+ ψ

(0)( 3
2 − ν

)
+ ψ

(0)( 3
2 + ν

))
]

m(ϕπ),0 =
2(1 − 6ξ)H2 − m2

16 H2π2τ3

[
2 + log

(
μ2

4τ2

)
+ ψ

(0)( 3
2 − ν

)
+ ψ

(0)( 3
2 + ν

)]

mππ,0 = − 2(1 − 6ξ)H2 − m2

128 H2π2τ4

·
[
30 + 12ξ + m2

H2 + 2(4 + 12ξ + m2

H2 )
(

log
(

μ2

4τ2

)
+ ψ

(0)( 3
2 − ν

)
+ ψ

(0)( 3
2 + ν

))]
,

and for the combination of moments relevant in (15) we compute

m2

2
mϕϕ,0 + (6ξ − 1)

(
− (a′)2

2a4
mϕϕ,0 +

a′

a3
m(ϕπ),0

)
+

1
2a2

(
mππ,0−mϕϕ,1

)

=
2(1 − 6ξ)H2 − m2

128π2H2τ2

[
6(1 − 6ξ)H2 − m2

− 2m2
(

log( μ2

4τ2 ) + ψ(0)( 3
2 − ν) + ψ(0)( 3

2 + ν)
)]

. (16)

Recall that ν =
√

9
4 − 12ξ − m2

H2 and note that the Digamma function ψ(0)

stems from taking derivatives of the hypergeometric function 2F1 in the Bunch–
Davies two-point function (7) and not from the occurrence of ψ(0) in the cos-
mological parametrix via the homogeneous distributions (h2j)j≥-1. Moreover,
note how all moments and, in particular, the contribution (16) vanish in the
massless conformally coupled case m2 = ξ − 1

6 = 0.
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Finally, plugging both the de Sitter Ansatz a(τ) = 1
Hτ and the Bunch–

Davies moments (16) into the energy equation (15), we arrive at the following
form of the consistency equation

0 =
(

1
960

− (6ξ − 1)2

32

)
H4 − 3KH2 + ΛK + m4 d1 + m2H2 d2

+
(

m4

64
+

6ξ − 1
32

m2H2

)(
2 log(μH) + ψ(0)( 3

2 − ν) + ψ(0)( 3
2 + ν)

)
.

(17)

Here, we have introduced linearly transformed renormalization constants

d1 :=
1

128
− 1

32
log(2λ0) − π2 c1 as well as

d2 := 3π2 c2 − 1
96

− 6ξ − 1
16

log(2λ0)

and we have set K := π2

κ . We note that I00 = J00 = 0 for de Sitter expansions
a(τ) = 1

Hτ , thus we are left with only two renormalization constants. Moreover,
the log(τ)-terms of (16) just cancel the log(τ)-terms occurring in (15). This
is not surprising if we recall that all of them originate in the cosmological
parametrix H. We are left only with the length scale μ and observe (again)
that a different choice of μ leads to additional terms which can be absorbed
into the renormalization constants d1 and d2.

3. De Sitter Solutions for the Massless Field

In the massless case m = 0, the consistency equation (17) breaks down into
the polynomial equation

0 =
(

1
960

− (6ξ − 1)2

32

)
H4 − 3KH2 + ΛK (18)

for ξ and H with parameters Λ and K.

Remark 3.1. (i) Throughout the present section we assume ξ > 0 in order
to fulfill the existence condition for the Bunch–Davies state.

(ii) Some may take the standpoint that the prefactors m2 (of Gμν) and m4 (of
gμν) in the renormalization freedom of

〈
T ren

μν

〉
ω

are only chosen to endow
the respective terms with the correct unit in order to obtain unit-free
renormalization constants c1 and c2. Consequently, in the massless case
m = 0 these prefactors should be expressed by some other mass scale
m̃ in order to maintain this freedom. However, replacing the coupling
constant K and the cosmological constant Λ in equation (18) by their
renormalized analogs,

K̃ = K − m̃2d2

3
and Λ̃ =

3ΛK + 3m̃4d1

3K − m̃2d2
,
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respectively, we end up with the very same equation with the only dif-
ference that K̃ can be a non-positive parameter. Note also how (18)
simplifies for K = 0 and how for K < 0 the analysis of (18) is (in a
suitable sense) inverted around the zeros 1

6 ± 1/
√

1080 of the H4-prefactor.
However, we stick to the view that the renormalization freedom compen-
sates ambiguities in the choice of the Hadamard length scale, that is, we
always assume K > 0.

(iii) Carrying out the computation to obtain (18) from (15) and (16) one no-
tices that the Bunch–Davies state’s moments only yield a contribution
into the prefactor of H4 in (18). Assuming vanishing moments m = 0 in-
stead, the fraction (6ξ − 1)2/32 would be replaced by (6ξ − 1)2/8. Hence,
the analysis of the present section can be adjusted for the Minkowski
vacuum-like states in [23] by squeezing any graphic by a factor of 1

2

around ξ = 1
6 . Note in particular the similarity between the Λ = 0-curve

in Fig. 2 and the respective graphic in [23].

We introduce

ξcc :=
1
6
, ξ(±) := ξcc ± 1√

1080
as well as Hvac :=

√
Λ
3

(for Λ > 0) since these particular ξ- and H-values are distinguished by the
behavior of the solution set of (18). Here, Hvac represents the unique (positive)
de Sitter solution of the vacuum Einstein equation Gμν + Λgμν = 0 for Λ > 0.

We find the following:

Proposition 3.2. Let Λ ∈ R, K > 0. The set of de Sitter solutions of the
SCE for these parameters with a scalar field in the Bunch–Davies state can be
parameterized for Λ ≤ 0 by one and for Λ > 0 by two analytic curves in the
(ξ,H)-parameter plane (0,∞) × (0,∞).

Moreover:

(i) If Λ
K > 2160 the two solution curves can be globally solved for ξ. Denoting

Hmin =
(

K
29

(
14402 + 29 · 960 Λ

K

)1/2 − 1440K
29

)1/2 ∈ (0,Hvac), the solution
curves are the (disjoint) graphs of the functions Ξ(+) : (0,∞) → (0,∞),
Ξ(−) : (Hmin,∞) → (0,∞),

Ξ(±)(H) =
1
6

±
√

1
1080

− 8K

3H2
+

8ΛK

9H4
. (19)

Hereby, Ξ(−) is restricted to (Hmin,∞) in order to be positive-valued.
In particular, any arbitrary H > 0 is the Hubble rate of a de Sitter
solution to the SCE for one or two suitable value(s) for ξ, with two
possible values if and only if H > Hmin. On the other hand, for any
ξ ∈ (

max(Ξ(−)),min(Ξ(+))
) ( � ξcc

)
there exists no de Sitter solution H

at all.
(ii) If Λ ∈ (0, 2160K) the two solution curves can be globally solved for H,

that is, they are the (disjoint) graphs of the (analytic continuations of
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the) functions H(+) : (ξ(−), ξ(+)) → (0,∞), H(−) : (0,∞) → (0,∞),

H(±)(ξ) =

√√√√
1440K

1 ±
√

1 − Λ
2160 K (1 − 30(6ξ − 1)2)

1 − 30(6ξ − 1)2
. (20)

In particular, for any ξ ∈ (ξ(−), ξ(+)) there exist precisely two de Sitter
solutions H(−)(ξ) and H(+)(ξ), while for any other ξ > 0 there exists
precisely one de Sitter solution H(−)(ξ). On the other hand, for any value
H > 0 with H /∈ (

max(H(−)),min(H(+))
) 
= ∅ there is a ξ-value such

that H is the Hubble rate of a de Sitter solution to the SCE.
(iii) If Λ/K = 2160 Equation (18) is equivalent to

ξ − 1
6

= ± 1√
1080

(
1 − 2

H2
vac

H2

)
(21)

and thus can be globally solved for either H or ξ at will. Hence, the so-
lution set is the union of the graphs of two bijective functions (0, ξ(+))
→ (Hmin,∞) and (ξ(−),∞) → (0,∞) mapping ξ 
→ H(ξ) (Hmin as in
(i)) or their inverses, respectively. The mappings are (piecewise) degen-
erations of (19) and (20) for the present ratio Λ

K and the graphs intersect
only in (ξcc,

√
2Hvac).

In particular, for any H ∈ (Hmin,∞)\{√2 Hvac} there exist two
values of ξ to yield H as the corresponding de Sitter solution, whereas for
any H ∈ (0,Hmin]∪{√2Hvac} there exists precisely one such ξ-value. On
the other hand, for any ξ > 0 there exists (at least) one de Sitter solution
H and a second solution exists if and only if ξ ∈ (ξ(−), ξ(+))\{ξcc}.

(iv) If Λ ≤ 0 the single solution curve can be globally solved for H, that is, it
is the graph of the function H(+) : (ξ(−), ξ(+)) → (0,∞) defined in (20).

In particular, each H > min(H(+)) is the de Sitter solution for
precisely two ξ ∈ (ξ(−), ξ(+)), H = min(H(+)) is the unique de Sitter
solution for ξ = ξcc and any H < min(H(+)) does not yield a solution of
our model. On the other hand, for any ξ ∈ (ξ(−), ξ(+)) there exists one de
Sitter solution, whereas otherwise there exists none at all.

Note that every assertion of the previous proposition follows from study-
ing (18) as a quadratic equation for ξ and H2 and we skip the proof. Rather,
we will concentrate on a further description of the solution sets, in particular
their asymptotes and some physically relevant properties.

Figure 1 shows a plot of the solution set in the Cases (i)–(iii) of Proposi-
tion 3.2. The vertical axis was rescaled by Hvac in order to show how for any
Λ > 0 the respective only solution at ξ = ξ(±) lies at Hvac, independently of
K. More general, note how H(±)/Hvac from (20) only depends on the ratio Λ

K ,
that is, the qualitative shape of the solution sets also only depends on that
single parameter.

Figure 2 shows the solution sets for Case (iv) of Proposition 3.2. The
horizontal axis remains as in Fig. 1, but the vertical axis is now rescaled by√

κ. The thick curve marks the boundary case Λ = 0, whereas the thin curves
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Hvac

(i) Λ
K > 2160 (ii) 0 < Λ

K < 2160 (iii) Λ
K = 2160

Figure 1. Schematic plots for the quartic solution curves
of (18) in Cases (i), (ii) and (iii) of Proposition 3.2. The
horizontal axis marks ξ and the vertical dotted lines lie at
ξ ∈ {ξcc, ξ(±)}. The vertical axis marks H, normalized to
Hvac. Note that in each graphic the solution curves intersect
the ξ = 0-axis at (ξ,H) = (0,Hmin) with the respective value
of Hmin

mark some solution curves for larger and larger negative Λ
K . The gray curve

marks one solution set for parameters obeying Case (ii) in Proposition 3.2
for reference. Note how the shape of the H(+)-branch of solutions is rather
unaffected by Λ changing from positive to negative and the boundary case
Λ = 0 is (in a suitable sense) continuously embedded.

On the one hand, for Λ > 0 the solution set has the asymptote H = 0 as
ξ → ∞ which to leading order is given by

H(−)(ξ) =
(

8K

Λ

)1/4
Hvac√

ξ
+ O(ξ−3/2)

in said limit. In particular, the stronger a scalar field couples to the metric’s
curvature, the more it compensates the effect of a fixed positive value Λ > 0
to yield classical “Dark Energy” solutions with expansion rate Hvac.

On the other hand, we have, for any value of Λ, the asymptotes ξ =
ξ(±) and H diverges as ξ approaches ξ(−) from above or as ξ approaches ξ(+)

from below, respectively. In particular, by tuning the parameter ξ around said
values, one obtains arbitrarily large values of H to yield a de Sitter solution
of the SCE. As noted above, for positive Λ, there exists a second (continuous)
solution branch around these ξ-values defined by H(−) which in particular
fulfills H(−)(ξ(±)) = Hvac. This observation suggests referring to the lower
solution branch (around Hvac) to the (semi)classical solution branch in the
sense of a classical solution plus quantum corrections, which notably exists
if and only if the classical solution exists. Moreover, this observation suggest
referring to the upper (divergent) solution branch as quantum solution branch
in the sense that they exist independently of the presence of the classical
solution (i.e., for all Λ) and that they have no classical analog. Note that while
the classical and quantum solution branches are clearly separated whenever
Λ
K < 2160 (Cases (ii) and (iv)), they degenerate in ξcc for Λ

K = 2160 (Case (iii))
and even annihilate each other around ξcc if Λ

K > 2160 (Case (i)). However,
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√
2880

ξ

H√
K

Figure 2. The curves H/
√

K as a function of ξ with
different values of Λ

K < 0 (Case (iv) of Proposi-
tion 3.2). The thick curve shows the Λ = 0 case,
whereas the other black curves show the curves for Λ

K ∈
{− 2160,− 8649,− 34,560,− 138,240,− 552,960}, as from bot-
tom to top. For reference, the gray curve shows a positive-Λ
curve with Λ

K = 2025 (Case (iii)). The vertical dotted lines
mark the same distinguished ξ-values as in Fig. 1. Note the
similarity of the Λ = 0-curve with the respective graphic for
the “tow-in” states in [23]

around the values ξ(±) the separation remains valid in all cases. We will pick
up these solution branches in the discussion of Sect. 7.

Related results have been observed in the literature: The solutions at
ξ = ξ(±), namely H = Hvac, were previously found in [31] together with
the fact that H = Hvac is a solution only for the aforementioned ξ-values.
On the other hand, de Sitter solutions at ξ = ξcc were found before by many
authors employing a variety of states or approximations of states. For example,
Starobinski [47] found what we called “quantum solution” for ξ = ξcc using
the Bunch–Davies state (synonymously referring to it as “de Sitter state”).
Moreover, the authors of [12] found the analogs of both what we called the
quantum and the classical solution using approximate KMS states. At third,
in [23] the authors of the present work found the quantum solution using
massless Minkowski-like vacuum states (i.e., states with m = 0), and by
introducing a positive cosmological constant also the classical solution would
appear (cf. Remark 3.1(iii)). Note that for a conformally coupled field, however,
the state merely contributes to geometric terms; hence, the precise choice of a
(Hadamard) state does not matter. How the two regimes around ξ(±) and ξcc

in turn are connected was, to the authors’ knowledge, not observed before.
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4. The Solution Set of de Sitter Solutions for the Massive Field

In this section, we also consider the energy equation (17) as a consistency
constraint on points (ξ,H) ∈ R× (0,∞) with parameters m, K, Λ, μ, d1 and
d2. In contrast to the previous section, this consistency equation is no more an
explicitly solvable polynomial equation and one major task is the treatment of
the incomparably more complicated dependency of the energy density

〈
T ren

00

〉
ω

on the parameters via the Bunch–Davies moments (16). We also remark that
negative values for ξ are allowed as long as m2 + 12ξH2 > 0 (cf. Sect. 2.2).

At first, we reformulate the consistency equation (17) into a shape tailored
to the massive case. In particular we identify two (effective) parameters e1 and
e2 which influence the shape of the solution set in the (ξ,H)-plane and we point
out how the remaining parameters merely rescale the solution set in said plane.

As a next step, in analogy to Proposition 3.2, we prove how the solution
set in the (ξ,H)-plane can be parameterized by analytic curves and how each
such curve must hit the boundary of admissible (ξ,H)-points at both ends.
Partial results are relegated to Sects. 4.1 –4.4, and the proof is concluded in
Sect. 4.5. The asymptotics of the solution set, particularly how many curves
constitute the solution set, will be analyzed in Sect. 5.

In order to simplify the consistency equation (17), denote

f : (0,∞) → R, x 
→ ψ(0)
(

3
2 −

√
9
4 − x

)
+ ψ(0)

(
3
2 +

√
9
4 − x

)
. (22)

A plot of f on the relevant domain is shown in Fig. 3(i) and a few useful
properties of it are listed in Appendix A. By introducing a shifted curvature
coupling

x = 12ξ +
m2

H2
(23)

(note how the field equation reads (� + xH2)φ = 0 ), we can rewrite the
Digamma function terms occurring in the consistency equation (17) into
ψ(0)( 3

2 − ν) + ψ(0)( 3
2 + ν) = f(x). Moreover, regarding (17) as an equation

for x instead of ξ simplifies the domain of our problem to such (x,H)-points
where both x > 0 and H > 0. Therefore, we note that x > 0 is equivalent to
the positivity of the effective de Sitter mass xH2 = m2 + 12ξH2, and hence
equivalent to the existence of the unique O(4, 1)-invariant Bunch–Davies state
on the de Sitter space–time encoded by H (as discussed in Sect. 2.2).

We recall that changes in the length scale μ can be absorbed into the
renormalization constants d1 and d2. Hence, we eliminate the parameters m2

and μ by setting μ = m and rewriting the energy equation in terms of h = H
m .

Finally, we define new parameters

e1 = 960
(
d1 +

ΛK

m4

)
− 15

2 and e2 = 960
(
d2 − 3

K

m2

)
(24)

and note that e1 and e2 are still linear transformations of the original renormal-
ization freedoms c1 and c2, respectively. In particular, they can be arbitrary
real numbers.
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Using the above simplifications, we rewrite the consistency equation (17)
into

F (x, h) = 0 (25)

with the functions F, F1, F2 : (0,∞) × (0,∞) → R,

F1(x, h) =
(x2

4
− x +

29
30

)
h2 −

(x

2
+

e2

30
− 1

)
− e1

30
1
h2

=
(x

2
− 1

)2

h2 −
(x

2
− 1

)
− 1

30h2

(
h4 + e2h

2 + e1

)

=
h2

4
x2 −

(
h2 +

1
2

)
x +

29h2

30
− e2

30
− e1

30h2
+ 1,

F2(x, h) = 2 log(h) + f(x),

F (x, h) = F1(x, h) − (
x
2 − 1

)
F2(x, h).

We denote the zero set of F , that is, the solution set of the consistency equation
(25), by

Se1,e2 :=
{

(x, h) ∈ (0,∞) × (0,∞)
∣∣F (x, h) = 0 for the parameters e1, e2

}

⊂ (0,∞) × (0,∞).

Due to the analyticity of f discussed in Appendix A, also F1, F2 and F are
analytic and Se1,e2 is an analytic variety.

Remark 4.1. We have remarked in Sect. 2.3 that the consistency equation can
also be derived by using the system of the (non-pullback) Bunch–Davies state
on (the entire) de Sitter space as an Ansatz for the SCE, using the stress–energy
tensor derived in [50]. While in the massless case this is straightforward, for a
positive mass, which does not eliminate the renormalization freedoms c1 and
c2/d1 and d2, the parameters e1 and e2 need to be defined different from (24).

In the following, we study solutions of (25), where the present section is
dedicated to showing that the analytic variety Se1,e2 can be decomposed into
non-singular subvarieties.

We introduce the distinguished x-values

x(±) := 2 ±
√

2
15

and note that x(ξ(±)) = 12ξ(±)+ 1
h2 → x(±) in the limit h → ∞, that is, in said

limit these distinguished x-values correspond to the ξ-values distinguished in
the massless case (cf. Sect. 3).

Moreover, inspired by graph theory we introduce the following notion.
Note that, whenever we speak of a connected set we mean a path-connected
set, that is, a set such that any pair of points from that set is connected by a
continuous curve contained in that set.

Definition 4.2. A subset S ⊂ (0,∞)× (0,∞) is called treelike if it is connected
and for each s ∈ S the set S\{s} is disconnected with finitely many connected
components.
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In order to exclude pathological counter examples of curves that “turn
around” (such as the analytic curve (−ε, ε) → (0,∞)×(0,∞), x 
→ (1, 1+x2) ),
we restrict to regularly parameterized curves. A parameterization is called
regular, if the absolute value of its derivative is bounded away from zero.

The following theorem characterizes the analytic variety Se1,e2 . Note
again how contrary to the massless case the occurrence of the function f pre-
vents a simple, closed expression for solutions in Se1,e2 and we approach the
equation using certain properties of f such as its analyticity, its asymptotic
behavior or certain bounds on its derivatives.

Moreover, we need a technical assumption on the Hessian of F in order
to proof the following theorem.

Assumption I. Let e1, e2 ∈ R. Suppose that for all (x, h) ∈ (0,∞) × (0,∞)
either ∇F (x, h) 
= 0 or det

(
Hess F (x, h)

)
< 0.

Remark 4.3. In Sect. 4.3, we will substantiate the previous assumption by
proving it in the asymptotic regimes of large and small h-values and, there-
after, underpinning it with numerical evidence in the intermediate regime. In
Sect. 4.3, we study Assumption I’ as an equivalent version of Assumption I
(cf. the numerical evidence for Assumption I’) which is better accessible by
numeric means to a level which leaves no reasonable doubt.

To this end, we can state the main theorem of the present section.

Theorem 4.4. Let e1, e2 ∈ R and suppose that Assumption I holds. The an-
alytic variety Se1,e2 can be parameterized by finitely many inextendible ana-
lytic curves. Each such curve γ : I → (0,∞) × (0,∞) defined on an open
I ⊂ R leaves any given compact subset of (0,∞) × (0,∞), i.e., for all compact
K ⊂ (0,∞) × (0,∞) there exist t1, t2 ∈ I with

γ(t) ∈ (
(0,∞) × (0,∞)

)\K

for all t ∈ (inf I, t1) ∪ (t2, sup I). Moreover, Se1,e2 is the disjoint union of
treelike subsets.

The proof is split into Sects. 4.1–4.4 and, finally, concluded in Sect. 4.5.

Remark 4.5. (i) Note that if any inextendible curve leaves any compact sub-
set of (0,∞) × (0,∞), then in particular, Se1,e2 can have no compact
connected component. Moreover, all solutions can be found by studying
the asymptotics of F in the limits x → 0, x → ∞, h → 0 and h → ∞ and
continuating the solution curves found there. The asymptotic analysis of
F is done in Sect. 5.

(ii) In the present section, we skip the proof that the number of solution
curves as in the theorem is at most finite. Note that a direct proof is quite
difficult as one has to exclude an accumulation of curves. For example,
the zero set of

(0,∞) × (0,∞) → R, (x, h) 
→ (h − 1) sin (log(x))

is an analytic variety which is still a treelike set, but it consists of infinitely
many curves that accumulate in both the limits x → 0 and x → ∞. In
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0 x
∣
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y

0
y = f(x)

y = log(x)

y = − 3
x

1 x
∣
∣ 10

0.01

y

1

y = ∂3F
∂x3 (x, h)

y = 18
x4

y = 1
2x2

(i) Plot of f and its asymptotics (ii) Plot of ∂3F
∂x3 and its asymptotics

Figure 3. Part (i) shows a plot of the function f together
with its asymptotics as asserted in the text. Part (ii) shows
the third derivative of F (·, h) (for any fixed h) in a double
logarithmic plot together with its asymptotics as derived in
Lemma 4.7

turn, this can be proven from the asymptotic behavior of the function F .
Whenever we use Theorem 4.4 in Sect. 5, this particular assertion is not
needed.

4.1. Counting of Solutions

In this section, we exploit that a strictly convex/concave function has at most
two zeros. More generally, a smooth function whose n-th derivative has ñ zeros
has itself at most n + ñ zeros, n, ñ ∈ N0, which is an immediate consequence
of the fundamental theorem of calculus.

Note that an analytic, convex/concave, but not strictly convex/concave
function is already linear on some open set, and thus everywhere. Hence, in the
following we suppress the prefix strictly as any relevant function studied for
strict convexity/concavity is both obviously analytic and obviously not linear.

By these means, we obtain upper bounds on the number of solutions
of (25) for fixed h- and for fixed x-values, respectively. Moreover, we can
identify regions in which solution curves must lie. In particular, we show that
Theorem 4.4 is not a theorem treating the empty set. Note that most assertions
in the following lemmata can be read off from the different representation of
F1 in (25) or follow by simple computations.

In order to establish an upper bound on the number of solutions for fixed
h > 0, we need the positivity of the function

∂3F

∂x3
(·, h) : (0,∞) → R, x 
→ − 3

2f ′′(x) − (
x
2 − 1

)
f ′′′(x) (26)

(which is independent of h, e1 and e1). We have not found an analytical proof
so far, but below we present numerical evidence in combination with an asymp-
totic analysis which leaves us no doubt about this positivity. So the general
strategy (also discussed in Sect. 1) is to assume the latter in order to be able to
proof a lemma on a desired upper bound of solutions and carefully track which
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assertion in the following argumentation depends on this assumption/on this
numerical evidence.

Lemma 4.6. Let e1, e2 ∈ R. There exist x1, x2 ∈ (0,∞) such that

∂3F

∂x3
(x, h) > 0

for all x ∈ (0, x1) ∪ (x2,∞) and all h > 0.

Proof. Using the asymptotics of f and its series expansion in the limit x → ∞
from Appendix A, we get

∂3F

∂x3
(x, h) ∼ 18

x4
as x → 0 as well as

∂3F

∂x3
(x, h) ∼ 1

2x2
as x → ∞

(independently of h, e1 and e1). These asymptotics imply the lemma. �

Assumption II. Assume that the (h-, e1- and e2-independent) function ∂3F
∂x3 (·, h)

is positive on its entire domain (0,∞).

Numerical evidence for Assumption II. We refer to Fig. 3(ii) which shows a
double logarithmic plot of ∂3F

∂x3 (·, h) together with its proposed small-x- and
large-x-asymptotics as in the proof of Lemma 4.6. The asymptotic behavior
asserted in that lemma is well visible in Fig. 3(ii). �

Lemma 4.7. Let e1, e2 ∈ R and suppose that Assumption II holds. For any
fixed h > 0, the function (0,∞) → R, x 
→ F (x, h) has at most three zeros.

Proof. The assumption on ∂3F
∂x3 (·, h) and the argument presented in the begin-

ning of the present section immediately imply the lemma. �

Remark 4.8. Note that we will not need Assumption II anymore in the remain-
der of Sect. 4, in particular, the main theorem of the present section (Theorem
4.4) does not depend on it. However, some of the arguments in Sect. 5 rely on
the previous lemma again.

If we fix the first argument of F , we obtain the following.

Lemma 4.9. Let e1, e2 ∈ R. For any fixed x > 0 the function (0,∞) → R, h 
→
F (x, h) has at most three solutions and, depending on e1 (only), this bound
can be lowered according to Table 1.

Proof. Consider for any fixed x > 0

h3 ∂F

∂h
(x, h) = 2

(x2

4
− x +

29
30

)
h4 + (2 − x)h2 +

e1

15
(27)

as a function of h. Read as a quadratic polynomial in h2 it has at most two
positive zeros and thus, as a polynomial in h, it has at most two positive zeros
as well. Hence, the same holds for ∂hF (x, ·) and F (x, ·) has at most three zeros
by the argument in the beginning of this section.

Given x < x(−), the RHS of (27), as a polynomial in h2, has precisely
one positive zero if e1 < 0, hence F (x, ·) has at most two zeros in said case. If,



2972 H. Gottschalk et al. Ann. Henri Poincaré

Table 1. Collection of the respective counts of solutions

x < x(−) x = x(−) x(−) < x < 2 x = 2 2 < x < x(+) x = x(+) x > x(+)

if e1 > 0: = 1 = 1 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 3
if e1 = 0: = 1 = 1 ≤ 2 ≤ 1 ≤ 1 = 1 ≤ 2

if e1 < 0: ≤ 2 ≤ 2 ≤ 3 = 1 = 1 = 1 ≤ 2

Note that the upper bounds are sharp in the sense that for each entry we can find x and e1
values that yield the respective amount of h-values to solve F (x, h) = 0 in the respective

regime. Example plots are shown in Sect. 6

on the other hand, e1 ≥ 0, the RHS of (27) has no positive zero at all and we
have at most one zero of F (x, ·). Taking into account the limits

lim
h→0

F (x, h) = −∞ and lim
h→∞

F (x, h) = +∞
for e1 ≥ 0 we can, for such e1, replace “at most” by “exactly.”

If x = x(±) the leading coefficient in (27) vanishes. Hence, ∂hF (x(−), ·)
has precisely one zero if e1 < 0 and no zero at all if e1 ≥ 0, implying that
F (x(−), ·) has at most two or at most one zero, respectively. The very same
argument can be applied to F (x(+), ·) by reversing the sign of e1. Taking also
into account the limits

lim
h→0

F
(
x(−), h) = −∞ and lim

h→∞
F
(
x(−), h) = +∞ if e1 ≥ 0

as well as

lim
h→0

F
(
x(+), h) = +∞ and lim

h→∞
F
(
x(+), h) = −∞ if e1 ≤ 0

we see that in the latter case “at most” can be replaced by “exactly.”
If x(−) < x < 2 the RHS of (27) has precisely one zero if e1 ≥ 0, implying

that F (x, ·) has at most two zeros.
At x = 2, the RHS of (27) has no positive zero if e1 ≤ 0 and precisely

one if e1 > 0. Consequently, F (2, ·) has at most one or at most two zeros,
respectively. Taking, moreover, into account that

lim
h→0

F (2, h) = +∞ and lim
h→∞

F (2, h) = −∞
for e1 < 0 in this case “at most” can again be replaced by “exactly.”

For 2 < x < x(+), the RHS of (27) has no positive zero if e1 ≤ 0 and
precisely one positive zero if e1 > 0. Consequently, F (x, ·) has at most one or
at most two zeros, respectively. Taking into account the limits

lim
h→0

F (x, h) = +∞ and lim
h→∞

F (x, h) = −∞
for e1 < 0 also here “at most” can be replaced by “exactly.”

Finally, if x > x(+) the RHS of (27) has precisely one positive zero if
e1 ≤ 0, allowing at most two positive zeros for F (x, ·).

This finishes the proof of every entry shown in Table 1. �

Note that we will continue to study the zeros of ∂hF (x, ·) at fixed x in
the subsequent section.
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Corollary 4.10. The solution set Se1,e2 of F (x, h) = 0 is non-empty for any
choice of parameters e1 and e2.

Proof. For each row of Table 1 we have at least one entry with exactly one
solution at the respective x-value. �

After we have demonstrated how many solutions exist at most if we fix
one variable we can give a more accurate location of the three solutions at a
fixed h. Note that the solutions of F (2, h) = 0 are given by the zeros of the
polynomial

p(h) = −30h2F (2, h) = h4 + e2h
2 + e1. (28)

Lemma 4.11. Let e1, e2 ∈ R and suppose that the polynomial function p(h) =
h4 + e2h

2 + e1 has a zero h0. If h0 > exp(γE − 1) (approximately ≈ 0.6552)
with the Euler-Mascheroni number γE, then F (x, h0) has at least three solutions
x1, x2, x3 ∈ (0,∞) with x1 ∈ (0, 2), x2 = 2 and x3 ∈ (2,∞).

Proof. The map (0,∞) → R, x 
→ F (x, h0) fulfills

lim
x→0

F (x, h0) = −∞, lim
x→∞ F (x, h0) = +∞ and F (2, h0) = 0.

Moreover, its derivative in x = 2 fulfills
∂

∂x
F (2, h0) = −1

2
− log(h0) − 1

2
f(2) < 0,

where we used that f(2) = 1 − 2γE. Consequently, F (·, h0) is positive on an
interval of the form (2−ε, 2) and negative on an interval of the form (2, 2+ε).
In combination with the limits above, this implies the existence of zeros of
F (·, h0) as asserted in the lemma. �

Remark 4.12. (i) Note that, although being concerned with the case of a
fixed h-value, the previous lemma does not depend on Assumption II.
However, in combination with Lemma 4.7(i) (and Assumption II) the
assertion “at least three” in Lemma 4.11 can be replaced by “exactly
three.”

(ii) If in Lemma 4.11 we claim h0 < exp(γE − 1) instead, we still have the
solution at (2, h0), but if two more h = h0-solutions exist at all, they
must be either both larger than 2 or both smaller than 2.

Complementary to Lemma 4.11 concerning zeros of p we find the following
lemma concerning h-values where p(h) 
= 0.

Lemma 4.13. Let h > 0, e1, e2 ∈ R and p(h) = h4 + e2h
2 + e1 (cf. (28)).

(i) If p(h) > 0, the equation F (x, h) = 0 has at least one solution x ∈ (2,∞).
(ii) If p(h) < 0, the equation F (x, h) = 0 has at least one solution x ∈ (0, 2).

Proof. At x 
= 2, the equation F (x, h) = 0 is equivalent to the function

(0,∞) \ {2} → R, x 
→ F (x, h)
x
2 − 1
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having a zero. For this function, we observe

lim
x→0

F (x, h)
x
2 − 1

= lim
x→∞

F (x, h)
x
2 − 1

= +∞.

Moreover, it has a first order pole at x = 2, and by (28) this pole’s residue has
the opposite sign than the value p(h). Consequently,

lim
x→2
x>2

F (x, h)
x
2 − 1

= −sgn p(h) · ∞ and lim
x→2
x<2

F (x, h)
x
2 − 1

= sgn p(h) · ∞

and the lemma follows. �

Remark 4.14. Lemma 4.13 particularly shows that the equation F (x, h) for
any fixed h > 0 has at least one solution for x (recall that F (2, h) = 0 for
p(h) = 0).

We postpone a further location of solution curves via the asymptotics of
F to Sect. 5.

4.2. Possible Non-h-Solvable Points

The implicit function theorem (in its analytical version) tells us that, whenever
we have a solution F (x, h) = 0 such that ∇F (x, h) =

(
∂xF (x, h), ∂hF (x, h)

) 
=
0, then there exists an open neighborhood of (x, h) in which all solutions of
F (x, h) = 0 are collected in an analytic curve. Moreover, any such “piece of
solution curve” can be continuated either until it leaves the domain (0,∞) ×
(0,∞) of F or until it runs into a point where ∇F (x, h) = 0.

The present section is dedicated to studying (a necessary condition on)
points (x, h) in which the gradient of F vanishes. Since ∂xF involves derivatives
of f in a poorly manageable combination, we use ∂hF = 0 as a necessary
condition. The latter in turn is (equivalent to) a polynomial equation and is
explicitly solvable. Note that by this weaker criterion we also identify points
in which the solution curves “turn around,” i.e., points where they are not
solvable for h, but possibly for x.

Lemma 4.15. Let e1, e2 ∈ R and denote

hmin =

{
0 if e1 ≤ 15

2

(e1 − 15
2 )1/4 if e1 > 15

2

.

(i) The mapping

h 
→ X(e1,±)(h) = 2 + 1
h2 ±

√
2
15 + 1

h4

(
1 − 2e1

15

)

defines real-valued functions X(e1,±) : (0,∞) ∩ [hmin,∞) → R.
(ii) Any (x, h) ∈ (0,∞) × (0,∞) with ∇F (x, h) = 0 fulfills x ∈ {X(e1,+)

(h),X(e1,−)(h)}.
Proof. Finding the zeros of ∂hF is equivalent to solving the polynomial equa-
tion (for x)

0 = x2 −
(
4 +

2
h2

)
x +

58
15

+
4
h2

+
2e1

15h4
(29)
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0 2 4 6
x(−) x(+)

0

2

4

X(e1,±)(h)

h

x(h) = 2 + 1
h2

(iv)
(vii)

(iv)

Figure 4. The plot shows the curves of points in the (x, h)-
plane in which the zero set of F is possibly not solvable for
h for different values of e1. Everywhere else the zero set of F
is representable as the graph of a function h(x). We picked
the following e1-values: (i) e1 = −100, (ii) e1 = −10, (iii)
e1 = −1, (iv) e1 = 0, (v) e1 = 1, (vi)∗ e1 = 6, (vii)
e1 = 15

2 , (viii) ∗ e1 = 9, (ix) e1 = 15, (x) e1 = 100
The dashed curve marks the symmetry line of conformal cou-
pling, x = 2+ 1

h2 . Any curve fragment above/right to this sym-
metry line corresponds to X(e1,+), any fragment below/left to
this line corresponds to X(e1,−). The thick lines mark the dis-
tinguished values of e1. The remaining curves are assigned
to the remaining e1-values in a monotonous fashion. For the
cases marked with ∗ we plotted only X(e1,−) to avoid an over-
load

and doing so results in the functions X(e1,±) in the lemma. The domain which
yields real functions is obtained by requiring the radicand to be nonnegative.
From this observation, both assertions of the lemma follow immediately. �

A visualization of the graphs of X(e1,±) is shown in Fig. 4 for a few values
of e1. Note how X(e1,−) becomes negative if e1 < 0, that is, the curve defined
by h 
→ (

X(e1,−)(h), h
)

leaves the domain (0,∞)×(0,∞) � (x, h) of our model
at small h.

We collect a few properties of the functions X(e1,±).

Lemma 4.16. Denote for e1 ∈ R

Me1 = (0,∞)\
(
ran X(e1,+) ∪ ranX(e1,−)

)
⊂ (0,∞).

(i) The functions X(e1,±) admit the asymptotic expansion

X(e1,±)(h) = x(±) +
1
h2

+ O
( 1

h4

)

in the limit h → ∞.
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(ii) If e1 ≤ 15
2 the functions X(e1,±) admit the asymptotic expansion

X(e1,±)(h) =
1 ±

√
1 − 2e1

15

h2
+ 2 ± h2

15
√

1 − 2e1
15

+ O(
h2
)

in the limit h → 0. In particular, X(0,−)(h) → 2 as h → 0 and X(0,−)(h)
is a bounded, monotonous function.

(iii) If e1 < 0 the function X(e1,−) attains its global maximum

max
h>0

(
X(e1,−)(h)

)
= X(e1,−)

(( 2e2
1

15 − e1

)1/4
)

2 − (
15
2 − 225

4e1

)−1/2 ∈ (x(−), 2)

and is unbounded from below. X(e1,+), in turn, is strictly decreasing and
bijective as a function (0,∞) → (x(+),∞). Consequently, Me1 =

(
2 −

(
15
2 − 225

4e1

)−1/2
, x(+)

]
.

(iv) If e1 = 0 the mappings X(0,±) define strictly decreasing, bijective func-
tions

X(0,−) : (0,∞) → (x(−), 2) and X(0,+) : (0,∞) → (x(+),∞).

Consequently, M0 = (0, x(−)] ∪ [2, x(+)].
(v) If 0 < e1 ≤ 15

2 the mappings X(0,±) define strictly decreasing, bijective
functions

X(0,±) : (0,∞) → (x(±),∞).

Consequently, Me1 = (0, x(−)].
(vi) If e1 > 15

2 both functions X(e1,±) are bounded on their domains [hmin,∞).
X(e1,−) is bounded from below by its infimum x(−) and pointwise bounded
from above by X(e1,+). X(e1,+), in turn, attains its global maximum

max
h>0

(
X(e1,+)(h)

)
= X(e1,+)

(( 2e2
1

15 − e1

)1/4
)

2 +
(

15
2 − 225

4e1

)−1/2 ∈ (x(+),∞).

Consequently, Me1 = (0, x(−)] ∪ (
2 +

(
15
2 − 225

4e1

)−1/2
,∞)

.

We skip the proof since any of the assertions can be obtained by straight-
forward computations.

Remark 4.17. Note that the implicit function theorem provides us around any
x0 ∈ Me1 with F (x0, h) = 0 an analytic curve of the form x 
→ (

x, h(x)
)

defined on a neighborhood U � x0. Up to the possibility that h(x) → 0 or
h(x) → ∞ if x approaches the boundary of U , such a solution curve can even
be extended to the whole connected component of Me1 containing x0. We will
continue to study these possibilities in Sect. 5 using the asymptotics of F .
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4.3. Nonexistence of Local Extrema

In the previous section, we have located where the solution set of F (x, h) = 0
is potentially not locally solvable for h. In the present section, we show that
F has no local extrema. More precisely, we show that at any critical point at
which ∇F (h, x) =

(
∂xF (x, h), ∂hF (x, h)

)
= 0 the function F has a saddle.

This is equivalent to the fact that det(HessF ) < 0 in all critical points, where
Hess F denotes the Hessian matrix of F . To show this, we study the analytic
functions

Y(e1,±) : (X(e1,±)

)−1(R>0) → R,

h 
→ ∂2F

∂h2

(
X(e1,±)(h), h

) · ∂2F

∂x2

(
X(e1,±)(h), h

)−
( ∂2F

∂h∂x

(
X(e1,±)(h), h

))2

=
[1
2

(
X(e1,±)(h) − 2 +

1
h2

)2

− 1
2h4

− e1

5h4
− 1

15

]

·
[h2

2
− f ′ ◦ X(e1,±)(h) −

(1
2
X(e1,±)(h) − 1

)
· f ′′ ◦ X(e1,±)(h)

]

−
[(

X(e1,±)(h) − 2
)

h − 1
h

]2
(30)

on the (possibly e1-dependent) maximal domains of X(e1,±) to yield positive
values (specified in Lemma 4.15 and to be refined in Lemma 4.18). We study
the functions Y(e1,±) in terms of their asymptotics and by numerical means to
show that they are mostly negative, and if not, then ∂xF (h,X(e1,±)(h)) 
= 0
and thus the point in question is not critical.

Lemma 4.18. Let e1 ∈ R.

(i) Y(e1,±)(h) < 0 for sufficiently large h.
(ii) If e1 < 15

2 , then Y(e1,+)(h) < 0 for sufficiently small h > 0.
(iii) If e1 ∈ [0, 15

2 ], then Y(e1,−)(h) < 0 for sufficiently small h > 0.

(iv) For e1 < 0, denote hcrit =
((

( 15
29 )2 − e1

29

)1/2 − 15
29

)1/2. Then, X(e1,−) is
positive on (hcrit,∞) and there exists ε > 0 such that Y(e1,−) is negative
on (hcrit, hcrit + ε).

Proof. By Lemma 4.16(i), we have X(e1,±)(h) → x(±) as h → ∞ and since
f is smooth (i.e., f ′ and f ′′ are continuous) we can read off from (30) that
Y(e1,±) → −∞ as h → ∞. More precisely, identifying the dominant terms we
find

1
h2

Y(e1,±)(h) → − 2
15

as h → ∞. (31)

This proves (i).
In order to show (ii), recall from Sect. 4.2 that both X(e1,+) for e1 < 15

2

and X(e1,−) for e1 ∈ (0, 15
2 ) are defined on (0,∞) and that X(e1,±)(h) → +∞ as

h → 0 for the given respective e1-values. Expanding each occurrence of X(e1,±)

and f in Y(e1,±) from (30) to a sufficiently high order in h (cf. Lemma 4.16(ii)
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and Appendix A), we find that

Y(e1,±)(h) = − 2(1 − 2e1
15 )

15
(
1 ±

√
1 − 2e1

15

)2 h2 + O(h4) (32)

as h → 0. Note that the functions z 
→ z
(1±√

z )2
are positive for the relevant

domains. This proves (ii) and, moreover, (iii) for e1 ∈ (0, 15
2 ).

Recall that X( 15
2 ,±)(h) = x(±) + 1

h2 for h > 0. By an expansion to suffi-
ciently high order we find that

Y( 15
2 ,±)(h) =

(
− 8

225
± 16

√
30

1575

)
h6 + O(h7). (33)

In particular, the leading order term in h of Y( 15
2 ,−)(h) is negative, proving

(iii) for e1 = 15
2 .

In order to complete (iii) note that X(0,−) is defined on all of (0,∞), but
now approaches the limit X(0,−)(h) → 2 as h → 0. Hence we obtain

h2 Y(0,−)(h) → −1

in said limit, showing (iii) for e1 = 0.
Finally, if e1 < 0, the function X(e1,−) is positive only if we restrict it to

(hcrit,∞). In particular, we have X(e1,−)(h) → 0 as h → hcrit. Expanding the
respective occurrences of f and its derivatives to sufficient high order in x we
find

lim
h→hcrit

∂2F

∂h2

(
X(e1,−)(h), h

)
=

29
15

− 2
h2

crit

− e1

5h4
crit

> 0.

Note that inserting hcrit as defined in the lemma the positivity of the latter
expression is to be seen in a straightforward computation. Moreover, we find
that

∂2F

∂x2

(
X(e1,−)(h), h

)
=

h2

2
− f ′ ◦ X(e1,−)(h)

−
(1

2
X(e1,−)(h) − 1

)
f ′′ ◦ X(e1,−)(h) → −∞,

as h → hcrit, where for the limit we note that f ′(x) → +∞ and f ′′(x) → −∞
as x → 0. At last,

lim
h→hcrit

∂2F

∂h∂x

(
X(e1,−)(h), h

)
= −2hcrit − 1

hcrit
,

in particular, this limit exists. Together these three limits imply Y(e1,−)(h) →
−∞ as h → hcrit, proving (iv). �

Remark 4.19. (i) Note that Y( 15
2 ,+) is not considered for small h in the

lemma. Indeed, due to − 8
225 + 16

√
30

1575 > 0, cf. (33), a claim for Y( 15
2 ,+)

similar to parts (ii) or (iii) of the lemma is false. This can also, to some
extend, be observed in Fig. 5(i) and (iii).



Vol. 24 (2023) Cosmological de Sitter Solutions 2979

X(e1,+) not defined
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(iv) (h, e1) �→ ∂xF X(e1,+)(h), h

Figure 5. The graphics (i)–(iii) show the level sets and par-
ticularly the zero sets (if non-empty as thick lines) of the
functions Y(e1,±) in dependence of both e1 and h, where (iii)
is a zoom into (i) at specific values. (iv) shows the level sets
of ∂xF along the graph of X(e1,+), again in dependence of
e1 and h in the region where Y(e1,+) takes nonnegative val-
ues. While we chose a logarithmic scaling for the horizontal
axes, the vertical axes are rescaled by a third-order polyno-
mial which is approximately linear around the distinguished
values {0, 15

2 } � e1, but strongly compresses on the ends of
large absolute values. The dotted gray lines in (i) and (iv)
mark the zero set of the respective other graphic for orienta-
tion
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(ii) If e1 > 15
2 , both X(e1,±) are defined on

[
(e1 − 15

2 )1/4,∞)
and bounded;

hence, Y(e1,±) possesses a limit as h → (e1 − 15
2 )1/4 and there is no need

to determine an asymptotic behavior.

We make an assumption on the analog statement on the functions Y(e1,±)

away from their asymptotics. We have not found an analytic proof for this
assertion; however, we present numerical evidence which leaves us no doubt
about the assumption to be true, although it is not proven analytically.

Assumption I’. Let e1 ∈ R. Assume that:
(i) For all h ∈ (hmin,∞) (i.e., all h-values for which X(e1,+) is defined) we

have either Y(e1,+)(h) < 0 or ∂xF
(
X(e1,+)(h), h

) 
= 0.
(ii) For all h ∈ (hmin,∞) such that h > hcrit (i.e., all h-values for which

X(e1,−) is defined and yields a positive value) we have Y(e1,−)(h) < 0.

Numerical evidence for Assumption I’. In Fig. 5(i)–(iii), we show plots of the
functions (h, e1) 
→ Y(e1,±)(h) in terms of their level sets, where (iii) is a zoom
into (i). Note that we can observe all analytical assertions on the asymptotics
from Lemma 4.18. In particular, if a straight line of constant e1 is intersected by
the level sets of Y(e1,±) in (approximately) equidistant points, this corresponds
to the asymptotic power-law expansions that were proven in Lemma 4.18 (e.g.,
(31),(32) or (33)). Figure 5(iv) shows the function (h, e1) 
→ ∂xF

(
X(e1,+)(h), h

)

in terms of its level sets.
Observing that all the asymptotic assertions of Lemma 4.18 are already

visible in Fig. 5, we have no doubt that Y(e1,−) is negative wherever it is de-
fined. Moreover, we observe that the zeros of Y(e1,+) and ∂xF (X(e1,+)(·), ·)
are widely separated by a considerable margin in the (e1, h)-plane and that
∂xF

(
X(e1,+)(h), h

) 
= 0 whenever Y(e1,+) is nonnegative. Thus, we conclude
the assertion of the assumption from numerical evidence.

Note that it is clear from our considerations of the present and the pre-
ceding section that Assumptions I’ and I are equivalent. We will continue to
refer to Assumption I in the following. �
Lemma 4.20. Let e1, e2 ∈ R and suppose that Assumption I holds. Then the
function F cannot have a local extremum.

Proof. A necessary condition for a local extremum in (x, h) ∈ (0,∞) × (0,∞)
is that ∇F (x, h) = 0 and, moreover, that the Hessian in such a point is at least
semi-definite (i.e., definite or singular). By the assumption, in any point with
∇F (x, h) 
= 0 the Hessian’s determinant is negative implying its indefiniteness.

�
As a consequence we obtain the following:

Proposition 4.21. Let e1, e2 ∈ R and suppose that Assumption I holds. The
open set

M =
{

(x, h) ∈ (0,∞) × (0,∞)
∣∣F (x, h) 
= 0

}
=

(
(0,∞) × (0,∞)

)\Se1,e2

of non-solutions to the massive consistency equation F (x, h) = 0 possesses
no (non-empty) connected component whose closure (w.r.t. R

2) is a compact
subset of (0,∞) × (0,∞).
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Proof. Suppose that the contrary assertion holds, that is, let N be a connected
component of M such that N ⊂ (0,∞) × (0,∞) is compact. As a connected
component of the open set M , N is itself open; hence, N = N ∪ ∂N is a
disjoint union. On the other hand, ∂N ⊂ (0,∞) × (0,∞), that is, F is defined
on ∂N with F

∣∣
∂N

= 0. Finally, F attains both maximum and minimum on the
compact set N and assuming that N is non-empty we have either max F

∣∣
N

> 0
or min F

∣
∣
N

< 0. In both cases, F necessarily has a local extremum in N which
contradicts Lemma 4.20. �

4.4. A Lemma on the Reduction in Analytic Varieties

In the present section, we argue why the analytic variety defined as the zero
set of an analytic function of two variables which has no local extremum
must decompose into non-singular subvarieties, that is, into the union of inex-
tendible (regularly parameterized) analytic curves. The argument was provided
by Robert L. Bryant from Duke University, Durham, North Carolina, by pri-
vate communication. We are grateful toward him for his willingness to discuss
this topic.

Note that the following lemma holds in more generality than just for
our function F as defined in (25). However, since we merely apply it to this
function (possibly under an affine linear coordinate transformation), we keep
using the same symbol.

Lemma 4.22. Let F : R
2 → R be analytic such that F (0, 0) = 0 and let Fn

be the lowest-order nonvanishing homogeneous term in F ’s Taylor expansion
around (0, 0), say Fn is a homogeneous polynomial of degree n ∈ N. Suppose
that all linear polynomials occurring in the factorization of Fn into irreducibles
(over R) are pairwise distinct, say these are m ≤ n in number. Then, there
exists a neighborhood U � (0, 0) such that

U ∩ {
(y, z) ∈ R

2
∣
∣F (y, z) = 0

}
=

m⋃

i=1

γi(Ji)

with regularly parameterized analytic curves γi : Ji → U (defined on some
intervals Ji ⊂ R), i = 1, . . . , m, which only intersect in (0, 0) and which are
each linearly approximated around (0, 0) by the zero set of one of the linear
factors of Fn.

Proof. By the assumptions of the lemma, one finds a linear coordinate trans-
formation after which F takes the form

F (y, z) = y · Fn−1(y, z) +
∞∑

k=n+1

Fk(y, z),

where each Fk is a homogeneous polynomial of order k, k = n−1 or k ≥ n+1,
and where y does not divide Fn−1 in R[y, z]. Note that Fn(y, z) = y ·Fn−1(y, z)
is the Fn as labeled in the lemma and, moreover, that this power series for F
converges on a neighborhood of the origin.
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By a blow-up substitution y 
→ yz we obtain

F (yz, z) = zn ·
(

y · G̃(y) +
∞∑

k=n+1

Gk(y, z)
)

=: zn · G(y, z),

where

Gk(y, z) :=
Fk(yz, z)

zn
= zk−nFk(y, 1), k ≥ n + 1,

(using the homogeneity of Fk) are again polynomials of two variables and we
set

G̃(y) =
Fn−1(yz, z)

zn−1
= Fn−1(y, 1).

The map (y, z) 
→ G(y, z) defines another analytic function around the origin
with G(0, 0) = 0 and the assumption that y does not divide Fn−1(y, z) implies
that ∂yG(0, 0) 
= 0. Consequently, the zero set of G is, locally around (0, 0),
given by the graph of an analytic curve of the form

J1 
→ R
2, z 
→ (

g(z), z
)
,

J1 ⊂ R and g : J1 → R analytic. Moreover, inverting the blow-up substitution
yields that F vanishes on the graph of the analytic curve

γ1 : J1 
→ R
2, z 
→ (

z · g(z), z
)
, (34)

hence the analytic function

L1 : (y, z) 
→ y − z · g(z)

is a prime factor of F in the ring

R :=
{

K ∈ R[[y, z]]
∣∣K converges on some open neighborhood of (0, 0)

}

of formal, locally convergent power series. Note that G(0, 0) = 0 implies g(0) =
0 and thus γ1 from (34) is, up to order O(z2), approximated by the zero
set of (y, z) 
→ y, that is, of the factor of F ’s lowest-order (nonvanishing)
homogeneous term (LOHT) in consideration. Moreover, note that by (34) we
have |γ′

1| ≥ 1, in particular, |γ′
1| is bounded away from zero and (34) is indeed

a regular parameterization.
However, since L1 is a factor of F we can decompose F into a product

F (y, z) = L1(y, z) · K1(y, z),

for some K1 ∈ R. By this product representation, multiplying the LOHTs of
L1 and K1 must result in the LOHT of F (as a product in R[y, z]). Since the
LOHT of L1 is just y, the LOHT of K1 consequently equals Fn−1(y, z).

Finally, one can linearly transform the coordinates y and z to single out
one of the remaining linear factors of Fn−1(y, z) as y again and repeat the
above factorization procedure. Note that in the step specifying G’s zero set
around (0, 0) we particularly restricted our considerations to the stripe defined
by z ∈ J1 (and even just an open subset of this stripe around (0, 0)), and this
new domain for the subsequent factorization step is linearly transformed as
well.
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Eventually, after m steps we end up with a factorization

F (y, z) = K(y, z) ·
m∏

j=1

Lj(y, z) (35)

(K = Km), where each Li vanishes on an analytic curve γi : Ji → R
2. Hereby,

we can find a sufficiently small open neighborhood U of (0, 0) such that each of
the power series in (35) converges on U and such that for each i ∈ {1, . . . , m}
and each (y, z) ∈ U

Li(y, z) = 0 if and only if (y, z) ∈ γi(Ji).

Again, multiplying the LOHTs of each factor on the RHS of (35) must
result in the LOHT of F , called Fn above. By construction of the Li, each
of them has a LOHT equal to the respective linear prime factor of Fn. Con-
sequently, the LOHT of K is the product of the remaining nonlinear prime
factors of Fn. Hence, either Fn has no second-order prime factors, then K is a
unit in R[[y, z]] and as such is nonzero on a neighborhood of (0, 0), w.l.o.g. on
U , or Fn has second-order prime factors, then the LOHT of K is precisely the
product of these. In the latter case, K is nonzero on a (0, 0)-pointed neighbor-
hood of (0, 0), w.l.o.g. on U\{(0, 0)}, where we used that each second-order
prime factor is nonzero on a pointed neighborhood of (0, 0). In any case, K is
nonzero on U\{(0, 0)}.

Concluding, by the factorization representation (35) of F and the afore-
mentioned properties of the factors, the zeros of F in the open neighborhood
U are precisely the ranges of the analytic curves γ1, . . . , γm. �

Remark 4.23. (i) In other words, the lemma states that the analytic variety
defined as the zero set of F can, locally around (0, 0), be decomposed
into m non-singular analytic subvarieties which are, to linear order, de-
termined by the lowest-order nonvanishing Taylor coefficients of F .

(ii) The assumption of the lemma is clearly imposed by the results of Sect. 4.3
(and Assumption I). That is, an indefinite Hessian of F has two distinct
eigenvectors, which allows for an affine linear coordinate transformation
such that

F (y, z) = yz + O(‖(y, z)‖3).

This representation of F , moreover, shows that there is an open neighbor-
hood U of (0, 0) in the given coordinates such that ∇F 
= 0 on U\{(0, 0)},
that is, (0, 0) is an isolated zero of ∇F .

(iii) Note that the claim of distinct linear factors in Fn is necessary, otherwise
the analytic variety defined by y2 = z3 provides a counter example. We
note that this analytic variety is singular in the sense that neither of its
two (analytic) branches (0,∞) 
→ R

2, y 
→ (± y, y2/3) possesses an ana-
lytic continuation beyond the singular point (0, 0) (which is approached
as y → 0), in particular, they are not the analytic continuations of one
another.
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(iv) For n = 1 the lemma specializes into the implicit function theorem and
the proof specializes into applying the latter (G̃ is just constant in that
case).

4.5. Proof of Theorem 4.4

In order to conclude the proof of Theorem 4.4, we need a few more lemmata.
Recall that Se1,e2 denotes the analytic variety defined as the zero set of F .

Lemma 4.24. Let e1, e2 ∈ R and suppose that Assumption I holds. For any
s ∈ Se1,e2 , there exists an open neighborhood U � s (open in (0,∞) × (0,∞))
such that U ∩ Se1,e2 can be regularly parameterized by one or two analytic
curves I → (0,∞) × (0,∞).

Proof. Let s ∈ Se1,e2 ⊂ (0,∞) × (0,∞), then either ∇F (s) 
= 0 or ∇F (s) = 0.
In the first case, an open neighborhood U and one (unique) curve as in the

lemma are provided by the implicit function theorem in its analytic version.
In the second case ∇F (s) = 0, we conclude from the results of Sect. 4.3

that Hess F (s) is indefinite (wherefore we need Assumption I) and Lemma 4.22
(cf. also Remark 4.23) provides an open neighborhood U and precisely two
curves as in the lemma.

Note that both the implicit function theorem and Lemma 4.22 represent
the solution curves in a way such that |γ′| can be uniformly bounded away
from zero, imposing that all curves are regularly parameterized. �

Lemma 4.25. Let e1, e2 ∈ R. Se1,e2 is closed in (0,∞) × (0,∞).

Proof. Se1,e2 is the zero set of a continuous function. �

Lemma 4.26. Let e1, e2 ∈ R and suppose that γ : I → Se1,e2 is an inex-
tendible, regularly parameterized analytic solution curve. Moreover, suppose
that Assumption I holds. Then γ is injective.

Proof. Suppose γ is not injective, then there exist a, b ∈ I, a < b, such that
γ(a) = γ(b) and γ is continuous on [a, b] and analytic on (a, b) 
= ∅.

We first study the case ∇F (γ(a)) = 0. Let U be the open neighborhood
of γ(a) provided by Lemma 4.24 (wherefore we need Assumption I). Moreover,
let ηj : (−δ, δ) → U , j ∈ {1, 2}, δ > 0, be the regular parameterizations of
U ∩ Se1,e2 from the aforementioned lemma with η1(0) = η2(0) = γ(a). Note
that, if necessary, we can regularly reparameterize them to be defined on the
same symmetric interval (−δ, δ).

γ is a continuous curve with γ′(a) 
= 0. Thus, we can assume that U is
small enough such that γ takes at least one value outside U . Consequently,
there exists ε > 0 such that γ

∣∣
[a,a+ε)

coincides with precisely one of the four
solution branches

η1

∣∣
[0,δ)

, η1

∣∣
(−δ,0]

, η2

∣∣
[0,δ)

or η2

∣∣
(−δ,0]

, (36)

up to reparameterization. W.l.o.g. we can label the ηi’s such that γ
∣∣
[a,a+ε)

coincides with η1

∣∣
[0,δ)

. In particular, we can assume that γ(t) 
= γ(a) for all



Vol. 24 (2023) Cosmological de Sitter Solutions 2985

t ∈ (a, b), otherwise we replace b by the smallest such point. Therefore, note
that, since γ

∣∣
[a,a+ε)

coincides with η1

∣∣
[0,δ)

, such points t with γ(t) = γ(a) do
not accumulate in a.

By the same argument as above, there exists ε̃ > 0 such that γ
∣∣
(b−ε̃,b]

coincides with one of the four solution branches in (36). We go through the
cases.

In the first case, the curves γ
∣∣
[a,a+ε)

and γ
∣∣
(b−ε̃,b]

coincide, up to reparam-
eterization. Explicitly, there exists an analytic reparameterization θ : (a, a +
ε) → (b − ε̃, b) which, by γ(a) = γ(b), is monotonously decreasing. More-
over, γ

∣
∣
(a,b)

represents an analytic continuation of both γ
∣
∣
(a,a+ε)

and γ
∣
∣
(b−ε̃,b)

;
hence, the analytic reparameterization θ can be continuated to a monotonously
decreasing reparameterization θ̂ : (a, b) → (a, b). Such a map has a fixed point
t0 ∈ (a, b), θ̂(t0) = t0, in which

γ′(t0) = θ̂′(t0) · γ′(θ̂(t0)
)

= θ̂′(t0) · γ′(t0)

holds. θ̂′(t0) < 0 implies γ′(t0) = 0 yielding a contradiction to γ being regular.
In the other three cases of (36), that is, γ

∣∣
[a,a+ε)

coincides with η1

∣∣
(−δ,0]

,

η2

∣∣
[0,δ)

or η2

∣∣
(−δ,0]

up to reparameterization, we can make U and δ smaller,
such that Se1,e2 ∩ ∂U consists precisely of the four points

{
η1(δ) = γ(a + ε), η1(−δ), η2(δ), η2(−δ)

}
= Se1,e2 ∩ ∂U.

In particular, γ(t) /∈ U = U ∪ ∂U for all t ∈ (a + ε, b − ε̃) and γ(b − ε̃) ∈
{η1(−δ), η2(δ), η2(−δ)}. Thereby, we obtain two distinct continuous curves
from γ(a + ε) to γ(b − ε̃), one going through U passing γ(0) via γ

∣∣
[a,a+ε]

and

γ
∣∣
[b−ε̃,b]

and the other outside of U along γ
∣∣
[a+ε,b−ε̃]

. By concatenating them,
we obtain a closed continuous curve along which F vanishes and which encloses
at least one point in which F does not vanish, say s0 ∈ U with F (s0) 
= 0.
Thereby, the continuous curve in construction encloses s0’s whole connected
component of nonzeros of F ; hence, this connected component’s closure is a
compact subset of (0,∞) × (0,∞). The existence of such a set is excluded in
Proposition 4.21.

Concluding, if ∇F
(
γ(a)

)
= 0, any of the above possibility yields a con-

tradiction. If, on the other hand, ∇F
(
γ(a)

) 
= 0, the analytic implicit func-
tion theorem provides us an open neighborhood U and a single curve η :
(−δ, δ) → U to regularly parameterize U ∩ Se1,e2 . Replacing (36) by the two
branches η

∣∣
[0,δ)

and η
∣∣
(−δ,0]

these cases imply contradictions by same argu-
ments as above. �

Lemma 4.27. Let e1, e2 ∈ R and suppose that Assumption I holds. Moreover,
let

γ =
(
γ(x), γ(h)

)
: (a, b] → Se1,e2

be continuous, analytic on (a, b) and regularly parameterized, in particular,
γ′(t) 
= 0 for all t ∈ (a, b). Then, either the limit lim

t→a
γ(t) exists in (0,∞) ×
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(0,∞), and thus γ is continuously extendible to [a, b], or γ(t) leaves any com-
pact subset of (0,∞) × (0,∞), i.e., for all compact K ⊂ (0,∞) × (0,∞) there
exists ε > 0 such that

γ
(
(a, a + ε)

) ⊂ (
(0,∞) × (0,∞)

)\K.

Proof. Consider γ as a map into the one-point compactification

(0,∞) × (0,∞) =
(
(0,∞) × (0,∞)

)
∪ {p}

of (0,∞) × (0,∞), then either γ(t) converges to p as t → a or not.
Suppose γ(t) → p as t → a. Given any compact K ⊂ (0,∞) × (0,∞) ⊂

(0,∞) × (0,∞), its complement (0,∞) × (0,∞)\K is an open neighborhood
of p and the limiting behavior of γ provides us an ε as in the lemma.

If, on the other hand, γ(t) does not converge to p as t → a, then there
exist an open neighborhood U of p such that arbitrarily close to a the curve γ
takes values in K := (0,∞) × (0,∞)\U . More precisely, there exists a sequence
(an)n∈N with an → a as n → ∞ and sn := γ(an) ∈ K for all n. Since K is a
compact set, the sequence (sn)n∈N accumulates is some ŝ.

In the following, we show (sn)n∈N must converge to ŝ. Note that we will
pass to a subsequence of (an)n∈N several times, but we will omit to give them
a new label each time.

Suppose that (sn)n∈N with sn = γ(an) as constructed above accumulates
in ŝ, but it does not converge to ŝ.

By possibly passing to a subsequence, we can find an open neighborhood
U ⊂ (0,∞) × (0,∞) of ŝ such that s2n → ŝ as n → ∞ and s2n+1 /∈ U for all
n. Moreover, we can achieve that the limit an → a is strictly monotonous.

Note that, since sn ∈ Se1,e2 and Se1,e2 is closed (Lemma 4.25), also
ŝ ∈ Se1,e2 , in particular, F (ŝ) = 0. By Lemma 4.24 (which is where Assumption
I enters the argument) and possibly making U smaller we find that U ∩ Se1,e2

is parameterized by one regular curve η : (−δ, δ) → U with η(0) = ŝ (in the
case ∇F (ŝ) 
= 0) or by two curves ηi : (−δ, δ) → U , i ∈ {1, 2} (in the case
∇F (ŝ) = 0) with η1(0) = η2(0) = ŝ.

By possibly passing to a subsequence again, we can achieve that s2n ∈ U
for all n and that still s2n → ŝ and s2n+1 /∈ U for all n. Hence, all (s2n)n∈N

are contained in the range of η or in the ranges of η1 and η2, respectively,
according to the cases of ∇F (ŝ) = 0 or ∇F (ŝ) 
= 0. In the case of ∇F (ŝ) = 0,
the range of at least one of η1 and η2 contains infinitely many of the (s2n)n∈N

and, by relabeling the ηi and possibly passing to a subsequence again, we can
achieve that all of the (s2n)n∈N are contained in the range of η := η1.

Then, there exists a sequence (cn)n∈N such that η(cn) = s2n = γ(a2n).
Moreover, since both γ and η are regularly parameterized analytic curves,
there exist positive sequences (ε(−)

2n )n∈N and (ε(+)
2n )n∈N such that for all n the

curves

γ
∣∣
(a2n−ε

(−)
2n ,a2n+ε

(+)
2n )

and η

coincide, up to reparameterization. Since U does not contain any s2n+1 and
since an → a monotonously, on each interval (a2n+2, a2n) the curve γ also
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takes values outside of U , for instance γ(a2n+1) with a2n+1 ∈ (a2n+2, a2n).
Consequently, the intervals

(a2n − ε
(−)
2n , a2n + ε

(+)
2n ) with n ∈ N

are pairwise disjoint. But then, for some n ∈ N the curves

γ
∣
∣
(a2n−ε

(−)
2n ,a2n+ε

(+)
2n )

, γ
∣
∣
(a2n+2−ε

(−)
2n+2,a2n+2+ε

(+)
2n+2)

and η

have the same range and, in particular, γ is not injective on (a, b). This con-
tradicts Lemma 4.26.

Concluding, we have shown, that the values γ(t) with t → a either leaves
any compact subset of (0,∞) × (0,∞) (as in the lemma), or it accumulates in
some ŝ ∈ (0,∞)× (0,∞). Moreover, we have shown that in the latter case this
accumulation point is already a limit. �

Corollary 4.28. Let e1, e2 ∈ R and suppose that Assumption I holds. Moreover,
let γ : [a, b] → Se1,e2 be the continuous extension of γ : (a, b] → Se1,e2 from
Lemma 4.27 with γ(a) = lim

t→a
γ(t) ∈ (0,∞) × (0,∞). Then γ is analytically

continuable to (a − ε, b] for some ε > 0.

Proof. Analogously to the proof of Lemma 4.26 we find an open neighborhood
U � γ(a) and an analytic curve η : (−δ, δ) → U together with ε̃ > 0 such
that γ

∣∣
[a,a+ε̃)

and η
∣∣
[0,δ)

coincide, up to reparameterization. But then γ can be

concatenated with (a commensurable reparameterization of) η
∣∣
(−δ,0]

to obtain
an analytic continuation of γ beyond the point γ(a) on some interval (a−ε, b].

�

Lemma 4.29. Let e1, e2 ∈ R and suppose that Assumption I holds. Each con-
nected component of Se1,e2 is treelike.

Proof. We adjust the argument of Lemma 4.26.
Let S be a connected component of Se1,e2 . If S is not treelike, there exists

s ∈ S such that S\{s} is still connected. Let U � s be the open neighborhood
provided by Lemma 4.24 and let η : (−δ, δ) → U be the (if ∇F (s) 
= 0)
or one of the two (if ∇F (s) = 0) corresponding regular parameterization(s)
of U ∩ Se1,e2 with η(0) = s. Since the range of η is connected, η is a map
(−δ, δ) → U ∩ S.

Since S\{s} is still connected, there exists a continuous curve γ : [a, b] →
S\{s} with γ(a) = η(−δ/2) and γ(b) = η(δ/2). On the other hand, η

∣∣
[−δ/2,δ/2]

is a
continuous curve in S connecting γ(a) = η(−δ/2) and γ(b) = η(δ/2) as well, and
since γ cannot take the value s, we have indeed two different continuous curves
in S connecting the aforementioned two points. Hence, by concatenation, we
obtain a closed continuous curve in S which, viewed as curve in (0,∞)×(0,∞),
must enclose at least one non-solution (with F (x, h) 
= 0) and thus its whole
connected component of non-solutions. This connected component cannot exist
as we have demonstrated in Lemma 4.21. �

With the previous lemmata we can finally conclude Theorem 4.4.
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Proof of Theorem 4.4. In Lemma 4.24 we have seen that any solution s ∈
Se1,e2 belongs to the graph of an analytic curve. In Lemma 4.27 and Corol-
lary 4.28 we have seen that any such solution curve has an analytic continua-
tion until it leaves any compact subset of (0,∞) × (0,∞). In particular, any
inextendible curve leaves any given compact subset of (0,∞) × (0,∞) both at
the infimum and the supremum of its domain. Finally, the treelike structure is
proven in Lemma 4.29. We have not shown that there are only finitely many
solution curves. This assertion is postponed to Sect. 5 (cf. Remark 4.5), where
we note that by the previous argument, any inextendible curve must be seen
in the asymptotics of F . Note that Assumption I enters the theorem via the
respective lemmata. �

Remark 4.30. Lemma 4.24 may be viewed as a generalized implicit function
theorem for functions which, like F does, fulfill that whenever F (x, h) = 0 and
∇F (x, h) = 0 for some (x, h), then Hess F (x, h) is indefinite. Hence, in the
usual fashion of continuating solution curves provided by the implicit function
theorem until that theorem is no longer applicable, it is already clear from
Lemma 4.24 that Se1,e2 consists of only “infinitely long” solution curves. Note
that from Lemma 4.22 (in particular the power series representation in Re-
mark 4.23) it is easy to see that common zeros of both F and ∇F cannot
accumulate. However, then one is still burdened with excluding any kind of
strange behavior an (even analytic) “infinitely long” curve can show, such as
spiraling into a point (with a non-integrable |γ′|) or a “topologist’s sine curve”-
like behavior (e.g., via x 
→ sin(1/x) ). If one, in the end, aims to show that
any such behavior must be visible in the asymptotics of F , one is right in the
middle of proving Lemma 4.27.

5. Asymptotic Behavior of the Solution Set

After we have determined the structure of the solution set to F (x, h) = 0 in
Theorem 4.4, the present section addresses the identification of asymptotic
solution curves. Under an asymptotic solution curve we understand a curve
which in a certain region of large or small x or h approximates an actual
solution curve to a sufficiently high order. Hereby, sufficiently high means that
by this approximation we can isolate solution curves in order to count them.
Below, we will be more precise about this notion.

By the results of the previous section, each solution curve must eventu-
ally terminate in such an asymptotic solution curve. Conversely, since there
can be no additional compact connected components of solutions we find, by
continuating the solution curves in the asymptotic regimes, already all solution
curves constituting the solution set of F (x, h) = 0.

Denote for i ∈ {0,−1}
βi := −15

2
Wi

(−e−2
)2 − 15Wi

(−e−2
)
, (37)

where W0 is the principal branch of the Lambert-W -function and W-1 is the
(-1)-st subprincipal branch. Numerically, β0 ≈ 2.1903 and β-1 ≈ −27.046.
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The Lambert-W -function’s branches are the piecewise inverses of the map
R → R, t 
→ tet and occur in the asymptotic behavior of F (x, h) at large x.

We introduce the following manner of speaking in order to characterize
the asymptotic behavior of Se1,e2 .

Definition 5.1. An asymptotic solution curve γ : I → (0,∞) × (0,∞) in some
limit

x → 0, x → ∞, h → 0 or h → ∞ (38)
(or a combination of these limits) is a curve for which at least one of the lim-
its (38) holds and which approximates precisely one curve constituting Se1,e2

(according to Theorem 4.4) to a sufficiently high order.

Remark 5.2. (i) Note that F does not necessarily vanish along an asymptotic
solution curve, that is, an asymptotic solution curve is not a solution curve
in the sense of Sect. 4, merely an approximation thereof.

(ii) A priori Theorem 4.4 does not rule out an oscillating behavior of solu-
tion curves as long as the solution curve simultaneously approaches the
“boundary” of (0,∞) × (0,∞). For instance, the curve

γ : (1,∞) → (0,∞) × (0,∞),

γ(x)(t) = t · (arctan
(
t2 cos

(
t2
))

+ π
2

)
,

γ(h)(t) = t · (arctan
(
t2 sin

(
t2
))

+ π
2

)

is analytic, does leave any compact subset of (0,∞) × (0,∞) in the limit
t → ∞ (we ignore for now what happens around t → 1), but none of the
limits (38) is approached as t → ∞. We see in the following that the types
of asymptotic solution curves as in Definition 5.1 suffice to characterize
our solution set Se1,e2 .

(iii) We intentionally kept the approximation order of an asymptotic solu-
tion curve vague in the previous definition. What is a sufficient order
depends on the different regimes, in particular, whether the graphs of
h 
→ (

X(e1,±)(h), h
)

(cf. Sect. 4.2) come amiss in the respective regime.
For example, at small x we can show for any parameter setting that the
graph of h 
→ (

X(e1,±)(h), h
)

is bounded away from Se1,e2 and a rather
low order suffices. On the other hand, at large x there are up to three
solution curves in Se1,e2 , all approximated by x 
→ (

x, α/
√

x
)

for some val-
ues of α > 0, and, moreover, the graphs of h 
→ (

X(e1,±)(h), h
)

are ( for
particular values of e1) approximated by such curves as well. Hence, in
the latter regime, we need to determine the solution curve’s asymptotics
to a higher order such that we can separate them both among each other
and from the graphs of h 
→ (

X(e1,±)(h), h
)
.

Note that we will mostly express an approximation order employing the
Landau-function classes O(·) and O(·).
To this end, we state the main theorem of the present section.

Theorem 5.3. Let e1, e2 ∈ R and suppose that Assumptions I and II hold. The
solution set Se1,e2 of the massive consistency equation F (x, h) = 0 in (25) can
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be parameterized by three analytic curves in the cases

e1 ∈ (β-1, β0), e1 = β-1 and e2 ≥ −10 or e1 = β0 and e2 ≤ −10 (39)

and by two analytic curves otherwise. More detailed, we have:
(i) Three asymptotic solution curves at large h defined by the lines of constant

x ∈ {0, x(−), x(+)}. Each of them approximates an analytic solution curve
which can be represented as the graph of an analytic function x 
→ h(x)
on an interval of the form (0, ε), (x(−), x(−) +ε) or (x(+), x(+) +ε) (for a
sufficiently small ε > 0), respectively, and h(x) → ∞ as x → 0, x → x(−)

or x → x(+).
(ii) One asymptotic solution curve at small h in the following cases.

(a) If e1 < 0, the line of constant x = 0 approximates an analytic
solution curve which is representable as the graph of an analytic
function x 
→ h(x) defined on an interval of the form (0, ε) (for
some sufficiently small ε > 0) with h(x) → 0 as x → 0.

(b) If e1 = 0 and e2 < 0, the line of constant h = 0 approximates
an analytic solution curve which is representable as the graph of
an analytic function x 
→ h(x) defined on an interval of the form
(2−ε, 2) (for some sufficiently small ε > 0) with h(x) → 0 as x → 2.

(c) If e1 = e2 = 0, the line of constant x = 2 approximates an analytic
solution curve which is representable as the graph of an analytic
function x 
→ h(x) defined on an interval of the form (2, 2 + ε) (for
some sufficiently small ε > 0) with h(x) → 0 as x → 2.

(d) If e1 = 0 and e2 > 0, the line of constant h = 0 approximates
an analytic solution curve which is representable as the graph of
an analytic function x 
→ h(x) defined on an interval of the form
(2, 2+ε) (for some sufficiently small ε > 0) with h(x) → 0 as x → 2.

(e) If e1 > 0, the map

γα : (x0,∞) → (0,∞) × (0,∞), x 
→ (
x, α√

x

)
(40)

for an appropriate α > 0 and some x0 > 0 approximates an analytic
solution curve at large x which is also representable as the graph of
an analytic function x 
→ h(x) defined on (x0,∞) with

h(x) ∈ α√
x

+ O(x−1/2) (41)

as x → ∞.
(iii) In the cases (39), there are two additional analytic solution curves which

are approximated at large x by γα from (40) with appropriate (not neces-
sarily different) values of α. Also, these solution curves are representable
as in Case (ii)(e) with approximation of the form (41).

Consequently, these six (in the cases (39)) or four (otherwise) curves can be ex-
tended according to Theorem 4.4 in order to connect into three or two analytic
curves, respectively, in a treelike manner.

Proof. The presence of the solution curves and their asymptotics in the the-
orem are studied in Sects. 5.1, 5.2 and 5.3, treating separately the regimes of
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large x, of small x and of x-values in between, respectively. The remaining
assertions follow from Theorem 4.4.

We note that Assumption II is used to exclude the existence of more
solutions in the regime of large h-values than the ones we have found. In turn,
Assumption I is used for applying Theorem 4.4 on the structure of Se1,e2 . In
particular, we rule out that there are compact connected components of the
solution set which are not seen in the asymptotics and that the solution curves
we have found are pairwise continued into one another. However, the existence
of the solution curves listed in the theorem exclusively relies on analytical
arguments. �

We will, moreover, distinguish cases where there exist solutions at con-
formal and minimal coupling in Sect. 5.4 as follows. Therefore, we need the
following assumptions on the values of F along the curves of minimal and con-
formal coupling. These assumptions will be substantiated by an asymptotic
analysis (cf. Lemmata 5.22 and 5.23) combined with numerical evidence in
Sect. 5.4.

Assumption III. (i) Suppose that the (h-, e1- and e2-independent) function

(0,∞) → R, x 
→ d2

dx2
F
(
x,

1√
x

)

is negative on its entire domain.
(ii) Suppose that the (h-, e1- and e2-independent) function

(2,∞) → (0,∞) × (0,∞), x 
→ d2

dx2
F
(
x,

1√
x − 2

)

has exactly one zero in its domain.

Proposition 5.4. Suppose that Assumption III holds. In general, there are at
most two solutions of the consistency equation (25) with minimal coupling
ξ = 0 and at most three solutions with conformal coupling ξ = 1

6 . In dependence
of the parameters e1 and e2, these bounds can be lowered.

Proof. This proposition immediately follows from the findings of Sect. 5.4. �

This analysis allows to locate the solution curves more accurately and in
some cases even shows which of the four or six solution curves in the asymp-
totics are analytic continuations of one another. For example, suppose we have
found two solution curves in the asymptotics for which ξ < 1

6 holds and two
such curves with ξ > 1

6 for parameters at which there are no solutions with
conformal coupling ξ = 1

6 and for which there are only four asymptotic solution
curves in total. Then we can already conclude that the two curves with ξ < 1

6
analytically extend into one another and likewise do the other two curves. Note
that, however, the analysis of the particular ξ ∈ {0, 1

6}-cases is not carried out
into every last possible detail and the results should rather be viewed as a
rough localization (in some cases) of the solution subvarieties which constitute
the solution set Se1,e2 in the ambient plane (0,∞) × (0,∞).
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5.1. Asymptotics at Large x

In the present section, we study the asymptotics at large x in the following
lemmata. At first, we prove a quite obvious lemma which will be refined after-
ward.

Lemma 5.5. There exists (x0, h0) ∈ (0,∞) × (0,∞) such that F is strictly
positive on (x0,∞) × (h0,∞). Consequently, any solution of F (x, h) = 0 lies
in the union of stripes (0, x0) × (0,∞) ∪ (0,∞) × (0, h0).

Proof. This lemma simply follows by noting that for large x and for values of
h which are bounded away from 0 the term h2x2

4 in F1 (cf. (25)) is dominant
for F . �

For small h, the situation is more complicated as there are multiple com-
peting terms in F . We study this limit by evaluating F along the curves

γα : (0,∞) → (0,∞) × (0,∞), x 
→ (
x, α√

x

)
, α > 0. (42)

Alternatively, studying F on these curves may be viewed as a reparameteriza-
tion of (0,∞) × (0,∞) into the coordinates (x, α). If we then find a solution
curve x 
→ (

x, α(x)
)

for which α(x) converges to some α0 as x → ∞, then in
our original coordinates (x, h) we have a solution curve which to order O(x−1/2)
(for h(x) as x → ∞) is approximated by the curve γα0 .

We obtain the equation

0 = F
(
x,

α√
x

)

= s(α)x +
(
1 − α2 − e2

30
+ 2 log(α) − x

2
(
f(x) − log(x)

))

+
(29α2

30x
+ f(x) − log(x)

)
, (43)

where we grouped the terms according to their asymptotic behavior in the
limit x → ∞ into the divergent term, the bounded (but nonzero) terms and
the terms vanishing in that limit. For the dominant term, we introduced the
function

s : (0,∞) → R, α 
→ α2

4
− 1

2
− e1

30α2
− log(α).

For the assignment of f − log to the terms with the respective behavior we
refer to the asymptotic expansion of f in Appendix A.

We are particularly interested in the zeros of the function s and whether s
changes sign in its zeros. Note that, given α0 ∈ (0,∞) with s(α0) = 0 and ε > 0
with (w.l.o.g., otherwise the same follows analogously) s < 0 on [α0 − ε, α0)
and s > 0 on (α0, α0 + ε], we observe that

F
(
x,

α0 − ε√
x

)
→ −∞ as well as F

(
x,

α0 + ε√
x

)
→ ∞,

in particular, there exists x0 large enough such that

F
(
x,

α0 − ε√
x

)
< 0 and F

(
x,

α0 + ε√
x

)
> 0
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for any x > x0. Consequently, for any such x there exists a solution (x, h) of
F (x, h) = 0 with α0−ε√

x
< h < α0+ε√

x
. Below, we will show that each such solution

belongs to an analytic curve for which, consequently, γα0 is an asymptotic
approximation. Zeros of s without sign change are more subtle and will be
treated below as well.

We study the function s. For the following lemma, recall the definition
and approximate values of β0 ≈ 2.1903 ∈ (0, 15

2 ) and β-1 ≈ −27.046 < 0 from
(37).

Lemma 5.6. (i) If e1 > β0 the functions s has precisely one zero and changes
sign.

(ii) If e1 = β0 the function s has precisely two zeros and does change sign
only in the larger one.

(iii) If e1 ∈ (0, β0) the function s has precisely three zeros and changes sign
in each.

(iv) If e1 ∈ (β-1, 0] the function s has precisely two zeros and changes sign in
both.

(v) If e1 = β-1 the function s has precisely one zero and does not change sign.
(vi) If e1 < β-1 the function s has no zero.

Proof. Suppose e1 > 0. Taking three derivatives we find that

d3

dα3
α s(α) =

e1

5α4
+

1
α2

+
3
2

is positive; hence, α 
→ αs(α) admits at most three zeros. Note that the subsets
of (0,∞) on which the function α 
→ α s(α) is positive, negative or zero coincide
with the respective sets for s. Thus, also s has at most three zeros. Moreover,
noting that

lim
α→0

s(α) = −∞ and lim
α→∞ s(α) = +∞, (44)

we find that if s′ has two distinct zeros, s necessarily has a local maximum at
the smaller zero of s′ and a local minimum at the larger one, or a saddle in
both these zeros. If s′ has only one zero, s has a saddle there and hence is a
monotonous function. If s′ has no zero at all, s is monotonous as well.

The zeros of s′ are to be found at the solutions of

2α3s′(α) = α4 − 2α2 +
2e1

15
= 0, i.e., at α(±) =

√

1 ±
√

1 − 2e1
15 ,

(45)
whenever this expression yields positive reals. In our present consideration of
e1 > 0, (45) has obviously at most one solution if e1 ≥ 15

2 . This partially
proves (i) for e1 ≥ 15

2 (> β0).
If e1 ∈ (0, 15

2 ) (45) has indeed two distinct positive solutions α(−), α(+)

with α(−) < 1 < α(+). Consider the map

(0, 15
2 ) → R, e1 
→ α2

(±)s(α(±)) = − e1

15
− 1

2

(
1±

√
1 − 2e1

15

)
log

(
1±

√
1 − 2e1

15

)
.

(46)
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We read off that α2
(+)s(α(+)) < 0 for e1 ∈ (0, 15

2 ), in particular s(α(+)) < 0
and with the limits (44) we conclude that s has a zero in (α(+),∞). The
“−”-branch, on the other hand, may take both positive and negative values.
Compute

d2

de1
2

(
α2
(−)s(α(−))

)
= − 1

450
(
1 − 2e1

15

)3/2

⎛

⎝ 1

1 −
√

1 − 2e1
15

+ log
(
1 −

√
1 − 2e1

15

)
⎞

⎠

(47)
and note that the map z 
→ 1

1−z + log(1 − z) takes only positive values on the
interval (0, 1). Consequently, e1 
→ α2

(−)s(α(−)) defines a concave function on
(0, 15

2 ). By observing that α2
(−) s(α(−)) → − 1

2 as e1 → 15
2 , that α2

(−) s(α(−)) →
0 as e1 → 0 and that

d
de1

(
α2

(−)s(α(−))
)

= − 1
15

− 1

30
√

1 − 2e1
15

(
log

(
1 −

√
1 − 2e1

15

)
+ 1

)
→ +∞

as e1 → 0 we conclude that e1 
→ α2
(−) s(α(−)) has exactly one zero in the open

interval (0, 15
2 ). This zero is found at

e1 = β0 := −15
2

W0

(− e−2
)2 − 15W0

(− e−2
)
,

which lead to the definition (37). Note that the Lambert-W -function, as a
piecewise inverse of t 
→ tet, occurs naturally when solving the expression
α2

(±)s(α(±)) = 0 in (46) for e1.
In particular, if e1 ∈ (β0,

15
2 ), the function α 
→ α2s(α) is negative in the

smaller zero α(−) of s′. Consequently, s is negative on the interval (0, α(+))
and the zero of s in the interval (α(+),∞) we have found above is the only
zero of s. This completes the proof of (i).

If e1 = β0, the function α 
→ α2s(α) vanishes in the smaller zero α(−) of
s′. Hence, s has two zeros, namely α(−) where it consequently does not change
sign and the zero in the interval (α(+),∞) found above. This shows (ii). Note
that s is negative on a pointed neighborhood of α(−).

Finally, if e1 ∈ (0, β0), the function α 
→ α2s(α) is positive in the local
maximum α(−) of s. Consequently, also s(α(−)) > 0 and besides the zero larger
than α(+) from above, s has a zero in the interval (α(−), α(+)) and a zero in
the interval (0, α(−)). In each zero s must change sign. This shows (iii).

To show (iv)–(vi), we first note that s′′ is positive for e1 ≤ 0. Hence, s
is strictly convex and admits at most two zeros. Moreover, s′ has at most one
zero. Taking into account the limits

lim
α→0

s(α) = lim
α→∞ s(α) = +∞,

we find that s has a global minimum which, consequently, is the only local
extremum to be found at the unique positive solution α(+) of (45). Note that
the formula for α(−) does not yield a positive real for e1 ≤ 0.
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Completely analogous to the above analysis of e1 
→ α2
(−)s(α(−)), we

study the function

(−∞, 0] → R, e1 
→ α2
(+)s(α(+))

and find an expression for d2

de1
2

(
α2

(+)s(α(+))
)

similar to (47) which now is
positive; hence, also e1 
→ α2

(+)s(α(+)) has at most two zeros. With the limits

lim
e1→−∞ α2

(+)s(α(+)) = +∞ and α2
(+)s(α(+))

∣∣∣
e1=0

= − log(2) < 0,

said function has exactly one zero to be found at

e1 = β-1 := −15
2

W-1

(− e−2
)2 − 15W-1

(− e−2
)
,

in particular, it is positive on (−∞, β-1) and negative on (β-1, 0].
Consequently, if e1 ∈ (β-1, 0] the function α 
→ α2s(α) is negative in the

global minimum α(+) of s, thus s(α(+)) < 0 and s has exactly two zeros, one
in the interval (0, α(+)) and one in (α(+),∞). In both zeros, it changes sign
and (iv) follows.

If e1 = β-1 the function α 
→ α2s(α) vanishes in α(+), hence s vanishes in
its global minimum α(+). This proves (v). Note that s is positive everywhere
but in α(+).

Finally, if e1 ∈ (−∞, β-1) the function e1 
→ α2
(+)s(α(+)) is positive in

α(+) and thus s is positive in its global minimum. This shows (vi) and com-
pletes the proof. �

Corollary 5.7. If α0 is a zero of s with sign change, then s′(α0) 
= 0.

Proof. In the previous lemma’s proof the zeros of s′ were labeled α(±). More-
over, the values e1 ∈ {β-1, β0} where the only cases in which s vanishes in a
zero of s′. In these cases, in turn, s did not change sign in its respective zero.

�

Lemma 5.8. For any zero α0 at which s changes sign, the curve γα0 in (42) is
an asymptotic solution curve in the limit x → ∞. The values of γα0 approxi-
mate exactly one analytic solution curve.

Proof. Above, we have noted, if s changes sign in a zero α0, then we find ε > 0
such that (w.l.o.g., otherwise interchange ‘>’ and ‘<’ accordingly) s < 0 on
[α0 − ε, α0) and s > 0 on (α0, α0 + ε] and thus there is x0 > 0 such that

F
(
x,

α0 − ε√
x

)
< 0 and F

(
x,

α0 + ε√
x

)
> 0

for any x > x0. This implies that there is at least one solution (x, h) of
F (x, h) = 0 with h ∈ (

γα0−ε(x), γα0+ε(x)
)

for such x.
By Corollary 5.7, we can make ε small enough such that s is monotonous

on the interval [α0 − ε, α + ε]. Consequently, possibly by choosing a larger x0,
we have that also the map

[α0 − ε, α + ε] → R, α 
→ F
(
x,

α√
x

)
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is monotonous for each x > x0 and thus, it has precisely one zero. Hence we
obtain a map h : (x0,∞) → (0,∞) with F

(
x, h(x)

)
= 0 and F

(
x, h̃

) 
= 0 for
all h̃ ∈ (

γα0−ε(x), γα0+ε(x)
)\{h(x)}, at all x > x0.

To this point we do not know whether h is analytic. However, since in
the construction of h we can shrink ε > 0 at will, we know that

h(x) ∈ α0√
x

+ O(x−1/2)

in the limit x → ∞ and hence γα0 approximates the solution curves with an
error better than any ± ε√

x
.

Recall the asymptotic expansion of X(e1,±) stated in Lemma 4.16. The
leading order was given by

X(e1,±)(h̃) =
α2

(±)

h̃2
+ O(1) as h̃ → 0 (48)

(compare Lemma 4.16(ii) and Equation (45)). In the cases where X(e1,±)(h̃) →
+∞ as h̃ → 0 (i.e., e1 ∈ (0, 15

2 ] for X(e1,−) and e1 ≤ 15
2 for X(e1,+)) we can

solve the curves

(0, ε) → (0,∞) × (0,∞), h̃ 
→ (
X(e1,±)(h̃), h̃

)

(ε > 0) for h̃ and obtain

(x1,∞) → (0,∞) × (0,∞), x 
→ (
x, h(±)(x)

)

for a sufficiently large x1 and some functions h(±) : (x1,∞) → (0,∞). By (48)
we have

h(±)(x) =
α(±)√

x
+ O(x−1/2)

in the limit x → ∞. Since now α0 was assumed to be a zero with sign change,
it coincides in particular neither with α(+) nor with α(−). Hence, the solutions
h(x) which we found above and the points of the form

(
X(e1,±)(h), h

)
in which

the solution set of F (x, h) = 0 is not locally solvable for h are asymptotically,
at large x, bounded away from each other. Consequently, h is analytic. �

Remark 5.9. (i) Note that to this point we have found all solutions in the
limit x → ∞ for e1 ∈ (β-1, β0). By “all solutions in the limit,” we mean
that there exists x0 such that any solution at x > 0 belongs to one of the
curves provided by Lemma 5.6, Parts (iii),(iv) and (v) via Lemma 5.8.
That there can be no more solutions can be concluded using the upper
bounds in Lemma 4.9, matching the amount of zeros of s.

(ii) Also, we have found all solution curves for e1 > 15
2 using a similar ar-

gument. That is, s in that case has one zero α0 and we have one solu-
tion curve approximated by the respective γα0 . On the other hand, by
Lemma 4.16(vi) the functions X(e1,±) are bounded from above, in partic-
ular, ∂hF (x, ·) has no zeros for x above such an upper bound on X(e1,+)

and thus, at any x above that bound, there exists at most one solution.
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The following lemma shows that any solution in the limit of large x is
approximated by γα with s(α) = 0.

Lemma 5.10. Any solution of F (x, h) = 0 in the limit x → ∞ is approximated
in that limit by a curve of the form γα from (42), with a zero α of s. The
approximation is valid in the function class O(x−1/2).

Proof. Note that, we have

lim
α→∞ s(α) = +∞, lim

α→∞ s′(α) = +∞ as well as lim
α→∞ s′′(α) =

1
2
,

hence we can find α1 ∈ (0,∞) such that

s(α1) > 0, s′(α1) > 0 as well as s′′(α) ≥ 1
4

for all α ≥ α1

holds. By applying the fundamental theorem of calculus we also have

s′(α) ≥ s′(α1) and s(α) ≥ s(α1)

for all α ≥ α1 and thus we can find x1 ∈ (0,∞) such that

∂2

∂α2
F
(
x,

α√
x

)
= s′′(α)x − 2 − 2

α2
+

29
15x

> 0

for all x ≥ x1 and all α ≥ α1.
From (43) we can read off that

lim
x→∞ F

(
x,

α1√
x

)
= +∞.

Moreover, by taking one x-derivative of (43) we can also read off that

lim
x→∞

∂

∂x
F
(
x,

α1√
x

)
= s(α1),

where we used that f−log possesses an asymptotic Puiseux expansion allowing
term-wise differentiation and, consequently, showing that d

dx
x
2

(
f(x)−log(x)

)
=

O( 1
x ) and d

dx

(
f(x) − log(x)

)
= O( 1

x2 ), cf. Appendix A. By enlarging x1, if
necessary, we can guarantee that

F
(
x1,

α1√
x1

)
> 0 and

∂

∂x
F
(
x,

α1√
x

)
≥ s(α1)

2
for all x ≥ x1.

Finally, for any (x, α) ∈ [x1,∞) × [α1,∞) we conclude that

F
(
x,

α√
x

)
= F

(
x,

α1√
x

)
+

∂

∂α
F
(
x,

α√
x

)∣∣∣∣
α=α1

(α − α1)

+

α∫

α1

dα̃

α̃∫

α1

dα̃̃α
∂2

∂α̃̃α
2 F

(
x,

α̃̃α√
x

)

≥ F
(
x,

α1√
x

)

= F
(
x1,

α1√
x1

)
+

x∫

x1

dx̃
∂

∂x̃
F
(
x̃,

α1√
x̃

)
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≥ F
(
x1,

α1√
x1

)

> 0 ,

where we applied the fundamental theorem of calculus several times and used
the above estimates on the derivatives of F in the coordinates (x, α) in the
respective regime. Consequently, such (x, α) ∈ [x1,∞) × [α1,∞) cannot be a
solution to (43).

We work out a similar argument at small α. In this way, we distinguish
the cases of positive, negative or zero e1.

At first, in the case e1 < 0 we have a similar argument as above. There-
fore, we reparameterize (43) via α 
→ 1

α , that is, we consider the equation

0 = F
(
x,

1
α
√

x

)

= s
( 1

α

)
x +

(
1 − 1

α2
− e2

30
− 2 log(α) − x

2
(
f(x) − log(x)

))

+
( 29

30xα2
+ f(x) − log(x)

)
.

Since e1 < 0 we have

lim
α→∞ s

( 1
α

)
= +∞ as well as lim

α→∞
d
dα

s
( 1

α

)

= lim
α→∞

(
− 1

2α3
− e1α

15
+

1
α

)
= +∞,

hence we can find α2 ∈ (0,∞) such that

s
( 1

α

)
≥ s(α2) > 0 as well as

d
dα

s
( 1

α

)
≥ 1

for all α ≥ 1
α2

. In this way we choose 1 as an arbitrary, but still positive, lower
bound on d

dα s
(

1
α

)
above 1

α2
.

Now we can find x2 ∈ (0,∞) such that
∂

∂α
F
(
x,

1
α
√

x

)
=
( d

dα
s
( 1

α

))
x +

2
α3

− 2
α

− 29
15xα3

> 0

for all x ≥ x2 and all α ≥ 1
α2

. Again, we observe that

lim
x→∞ F

(
x,

α2√
x

)
= +∞ as well as lim

x→∞
∂

∂x
F
(
x,

α2√
x

)
= s(α2),

and by possibly enlarging x2 we can guarantee that

F
(
x2,

α2√
x2

)
> 0 and

∂

∂x
F
(
x,

α2√
x

)
≥ s(α2)

2
for all x ≥ x2,

again using the asymptotic expansion of f − log.
Finally, we compute for any (x, α) ∈ [x2,∞) × [ 1

α2
,∞) that

F
(
x,

1
α
√

x

)
= F

(
x,

α2√
x

)
+

α∫

1
α2

dα̃
∂

∂α̃
F
(
x,

1
α̃
√

x

)
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≥ F
(
x,

α2√
x

)

= F
(
x2,

α2√
x2

)
+

x∫

x2

dx̃ F
(
x̃,

α2√
x̃

)

≥ F
(
x2,

α2√
x2

)

> 0,

showing that the equation F
(
x, 1

α
√

x

)
= 0 has no solution in [x2,∞)×[ 1

α2
,∞) �

(x, α). Reversing our reparameterization α 
→ 1
α from above, this means that

the equation F
(
x, α√

x

)
= 0 has no solution in [x2,∞) × (0, α2] � (x, α).

To find α2 and x2 in the case e1 > 0 is much easier. At first, observe that

lim
α→0

s(α) = −∞ as well as lim
α→0

s′(α) = +∞,

hence there exist α2 ∈ (0,∞) such that

s(α) ≤ s(α2) < 0 for allα ≤ α2.

From (43), we can read off that there exist M ∈ R such that

F
(
x,

α√
x

)
− s(α)x ≤ M

for all α ∈ (0, α2) and all x ≥ 9
4 (we employ this lower bound on x in favor of

the explicit bound in (65), Appendix A). In particular, we can find x2 ∈ (0,∞)
such that for all x ≥ x2

F
(
x,

α√
x

)
≤ s(α)x + M < 0,

for all α ∈ (0, α2]. Consequently, [x2,∞) × (0, α2] contains no solution of
F
(
x, α√

x

)
= 0.

As a side remark, note that M is indeed a uniform bound. Such uniform
bound cannot be found in the cases we have treated before. Moreover, note
that we comment on the case e1 = 0 at the end of the proof.

To this point, if e1 
= 0 we have found x1, x2, α1 and α2, such that any
solution of F

(
x, α√

x

)
= 0 with x ≥ max{x1, x2} must fulfill α ∈ [α2, α1].

Now let ε > 0 and suppose we have α ∈ [α2, α1] such that |s(α)| ≥ ε. We
assume that ε is small enough, such that s(α1) > ε and |s(α2)| > ε (note that
s(α1) > 0 for all e1 
= 0). Then, similar as above, we read off from (43) that
there exists M ∈ R such that

∣
∣∣F
(
x,

α√
x

)
− s(α)x

∣
∣∣ ≤ M

for all α ∈ [α2, α1] and all x ≥ 9
4 . That this bound is now uniform in α

is a consequence of restricting the α-values to the compact interval [α2, α1].
However, we can find x3 ∈ (max{x1, x2},∞), such that for all x ≥ x3 and all
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α ∈ [α2, α1]
∣
∣∣F
(
x,

α√
x

)∣∣∣ ≥
∣
∣∣s(α)x

∣
∣∣−

∣
∣∣F
(
x,

α√
x

)
− s(α)x

∣
∣∣ ≥ εx − M > 0

holds. In particular, for any solution of F
(
x, α√

x

)
= 0 with x ≥ x3 we have

shown that necessarily s(α) < ε holds. As ε > 0 can be chosen arbitrarily
small, the claim of the lemma follows for our present case e1 
= 0.

Finally, if e1 = 0 one could work out a similar method. However, the
occurring log-terms (which are dominant in the e1 = 0-case) prevent from
analog estimates on the derivatives of s and α 
→ F

(
x, α√

x
) and an adaption

is not straightforward. On the other hand, a more profound method is not
necessary. As we have already noted in Remark 5.9, we have found all solutions
at large x in the case e1 = 0 together with the correct approximation using
Lemmata 5.6(iv) and 5.8 as well as the respective upper bound in Lemma 4.9.

�

Remark 5.11. At this point, only the cases e1 ∈ {β0, β-1} remain open. Ac-
tually, in addition to the cases commented on in Remark 5.9 (i.e., for e1 ∈
(β0, β-1) ), we have shown that for e1 > β0 there exists precisely one asymp-
totic solution curve γα with the single zero α of s (cf. Lemma 5.6(i) ), whereas
for e1 < β-1 there exists no solution at all above a certain bound on x-values
as s has no zero in that case (cf. Lemma 5.6(vi)).

Lemma 5.12. (i) Let e1 = β0 and let α(−) be the smaller zero of s provided
by Lemma 5.6(ii), defined in Equation (45). If e2 ≤ −10, there exist
two analytic solution curves at large x approximated by γα(−) , whereas if
e2 > −10 there exist no solution curves approximated by said curve.

(ii) Let e1 = β-1 and let α(+) be the only zero of s provided by Lemma 5.6(ii),
defined in Equation (45). If e2 ≥ −10, there exist two analytic solution
curves at large x approximated by γα(+) , whereas if e2 < −10 there exist
no solution curves approximated by said curve.
In all assertions the approximation order is given by α√

x
+ O( 1√

x

)
.

Proof. For e1 = β0 the function α 
→ F
(
x, α√

x

)
has, at sufficiently large x, a

local maximum at the smaller solution of
∂

∂α
F
(
x,

α√
x

)
= 0. (49)

On the other hand, for e1 = β-1 said function has a local minimum at the only
real (positive) solution of (49). For these assertions we recall the shape of the
dominating function s from previous lemmata.

Note that (49) is a polynomial equation (as (29) was, too) and we denote
its solutions as the functions α̃(±) : (x0,∞) → (0,∞) defined by

α̃(±)(x)2 :=
x

(
x
2 −1

)

2

(
x2
4 −x+ 29

30

)

[

1 ±
√

1 − 2e1

15
+

4e1
225(

x−2
)2

]
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= α2
(±) + O

( 1
x

)
(50)

with some sufficiently large x0 and the zeros α(±) of s′ from (45). A lengthy
but straightforward computation shows the surprisingly simple result that

F
(
x,

α̃(±)(x)√
x

)
= −e2 + 10

30
+

1 + Wj

(− e−2
)

30
1
x

+ O
( 1

x2

)
(51)

for the presently relevant cases (±, j, e1) = (−, 0, β0) or (±, j, e1) = (+,−1, β-1).
Now let e1 = β0. In Lemma 5.6(ii) we have shown that s does not change

sign at its zero α(−). As we, moreover, have remarked in the proof of said
lemma, s is negative on a pointed neighborhood of α(−). Consequently, for
any sufficiently small ε > 0, we have

lim
x→∞ F

(
x,

α(−) − ε√
x

)
= lim

x→∞ F
(
x,

α(−) + ε√
x

)
= lim

x→∞ s(α(−) ± ε)x = −∞,

independently of e2, in particular, the respective expressions are negative for
x above some certain common lower bound x1 ∈ (0,∞). On the other hand,
from the asymptotic expansion (51) we read off for e2 ≤ −10 that

F
(
x,

α̃(−)(x)√
x

)
> 0

for sufficiently large x, w.l.o.g. (if necessary enlarge x1) we assume that the
latter inequality holds for all x ≥ x1. For the boundary case e2 = −10 the
sub-leading order in (51) is decisive and we note that 1

30

(
1 + W0(−e−2)

) ≈
0.02805 > 0.

By possibly enlarging x1 again and by recalling the asymptotic expansion
(50) we can, moreover, guarantee that

α̃(−)(x) ∈ (α(−) − ε, α(−) + ε)

for all x ≥ x1. Hence, for all x ≥ x1 the equation F
(
x, α√

x

)
= 0 has solutions

α in both the open intervals
(
α(−) − ε, α̃(−)(x)

)
and

(
α̃(−)(x), α(−) + ε

)
. (52)

Together with the third solution at such sufficiently large x-values (if neces-
sary, enlarge x1 once again) provided by Lemma 5.8 around the larger (sign-
changing) zero of s, we already exhaust the upper bound given in Lemma 4.9.
Consequently, we can choose x1 such that each of the intervals (52) contains
precisely one solution, for all x ≥ x1.

Note that, not only does the curve defined by α̃(−) provide points in
which F is positive, also does its range contain all points (around α(−), par-
ticularly, bounded away from α(+)) in which the hypothesis of the implicit
function theorem fails. Since we have found our two solutions in the open in-
tervals (52), the latter theorem’s hypothesis fails in none of these solutions
and we obtain, for now in the coordinates (x, α), indeed two analytic curves
as the graphs of analytic functions of x which are, to order O(1) (recall that
ε can be chosen arbitrarily small), approximated by α(−). Inverting the repa-
rameterization (x, h) 
→ (x, α), finally, provides us with the analytic solution
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curves in our original coordinates (x, h), approximated in O
(

1√
x

)
as asserted

in the lemma.
For e2 > −10 we read off from the asymptotic expansion (51) that there

exists some x1 ∈ (0,∞) such that

F
(
x,

α̃(±)(x)√
x

)
< 0

for all x ≥ x1. In particular, for some given (sufficiently small) ε > 0 the
function

(α(−) − ε, α(−) + ε) → R, α 
→ F
(
x,

α√
x

)
(53)

is negative in its local maximum, for each x ≥ x1. Since (49) has precisely
the two solutions (50), we can choose ε small enough such that α̃(+)(x) /∈
(α(−) − ε, α(−) + ε) for all x ≥ x1, in other words, choose ε small enough
such that said negative local maximum serves as a uniform upper bound on
the interval (α(−) − ε, α(−) + ε). From the asymptotic expansion (51) we read
off that this uniform upper bound on (53) can be estimated from above by
− 1

2
e2+10

30 < 0 for all sufficiently large x, w.l.o.g. for x ≥ x1. Since at this point
we have found a uniform, x-independent, negative upper bound on the values
of F

(
x, α√

x

)
, we conclude that our equation F

(
x, α√

x

)
= 0 has no solution with

x ≥ x1 and α ∈ (α(−) − ε, α(−) + ε). In our original coordinates (x, h) this
imposes what we have claimed in the lemma, finishing the proof of (i).

The proof of (ii) works in principle the same. One merely has to reverse
inequalities and take into account that now the upper bound on the number
of solution from Lemma 4.9 is 2 and the two solutions in the intervals analog
to (52) already exhaust said upper bound. Moreover, for the boundary case
e2 = −10 we note that now 1

30

(
1 + W-1(−e−2)

) ≈ −0.07154 < 0, though the
main argument remains the same. This finishes the proof. �

Finally, we collect the results of the present section in a list in Table 2.
Recall that for 0 < e1 < 15

2 we have α(−) < 1 < α(+), that for e1 = 15
2 we have

α(±) = 1, that for e1 ≤ 0 only α(+) is positive and for e1 > 15
2 none of the α(±)

is a real number. Moreover, recall that in each possible case we can find x0 > 0
such that either F (x, h) = 0 admits no solution at all for x > x0 or such that
each solution of F (x, h) = 0 is approximated by a curve x 
→ γα(x) =

(
x, α√

x

)

in the limit x → ∞ with some α ∈ (0,∞) for which s(α) = 0.

5.2. Asymptotics at Small x

At first, we study the situation of h away from the limits of small or large h.

Lemma 5.13. For any compact interval [a, b] ⊂ (0,∞), there exists ε > 0 such
that F (x, h) < 0 for all (x, h) � (0, ε) × [a, b]. Consequently, the equation
F (x, h) = 0 has no solution in (0, ε) × [a, b].

Proof. Note that for any fixed h ∈ [a, b] we have F (x, h) → −∞ as x →
0 since the dominant term in this limit is −(x

2 − 1)f(x) in F2. Recall that
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Table 2. The possible cases which can occur for solution
curves in the limit x → ∞, distinguished by value ranges of
the parameters e1 and e2

Case # α

e1 < β−1 e2 arb. 0 −
e1 = β−1 e2 < −10 0 −
e1 = β−1 e2 ≥ −10 2 α1 = α2 = α(+)

e1 ∈ (β−1, 0] e2 arb. 2 α1 < α(+) < α2

e1 ∈ (0, β0) e2 arb. 3 α1 < α(−) < α2 < α(+) < α3

e1 = β0 e2 ≤ −10 3 α1 = α2 = α(−) < α(+) < α3

e1 = β0 e2 > −10 1 α > α(+)

e1 ∈ (β0, 15
2

) e2 arb. 1 α > α(+)

e1 = 15
2

e2 arb. 1 α > 1
(

= α(−) = α(+)

)

e1 > 15
2

e2 arb. 1 α > 1 (and α(±) /∈ R)

For each case we have listed how many branches the solution set Se1,e2 of F (x, h) = 0 has
in the limit x → ∞ (column #), together with rough bounds on the coefficient α in terms
of α(±) (if possible) such that the solutions of the respective branch are approximated by

γα(x) =
(
x, α√

x

)
(column α). If necessary, the α-values are labeled increasingly

f(x) = − 3
x +O(1) in said limit (cf. Appendix A). Any other term in F can be

continuated to x = 0, that is, there exists a continuous function

F̃ : [0, 1] × [a, b] → R s.t. F̃ (x, h) = F (x, h) +
(x

2
− 1

)
f(x)

for all x > 0 and all h ∈ [a, b]. Let M be an upper bound for the continuous
function F̃ on its compact domain. By the asymptotic expansion of f , we find
ε > 0 such that

−
(x

2
− 1

)
f(x) < −M

for all x < ε. Therefore, we have for all h ∈ [a, b] and all x ∈ (0, ε)

F (x, h) = F̃ (x, h) −
(x

2
− 1

)
f(x) < 0

and the lemma follows. �

By the previous lemma, it remains to study the limits h → ∞ and h → 0,
which is done in the following two lemmata.

Lemma 5.14. For any e1, e2 ∈ R we have an asymptotic solution curve in the
limit h → ∞ parameterized by

(0, ε) → (0,∞) × (0,∞), x 
→
(
x,
√

90
29 x

)

for some ε > 0.

Proof. In the limit of large h and small x, the terms
29
30

h2 + f(x)
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are dominant. Studying when they mutually compensate (i.e., setting them to
zero) and solving for x yields the lemma. Note that approximating f(x) ≈ − 3

x
is sufficient for this claim. �

Remark 5.15. (i) Using the results from Sect. 4.2, we can make ε small
enough such that the graphs of X(e1,±) are bounded away from our solu-
tion curve. Hence, indeed the solution curve approximated by our asymp-
totic solution curve in the previous lemma is solvable to be the graph of
an analytic function of x on (0, ε).

(ii) Note that, without taking into account also terms of lower order than the
one considered in Lemma 5.14, we can only conclude that the solution
curve is in

√
90/29x + O(x−1/2). However, this suffices to conclude from√

90/29 > 1 that the solution curve in consideration provides solutions
at positive ξ = 1

12

(
x − 1

h2

)
, at least at sufficiently small x or sufficiently

large h, respectively.

Lemma 5.16. If e1 < 0 the map

(0, ε) → (0,∞) × (0,∞), x 
→
(
x,
√

− e1
90 x

)

is an asymptotic solution curve at small x with some sufficiently small ε > 0.
If e1 ≥ 0 there exists ε > 0 such that (0, ε) × (0, ε) contains no solution of
F (x, h) = 0.

Proof. The relevant terms in the present setting are

− e1

30
1
h2

+ 2 log(h) + f(x). (54)

Let e1 < 0. Equating the first and last term of (54) (and approximating
f(x) ≈ − 3

x , cf. Appendix A) yields the asymptotic solution curve in the lemma.
In this scenario the log-term only contributes in higher orders.

Note that the graphs of X(e1,±) cannot come amiss to the present con-
sideration and we indeed obtain an analytic solution curve approximated by
the asymptotic solution curve in the lemma.

If e1 ≥ 0, all the dominant terms diverge to −∞ as h → 0 or x → 0 and
since the remaining contributions into F that are left out in (54) are bounded
in this limit we can find a negative upper bound on F on some (0, ε) × (0, ε),
ε > 0. �

5.3. Asymptotics at Finite x

At first we study the regime of small h.

Lemma 5.17. (i) Let e1 
= 0. For any compact interval [a, b] ⊂ (0,∞), there
exists ε > 0 such that F is bounded away from 0 on [a, b] × (0, ε). Conse-
quently, the equation F (x, h) = 0 has no solution in [a, b] × (0, ε).

(ii) Let e1 = 0. For any compact interval [a, b] ⊂ (0,∞) with 2 /∈ [a, b],
there exists ε > 0 such that F is bounded away from 0 on [a, b] × (0, ε).
Consequently, the equation F (x, h) = 0 has no solution in [a, b] × (0, ε).
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Proof. The proof of (i) goes very similar to the proof of Lemma 5.13, and we
skip the details. Note that the term − e1

30
1
h2 in F1 (cf. (25)) is dominant in this

regime and, in particular, suppresses the influence of the log-term in F2.
If, on the other hand, e1 = 0, the dominant term in the limit h → 0 is

the log-term in F2. This term does come with the prefactor −(x
2 − 1

)
, that is,

with a prefactor which changes sign at x = 2. If we, however, stay away from
x = 2 and assume that 2 /∈ [a, b], then all terms other than the log-term are
continuable to h = 0 on [a, b]. By the same argument as for Lemma 5.13 (or
for Part (i)) we conclude (ii). �

Remark 5.18. Using Lemma 5.16 we can formulate Part (i) of the previous
lemma (i.e., for the case e1 > 0) also for intervals of the form (0, b] with b < 2.

Next we study the limit (x, h) → (2, 0) for e1 = 0 which leads to cases
that are sensitive to values of e2.

Lemma 5.19. Let e1 = 0.
(i) If e2 > 0, there is precisely one solution curve in a sufficiently small

neighborhood of (2, 0) ∈ (0,∞) × (0,∞). This solution curve is of the
form

(2, 2 + ε) → (0,∞) × (0,∞), x 
→ (
x, h(x)

)
and fulfills h(x) ∈ O(x − 2),

for some ε > 0.
(ii) If e2 < 0, there is precisely one solution curve in a sufficiently small

neighborhood of (2, 0) ∈ (0,∞) × (0,∞). This solution curve is of the
form

(2 − ε, 2) → (0,∞) × (0,∞), x 
→ (
x, h(x)

)
and fulfills h(x) ∈ O(2 − x),

for some ε > 0.
(iii) If e2 = 0, there is precisely one solution curve in a sufficiently small

neighborhood of (2, 0) ∈ (0,∞) × (0,∞). This solution curve is of the
form

(0, ε) → (0,∞) × (0,∞), h 
→ (
x(h), h

)
and fulfills x(h) = 2 + O(h2),

for some ε > 0. Moreover, x(h) > 2 for all h ∈ (0, δ).

Proof. We use polar coordinates around (x, h) = (2, 0) and evaluate

F (2 + � sin ψ, � cos ψ) with ψ ∈ (− π
2 , π

2

)
and � ∈ (0, 2).

The dominant terms in the limit � → 0 stem from the log-term in F2 as well as
from the e2-term which does not depend on � or ψ. More precisely, evaluating
the lengthy expression for F (2 + � sin ψ, � cos ψ) we find that

F (2 + � sin ψ, � cos ψ) + � sin ψ log(� cos ψ) +
e2

30
→ 0 as � → 0,

uniformly in ψ ∈ ( − π
2 , π

2

)
and at least of order O(�). Consequently, for

sufficiently small � the solutions of F (2+� sin ψ, � cos ψ) = 0 are approximated
by solutions of � sin ψ log(� cos ψ) + e2

30 = 0.
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At fixed � ∈ (0, 1) the map ψ 
→ � sin ψ log(� cos ψ) is monotonously
decreasing on

(− π
2 , π

2

)
with � sin ψ log(� cos ψ) → ∓∞ as ψ → ±π

2 and a zero
at ψ = 0. Since now

� sin ψ log(� cos ψ) +
e2

30
→ e2

30
as � → 0

pointwise in ψ ∈ ( − π
2 , π

2

)
and uniformly in ψ ∈ ( − π

2 + δ, π
2 − δ

)
for any

δ ∈ (0, π
2 ), we conclude that at sufficiently small � we have precisely one

solution ψ, and if e2 > 0 we have ψ → π
2 , whereas if e2 < 0 we have ψ → −π

2 .
If e2 = 0 we have ψ → 0.

Back in the coordinates (x, h), for e2 > 0 we obtain a solution curve
as stated in the lemma, part (i), where ψ → π

2 implies that h → 0 faster
than linear. Analogously we obtain the assertion (ii). Note that the graph of
h 
→ (

X(0,−)(h), h
)

is parameterized in the (�, ψ)-coordinates by a curve with
ψ → 0 and ψ < 0 as ε → 0. In particular, the set where F (x, h) = 0 is not
solvable for h is bounded away from our solution curves, thus they are indeed
representable as the graph of a function of x.

Finally, for the assertion (iii) note that we have ψ → 0 from above as � →
0, in particular, the graph of h 
→ (

X(0,−)(h), h
)

is also bounded away from
the solution curve for e2 = 0. Moreover, since the map ψ 
→ � sin ψ log(� cos ψ)
has a linear zero in ψ = 0 for sufficiently small �, that is, we have

� sin ψ log(� cos ψ) = �ψ log � + O(ψ3),

in the limit ψ → 0 as � → 0 is also achieved at least linearly. Transformation
back into the coordinates (x, h) adds another power and we obtain assertion
(iii). �

Next we study the situation at large h.

Lemma 5.20. Let e1, e2 ∈ R and suppose that Assumption II holds. The straight
lines defined by x ∈ {x(±)} are asymptotic solution curves. Moreover, the solu-
tion curves approximated by these asymptotic solution curves are representable
as graphs of analytic functions

(x(±), x(±) + ε) → (0,∞) × (0,∞), x 
→ (
x, h(x)

)

for some ε > 0.

Proof. We evaluate the function F at x(±) and at x(±) + 2δ for some δ ∈
(0, 1/

√
30) and obtain

F (x(±), h) = ∓ 1√
30

− e2

30
− e1

30
1
h2

∓ 1√
30

(
2 log(h) + f(x(±))

)
(55)

as well as

F (x(±) + 2δ, h) =

(

δ ±
√

2
15

)

δh2 ∓ 1√
30

− δ − e2

30
− e1

30
1
h2

−
(

δ ± 1√
30

)(
2 log(h) + f(x(±) + 2δ)

)
, (56)

respectively.
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Note that, for our given bound on δ both the prefactors δ ± √
2/15 and

δ ± 1√
30

of the divergent terms in the limit h → ∞ in (56) do not change sign
in (0, 1/

√
30) � δ.

From (55) and (56) we can read off that

F (x(±), h) → ∓∞ as well as F (x(±) + 2δ, h) → ±∞
as h → ∞ and, consequently, there exists h0 ∈ (0,∞) such that for all h > h0

there exists a solution of F (x, h) = 0 in both the intervals

(x(−), x(−) + 2δ) and (x(+), x(+) + 2δ). (57)

By possibly enlarging h0 we find that there is a third solution in some interval
(0, δ̃) provided by Lemma 5.14 and with Lemma 4.7 (which is where we need
Assumption II) it is indeed the third solution. Hence, each of the intervals (57)
contains precisely one solution.

Since the above argument works for any (sufficiently small) δ > 0, and
since the solutions we have found are in the open intervals in (57) (in partic-
ular they do not coincide with these interval’s lower bounds), we can already
conclude that the solutions “come closer to x(±)” as h → ∞, more precisely,
we have the asymptotic solution curves as stated in the lemma, approximating
the solution curves in O(1). This approximation order suffices, since, by our
above argumentation (relying on Assumption II), we have already identified
all solution curves at sufficiently large h-values and there are no more solution
curves from which the ones we have found need to be separated by elaborating
higher-order approximations.

Finally, evaluating F
(
X(e1,±)(h), h

)
(with X(e1,±)(h) from Lemma 4.15)

we find the dominant term in the limit h → ∞ to be the log-term in F2. In
particular, we find that also F

(
X(e1,±)(h), h

) → ∓∞ as h → ∞, and we can
replace (57) by the refined intervals

(X(e1,−)(h), x(−) + 2δ) and (X(e1,+)(h), x(+) + 2δ)

at sufficiently large h. Again the solutions do not coincide with these refined
interval’s lower bounds. Hence, in every solution point found above we can
solve the solution set to yield the graph of an analytic function of x on some
interval (x(±), x(±) + ε). �

Remark 5.21. Recall that the values x(±) correspond, in the limit of large h,
to the values ξ(±) which we have distinguished in the massless case, where we
also have a divergent (H → ∞) solution branch around these values.

5.4. Minimal and Conformal Coupling

In this section, we want to study the physically distinguished ξ-values of min-
imal coupling ξ = 0 and conformal coupling ξ = 1

6 . This allows us to exclude
solutions or to specify a number of solutions along the curves defined by these
ξ-values for certain choices of e1 and e2. For this analysis we use similar argu-
ments as in Sect. 4.1.
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Minimal and conformal coupling are realized in (x, h)-coordinates by the
curves

(0,∞) → (0,∞) × (0,∞), x 
→ (
x, hmc(x)

)
:=

(
x,

1√
x

)
(58)

and

(2,∞) → (0,∞) × (0,∞), x 
→ (
x, hcc(x)

)
:=

(
x,

1√
x − 2

)
, (59)

respectively.
In order to study these particular cases, we substantiate Assumption III

as follows. First, we treat the case of minimal coupling.

Lemma 5.22. There exist x1, x2 ∈ (0,∞) such that the (h-, e1- and e2-inde-
pendent) function

(0,∞) → R, x 
→ d2

dx2
F
(
x, hmc(x)

)

is negative on (0, x1) ∪ (x2,∞).

Proof. Evaluating the function F from (25) along the curve of minimal cou-
pling (58) results in

F
(
x, hmc(x)

)
= −

(1
4

+
e1

30

)
x−

( e2

30
+

x

2
(
f(x)− log(x)

))
+

29
30x

+f(x)− log(x)

(60)
for x > 0 (where we grouped the terms according to their relevance in the
different regimes x → 0, finite x or x → ∞). For the second derivative of (60)
we compute that

d2

dx2
F
(
x, hmc(x)

)
= − 61

15x3
+ O

( 1
x2

)
as x → 0

as well as
d2

dx2
F
(
x, hmc(x)

)
= − 74

21x4
+ O

( 1
x5

)
as x → ∞,

for which we have employed the Puiseux expansion of f−log from Appendix A.
�

Numerical evidence for Assumption III(i). The previous lemma imposes the
assumption at sufficiently small and at sufficiently large x. That it holds also
in the intermediate regime is numerically justified in Fig. 6(i), were we have
plotted (60) for x ∈ (0,∞) (multiplied by x7/2) in log–log scaling, together
with its asymptotics (also multiplied by x7/2) of the previous lemma. �

Before using this numerical evidence we substantiate Part (ii) of Assump-
tion III.

Lemma 5.23. There exist x1, x2 ∈ (2,∞) such that the (h-, e1- and e2-indep-
endent) function

(2,∞) → R, x 
→ d2

dx2
F
(
x, hcc(x)

)

is negative on (2, x1) and positive on (x2,∞).
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10-3 1 103

-101

-1

-10-1 x7/2 ∂2

∂x2 F x, hmc(x)
)

2−x−2
10-3 1 103

10-3

10-2

10-1

1
∣∣(x − 2)7/2 ∂2

∂x2 F x, hcc(x)
)∣∣

x − 2

(i) minimal coupling (ii) conformal coupling

Figure 6. The graphics show the (in (ii), absolute value of
the) second derivatives of F along the curves of minimal (i)
and conformal (ii) coupling, parameterized by x and x − 2,
respectively. The dotted lines mark the asymptotics asserted
in the text both at small and large arguments. Here we mul-
tiplied in both plots with a power-x7/2-factor in order to max-
imize the angle between the asserted asymptotes in the loga-
rithmic plot, that is, the lines which have a logarithmic slope
of 1

2 and − 1
2

Proof. For x > 2 and y = x − 2 we obtain

F
(
x, hcc(x)

)
= F

(
y + 2,

1√
y

)

= −
(1

4
+

e1

30

)
y − e2

30
− y

2
(
f(y + 2) − log(y)

)− 1
30y

(61)

for the values of F along the curve of conformal coupling (59). Note that,
employing some Puiseux series arithmetics,4 one can compute that

f(y + 2) = log(y) +
2
3y

− 1
15y2

− 8
315y3

+ O(
1
y4

)

at large y and thus, for the second derivative of (61), obtain the asymptotic
expansions

d2

dy2
F
(
y + 2, 1√

y

)
= − 1

15y3
+ O

( 1
y2

)
as y → 0

and

d2

dy2
F
(
y + 2, 1√

y

)
=

8
105y4

+ O
( 1

y5

)
as y → ∞.

Therefrom we read off the lemma. �

4After we expanded f(y + 2) we, moreover, need to expand 1
(y+2)k as well as log( y

y+2
) in

terms of 1
yl .
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Numerical evidence for Assumption III(ii). Numerically evaluating the second
derivative of (61) we obtain Fig. 6(ii). Therefrom, we conclude that in the inter-
mediate regime not covered by Lemma 5.23 this second derivative has precisely
one zero (indicated by the dip in the log–log plot). Note that we could continue
to numerically evaluate d2

dx2 F
(
x, hcc(x)

)
on the intervals (2, x0) and (x0,∞),

with its numerically determined zero x0 (≈ 2.6457) and with a suitable scaling
of the horizontal axis. This would, however, show that the dip in the log–log
plot Fig. 6(ii) at x0 −2 is in fact a linear zero and that d2

dx2 F
(
x, hcc(x)

)
is neg-

ative (2, x0) and positive (x0,∞). We skip this step for a concise presentation.
�

The following two lemmata use the previous numerical evidence (in terms
of Assumption III) in order to find bounds on the number of solutions in the
cases of minimal and conformal coupling.

Lemma 5.24. Suppose that Assumption III(i) holds.
(i) For e1 < − 15

2 the consistency equation (25) has precisely one solution
with minimal coupling ξ = 0 for any value of e2.

(ii) For e1 = − 15
2 the consistency equation has precisely one solution with

minimal coupling ξ = 0 for e2 < 20 and no solution with minimal coupling
for e2 ≥ 20.

(iii) For e1 > − 15
2 there exists e

(0)
2 ∈ R such that the consistency equation has

◦ precisely two solutions along minimal coupling if e2 < e
(0)
2 ,

◦ precisely one solution along minimal coupling if e2 = e
(0)
2 and

◦ no solution along minimal coupling if e2 > e
(0)
2 .

Proof. By Assumption III(i), the map x 
→ F
(
x, hmc(x)

)
is strictly concave

and hence for all parameter choices has at most two zeros.
Now compute the asymptotic expansions of (60),

F
(
x, hmc(x)

)
= − 61

30x
+ O(1) as x → 0

and

F
(
x, hmc(x)

)
= −

(1
4

+
e1

30

)
x −

( e2

30
− 2

3

)
+ O

( 1
x

)
as x → ∞. (62)

We read off that for e1 < − 15
2 the limits F

(
x, hmc(x)

) → −∞ as x → 0 and
F
(
x, hmc(x)

) → +∞ as x → ∞ hold. A concave function admitting these
limits has precisely one zero and we conclude Assertion (i) of the lemma.

If e1 = − 15
2 , we have the same small-x-limit as before, but now we have

F
(
x, hmc(x)

) → − e2
30 + 2

3 as x → ∞. That limit is positive if and only if
e2 < 20. If this is the case, a concave function with such limiting behavior has
precisely one zero, whereas if this is not the case, such a function cannot have
a zero at all. This shows (ii).

Finally, for fixed e1 > − 15
2 we read off the limits F

(
x, hmc(x)

) → −∞ for
both x → 0 and x → ∞, and using its concavity the map x 
→ F

(
x, hmc(x)

)

has precisely one local (and thus global) maximum. The value of F
(
x, hmc(x)

)
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at this maximum depends on e2 in an affine linear manner (with nonvanish-
ing slope coefficient, namely − 1

30 ), in particular, there exists exactly one e
(0)
2

such that maximum value equals 0. If e2 = e
(0)
2 , the strictly concave function

vanishes in its global maximum and hence that maximum is the only zero. If
e2 < e

(0)
2 , the maximum value is positive, and a concave function with the

above limiting behavior and a positive maximum has exactly two zeros. If, on
the other hand, e2 > e

(0)
2 , the maximum value is negative and a function with

negative global maximum has no zero at all. Together we conclude (iii) of the
lemma. �

Lemma 5.25. Suppose that Assumption III(ii) holds.
(i) If e1 < − 15

2 the consistency equation (25) has at most three solutions
with conformal coupling ξ = 1

6 .
(ii) Let e1 = − 15

2 . If e2 ≤ −10 the consistency equation has exactly one
solution with conformal coupling. Moreover, there exists e

(1)
2 > −10 such

that the consistency equation has

◦ precisely two solutions with conformal coupling if e2 ∈ (−10, e
(1)
2 ),

◦ precisely one solution with conformal coupling if e2 = e
(1)
2 and

◦ no solution with conformal coupling if e2 > e
(1)
2 .

(iii) If e1 > − 15
2 there exists e

(2)
2 ∈ R such that the consistency equation has

◦ precisely two solutions with conformal coupling if e2 < e
(2)
2 ,

◦ precisely one solution with conformal coupling if e2 = e
(2)
2 and

◦ no solution with conformal coupling if e2 > e
(2)
2 .

Proof. We proceed similar to Lemma 5.24, although we need to adjust the
arguments at some points.

Assumption III(ii) and the argument introduced in the beginning of
Sect. 4.1 imply that (61) has at most three solutions, regardless of any pa-
rameter choices. Particularly, Part (i) of the lemma follows and we skip to
improve the bounds in that setting.

For Parts (ii) and (iii), we determine the asymptotic expansions of (61)
and obtain

F
(
x, hcc(x)

)
= − 1

30y
+ O(1) as y → 0

and

F
(
x, hcc(x)

)
= −

(1
4

+
e1

30

)
y −

( e2

30
+

1
3

)
+ O

(1
y

)
as y → ∞.

If e1 = − 15
2 , we read off that F

(
y + 2, 1√

y

) → −∞ as y → 0 and F
(
y +

2, 1√
y

) → − e2
30 − 1

3 as y → ∞. Consequently, if e2 ≤ −10 the latter large-y-limit

is nonnegative and, having only one inflection point, the map y 
→ F
(
y+2, 1√

y

)

must have precisely one zero. Therefore, note that the second derivative is
indeed positive at large y by Lemma 5.23.
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On the other hand, from the limiting behavior we can read off that the
map y 
→ F

(
y + 2, 1√

y

)
has a global maximum, in which the maximum value

depends affine linearly on e2. Hence, there exists e
(1)
2 such that this maximum

value is zero, where in the context of the aforementioned argument necessar-
ily e

(1)
2 > −10 holds. The remaining claims of part (ii) in the lemma follow

immediately.
Finally, for e1 > − 15

2 we have F
(
y + 2, 1√

y

) → −∞ in both limits y → 0

and y → ∞, consequently the function y 
→ F
(
y+2, 1√

y

)
has a global maximum

in which its value, again, depends affine linearly on e2. By the same arguments
as above and in Lemma 5.24, we obtain a e

(2)
2 ∈ R as in Part (iii) of the lemma.

�

6. Numerical Treatment of the Solution Set

In the previous sections, we discussed properties of the set Se1,e2 of de Sitter
solutions of the energy equation in the massive case, in particular, the structure
of Se1,e2 and its asymptotic behavior. The non-polynomial terms of the energy
equation prevented an explicit solution. In the present section, have a look
at the solution set by determining the zeros of F numerically. In particular,
we study at the behavior of the solution set around distinguished parameter
sets that were found in the above analysis. Hereby, we give attention to the
topological changes of the solution set.

At first, in Fig. 7, we look at the parameter pair e1 = e2 = 0. There, and
throughout this section, we use the following graphical conventions:

◦ Thick solid lines mark the solution set Se1,e2 of the consistency equation
(25).

◦ Densely dashed lines mark the graphs of X(e1,±), where the equation
F (x, h) = 0 is not solvable for h.

◦ Loosely dashed lines mark the curves from (58) and (59) of minimal
(ξ = 0) and conformal (ξ = 1

6 ) coupling, respectively.
◦ Dotted (black) lines mark the distinguished values of x ∈ {x(−), 2, x(+)}.
◦ If suitable, we include some additional level sets of the function F in gray

dotted. As e2 enters the function F as an offset, these are solution curves
for some other value of e2.

Note that we display the solution sets in log–log scaling since by our re-
sults of Sect. 5 all solution curves are, in that scaling, asymptotically equivalent
with straight lines, either vertical or with slope ± 1

2 .
In Fig. 7, we identify most of the analytic assertions we have made in the

previous sections. These are as follows: we have a solution curve running into
(x, h) = (2, 0) (cf. Sect. 5.3), three solution curves which are asymptotically
equivalent with x 
→ α√

x
, one of them at small x (cf. Sect. 5.2) and two at large

x (cf. Sect. 5.1) and, finally, two solution curves approaching the asymptotes
at x = x(±) for large h (cf. also Sect. 5.3). Moreover, we have exactly one point
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Figure 7. The graphics show the solution sets of the energy
equation for e1 = e2 = 0 in log–log and in normal scaling as
the thick, black lines. The dotted black lines mark the values
x ∈ {x(−), 2, x(+)}, the densely dashed lines mark the points
(x, h) where x = X(0,±)(h) and the loosely dashed black lines
mark minimal and conformal coupling. The dotted gray lines
finally mark some more level sets of F with the given val-
ues. In the following, we mostly stick with the representation
in log–log scaling as the straight outgoing lines show off the
asymptotics of our solution curves. Note that in (i), although
it seems slightly curved, the left branch of solutions also ends
in a straight line with (logarithmic) slope − 1

2
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where the equation is not locally solvable for h, precisely where the curve of
solutions crosses the curve defined by the graph of X(0,−).

We have shown in Sect. 5.4 that the function F , restricted to the curve
of minimal coupling ξ = 0 is concave and divergent to −∞ both at small and
large x. However, as we can see in Fig. 7, the maximum of the function F
is indeed negative and, consequently, there is no solution for the minimally
coupled model. Moreover, there is also no solution for the conformally coupled
case. Thereby, we conclude that the six open ends of the present case con-
stitute three connected components, namely the connected component below
the minimal coupling curve, the one above the conformal coupling curve and
the one in between these two curves. Moreover, we can separate the connected
components by the line x = 2, since for e1 = e2 = 0 we have F (2, h) = −h2

30 < 0
for all h > 0. Finally, we can also observe the precise amount of solutions that
we have asserted in Table 1 on the lines at x = x(−) and x = x(+), namely
exactly one solution for each x-value.

At next, we discuss the behavior of the solution set around the parameter
point e1 = e2 = 0, particularly we look at the asymptotic solution curve
running into (x, h) = (2, 0). Recall that there exists such a curve only for
e1 = 0, where its precise shape is determined by the parameter e2 (cf. Sect. 5.3).
We have shown how for e2 = 0 the solution curve running into (x, h) = (2, 0)
is tangent to the x = 2-line in the limit, whereas for e2 > 0 and e2 < 0
it is tangent to the h = 0-axis, starting in positive or negative direction,
respectively. This is what we observe in Fig. 8(vi).

If we tune e1 away from zero to values e1 < 0, we observe that this curve,
instead of running into (x, h) = (2, 0), now runs into (x, h) = (0, 0), and ends
in the asymptotic solution curve at small x we expect for such e1 values. If we
choose, however, values e1 > 0, we observe that now this branch adds to a third
asymptotic solution curve at large x. This behavior is shown in Fig. 8(iii)–(v).

Moreover, in Fig. 8 we capture how a saddle of the function F can be
tuned to coincide with a zero of F . While the value of F at its saddle is
positive or negative in Fig. 8(i) or 8(iii), respectively, the value of e1 in Fig. 8(ii)
was chosen such that we indeed observe crossing solution curves, reducing the
number of connected components of our solution set by one. That in such a
case the zero set of F can be locally decomposed into two analytic curves was
shown in Sect. 4.3.

Furthermore, we want to look at the parameters nearby e1 = β0 and
e2 = −10. We have studied this setting in Sect. 5.1. The solution sets for
certain choices of parameters are shown in Fig. 9. At the value e1 = β0 the
solution set transitions from having three asymptotic solution curves to having
only one. The lower two of these three curves for e1 < β0 are connected to
each other in Fig. 9(a)(i) and are connected to the two curves which are left at
large h without crossing in Fig. 9(a)(ii). In between these values there must,
consequently, be an e2-value at which they are connected to the same two
curves, but now interchanged, and we can observe them to cross in the arising
saddle of F . The same may be observed in each column between the e2-values
of (ii) and of (iii). Consequently, between the values of Fig. 9(c)(ii) and (c)(iii)
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Figure 8. Behavior of the solution set of the energy equation
around the parameter point e1 = e2 = 0. On the one hand, we
show the solution sets at e2 = 0 for several e1-values around
0 in (i)–(v). Above the shown section of the h-axis, the curves
are more or less identical with the plots in Fig. 7, thus we
cropped these figures. On the other hand, we show the solution
sets close to the point (x, h) = (2, 0) for e1 = 0 and for several
e2 values around 0 in (vi). This value of e1 is the only case
where we observe these curves running into (2, 0) and the
distinction of how these curves run into that point is only
visible if we show a non-log scaling of the h-axis. For other
values of e1 close to 0 a variation of e2 is rather unspectacular
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1 10
x
∣
∣∣100 1000

∣
∣∣

1
100

1
10

1
h

∣
∣
10

1 10
x
∣
∣∣100 1000 1 10

x
∣
∣∣100 1000

∣∣
1

100

1
10

1
h

∣∣
10

∣∣
1

100

1
10

1
h

∣∣
10

(i)
e2 = −9

(ii)
e2 = −13

(iii)
e2 = −21
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Figure 9. The graphic shows the behavior of the solution set
of the energy equation around the parameter e1 = γ0. Hereby
we also include a variation of the e2-values. The values of the
rows (i) and (ii) are chosen around the value e2 = −10 which
only plays a particular role (for the asymptotics at large x)
if e1 = γ0. The value in row (iii) was chosen such that we
additionally can observe how we passed a value with crossing
curves

there is a parameter point in which we only have one connected component of
solutions.

Around the parameter point e1 = β−1 we can observe a very similar
behavior of the solution set as around e1 = β0. We have shown in Sect. 5.1
that above this particular value we have two asymptotic solution curves at
large x, and that their asymptotic approximation is determined by the zeros
of s. The latter two zeros in turn degenerate in the boundary case e1 = β−1,
and below this value there are no such curves anymore. Hence, we can, similarly
as in Fig. 9, observe that the two asymptotic solution curves come closer to
each other as e1 → β−1 from above, have the same asymptotic (first order)
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approximation at e1 = β−1 and form a sling (now around the curve of X(e1,+))
which is more and more pulled to smaller values of x as e1 further decreases.

7. Parameter Choices for Potential Inflationary Models

So far, we mostly considered the consistency equation in the massive case as
an equation of x instead of the physical parameter ξ in order to simplify the
analysis of the function f . However, we can identify the curves of constant ξ
as parameterized by

(0,∞) → (0,∞) × (0,∞), h 
→ (
12ξ + 1

h2 , h
)
, (63)

where the curves of minimal coupling (58) and conformal coupling (59) are
special cases. If ξ < 0, these curves leave the domain (0,∞) × (0,∞) above a
certain h-value, since the Bunch–Davies state exists for negative ξ only if h is
sufficiently small.

In the present section, we want to identify parameter settings of potential
inflationary models. By a potential inflationary model, we mean the following:

According to “standard” (i.e., ΛCDM) cosmology our universe will, even-
tually at late times, expand in a dark energy-dominated exponential manner.
In other words, it will be well approximated by a cosmological de Sitter so-
lution, say with Hubble rate HDE. On the other hand, assuming that the
universe went through an inflationary early phase solves various problems of
ΛCDM physics, most importantly, the so-called cosmic horizon problem. Also
an inflationary phase is modeled by an (approximately) exponential expansion,
with a much larger Hubble rate. Denote it by HI (� HDE).

The aim of the present section is to identify parameter settings (e1, e2, ξ)
in which there exist multiple solutions of our model, say two values h1 and
h2 with h1 � h2, which restore the ratio h1

h2
= HI

HDE
of some given physical

data HI and HDE. More advanced, we will show that by parameter tuning
one is more or less free to produce an arbitrary ratio h1

h2
with a (more or less)

arbitrary smaller solution h2. To establish a realistic magnitude for the rates
h1 and h2, we note that for today’s Hubble rate and for the Higgs mass (i.e.,
the only mass of a scalar field occurring in the standard model of particle
physics) one can compute

h2 =
Htoday

MHiggs
≈ 10−44

in our unit system (i.e., where � = c = 1). On the other hand, supposing
that the inflationary phase lasted about 10−34 s and caused an expansion by
a factor of 1026 we can compute HI ≈ 1034 1

s and thus a magnitude of

h1 =
HI

MHiggs
≈ 107.

Suppose that in a subsequent step, for a parameter setting as above, one
is able to show how the dynamical system (14) is unstable toward perturba-
tions around the de Sitter solution defined by the larger value h1 and stable
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around the solution defined by the smaller h2. Moreover, suppose that one is
able to show that the dynamical system (14) (with the aforementioned sta-
bility properties) indeed possesses a solution starting close to the unstable de
Sitter solution with rate h1 and, after some intermediate phase, eventually
approaches the stable solution with rate h2. In that case, one would provide a
physical model for our universe in which the driving forces for both the infla-
tionary and the late-time expansion are modeled by the presence of a quantum
field. In particular, such a model omits introducing the new and unknown dark
energy, that is, a form of energy which evades any observation other than en-
forcing an exponential late-time expansion. In such an approach, the present
section makes the first step of providing suitable parameter settings.

Note that similar to our hypothetical outline above, such effects have
indeed been observed among solutions of the semiclassical Einstein equation.
At first, we refer to Hänsel [29] who found a parameter regime for the SCE
of a massless, conformally coupled scalar field (with the conformal vacuum)
in which precisely the stability properties of two (different) de Sitter solutions
as described above are present. Moreover, the corresponding phase diagram
(Figure 5.6.(a) of [29]) shows how solutions that start close to the larger de
Sitter point approach the smaller de Sitter point under certain conditions. In
another article [11], the authors found two different de Sitter solutions of which
the one with a larger rate is unstable and the one with a smaller rate is stable.
They also work with a conformally coupled scalar field, using approximate
KMS states. As a third reference, the authors of the present article found
in [23] a similar scenario in which a de Sitter solution is present and appears
attractive toward perturbations. In that latter article, solutions are constructed
using Minkowski-like states for a massless field. Note that while the analysis
of this scenario is carried out explicitly only for ξ = 1

6 , it is also stated how
this can be generalized for ξ close but not equal to 1

6 . Finally, Degner [14]
identified the de Sitter–Bunch–Davies system as the asymptotic limit (in a
suitable sense) of solutions to the SCE, at least in the class of so-called states
of low energy.

In the following, we provide a few examples of parameter settings in which
there exist multiple solutions. Moreover, we show how to tune parameters in
order to control the h-values of these solutions (particularly their ratio) by
exploiting the knowledge acquired in Sect. 5. Without further notice we will
make use of Assumptions I, II and III in the following.

In Fig. 10 we can see how the solution set behaves if e2 → −∞. We started
in (i) with a parameter point e1 = 2 and e2 = −10 close to the parameters
studied in Fig. 9, such that e1 lies in the interval (β-1, β0) where we have three
asymptotic solution curves at small h, and therefrom lowered e2.

In Sect. 5.4 we have seen that F , restricted to the curve of ξ = ξcc = 1
6 ,

parameterized as in (63), diverges to −∞ for both h → 0 and h → ∞ at our
choice of e1. Moreover, by Lemma 5.25, it has two zeros if e2 lies below a certain
bound and no zero above that bound. We have not computed this bound, but
apparently in Fig. 10(i) we are above this bound whereas in Fig. 10(ii) we are
below it. Since then e2 enters F simply as a (sign-reversed) offset, it is clear
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Figure 10. Solution sets of the massive equation for e1 = 2
in (i)–(iii). We can see how for smaller and smaller values
of e2 the visible slings of solution curves are more and more
pulled to large or small values of h, respectively. Hereby, both
of them cross the line of ξ = ξcc = 1

6 . (iv) shows a similar
situation for the solution set of the massless equation for the
same parameters as in Fig. 1(iii)

that, if we lower e2, the two corresponding h-values of the two zeros of F drift
more and more apart, and the smaller solution’s h converges to 0, whereas the
larger solution’s h diverges to +∞ in the limit e2 → −∞.

What we have done above works not only for ξ = ξcc = 1
6 , but for any ξ

with |ξ − 1
6 | ≤ 1/

√
1080, that is, for all ξ such that the vertical asymptote of the

corresponding curve (63) lies in between the values x(±) = 2 ±√
2/15.

To see this, we observe that all constant-ξ-curves are asymptotically
equivalent to x 
→ 1/

√
x at large x and that the function s from Sect. 5.1 has

one zero larger that 1 and two zeros smaller than 1 for our present value of e1.
In particular, all these curves of constant ξ lie, asymptotically at large x, in
between the upper two solution curves, and for sufficiently small e2 intersect
the solution set at small h. On the other hand, for the ξ-values specified above
the solution set intersects all these curves at large h as well. By lowering e2

the h-values of these two solutions then drift more and more apart.



3020 H. Gottschalk et al. Ann. Henri Poincaré

We have a similar situation for this particular interval of ξ-values in the
massless case. We have included a graphic for this situation in Fig. 10(iv). If
the parameter ratio Λ

K tends to zero, the two branches of the solution set drift
more and more apart. More precisely, while for a fixed value ξ ∈ (ξ(−), ξ(+))
the larger solution diverges, the smaller solution remains close to Hvac =

√
Λ/3.

Both these limiting behaviors can easily be read off from (20) computing
H(±)/Hvac.

As a next example, we want to study solutions for ξ-values at and around
minimal coupling ξmc = 0. Figure 11 shows the solution sets for the same
parameters e1 and e2 as in Fig. 10. In Sect. 5.4 we have shown that also for
minimal coupling we have basically the same situation as above, namely that
F along the minimal coupling curve diverges to −∞ at both small and large
h. Now already the value e2 = −10 in Fig. 11 lies below the upper bound on
e2-values from Lemma 5.24(iii), consequently, in all three graphics of Fig. 11
we have two solutions with minimal coupling. The h-values of these solutions
drift apart as e2 → −∞.

In this scenario, however, we can tune our parameter ξ to positive small
values such that the h-values of two solutions described above stay approxi-
mately stationary, but a third solution with a large h-value comes into play.
Therefore, Fig. 11(i) includes the constant-ξ-curves for some such positive val-
ues. While it is obvious from the figure, we can also conclude the existence of
such a solution with h → ∞ as ξ → 0 from Sect. 5.2. Therefore, we reparame-
terize the (small-x-) asymptotic solution curve from Lemma 5.14 into

(0,∞) → (0,∞) × (0,∞), h 
→ (
90

29 h2 , h
)

and note that this curve lies above the line of ξ = 0 in our x-h-parameter
plane. On the other hand, the constant-ξ-curve for any ξ > 0 has a vertical
asymptote and, consequently, crosses the asymptotic solution curve above. For
this crossing, we have x → 0 and h → ∞ as ξ → 0. Consequently, if ξ is small
enough (such that this crossing is at sufficiently small x-values for a good
approximation of the actual solution curve by the asymptotic solution curve),
we observe a third solution with the behavior as claimed above. Note that the
smaller two solutions remain more or less stationary, obviously their h-values
are continuous in ξ around ξ = 0.

Finally, we want to show the solution sets to a family of parameters
with the reversed behavior as in the previous case, that is, we prescribe a
certain (approximate) larger h-value and tune parameters so that the smaller
solution’s h-value tends to 0.

Recalling the shape of the function s from Sect. 5.1, we find that α = 1
being a zero of s is equivalent with e1 = − 15

2 . Hence, for this value of e1,
we have a solution curve which is asymptotically equivalent with any curve
of constant ξ at large x. Moreover, for any value for e1 larger than − 15

2 but
still sufficiently close we have an asymptotic solution curve below the curves of
constant ξ. If we now approach e1 → − 15

2 from above the solution set intersects
the curve of minimal coupling at larger and larger values of x, and hence at
smaller and smaller values of h. This situation is depicted in Fig. 12.
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Figure 12. Solution sets with e2 = 0 and the respective
values of e1. Note how the lower asymptotic curve for large x
admits the same asymptotic approximation as the curves of
constant ξ (here with ξmc = 0 and ξcc = 1

6 ) for e1 = − 15
2 , and

lies below this asymptote for e1 > − 15
2

Also, we have shown in Lemma 5.24 that on the curve of minimal coupling
ξ = 0 the values of F are determined by

(0,∞) → R, x 
→ F
(
x, 1√

x

)
= −( 1

4 + e1
30

)
x − e2

30 + 2
3 + F̃ (x)

with some concave function F̃ that fulfills F̃ (x) → −∞ as x → 0 and F̃ (x) → 0
as x → ∞, cf. Sect. 5.4. From this, we conclude that, if e2 is small enough (cf.
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Fig. 12), then there exist two zeros for e1 > − 15
2 , and the zero with the larger

x-value diverges to +∞ as e1 approaches − 15
2 from above. Consequently, the

h-value of the corresponding solution of our equation tends to 0. The solution
with the larger value for h essentially remains unaffected. By choosing a smaller
e2, we can freely adjust the h-value of the larger solution. Finally, by the same
argument as above we can, moreover, observe a third solution if we tune ξ to
positive values close to 0, and the h-value of this solution diverges as ξ → 0.

Note that in the last scenario we can first adjust the middle solution by
tuning e2, then the large one by tuning ξ and, finally, the small one by tuning
e1. Thereby, one can in principle obtain an arbitrary triplet of positive numbers
as the de Sitter solutions in a particular setting. We emphasize that while
the location (and probably even the existence) of what we called the middle
solution depends on Assumptions I, II and III, the existence and the locations
of the large and the small solution exclusively depends on the asymptotic
analysis of Sect. 5. More precisely, we can state the following:

Theorem 7.1. Let e2 ∈ R. There exist sequences (ξ(n))n∈N and (e(n)
1 )n∈N such

that the consistency equation (25) with parameters e
(n)
1 and e2 possesses two

solutions h
(n)
1 and h

(n)
2 along the curve of constant ξ = ξ(n) for which

h
(n)
1 → ∞ and h

(n)
2 → 0

as n → ∞.

Proof. It is clear from the analysis of Sect. 5 that a large solution is produced
by the limit ξ → 0 from above and that a small solution is produced by the
limit e1 → − 15

2 . The difficulty is now to guarantee that, if we first tuned ξ

around 0 for the large solution and then e1 around − 15
2 for the small solution,

we do not lose the large solution again.
This, in turn, can be achieved by restricting to a small interval I =

[− 15
2 − ε,− 15

2 + ε] for e1-values and choosing a uniform upper bound ξ̂ for
ξ-values below which the larger solution exists and depends continuously on
e1. Then, picking a sequence (ξ(n))n∈N such that 0 < ξ(n) < ξ̂ for all n, we
produce “the large solution” for any e1 ∈ I.

As a next step, for any n ∈ N we can pick a sequence (e(n,k)
1 )k∈N with

e
(n,k)
1 ∈ I for all n, k ∈ N, e

(n,k)
1 → − 15

2 as k → ∞ and such that we produce
“the smaller solution” tending to 0 as k → ∞.

Finally, the consistency equation with parameters e
(n,n)
1 and e2 has (at

least) two solutions along the curve of constant ξ(n) for each n ∈ N, one which
tends to ∞ and one which tends to 0 as n → ∞. �

Remark 7.2. (i) While in the proof we exemplary concentrated on the regime
around ξ = 0, the argument works completely analogous around the val-
ues ξ = ξ(±). In turn, the parameter e1 = − 15

2 is distinguished since any
constant-ξ-curve is asymptotically equivalent with an asymptotic solu-
tion curve of the consistency equation if and only if e1 = − 15

2 , that is, if
and only if α = 1 is a zero of the function s (cf. the analysis of Sect. 5.1).
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(ii) The theorem implies that given any values HI,HDE > 0 such that HI
HDE

is sufficiently large, then these values can be obtained as de Sitter rates
of de Sitter–Bunch–Davies solutions to the cosmological SCE for a scalar
quantum field with arbitrary (positive) mass.

8. Conclusion and Outlook

Significantly improving upon earlier results in [31] on semiclassical de Sitter
solutions, which were limited to vacuum solutions with vanishing QSE tensor,
we have given an extensive and complete analysis of the consistency equa-
tion (17) to obtain a complete picture of cosmological de Sitter–Bunch–Davies
solutions to the SCE.

Our main result is the description of the solution set of cosmological de
Sitter–Bunch–Davies solutions as a union of analytic curves in the parameter
space of the coupling to the scalar curvature ξ and the expansion rate H as
a function of renormalization parameters. Also, as a function of the renormal-
ization parameters, we have obtained a description of the structure of solution
set as the union of up to three analytic curves in the plane of (ξ,H) values
or in the related (x, h)-plane. The techniques applied to generate this map
range from elementary solutions of algebraic equations, over the asymptotic
analysis of analytic functions, continuity and analyticity arguments based on
the implicit function theorem to the reduction in analytic varieties. Also, at
some points we had to employ numerical evidence in order to access certain
intermediate results; however, we precisely tracked throughout this work which
assertion depends on it and which does not (we emphasize that our physically
perhaps most appealing result—in terms of Theorem 7.1—does not depend on
any such numerical evidence). Note that a large number of solutions do not
require a positive cosmological constant Λ > 0 and even for particular cases
with Λ < 0 there exist solutions to the SCE with a positive rate of expan-
sion, due to the nature of the QSE tensor. This is particularly interesting in
the massless case, where this effect cannot simply be blamed on a positive
renormalized cosmological constant.

Based on these findings, in particular on the explicit asymptotic expan-
sions of the solution curves, we have identified parameter settings which are
compatible with multiple de Sitter solutions, both with very large and very
small rates of expansion.

In such settings, studying the Lyapunov stability of the de Sitter solu-
tions is a natural next step. While for the case of conformal coupling with
massless fields, the dissertation [29] clarifies the situation to a certain extent,
the situation in the general case seems to be largely open.

Note that the question of Lyapunov stability can be answered on several
levels. For special cases with a decoupling of the state degrees of freedom from
the SCE like in [23,29], this can be answered by the standard analysis of a
dynamical system in finite dimension. Whenever the state dynamics couples
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non-trivially to the SCE, stability can either be answered in a reduced, cos-
mological setting [24,38] or in the setting of the full SCE. See [37] for some
investigations on stability in the case of a toy model and [21,27] for lineariza-
tion techniques of the full SCE system.

It would be especially attractive to find unstable directions for de Sitter
solutions with high expansion rates and stability for de Sitter solutions with low
expansion rate in the situations described in Sect. 7. Whether this is achievable
or not, at present, remains an open research question.

Finally, the inclusion of more general kinds of matter, modeled by ferm-
ionic fields or gauge fields, as well as the inclusion of positive or negative spatial
curvature certainly, is also of interest.
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A. Properties of the Bunch–Davies Digamma terms

In this appendix, we collect a few properties of the function

f : (0,∞) → R, x 
→ ψ(0)
(

3
2 −

√
9
4 − x

)
+ ψ(0)

(
3
2 +

√
9
4 − x

)
(64)

as defined in Sect. 4, with the Digamma function ψ(0) = Γ′/Γ.
At first, we want to be a bit more precise on its definition. Note that a

priori the mapping in (64) defines a meromorphic function f̃ on a slit plane,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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that is, on the complex plane C from which a half-ray starting in 9
4 was removed

such that the square root in fact yields a holomorphic function there. However,
one can show that the values of (64) do not depend on the choice of which
ray was removed; hence, (64) defines a meromorphic function on C\{ 9

4}. In a
final step, one can show that f̃( 9

4 ) := 2ψ(0) defines a holomorphic continuation
to the point in question and (64) defines a meromorphic function on C whose
poles lie at {−n2 −3n |n ∈ Z≥0}. In particular, by restricting f = f̃

∣∣
(0,∞)

(64)
defines a (real) analytic function on the positive real axis.

Studying the poles and residues of the Gamma function we find that f̃
has a pole of order 1 in 0 ∈ C. Employing the chain rule for residues we find
that Res0 f̃ = −3 and we conclude the asymptotic equivalence

f(x) ∼ − 3
x

as x → 0.

On the other hand, we have asymptotically

f(x) ∼ log(x) as x → ∞
which immediately follows from Lemma 1 in the appendix of Juárez-Aubry’s
article [31]. More precisely, the latter lemma shows that

|f(x) − log(x)| ≤ 3
x

for all x > 9
4 . The proof of the latter lemma can easily be extended to see that

f(x) < log(x) and thus

f(x) − log(x) ∈
[

− 3
x , 0

)
(65)

for all x > 9
4 .

Without proof we state the first few Puiseux coefficients of f − log in the
limit x → ∞ as

f(x) = log(x) − 4
3x

− 11
15x2

− 92
315x3

+ O( 1
x4 ).

At last, we can show that f is strictly increasing by estimating its de-
rivative and, moreover, by comparing the values f(2) = 1 − 2γE < 0 and
f( 9

4 ) = 4 + 2ψ(0)( 1
2 ) = 4 − 4 log(2) − 2γE > 0 (with the Euler-Mascheroni

number γE) we find that it must have its only zero in the interval (2, 9
4 ) (nu-

merically ≈2.1646).
As an orientation, Fig. 3(i) in the text shows a plot of f together with its

asymptotics from above.
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Gordon system. Ann. Henri Poincaré 23, 1321–1358 (2020). https://doi.org/10.
1007/s00023-021-01115-3. arXiv:2007.14311 [math-ph]

[45] Schander, S., Thiemann, T.: Backreaction in Cosmology. Front. As-
tron. Space Sci. 8, 692198 (2021). https://doi.org/10.3389/fspas.2021.692198.
arXiv:2106.06043 [gr-qc]

[46] Siemssen, D.: The Semiclassical Einstein Equation on Cosmological Spacetimes.
Ph.D. thesis, University of Genova (2015). http://www.infn.it/thesis/thesis
dettaglio.php?tid=10652. arXiv:1503.01826 [math-ph]

https://doi.org/10.1007/s00023-021-01133-1
https://doi.org/10.1007/s00023-021-01133-1
http://arxiv.org/abs/2011.05947
http://arxiv.org/abs/2205.11671
https://doi.org/10.1088/1361-6382/ab8fcf
https://doi.org/10.1088/1361-6382/ab8fcf
http://arxiv.org/abs/2003.01815
https://doi.org/10.1142/9789814527538
https://doi.org/10.1142/9789814527538
http://arxiv.org/abs/astro-ph/9901124
https://doi.org/10.1016/0370-2693(82)91219-9
http://arxiv.org/abs/2201.10288
https://doi.org/10.1007/s00023-021-01067-8
http://arxiv.org/abs/2007.14665
https://doi.org/10.1007/s00220-002-0702-7
https://doi.org/10.1007/s00220-002-0702-7
http://arxiv.org/abs/gr-qc/0109048
http://arxiv.org/abs/astro-ph/0303077
https://doi.org/10.1007/s00220-011-1268-z
http://arxiv.org/abs/1001.0864
https://doi.org/10.1007/s00220-014-2099-5
http://arxiv.org/abs/1309.6303
https://doi.org/10.1007/s00023-021-01115-3
https://doi.org/10.1007/s00023-021-01115-3
http://arxiv.org/abs/2007.14311
https://doi.org/10.3389/fspas.2021.692198
http://arxiv.org/abs/2106.06043
http://www.infn.it/thesis/thesis_dettaglio.php?tid=10652
http://www.infn.it/thesis/thesis_dettaglio.php?tid=10652
http://arxiv.org/abs/1503.01826


Vol. 24 (2023) Cosmological de Sitter Solutions 3029

[47] Starobinsky, A.A.: A new type of isotropic cosmological models with-
out singularity. Phys. Lett. B 91, 99–102 (1980). https://doi.org/10.1016/
0370-2693(80)90670-X

[48] Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe
scenario and generation of perturbations. Phys. Lett. B 117, 175–178 (1982).
https://doi.org/10.1016/0370-2693(82)90541-X

[49] Suen, W.-M., Anderson, P.R.: Reheating in the higher-derivative inflationary
models. Phys. Rev. D 35, 2940–2954 (1987). https://doi.org/10.1103/PhysRevD.
35.2940

[50] Tadaki, S.-I.: Stress tensor in de Sitter space. Prog. Theor. Exp. Phys. 80, 654–
662 (1988). https://doi.org/10.1143/PTP.80.654

[51] Tanabashi, M. et al.: (Particle Data Group): review of particle physics. Phys.
Rev. D 98, 030001 (2018) and 2019 update. https://doi.org/10.1103/PhysRevD.
98.030001.

[52] Wald, R.M.: The back reaction effect in particle creation in curved space-time.
Commun. Math. Phys. 54, 1–19 (1977). https://doi.org/10.1007/BF01609833

[53] Wald, R.M.: Asymptotic behavior of homogeneous cosmological models in the
presence of a positive cosmological constant. Phys. Rev. D 28, 2118–2120 (1983).
https://doi.org/10.1103/PhysRevD.28.2118

[54] Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Ther-
modynamics. University of Chicago Press, Chicago (1994)

Hanno Gottschalk and Nicolai R. Rothe
Institute of Mathematics
TU Berlin, 10623 Berlin
Germany
e-mail: gottschalk@math.tu-berlin.de;

rothe@math.tu-berlin.de

Daniel Siemssen
School of Mathematics and Natural Science and IMACM
University of Wuppertal
42119 Wuppertal
Germany
e-mail: siemssen@uni-wuppertal.de

Communicated by Karl-Henning Rehren.

Received: June 16, 2022.

Accepted: March 29, 2023.

https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(82)90541-X
https://doi.org/10.1103/PhysRevD.35.2940
https://doi.org/10.1103/PhysRevD.35.2940
https://doi.org/10.1143/PTP.80.654
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1007/BF01609833
https://doi.org/10.1103/PhysRevD.28.2118

	Cosmological de Sitter Solutions of the Semiclassical Einstein Equation
	Abstract
	1. Introduction
	2. The Semiclassical Einstein Equation on de Sitter Space–Time
	2.1. The Energy Equation as a Cosmological Model
	2.2. De Sitter Space and the Bunch–Davies State
	2.3. The Consistency Equation in the Moment-Based Approach

	3. De Sitter Solutions for the Massless Field
	4. The Solution Set of de Sitter Solutions for the Massive Field
	4.1. Counting of Solutions
	4.2. Possible Non-h-Solvable Points
	4.3. Nonexistence of Local Extrema
	4.4. A Lemma on the Reduction in Analytic Varieties
	4.5. Proof of Theorem 4.4

	5. Asymptotic Behavior of the Solution Set
	5.1. Asymptotics at Large x
	5.2. Asymptotics at Small x
	5.3. Asymptotics at Finite x
	5.4. Minimal and Conformal Coupling

	6. Numerical Treatment of the Solution Set
	7. Parameter Choices for Potential Inflationary Models
	8. Conclusion and Outlook
	Acknowledgements
	A. Properties of the Bunch–Davies Digamma terms
	References




