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Abstract Non-minimal coupled scalar field models are

well-known for providing interesting cosmological features.

These include a late-time dark energy behavior, a phantom

dark energy evolution without singularity, an early-time infla-

tionary Universe, scaling solutions, convergence to the stan-

dard �CDM, etc. While the usual stability analysis helps us

determine the evolution of a model geometrically, bifurcation

theory allows us to precisely locate the parameters’ values

describing the global dynamics without a fine-tuning of initial

conditions. Using the center manifold theory and bifurcation

analysis, we show that the general model undergoes a trans-

critical bifurcation, predicting us to tune our models to have

certain desired dynamics. We obtained a class of models and

a range of parameters capable of describing a cosmic evo-

lution from an early radiation era towards a late time dark

energy era over a wide range of initial conditions. There is

also a possible scenario of crossing the phantom divide line.

We also find a class of models where the late time attrac-

tor mechanism is indistinguishable from a structurally stable

general relativity-based model; thus, we can elude the big rip

singularity generically. Therefore, bifurcation theory allows

us to select models that are viable with cosmological obser-

vations.

1 Introduction

Non-minimal coupled scalar field models are often used to

explain various cosmological observations. These models

naturally arise from the quantum corrections to the scalar

field theory and motivated by high energy physics such as

superstrings and grand unified theories [1]. Further, these
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models provide a natural solution to the problem associated

with the energy scale difference between inflation and the

Universe’s dark energy (DE) era [2].

Most of the cosmological model’s governing equations are

nonlinear and pose a severe impediment to extract exact ana-

lytical solutions. However, one can infer the global asymp-

totic behavior described by the cosmological equations using

the advanced tools of dynamical systems. The main advan-

tage is that we can represent the Universe’s history geomet-

rically. One can also predict the sensitivity of the solution

to initial conditions. Dynamical system methods have been

used extensively in cosmology; see [3–15] for relevant work

and [16] for a comprehensive review.

The dynamical system of most cosmological models usu-

ally contains parameters. One can determine the system’s

global dynamics for fixed values of parameters using the for-

mal stability analysis. On the other hand, to understand how

the global dynamics changes with a change of parameters,

the bifurcation theory plays a crucial role (see Refs. [17–19]

for detailed information). The dynamical system’s nonlinear

nature usually leads to vital structures of the solutions, such

as bifurcations and chaos. A more in-depth analysis of such

forms is interesting from an observational perspective (e.g.,

see [20]).

One of the bifurcation theory’s novelties is that we can use

it to classify the Universe’s evolution into two categories:

generic and non-generic evolution [21]. While the former

occurs for various solutions over a wide range of initial con-

ditions, the latter corresponds to a particular solution for a

given initial condition. The parametric relation associated

with a non-generic scenario forms a bifurcation boundary

between regions of different generic cases in the parame-

ter space. Non-generic evolution is also exciting but requires

fine-tuning of initial conditions. In some cases, generic evolu-

tion emerges from non-generic one in the form of bifurcation.
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Therefore, bifurcation theory can help extract a class of mod-

els describing the observed dynamical evolution irrespective

of initial conditions for a wide range of parameters. To have a

clear picture of how the bifurcation phenomenon depends on

model parameters, one has to use bifurcation diagrams. These

diagrams stratify the parameter space into different regions,

each with distinct dynamical behavior. The steps involved in

the bifurcation analysis are two-fold. Initially, we extract the

range of parameters for both the generic and the non-generic

evolution. Then, we analyze different qualitative behaviors

that arise from each scenario.

Another novelty of bifurcation theory is that it allows us to

identify a structural stable model’s emergence from a struc-

turally unstable one. For instance, Szydlowski and Tambor

showed that the notion of bifurcation and structural instabil-

ity could be instrumental in detecting the emergence of the

structurally stable �CDM model from the structurally unsta-

ble CDM model [22]. Kokarev further extended a similar

analysis to various Friedmann–Robertson–Walker (FRW)-

models [23]. Usually, structurally stable models are phys-

ically viable and hence fit with most observations. In a 2-

dimensional system, Peixoto’s theorem completely charac-

terizes the structurally stable vector fields, which guarantee

their generic behavior. Identifying structurally stable mod-

els is useful when the prediction of model parameters from

the empirical analysis is unsettled. Thus, bifurcation theory

helps in finding observationally viable models and further

endows the usual stability analysis.

In most of the dynamical analysis for the non-minimal

coupled scalar field models, the dynamical variables are con-

structed for a specific case of coupling or potential functions

in flat or curved spacetime [12,24–31]. However, the anal-

ysis for a general non-minimal coupled scalar field model

will certainly help us to identify classes of viable models.

The extension to a broad class of scalar field potentials and

couplings might help us to connect the phenomenological

models with some high-energy physical theories. Therefore,

it will be scientific and economical to carry out the dynamical

analysis for a broad class of coupling functions and poten-

tials.

We find in the literature that bifurcation phenomena

arise naturally in cosmological models. For instance, Ref.

[32] shows that in FRW-models with perfect fluids and

the cosmological constant, the expanding and contracting

deSitter Universe arise as bifurcation. It is worth mention-

ing that interesting bifurcation scenarios were reported in

the Randall–Sundrum braneworld model [33], interacting

Veneziano ghost DE [34], Brans–Dicke model [35], non-

minimal coupled scalar field model [31,36] etc. Recently,

bifurcation scenarios and chaos were discussed in the con-

text of Hořava–Lifshitz gravity [37], non-minimal coupled

scalar field with Ratra–Peebles potential [21], interacting

f (T ) gravity [38] and bulk viscous cosmology [39]. These

recent work show that the study of bifurcation is important

in cosmology, giving rise to interesting scenarios.

In the non-minimal coupled scalar field context, interest-

ing bifurcation scenarios were reported for a specific cou-

pling and potential function. For instance, Hrycyna et al. [31]

obtained a particular bifurcation value of a coupling con-

stant for the case of a constant potential. Then, Szydlowski

et al. in [36] analyzed the phase space’s structural stability

of a specific coupling model for a broad class of potentials.

They found that an exponential potential constitutes a struc-

turally stable model. Using the bifurcation methods, Humieja

et al. in [21] extract the conditions of model parameters under

which a specific non-minimal coupling with Ratra–Peebles

potential generically evolve from an early de Sitter to a late

time de Sitter state. The analysis in [21] was performed in

the absence of a matter component. We extend the analysis

for general coupling and potential functions along with the

matter component in the present work. To meet our objec-

tive, we consider a different choice of dynamical variables to

encompass a broad class of models. By employing bifurca-

tion methods, we obtain a class of models and pinpoint the

range of parameters capable of describing a cosmic evolution

over a wide range of initial conditions from an early radiation

era towards a late time DE era. We also found that the system

undergoes a transcritical type of bifurcation, which predicts

how to tune our models to have certain desired dynamics.

The bifurcation theory’s concrete tools have been used

extensively in various fields. However, they have not been

applied systematically in many cosmological systems, par-

ticularly for the non-minimal coupled scalar field. Thus, it

is imperative to use bifurcation theory to identify a class

of scalar field models describing some of the main generic

cosmic evolution. Therefore, the present work serves as an

introductory analysis for scalar field models required to test

against interesting observational signatures.

The paper’s order is as follows: in Sect. 2, we briefly dis-

cuss the framework of a non-minimal coupled scalar field

model. We follow this by a dynamical system analysis of

a non-minimal coupled scalar field model for a broad class

of coupling function and potential in Sect. 3. In Sect. 4, we

demonstrate the dynamics by an example using the quadratic

coupling functions and the power-law form of potentials.

Within this section, we perform the stability analysis of crit-

ical points in Sect. 4.1 and the discussion on bifurcation sce-

narios in Sect. 4.2. Lastly, we summarized the work in Sect.

5.

2 Non-minimal coupled scalar field model

We consider a model of a non-minimal coupled scalar field

and a barotropic fluid in the present work. Here the non-

minimal coupled scalar field is playing the role of DE, while
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a barotropic fluid is the matter component of the Universe.

The total action is given by [40–42]

S =
1

κ2

∫

d4x
√

−g

[

F(φ)

2
R −

1

2
∇aφ∇aφ − ℓ−2 V (φ)

+ κ2
Lm

]

, (1)

where the integration is taken over a 4-dimensional Lorentzian

curved spacetime manifold. In the above action, κ2 is the

gravitational constant, R is the Ricci scalar, g is the deter-

minant of the spacetime metric gab (a, b = 0, 1, 2, 3), F is

the coupling function, V is the potential of a scalar field φ

and Lm is the matter Lagrangian. We have used the units

where c = 1 and ℓ is the positive parameter having the

dimension of length. For a fixed scalar field, the above action

reduces to the case of general relativity (GR) with a poten-

tial playing the role of a cosmological constant. While the

case F(φ) = 1 of (1) corresponds to the minimal coupled

scalar field, F(φ) = φ2

ω
reduces to the Brans–Dicke gravity

limit, with ω as the Brans–Dicke parameter [27,43–45]. On

varying the action (1) with respect to the metric gab, one can

obtain the modified Einstein’s field equation as

F(φ)Gab +
1

2
∇aφ∇bφ −

1

4
gab∇cφ∇cφ +

1

2
gab ℓ−2 V (φ)

−∇a∇b F(φ) + gab�F(φ) = −κ2Tab , (2)

where Gab is the Einstein tensor, � ≡ ∇a∇a with ∇a as the

covariant derivative with respect to the metric and Tab is the

matter energy-momentum tensor given by

Tab = pm gab + (ρm + pm)uaub . (3)

In the above equation, ρm and pm are respectively the

energy density and pressure of the barotropic fluid, and ua

is a four-velocity vector of the fluid. One interesting feature

of the action (1) is that the effective Newton’s gravitational

parameter depends on the coupling function F , i.e., on the

scalar field as

Geff =
κ2

F(φ)
. (4)

The negative values of Geff and hence of F indicates the

ghost instability in the theory [46]. On varying the action

with respect to the scalar field φ, we get

�φ +
1

2
RF,φ − ℓ−2 V,φ = 0, (5)

where the notation (·),φ denotes a derivative with respect to φ.

Note that the second term of (5) arises from the non-minimal

coupling of scalar field to gravity. At a very large scale, con-

sistent with the observed data, we assume the homogeneous

and isotropic Universe whose evolution is determined by the

scale factor a(t) associated with the FRW metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (6)

where t is the coordinate time and x, y, z are the Cartesian

coordinates. Under this metric, the field equations (2) and

the Klein Gordon equation (5) can be reduced to the ordinary

differential equations

3H2 F + 3H φ̇F,φ −
1

2
φ̇2 − ℓ−2 V = κ2ρm, (7)

2F Ḣ + φ̇2 F,φφ + (φ̈ − H φ̇)F,φ + φ̇2 = −κ2ρm(1 + w),

(8)

φ̈ + 3H φ̇ + ℓ−2 V,φ − 3F,φ(2H2 + Ḣ) = 0. (9)

In the above equations, w is an equation of state (EoS) defined

by a relation pm = wρm and the upper dot denotes derivative

with respect to t . The scalar field describes DE and for sim-

plicity, we shall consider for matter a single barotropic fluid

with a constant w, constrained to be between 0 and 1. While

a non-relativistic dust fluid corresponds to w = 0, relativistic

radiation fluid corresponds to w = 1
3

. We note here that one

needs to consider a two-fluid model containing radiation and

dust fluids for a more phenomenologically interesting case.

Further, on assuming the conservation of the matter energy-

momentum tensor i.e., ∇aT ab = 0, under a metric (6), one

can obtain the conservation equation

ρ̇m + 3H(1 + w)ρm = 0. (10)

To determine the energy density contribution of each compo-

nent, we introduce the relative energy densities of the scalar

field and that of the barotropic fluid, respectively as

�φ =
ρφ

3H2 F
=

φ̇2

6F H2
−

F,φ φ̇

H F
+

ℓ−2V

3H2 F
, (11)

�m =
κ2ρm

3F H2
. (12)

These energy densities are connected by the Friedmann con-

straint (7) as

�m + �φ = 1. (13)

While we can identify the first two terms of (11) as the kinetic

component of the relative energy density of the scalar field,

the last term corresponds to the relative potential energy den-

sity component of the scalar field. From (13), we can define

the matter domination as a scenario where �m ≈ 1 and

�φ ≈ 0. Similarly, we can also define from (13), a kinetic

dominated solution or potential dominated solution when the

first two terms or the last term in (11) dominate over the oth-

ers, respectively.
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As expected, the above quantities (11) and (12) reduce

to the familiar relative energy densities of a scalar field and

matter for the minimal coupled case (i.e., F(φ) = 1) respec-

tively. Further, the quantity (11) reduces to the relative energy

density of the cosmological constant for a non-dynamical

scalar field (i.e., the GR case). In the context of minimal cou-

pling, the above relative energy densities are usually bounded

within the interval [0, 1]. However, this is not necessarily true

in non-minimal coupling due to coupling function F . Under

the physical assumption ρm ≥ 0 and an attractive gravita-

tional force, F(φ) > 0, the problem of negative �m does not

arise. Nonetheless, due to the second term in the right-hand

side of the Eq. (11) for �φ , there is also a possibility for �φ to

be negative. Thus taking into account the above conditions,

the relation (13) implies that in the matter domination, the

dust fluid can be relatively overdense (i.e., �m > 1) com-

pared to the corresponding �CDM case.

The cosmological equations (7) and (8) can be rewritten

in the form

3H2 = κ2ρeff , (14)

3H2 + 2Ḣ = −κ2 peff , (15)

where ρeff is the effective energy density and peff is the effec-

tive pressure of all the components which are respectively

given by

ρeff =
ρm + ρφ

F(φ)

=
ρm

F(φ)
+

1

κ2 F(φ)

[

φ̇2

2
− 3H F,φ(φ)φ̇ + ℓ−2V (φ)

]

,

(16)

peff =
pφ + pm

F(φ)

=
1

κ2 F(φ)

[

φ̇2

2
+ 2H F,φ(φ)φ̇ + F,φφ(φ)φ̇2 + F,φ(φ)φ̈

−ℓ−2 V (φ) + κ2 pm

]

. (17)

Using Eq. (7), the effective EoS of all the components weff

defined as
peff

ρeff
is given by

weff =
1

3F(φ)H2

[

φ̇2

2
+ 2H F,φ(φ)φ̇ + F,φφ(φ)φ̇2

+F,φ(φ)φ̈ − ℓ−2 V (φ)
]

+ w �m . (18)

While for the accelerated behavior of the Universe, one

requires the condition weff < − 1
3

, super-accelerated Uni-

verse or phantom dominated Universe demands weff < −1.

It is worth noticing from (18) that in the GR limit, within

the matter domination epoch, we have weff = w and under

the scalar field potential dominated epoch (i.e., cosmological

constant epoch) weff = −1.

The above Eqs. (7)–(10) are complicated to solve analyt-

ically, yet, by recasting them into a dynamical system, one

can still obtain important information on the characteristics

of solutions. Therefore, in the next section, we shall analyze

the dynamics of a general class of non-minimal coupling

scalar fields using dynamical system techniques.

3 Dynamical system analysis

In order to qualitatively analyze the background cosmologi-

cal dynamics of the present model, we shall convert the cos-

mological equations (7)–(10) into a dynamical system using

the following set of normalized variables [16]:

x =
φ̇

H
√

F
, y =

ℓ−2 V

3H2 F
,

λF = −
F,φ√

F
, λV = −

V,φ

V

√
F . (19)

We note here that the chosen variables are well-defined for

F > 0, i.e., attractive gravity, which is also free from any

ghost instability, even though the case F < 0 may lead to

physically interesting scenarios [47]. From the cosmologi-

cal equations (7)–(10), we see that there are basically four

variables H, φ, φ̇, ρm . As we have considered the usual H -

normalized variables, the variable H is being absorbed by

other variables, so we are left with three variables [16]. Since

the H -normalized variables are connected by the Friedmann

constraint (7), the number of independent variables reduces

to two. The extra variables λF , λV are introduced to monitor

the overall effect of coupling function and potential on the

dynamics. It is important to note here that the above choice

of variables fails for static Universe H = 0. However, these

variables are of physical interest as the energy density of each

component can be easily tracked in terms of these variables.

In this work, we shall focus on the case of an expanding

Universe i.e., H > 0 as favored by various present observa-

tional data. Therefore, we can choose the above normalized

variables without any extra concern. Employing the variables

(19), the cosmological equations (7)–(10) can be re-written

as the following dynamical system:

x ′ =
1

6 λF
2 + 4

[

x3
(

2 ŴF λ2
F − w + 1

)

+ x2λF (3 λF (2 ŴF λF

+λF ) − 9 w + 7) − x
(

6(3 λ2
Fw − w + 1) + 6 y (λF λV

+w + 1)
)

+ y (12 λV − 18 (w + 1) λF )

+6 (3 w − 1) λF

]

, (20)

y′ =
y

3 λ2
F + 2

[

12 λF
2 + 6 w + 6 + x

(

λF

(

3 λ2
F − 6 w + 4

)

−
(

3 λ2
F + 2

)

λV

)

+ x2
(

2 λ2
FŴF − w + 1

)

−6 y (λF λV + w + 1)

]

, (21)
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λ′
F =

1

2
xλ2

F (1 − 2ŴF ) , (22)

λ′
V = −

1

2
xλV [λF + 2 (ŴV − 1) λV ] , (23)

where ŴF = F F,φφ

F2
,φ

and ŴV = V V,φφ

V 2
,φ

. The prime notation

denotes the differentiation with respect to the number of e-

folds N = ln a(t). We note that the above system (20)–(23)

reduces to the minimal coupling case for λF = 0 [48].

For the above dynamical system to represents an

autonomous system of equations, we consider a class of cou-

pling function F and potential V whereŴF ,ŴV can be written

as functions of λF , λV respectively [49]. If λF = λF (φ) is

invertible, then we can express φ as function of λF . As ŴF is a

function of φ, therefore, we can also express ŴF as a function

of λF . Similarly, one can express ŴV as a function of λV . In

general, the quantities ŴF , ŴV may not be a functions of vari-

ables λF , λV . In such a case, one has to consider the higher

derivatives of the scalar field function [50] or consider new

dynamical variables [51]. We note that the above system has

an invariant submanifold y = 0, as y′ vanishes when y = 0.

This submanifold corresponds to a scenario where the scalar

field potential vanishes. Physically, it means that if there is

no potential source, the scalar field will not evolve. Further,

depending on F and V (hence in the form of ŴF and ŴV ), the

system also contains λF = 0, λV = 0 as invariant submani-

folds. Therefore, a global attractor (if exists) should lie at an

intersection of all these invariant submanifolds [16]. On the

other hand, the absence of a global attractor makes the appli-

cation of bifurcation theory more appealing as the evolution

depends on the values of parameters and initial conditions.

Using the dynamical variables (19), one can express var-

ious cosmological parameters viz., the relative energy den-

sity parameter of the scalar field (�φ) and of matter (�m),

the EoS of the scalar field (wφ) and the effective EoS (weff )

respectively as

�φ =
x2

6
+ y + xλF , (24)

�m = 1 − xλF −
x2

6
− y, (25)

wφ =
pφ

ρφ

=
1

(

3 λF
2 + 2

) (

6 xλF + x2 + 6 y
)

(

(

3 λF
2w

+4 λF
2ŴF + 2

)

x2 + 6 λF
2 (3 xλF w + 3 wy

−3 w + 1) − 12 y (λF λV + 1) + 4 xλF

)

, (26)

weff =
peff

ρeff
=

1

3(3 λF
2 + 2)

(

(2ŴFλ2
F − w + 1)x2 + λF (3 λF

+2 x − 6 wx) − 6 y (λV λF + w + 1) + 6 w) . (27)

Notably the coupling term H φ̇F,φ of (7) can steer the value

of wφ to ±∞ during the matter domination epoch. However,

this does not cause any physical singularity problem as the

effective EoS weff remains smooth and finite. The divergence

behavior of wφ reduces as the value of λF approaches zero

i.e., as the model approaches the minimal coupling case.

By imposing the physical constraint ρm ≥ 0 on the rela-

tion (13), the dynamical variables (19) obey the constraint

xλF +
x2

6
+ y ≤ 1. (28)

Hence, the phase space of the system is given by

� =
{

(x, y, λF , λV ) ∈ R
4 | xλF +

x2

6
+ y ≤ 1

}

. (29)

From the cosmological equations (7)–(10), one can solve the

scale factor a(t) evaluated at the critical point by re-writing

the equations in terms of the dynamical variables as

β Ḣ + H2 = 0, (30)

where

β =
[

3

2
+

1

2(3 λF
2 + 2)

(

(λ2
F − w + 1)x2 + λF (3 λF

+2 x − 6 wx) − 6 y (λV λF + w + 1) + 6 w)

]−1

.

Integrating Eq. (30), we get

a = ai (t − ti )
β , (31)

where ai and ti are constants of integration. We recall that

0 < β < 1 corresponds to a decelerated expanding Uni-

verse, while β > 1 corresponds to an accelerated expanding

Universe.

In order to extract the dynamics of the above system, we

will carry out the standard procedures of the dynamical sys-

tem analysis [16]. The critical points (A1, A2±, A3, A4) of

the system (20)–(23) for the general case of F and V are pre-

sented in Table 1 along with the corresponding values of the

cosmological parameters. The corresponding eigenvalues of

the perturbed matrix of each critical point are presented in

Table 2. The existence and stability of each critical point can

be determined without specifying the potential and coupling

function by treating λF∗ and λV∗ as parameters. Therefore,

there are as many critical points of the system (20)–(23) as

the number of parameters λF∗ and λV∗ . Note here that λF∗ and

λV∗ denote the solutions of the equations 2ŴF (λF ) − 1 = 0

and λF + 2 (ŴV (λV ) − 1) λV = 0 respectively. The quanti-

ties Ŵ ′
F and Ŵ ′

V denote the derivatives of ŴF and ŴV with

respect to λF and λV respectively. In Tables 1 and 2, we have

x2± = −3λF∗ ±
√

9λ2
F∗

+ 6,

y3 =
1

2

3 λ2
F∗

w − 3 λF∗ λV∗ w + 3 λ2
F∗

+ λF∗ λV∗ − 3 w2 + 3

λV∗
2

,
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Table 1 Critical points of the system (20)–(23)

Point x y λF λV wφ �m weff

A1
λF∗ (3w−1)

λ2
F∗ −w+1

0 λF∗ λV∗
6 λ2

F∗ w−2 λ2
F∗ −3 w2+7 w−2

6 λ2
F∗ −3 w+5

1
6

(

3 λ2
F∗ +2

)(

3 (w−1)2−2 λ2
F∗ (3w−2)

)

(

λ2
F∗ −w+1

)2
1
3

λ2
F∗ −3 w(w−1)

λ2
F∗ −w+1

A2± x2± 0 λF∗ λV∗ 1 − 2λF∗
3

x2± 0 1 − 2λF∗
3

x2±

A3
3(w+1)

λV∗
y3 λF∗ λV∗  1

2

−(3 w+7)λV∗ λF∗ +2 λ2
V∗ −3

(

λ2
F∗ +2

)

(w+1)

λ2
V∗

−w(λF∗ −λV∗ )+λF∗
λV∗

A4 − 2(2λF∗ −λV∗ )

λF∗
2+λF∗ λV∗ +2

y4 λF∗ λV∗
1
3

λ2
F∗ −9 λF∗ λV∗ +2 λ2

V∗ −6

λ2
F∗ +λF∗ λV∗ +2

0 1
3

λ2
F∗ −9 λF∗ λV∗ +2 λ2

V∗ −6

λ2
F∗ +λF∗ λV∗ +2

Table 2 Eigenvalues of the critical points of the system (20)–(23) presented in Table 1. Here: xk denotes the corresponding x-component of a

critical point

Point E1 E2 E3 E4

A1
3 λ2

F∗ (w+1)−λF∗ λV∗ (3w−1)−3 (w2−1)

λ2
F∗ −w+1

1
2

6 λ2
F∗ w−4 λ2

F∗ −3 (w−1)2

λ2
F∗ −w+1

−λ2
F∗

x1 Ŵ ′
F (λF∗ ) −x1G(λF∗ , λV∗ )

A2± −λF∗ x2± + 3(1 − w) − ((λF∗ +λV∗ )x2±−2)
2

−λ2
F∗

x2± Ŵ ′
F (λF∗ ) −x2±G(λF∗ , λV∗ )

A3
1

4λV∗

(

3
(

λF∗ + λV∗

)

w + λF∗ − λV∗ +
√

3�

3 λ2
F∗ +2

)

1
4λV∗

(

3
(

λF∗ + λV∗

)

w + λF∗ − λV∗ −
√

3�

3 λ2
F∗ +2

)

−λ2
F∗

x3 Ŵ ′
F (λF∗ ) −x3G(λF∗ , λV∗ )

A4 − 5 λF∗
2+4 λF∗ λV∗ −λV∗

2+6

λF∗ +λF∗ λV∗ +2
−

3
(

λ2
F∗ +2

)

(w+1)+(3 w+7)λV∗ λF∗ −2 λ2
V∗

λ2
F∗ +λV∗ λF∗ +2

−λ2
F∗

x4 Ŵ ′
F (λF∗ ) −x4G(λF∗ , λV∗ )

y4 =

(

5 λ2
F∗

+ 4 λF∗ λV∗ − λ2
V∗

+ 6
) (

3λ2
F∗

+ 2
)

3 (λ2
F∗

+ λF∗ λV∗ + 2)2
,

 =
3 w (w + 1) λ2

F∗
+ λV∗

(

3 w2 + 5 w − 2
)

λF∗ + 6 w (w + 1)

3 (w + 1) λ2
F∗

+ λV∗ (3 w + 7) λF∗ + 6 w + 6
,

G(λF∗ , λV∗ ) =
(

λ2
V∗Ŵ

′
V (λV∗ ) + 2(λF∗ + 2(ŴV − 1)λV∗ )

)

,

� = (81 λ4
F∗w

2 + 18 λ3
F∗λV∗ w2 − 63 λ2

F∗λ
2
V∗w

2 + 162 λ4
F∗w

+192 λ3
F∗λV∗ w − 210 λ2

F∗λ
2
V∗w − 72 λ2

F∗w
3 + 48 λF∗ λ3

V∗w

−72 λF∗ λV∗ w3 + 81 λ4
F∗ + 174 λ3

F∗λV∗ + 17 λ2
F∗λ

2
V∗

+78 λ2
F∗w

2 − 16 λF∗ λ3
V∗ − 300 λF∗ λV∗ w2 + 54 λ2

V∗w
2

+372 λ2
F∗w − 24 λF∗ λV∗ w − 12 λ2

V∗w − 144 w3 + 222 λ2
F∗

+204 λF∗ λV∗ − 42 λ2
V∗ − 144 w2 + 144 w + 144).

The behavior of the system (20)–(23) might change dra-

matically due to a small change of the parameters emerges

from potential and coupling. Consequently, it will lead to a

change in the phase space’s topological structure and gives

rise to bifurcation. To have a general information on the effect

of various parameters on the dynamics of a system (20)–

(23), we present the bifurcation diagrams for each critical

point in Fig. 1. These diagrams comprise of finite number

of regions in the parameter space (λF∗ , λV∗). Each region in

a bifurcation diagram corresponds to parameter values with

distinct dynamical behavior [18]. Bifurcation curves sepa-

rating different regions in a diagram corresponding to the

specific relation between parameters in which the perturbed

matrix evaluated at a critical point has at least one zero real

part eigenvalue. When the perturbed matrix evaluated at a

critical point has at least one zero real part eigenvalue, a

critical point is said to be non-hyperbolic. Otherwise, it is

hyperbolic. For a hyperbolic point, we can use linear stabil-

ity analysis to determine the stability of a point. However,

for non-hyperbolic point, one has to analyze beyond the lin-

ear stability analysis via sophisticated tools of dynamical

systems such as the center manifold theory (see Ref. [19]

for details). Thus along the bifurcation curves, one has to

investigate the nature of points by the center manifold the-

ory. However, we shall postpone such analysis to a concrete

model in Sect. 4 and refrain from the general case analysis as

the equations involved are complicated and not very illumi-

nating. In what follows, we summarize each critical point’s

nature and identify the possible bifurcation scenarios:

• Point A1 corresponds to a solution with a vanishing

potential component. For this point, the exponent for the

solution (31) is given by

βA1 =
2(λ2

F∗
− w + 1)

4 λ2
F∗

− 3 w2 + 3
. (32)

It can be checked that 0 < βA1 < 1 for 0 ≤ w ≤ 1

and any choice of λF∗ . Hence, this point corresponds

to a decelerated expanding solution for any choice of

model parameters even though the scalar field can possi-

bly behave as the quintessence field (−1 < wφ < − 1
3

).

This point can be either stable or saddle depending on the
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Fig. 1 Bifurcation diagrams in

(λF∗ , λV∗ ) parameter space

exhibiting the local stability of

points A1 in a, A2+ in b, A2− in

c, A3 in d and A4 in e for the

case of w = 0. In all panels, the

yellow shaded regions represent

the regions where the

corresponding critical points are

saddle. Black colored line

λV∗ = 0 in d and curve C8 in e

corresponds to the

non-existence of a point A3 and

A4 respectively. A green colored

curve in d represents the curve

where � = 0. Black colored

curves C1 to C7 separating each

region represent non-hyperbolic

curves. The curve C7 is

2λF∗ = λV∗ . For the expressions

corresponding to curves C1 to

C6, we refer to the text in

Statement 1

(a) (b)

(c) (d)

(e)
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values of λF∗ , λV∗ and w. For instance, as shown in Fig. 1a

for w = 0 case, this point behaves as stable node in region

I only if Ŵ ′
F (λF∗) > 0 and G(λF∗ , λV∗) > 0. Region III

represents the region of stable node only if Ŵ ′
F (λF∗) < 0

and G(λF∗ , λV∗) < 0; otherwise all regions in the

(λF∗ , λV∗) parameter space represent the regions of sad-

dle for any choice of coupling function F and potential V .

However, for the case of radiation (w = 1
3
), it is always

saddle. Further, for λF∗ = 0, this point corresponds to a

usual decelerated matter dominated solution of the min-

imal coupled case (�m = 1, weff = w).

• Points A2± correspond to kinetic dominated solutions

which exist for any choice of model parameters. In this

case, we have

βA2+ =
λF∗

√

9 λ2
F∗

+ 6 + 3 λ2
F∗

+ 3

12 λ2
F∗

+ 9
, (33)

βA2− =
−λF∗

√

9 λ2
F∗

+ 6 + 3 λ2
F∗

+ 3

12 λ2
F∗

+ 9
, (34)

which are both positive and less than one and hence, cor-

respond to decelerated expansion. The bifurcation dia-

grams for these points are given in Fig. 1b, c. These points

can be either unstable node or saddle depending on the

form of potential and coupling function. For example,

region I in Fig. 1b represents region of unstable node of

point A2+ if Ŵ ′
F (λF∗) < 0 and G(λF∗ , λV∗) < 0; region

II in Fig. 1c represents the region of unstable node of

A2− if Ŵ ′
F (λF∗) > 0 and G(λF∗ , λV∗) > 0. Otherwise,

they are saddle in nature for any choice of parameters.

When (λF∗ , λV∗) = (0,
√

6) and (0,−
√

6), points A2+
and A2− correspond to stiff matter dominated solutions

(�φ = 1, weff = 1) of the minimal coupled scalar field.

• Point A3 corresponds to a scaling solution and exists for

all values of the model parameters except when λV∗ = 0.

This point can either be a stable node or stable focus or

behaving as a saddle. The bifurcation diagrams for this

point for w = 0 case is given in Fig. 1d. In this plot,

when Ŵ ′
F (λF∗) > 0 and G(λF∗ , λV∗) > 0, region II rep-

resents region of stable focus, regions VI and X represent

regions of stable node and the remaining regions repre-

sent the regions where this point behaves as saddle. How-

ever, when Ŵ ′
F (λF∗) < 0 and G(λF∗ , λV∗) < 0, region I

represents region of stable focus, regions V and IX rep-

resent regions of stable node and the remaining regions

represent the regions where this point behaves as sad-

dle. It is important to note that as the parameters values

change across the bifurcation curves C5 and C6 of Fig. 1d,

the property of the Universe changes from a decelerated

scaling solution (weff > − 1
3
,�m > 0) to a decelerated

scalar field dominated solution (weff > − 1
3
,�m = 0).

For this point, the exponent β in (31) is given by

βA3 =
2

3

λV∗

(w + 1)
(

λV∗ − λF∗

) . (35)

Therefore, it represents a decelerated expansion when

0 <
λV∗

λV∗−λF∗
< 3

2
(w + 1) and an accelerated expanding

Universe when
λV∗

λV∗−λF∗
> 3

2
(w+1). When λF∗ = λV∗ , it

corresponds to an effective cosmological constant behav-

ior (weff = −1), but it is unphysical as �m < 0. Fur-

ther, from the bifurcation diagram of this point, we have

checked that within the unstable (or saddle) accelerated

regions of the parameter space, this point is unphysical.

• Point A4 corresponds to a scalar field dominated solution

(�φ = 1). This point disappears for values of λF∗ , λV∗
satisfying λF∗

2+λF∗ λV∗ +2 = 0. It can either be a stable

node or unstable node or saddle depending on the choice

of model parameters (see Fig. 1e). For Ŵ ′
F (λF∗) > 0 and

G(λF∗ , λV∗) > 0, while region I represents a region of

unstable node, regions III and VIII represent regions of

stable node. The remaining regions represent the regions

where this point behaves as a saddle. For Ŵ ′
F (λF∗) < 0

and G(λF∗ , λV∗) < 0, region II represents a region

of unstable node, regions IV and VII represent regions

of stable node and the remaining regions represent the

regions where this point behaves as a saddle. The cor-

responding exponent for the scale factor solution (31) is

given by

βA4 =
λ2

F∗
+ λF∗ λV∗ + 2

2 λ2
F∗

− 3 λF∗ λV∗ + λ2
V∗

. (36)

This point exhibits an accelerated expanding Universe or

decelerated expanding Universe for some parameter val-

ues. We have checked that this point is stable from the

bifurcation diagram when it corresponds to an acceler-

ated expansion. Hence, this point can describe the late

time Universe. Further, depending on coupling function

and potential, this point can correspond to an accelerat-

ing Universe when it is a saddle. Therefore, we can also

use this point to model the graceful exit phenomenon. We

have verified numerically that this point exhibits differ-

ent behavior of the Universe when this point undergoes a

bifurcation. For example, this point describes a deceler-

ated Universe and an accelerated expanding Universe as

this point changes from a saddle (some parts of regions

V and VI of Fig. 1e) to a stable node (some parts of

regions VII and VIII of Fig. 1e). It is worth mention-

ing that this point corresponds to an effective cosmolog-

ical constant behavior (weff = −1) when λF∗ = λV∗ or

λF∗ = λV∗
2

. The solution corresponds to λF∗ = λV∗
2

is

of interest as it is identical to the de Sitter solution in

123
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GR (since φ is constant in time). From the bifurcation

diagram (i.e., Fig. 1e), one could confirm that there is

a possibility that this point is stable when λF∗ = λV∗
2

.

This point’s stable nature explains the possible late time

convergence behavior of the scalar-tensor theory towards

GR. In other words, such a model converges towards a

structurally stable GR-based model. For coupling func-

tion F(φ) = 1 + ξφ2 and V = V0φ
n , this condition

is met for n = 4. Also when λF∗ < λV∗ < 2λF∗ , this

point behaves as a stable phantom-like attractor. A similar

result for a particular potential case has been reported in

[52]. Therefore, our present work provides a framework

for choosing proper coupling and potential functions to

get interesting dynamics for a broad class of non-minimal

coupled scalar field models.

As there is no stable critical point lying on the intersec-

tion of invariant sub-manifolds y = 0, λF = 0, λV = 0,

therefore, the above system does not contain any global

attractor. Further, from the above analysis, one can see that

the present model exhibits interesting solutions that can

describe various cosmological eras of the Universe. For

instance, the decelerated scalar field dominated solution can

describe the early radiation era, the matter scaling solu-

tion that can describe the intermediate dark matter (DM),

and the late time scalar field dominated solution describ-

ing the DE dominated era. Numerically, we observe that

the local stability behavior of critical points changes for the

coupling and potential parameters (Fig. 1), and hence the

system as a whole undergoes bifurcation. Using the bifur-

cation diagrams of various critical points, we can classify

the parameters for which the evolution corresponds to the

generic evolution and non-generic evolution. Geometrically,

when an orbit evolves from an unstable point and then set-

tles in a stable point, it is called generic evolution. How-

ever, if the initial or final point is a saddle, it is called

non-generic evolution. From the above analysis, we found

that only class of models where the parameters λV∗ , λF∗
belong to the common region of region I of Fig. 1b and

region VII of Fig. 1e; and also in the common region of

region II of Fig. 1c and region VIII of Fig. 1e can possi-

bly lead to physically interesting generic evolutionary sce-

narios. These correspond to the evolution from a deceler-

ated kinetic dominated unstable node point A2+/A2− to an

accelerated potential dominated stable point A4 via a mat-

ter scaling solutions A1 or A3. However, solutions evolv-

ing near an intermediate point A3 correspond to unphysi-

cal solutions (�m < 0). Therefore, the sequence of generic

cosmic viable evolution is given by A2± → A1 → A4.

Thus, bifurcation diagrams allow us to classify the coupling

and potential functions, describing interesting cosmological

dynamics.

Further from the bifurcation diagrams of each point, we

see that there is an occurrence of transcritical bifurcation

between critical points. For example, critical points A1 and

A3 undergo transcritical bifurcation (Fig. 1a, d), A2+ and A4

(Fig. 1b, e), A2− and A4 (Fig. 1c, e), A3 and A4 (Fig. 1d, e).

This type of bifurcation occurs when two critical points inter-

change their stability properties at the bifurcation curve [18].

We can summarize these bifurcation scenarios as follows:

Statement 1 (Existence of transcritical bifurcation) A sys-

tem (20)–(23) undergoes a transcritical bifurcation when

1. Critical points A1 and A3 interchange a saddle and sta-

ble node behavior along the bifurcation curve λV∗ =
3(1+λ2

F∗−w)(1+w)

(3w−1)λF∗
for fixed w.

In particular, for w = 0, the above curve is represented

geometrically by two branch curves C1 and C2 of Fig. 1a,

d.

2. Critical points A2+ and A4 interchange a saddle and

unstable node behavior along a bifurcation curve λV∗ =
2λF∗ +

√

9λ2
F∗

+ 6, represented geometrically by curve

C3 of Fig. 1b, e.

Also, critical points A2− and A4 interchange a saddle

and unstable node behavior along a bifurcation curve

λV∗ = 2λF∗ −
√

9λ2
F∗

+ 6, represented geometrically by

curve C4 of Fig. 1c, e.

3. Critical points A3 and A4 interchange a saddle and stable

node behavior along the bifurcation curves

λV∗ =
1

4
(3 λF∗ w + 7)

+
1

4

√

9 λF∗
2w2 + 66 λ2

F∗
w + 73 λ2

F∗
+ 48 w + 48

and

λV∗ =
1

4
(3 λF∗ w + 7)

−
1

4

√

9 λF∗
2w2 + 66 λ2

F∗
w + 73 λ2

F∗
+ 48 w + 48

for fixed value of w. In particular, for w = 0, the above

curves are represented geometrically by curves C5 and

C6 of Fig. 1d, e.

Note that one can prove the existence of transcritical bifurca-

tion analytically by using the Sotomayor’s theorem [17–19].

However, since the bifurcation parameters λV∗ , λF∗ do not

appear explicitly on the system (20)–(23), therefore, we post-

pone the analytical proof to a concrete example of coupling

function F and scalar field potential V . Even though we can

determine the general properties without specifying the con-

crete model, to understand the cosmological applications of
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Table 3 Critical points of the system (37)–(38)

Point x y Existence Stability

B1
2
√

ξ(1−3w)
4ξ−w+1

0 ξ = w−1
4

Saddle/stable node

B2± 6
√

ξ ±
√

36 ξ + 6 0 Always Saddle/unstable node

B3
−3(w+1)

n
√

ξ

1
2

−6 ξ nw+2 ξ n−3 w2+12 wξ+12 ξ+3

n2ξ
n = 0 Stable focus/stable node/saddle

B4 −
√

ξ(n−4)
ξ n+2 ξ+1

− (6 ξ+1)
(

n2ξ−8 ξ n−20 ξ−6
)

6(ξ n+2 ξ+1)2 ξ = − 1
n+2

Stable node/unstable node/saddle

a general model and better investigate its dynamics, we must

assume a concrete example. Therefore, in the next section,

we consider a specific model and analyze its cosmological

dynamics in detail.

4 Example: quadratic coupling along with power-law

potential

4.1 Stability analysis

Here, we shall examine the case where the non-minimal cou-

pling is of the form F(φ) = ξφ2 and the scalar field poten-

tial is of form V (φ) = V0φ
n (power-law). For this exam-

ple, we have λF = −2
√

ξ , λV = −n
√

ξ and hence they

are constants. This particular example is inspired physically

by the string-dilaton, Brans Dicke actions and several effec-

tive quantum field theories [53]. Mathematically, this form

of coupling and potential agrees with the Noether symmetry

approach of the Lagrangian given by (1) and hence, leads to

physically interesting exact solutions [54,55]. This model is

also compatible with the solar system constraint test [56].

Various cosmological data constrain the value of ξ to be

� 10−2 at 95% confidence limit. However, a degeneracy

between the value of ξ and the present Hubble constant H0

allows a larger value of ξ [57,58].

Stability analysis for this particular example has been per-

formed earlier in [27] where the main focus is on the hyper-

bolic points. However, a discussion on the condition for non-

hyperbolicity of points has not been performed. The non-

hyperbolic nature of the critical point is important to analyze

the bifurcation scenarios. Since for this concrete example, λF

and λV are fixed, the system (20)–(23) reduces to following

two-dimensional system:

x ′ =
1

4(6 ξ + 1)

[

x3 (4 ξ − w + 1) − 2 x2
√

ξ (24 ξ − 9 w + 7)

−6x (12 wξ − w + 1 + y (2 nξ + w + 1)) + 12
√

ξ y

(−n + 3 (w + 1)) − 12 (3 w − 1)
√

ξ
]

, (37)

y′ =
y

2(6 ξ + 1)

[

6(8 ξ + w + 1) + 2
√

ξ x (−2(6 ξ − 3 w + 2)

+ (6 ξ + 1) n) − x2 (−4 ξ + w − 1)

−6 y (2 nξ + w + 1)

]

. (38)

The physical phase space of the reduced system is

� =
{

(x, y) ∈ R
2

∣

∣

∣

(x − 6
√

ξ)2

6
+ y ≤ (1 + 6ξ)

}

. (39)

The critical points for the above system are given in Table

3. We note that critical points B1, B2±, B3, B4 correspond to

points A1, A2±, A3, A4 respectively for this concrete exam-

ple of coupling function and potential. The existence and sta-

bility behavior of these critical points are similar to the gen-

eral case (see Table 3). The bifurcation diagrams exhibiting

the stability regions of critical points are given in Fig. 2. It is

worth noting that each critical point shows a non-hyperbolic

behavior for different values of parameters (represented by

black colored curves in Fig. 2). As analyzed in the general

case (see Sect. 3), critical points B1 and B3 coincide along the

curve D1 in which both of them are non-hyperbolic. There-

fore, in this case, it is sufficient to analyze the non-hyperbolic

nature only for a point B1. The analysis of center manifold

theory for this case is performed in the appendix A and it is

found that point B1 behaves as a saddle. For a detailed math-

ematical background on the center manifold theory, we refer

to [19]. Further, points B2+ and B2− coincide with point B4

and are non-hyperbolic along the curves D2 and D3 respec-

tively. Also, critical points B3 and B4 are non-hyperbolic and

coincide along the curves D4 and D5. Therefore, in each case,

we shall analyze the non-hyperbolic property for a point B4

only. The analysis performed in the appendix B reveals that

point B4 behaves as a saddle along each bifurcation curve.

As the phase space (39) is in general not compact, for the

sake of completeness, we analyze the nature of the system

(37)–(38) at infinity by employing the Poincaré’s projection

method involving the following transformation [19]:

xr =
x

√

1 + x2 + y2
, yr =

y
√

1 + x2 + y2
. (40)
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Fig. 2 Bifurcation diagrams in

(ξ, n) parameter space

exhibiting different local

stability regions of points B1 in

a, B2+ in b, B2− in c, B3 in d

and B4 in e for the case of

w = 0. In each panel, the yellow

color regions correspond to

saddle regions, red color regions

correspond to regions of stable

node, blue color regions

correspond to regions of stable

focus, magenta color regions

correspond to regions of

unstable node. Black colored

curves D1–D5 (see statements 2,

3, 4 for their expressions)

separating different regions

represent the non-hyperbolic

curves. The curves D6 and D7

represent the curves where point

B3 changes between a stable

node and stable focus nature.

Line n = 0 in d and curve D8

represents non-existence of

points B3 and B4 respectively

(a) (b)

(c) (d)

(e)
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The compactified phase space of the resulting system is there-

fore given by

�r =
{

(xr , yr ) ∈ R
2
∣

∣

∣
− 1 ≤ xr , yr ≤ 1, x2

r + y2
r ≤ 1,

(

xr

R
− 6

√
ξ
)2

6
+

yr

R
≤ 1 + 6ξ

}

, (41)

with R =
√

1 − x2
r − y2

r . The critical points near infinity

i.e.,
√

x2 + y2 → ∞ correspond to points on the circle

{

(xr , yr ) ∈ R
2 : x2

r + y2
r = 1

}

. (42)

We should take due care in applying the Poincaré compact-

ification method, resulting in a wrong phase space topol-

ogy, and hence false properties of the solutions [59]. How-

ever, in this case, the above choice of the dynamical vari-

ables does not destroy the phase space’s global structure

since H > 0 [60]. The method’s advantage is to cap-

ture the possible critical points hidden at infinity that can-

not be detected by the finite analysis. On employing this

method, we found that there are four critical points near

infinity viz., (xr , yr ) = (±1, 0), (0,±1) lying on the equa-

tor of the Poincaré’s sphere. The analysis shows that points

P∞
1 (1, 0), and P∞

3 (−1, 0) are saddle in nature. Points

P∞
2 (0, 1), P∞

4 (0,−1) are non-hyperbolic and hence the

stability needs to be checked with an extra effort by the cen-

ter manifold theory. However, by using a quick numerical

check, we found that point P∞
2 is saddle and P∞

4 is stable

for various values of model parameters n, ξ and w = 0. We

note that of all critical points at infinity, only a saddle point

P∞
2 corresponds to an accelerated solution, but it is unphys-

ical. Thus, critical points at infinity cannot describe either

late time or early time behavior of the Universe and hence

are not phenomenologically interesting. Therefore, here we

do not present a detailed calculation of the analysis at infin-

ity. In the next section, we discuss the possible bifurcation

scenarios occurring at the non-hyperbolic condition of each

critical point.

4.2 Bifurcation scenarios

In this section, we shall discuss the occurrence of local bifur-

cation of the system (37)–(38) with respect to parameters ξ

and n. Then we extract the condition on ξ and n under which

the present model describes the generic evolution of the Uni-

verse. In the case of a two-dimensional system, we can com-

pletely characterize the structural stability by Peixoto’s the-

orem. However, we cannot extend the theorem to a system of

dimensions greater than two [19]. As a result of Peixoto’s the-

orem, a structurally stable system guarantees an open dense

subset of initial conditions leading to a generic evolution (see

appendix C).

In general, the necessary condition for the occurrence of

bifurcation of the system is the non-hyperbolicity of the crit-

ical point. However, in the two-dimensional system, accord-

ing to Peixoto’s theorem, the existence of non-hyperbolic

critical points also implies the structural instability of the

system [19]. As we have seen in the previous section, the

system (37)–(38) contains non-hyperbolic points P∞
2 and

P∞
4 on the Poincaré sphere, therefore, the vector field of

the system is structurally unstable. Moreover, finite critical

points can be non-hyperbolic for some values of ξ , n and w.

In what follows, similar to the general case, we again prepare

the bifurcation diagrams (Fig. 2) for each critical point in the

(ξ, n) parameter space and then apply the Sotomayor’s the-

orem (see the appendix C for the statement). The theorem’s

main aim is to analytically investigate and specify the types

of bifurcation.

The local bifurcation diagram for point B1 is given in Fig.

2a. A topological change occurs as this point changes from

stable node to saddle along the curve D1 via a non-hyperbolic

saddle node.

Another bifurcation occurs for points B2+ and B2− along

the curves D2 and D3 respectively, where both the points

undergo an upheaval from unstable node to saddle via a non-

hyperbolic saddle node (see Fig. 2b, c).

Point B3 changes its stability from a stable node to a sad-

dle along the bifurcation curves D1, D4, D5 of Fig. 2d. For a

particular case, n = 2, this point exhibits an effective cosmo-

logical constant behavior and for n = 6, the point’s dynamics

change from an unaccelerated to an accelerated behavior.

Out of the above mentioned critical points, point B4 is an

interesting point which can explain the late time behavior of

the Universe. This point undergoes a stability change from

an unstable node to a saddle along the curves D2 and D3

of Fig. 2e. Again, a change from a stable node to a saddle

occurs when the point passes through the bifurcation curves

D4 and D5 of Fig. 2e. As this point can represent interesting

late time Universe, using bifurcation diagram (Fig. 2e), we

summarize the stability property of this point for different

range of ξ, n, w as follows:

• Point B4 is not stable when

(i) n > 3 w+7
2

+
√

9 w2ξ2+66 wξ2+12 wξ+73 ξ2+12 ξ

2ξ

(regions I and II of Fig. 2e),

or,

(ii)
4ξ−

√
6ξ+36ξ2

ξ
< n <

3 w+7
2

−
√

9 w2ξ2+66 wξ2+12 wξ+73 ξ2+12 ξ

2ξ

(regions IV and V of Fig. 2e).

• It is stable when
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(iii) 4 ≤ n < 3 w+7
2

+
√

9 w2ξ2+66 wξ2+12 wξ+73 ξ2+12 ξ

2ξ
,

or,

2 ≤ n ≤ 4,

or,

3 w+7
2

−
√

9 w2ξ2+66 wξ2+12 wξ+73 ξ2+12 ξ

2ξ
< n ≤ 2

(region III of Fig. 2e),

or,

(iv) n <
4ξ−

√
6ξ+36ξ2

ξ
(region VI of Fig. 2e).

It is worth mentioning that independent of the value of

ξ , this point describes a stable phantom attractor behavior

for 2 < n < 4. Also, when n = 4, point B4 belongs to

a stable region of parameter space. Therefore, as discussed

in Sect. 3 (i.e., model with the condition λF∗ = λV∗
2

) this

point corresponds to a deSitter solution in GR for n = 4.

Similar result also holds for model considered in [21] with

biquadratic potential.

From the above discussion on the bifurcation diagrams,

we found the possibility of transcritical bifurcation exhibited

by the system (37)–(38). In what follows, we summarize the

occurrence of bifurcation and mathematically analyze the

transcritical bifurcation with ξ as the bifurcation parameter

using Sotomayor’s theorem.

Statement 2 The system (37)–(38) undergoes a transcritical

bifurcation of critical points B1 and B3 along a curve

ξ =
3

2

1 − w2

n(3w − 1) − 6 (w + 1)
,

for fixed w.

Proof: In this case, the bifurcation value is

ξ = ξ0 =
3

2

1 − w2

n(3w − 1) − 6 (w + 1)
,

in which the points B1 and B3 coincide and the real part of the

eigenvalue corresponding to common critical point vanishes.

The eigenvector corresponding to a simple eigenvalue λ =
0 (i.e., multiplicity is 1) of the Jacobian matrix Df(B1, ξ0)

evaluated at a point B1 when ξ = ξ0 is

v =
[

√

6(1 − w2)
√

n(3w − 1) − 6(1 + w)

(3w − 1)(w − 1)
1

]T

,

where T stands for transpose and f is the vector field of the

system (37)–(38).

Also, the eigenvector corresponding to a simple eigen-

value λ = 0 of the transpose of the Jacobian matrix is

w = [0 1]T .

After, few simple algebraic calculations one could easily

verify that when ξ = ξ0, we have

wT fξ (B1, ξ0) = 0, (43)

wT [Dfξ (B1, ξ0)v] =
1

(3 w − 1) (w − 1)n2

(

((3w − 1)n(n + 2)

−24 (w + 1)) (3 nw − n − 6 w − 6)

)

, (44)

and

wT [D2f(B1, ξ0)(v, v)] = −
6 (w + 1) n

3 w − 1
, (45)

where vector fξ denotes the partial derivative of f with respect

to ξ . Note here that the right hand side of (44), (45) is non-

zero for any admissible value of n and w, otherwise ξ is

undefined or negative. Hence, by the Sotomayor’s theorem,

the system (37)–(38) undergoes a transcritical bifurcation

when ξ = 3
2

1−w2

n(3w−1)−6 (w+1)
, which is represented by a curve

D1 of Fig. 2a, d for w = 0. In a similar manner, one could

also verify the following statements. ⊓⊔

Statement 3 The system (37)–(38) undergoes a transcritical

bifurcation of critical points B2± and B4 along a curve

ξ =
6

n2 − 8n − 20
.

For w = 0, the above equation is represented by two branch

curves D2, D3 of Fig. 2b, c, e.

Statement 4 The system (37)–(38) undergoes a transcritical

bifurcation of critical points B3 and B4 along a curve

ξ =
3(w + 1)

n2 − 3 nw − 7 n − 6 w − 6
.

for fixed w.

For w = 0, the above equation is represented by two branch

curves D4 and D5 of Fig. 2d, e.

The above bifurcation scenarios help us to properly sepa-

rate the Universe’s evolution into generic and non-generic

evolution. In Table 4, we present the conditions satisfied

by the model parameters to describe the Universe’s possi-

ble generic cosmological evolution. This type of evolution is

interesting as it can determine the initial phase and the final

phase of the Universe’s cosmological evolution for a wide

range of initial conditions. Out of all the scenarios presented

in Table 4, only scenarios II and IV are of cosmological inter-

est as they could explain the late-time behavior of the Uni-

verse and fits with various CMB and BAO observational data

[57]. In Fig. 3, we present the global phase space diagram for

a particular choice of n and ξ which corresponds to a generic

evolution of scenario II where the model exhibits a late-time

acceleration (similar dynamics is exhibited by scenario IV).

It is important to remark here that for the parameters within

the range of generic scenario II, there is no bifurcation, so it is

sufficient to present only one phase portrait for this scenario.

Furthermore, in Sect. 5, we will discuss the evolution of cos-

mological quantities described by this model for parameters

corresponding to scenario II.
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Table 4 Conditions on parameters ξ, n, w for which dynamics of Universe governed by the system (37)–(38) undergoes a generic evolution. Here,

Q± = 3 wξ+7 ξ±
√

9 w2ξ2+66 wξ2+12 wξ+73 ξ2+12 ξ

2ξ

Scenarios ξ, n, w Starting point End point

I n > Q+ Unstable node B2+ Stable node/focus B3

(decelerated scalar field expansion) (decelerated matter scaling expansion)

II Q− < n < Q+ Unstable node B2+/B2− Stable node B4

(decelerated scalar field expansion) (decelerated/accelerated scalar field expansion)

III Q− < n <
3(1−w2+4 ξ(w+1))

2(3 w−1)ξ
Unstable node B2− Stable node/focus B3

(decelerated scalar field expansion) (decelerated matter scaling expansion)

IV n <
4ξ−

√
6ξ+36ξ2

ξ
Unstable node B2− Stable node B4

(decelerated scalar field expansion) (decelerated/accelerated scalar field expansion)

V n >
4ξ+

√
6ξ+36ξ2

ξ
Unstable node B4 Stable focus B3

(decelerated scalar field expansion) (decelerated matter scaling expansion)

VI n <
3(1−w2+4 ξ(w+1))

2(3 w−1)ξ
Unstable node B2− Stable node B1

(decelerated scalar field expansion) (decelerated matter scaling expansion)

Fig. 3 A global phase portrait of the system (37)–(38) for the generic

scenario (II) with w = 0, n = 4, ξ = 0.1. The grey shaded region

represents the non-physical region (i.e., �m < 0). The yellow shaded

region corresponds to the phantom like solution (weff < −1) and the

blue shaded region corresponds to a quintessence like solution (−1 <

weff < − 1
3

)

5 Discussion and conclusion

In this work, we studied the global qualitative cosmological

dynamics of a non-minimal coupled scalar field for a gen-

eral class of coupling function and potential. We focused

on the bifurcation analysis to investigate the effect of vary-

ing the model parameters on the global dynamics. The main

objective of applying bifurcation theory is to determine the

existence of generic evolutionary scenarios. It will help us

identify the Universe’s initial and final phases for a wide

range of initial conditions. The bifurcation theory also allows

us to understand how physics described by the phase space

changes with parameters.

The general model described by the system (20)–(23) con-

tains different interesting cosmological solutions for different

model parameters. For instance, the present model exhibits a

scalar field dominated solution A2±, resembling a stiff matter

Universe or radiation Universe for some choice of coupling

and potential parameters. The scalar field’s sole contribution

to an early radiation epoch is an interesting scenario missing

in a minimal coupled canonical scalar field within the GR

context. For some choice of coupling function and potential,

the general model also shows the presence of DM-DE scaling

solutions A1 and A3 describing an intermediate matter epoch.

Lastly, the present model exhibits a late time acceleration of

the Universe via a critical point A4. Thus, from the analysis

presented in Sect. 3, one can select a class of non-minimal

coupled scalar field models describing a viable sequence of

cosmic evolution. In particular, for models with λF∗ = λV∗
2

,

point A4 corresponds to a late time de Sitter solution of the

GR case. Hence, such a class of scalar-tensor theories con-

verges towards a structurally stable GR-based model, i.e.,

the �CDM model. This is a common feature of the scalar-

tensor gravity which has been verified numerically and ana-

lytically [61–66]. Therefore, the present analysis identifies

a broad class of scalar-tensor models generically possessing

this property. Further, it is possible that the point A4 corre-

sponds to a late time super-accelerated phase (weff < −1)
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(a)

(b)

(c)

Fig. 4 Time evolution of the scalar field energy density �φ , matter

energy density �m , effective EoS weff and EoS of scalar field wφ for

a generic scenario (II). In a we have taken w = 0, n = 4, ξ = 0.1,

b A closer look on the evolution of weff given in a at late time, c

w = 0, n = 4, ξ = 0.001

when λF∗ < λV∗ < 2λF∗ . Hence, in the presence of a non-

minimal coupling, the model can explain a super-accelerated

phase (weff < −1) without the need for the introduction of

a phantom field. Depending on the potential and coupling

function, point A4 is a saddle in nature and hence can also

describe the possible inflationary exit phenomenon.

In Sect. 4, we illustrate the global dynamics in detail by

considering a simple example corresponding to a quadratic

coupling function and a power-law form potential. For this

particular example, we find the range of parameters n and ξ

describing a generic evolution scenario (see Table 4). In Fig.

4, we have plotted the evolution of cosmological parameters

against the redshift z for a choice of parameters correspond-

ing to one of the generic scenarios, i.e., scenario (II) which

starts from an unstable decelerated solution (B2±) towards

a deSitter like solution B4 (a similar evolution is obtained

for scenario IV). Recall that redshift z = −1 + 1
a

where the

present value of the scale factor taken to be unity, with z = 0

corresponds to the present Universe and z = −1 corresponds

to its infinite future. It is worth mentioning here that only the

parameters’ values corresponding to the generic evolution

of scenarios II or IV satisfy various observational constraints

coming from Planck and BAO datasets [58]. Therefore, math-

ematically, stability analysis and bifurcation theory help us

to locate various physically rich models. For instance, we can

find the parameter’s range which can generically describe the

thermal history of the Universe starting from an early radia-

tion domination (weff ≃ 1
3
) or stiff matter solution (weff ≃ 1)

represented by points B2± towards a DE dominated solution

B4 (weff ≃ −1) via a matter like solution B1 (weff ≃ 0) i.e.,

B2± → B1 → B4 (see Figs. 3, 4).

The possibility that �m > 1 and wφ diverges at the onset

of a matter-dominated era (as explained in paragraphs after

Eqs. (13) and (27)) can also be confirmed from Fig. 4a. The

divergence of wφ , however, does not cause any issue to the

evolution behavior of weff , as this corresponds to the vanish-

ing of scalar field energy density. The overdensity of matter

component is not a surprise in cosmological models where

interaction between different components occurs [67]. Such

behavior is more visible by comparing a change in the behav-

ior of �m and wφ to ξ (i.e., λF ) from Fig. 4a, c (the range of

divergence of wφ reduces and �m → 1 as ξ → 0). Interest-

ingly, the behavior is consistent with the result of [56], that

the background dynamics of the present model approach GR

with the cosmological constant in the limit ξ → 0. For a

generic scenario (II), there is also a possibility of crossing

the phantom divide line and eventually the solution settles

down towards a cosmological constant behavior (see Fig. 3).

We can confirm it by taking a closer look at the late time

evolution of weff (see Fig. 4b). In Fig. 4, we choose initial

conditions such that the Universe agrees with the current

observational data i.e., �m ≈ 0.3, weff ≈ −0.8 [68].
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Our analysis shows that the non-minimal coupled scalar

field model describes a rich cosmological history of the Uni-

verse. For instance, the model exhibits the transition: radia-

tion → matter → DE and the possible crossing of phantom

divide line but avoiding the big rip singularity. It is worth not-

ing that only by using the stability analysis, one can determine

such a transition. However, bifurcation tools help us locate

the parameter values describing such dynamics without a

fine-tuning of initial conditions. With the present choice of

variables (19), this model can explain the graceful exit sce-

nario and the late time DE era separately. Such a result is

a common feature of many classes of scalar-tensor theories.

Therefore, it is of interest to extend the analysis to the case

where the scalar field is coupled non-minimal with gravity

and matter, as discussed in [69]. Such discussion is beyond

the scope of the present work.
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Appendix A: Center manifold theory analysis for critical

point B1

In this case, we analyze the stability behavior of this point

when ξ = 3(1−w2)
2(3 nw−n−6 w−6)

i.e., along the curve D1 of

Fig. 2a. Under this condition, the eigenvalues corresponds

to this point are 0 and 3(nw−n+2 w+2)
2n

. First, we make a

coordinate transformation in such a way that this point is

shifted to the origin. The transformation is given by x →

x +
(√

6(1−w2)(3 nw−n−6 w−6)

(w−1)n

)

, y → y and we apply to the

dynamical system (37)–(38) (which we have not presented

here). Then, the resulting system is then transformed into a

standard form upon the introduction of new variables X, Y

given by

(

X

Y

)

=
(

1 1
3 w2−4 w+1

√

6(1−w2)(3 nw−n−6 w−6)

nw−n−6 w−6

0 1

)

(

x

y

)

.

On employing these new variables, we can rewrite the cor-

responding dynamical system as

(

X ′

Y ′

)

=
(

3(nw−n+2 w+2)
2n

0

0 0

) (

X

Y

)

+
(

g1

f1

)

,

where g1, f1 have not been presented due to their length.

Then by the center manifold theory, there exist a continuously

differentiable function h : R → R defined by X = h(Y ) =
a2Y 2 +a3Y 3 +O(4), where a2, a3 ∈ R are determined from

the quasi-linear equation

Dh(Y ) [A + f1(Y, h(Y ))] − Bh(Y ) − g1(Y, h(Y )) = 0,

(A1)

where A = 0, B = 3
2

n(w−1)+2(w+1)
n

and D denotes the

derivative with respect to Y . On substituting the expression

of A, B, f1, g1 and h in (A1), we obtain the values of a2 and

a3 given by

a2 =
2

√

6(1−w2)
3 nw−n−6 w−6

[

(w + 1) (n + 1) (3 nw − n − 6 w − 6)

]

(1 − w) (3 w − 1)2 (nw − n + 2 w + 2)
,

a3 =

√

6(1−w2)
3 nw−n−6 w−6

(w − 1)(3w − 1)3(nw − n + 2w + 2)(−3w + n − 3)

[

n2

(w + 1) (3 nw − n − 6 w − 6)

(

12 n3w − 33 n2w2 + 12 n3

−60 n2w − 48 nw2 − 19 n2 − 88 nw − 24 w2 − 40 n

−48 w − 24)

]

.

The following equation then gives the flow on the corre-

sponding local center manifold

Y ′ = A + f1(Y, h(Y )), (A2)

i.e.,

Y ′ =
3n(w + 1)

1 − 3w
Y 2 + O(3). (A3)

This equation implies point B1 is always saddle when ξ =
3(1−w2)

2(3 nw−n−6 w−6)
.

Appendix B: Center manifold theory analysis for critical

point B4

In this case, we analyze the stability behavior of the point B4

when ξ = 6
n2−8n−20

(i.e., curves D2, D3 of Fig. 2) or ξ =
3(w+1)

n2−3 nw−7 n−6 w−6
(i.e., curves D4, D5 of Fig. 2). Following

the similar analysis as for the point B1, we obtained that the
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flow on the corresponding local center manifold in both the

cases is given by

Y ′ = −
3(n + 2)

n − 4
Y 2 + O(3), (B1)

which implies the saddle nature of point B4 when ξ =
6

n2−8n−20
or ξ = 3(w+1)

n2−3 nw−7 n−6 w−6
.

Appendix C: A brief introduction to bifurcation tools

Here, we present preliminaries and two landmark theorems

required for understanding bifurcation analysis. For more

details, reader can refer to Refs. [18,19,70].

Definition 1 Two dynamical systems are said to be locally

topologically equivalent if there exists a homeomorphism

(i.e., a continuous invertible function whose inverse is also

continuous) mapping orbits of one system onto orbits of

another system preserving the direction of time.

If the qualitative behavior remains topologically equiva-

lent for all nearby vector fields, then the system or the vec-

tor field is said to be structurally stable. For a two dimen-

sional system, Peixoto’s theorem completely characterizes

the structural stability of vector fields on a compact, two-

dimensional manifold. To understand the landmark theorem,

we present a definition of non-wandering points.

Definition 2 A point x on a manifold is a non-wandering

point of the flow φt defined by the vector field if for any

neighborhood U of x and for any T > 0 there is t > T such

that φt (U ) ∩ U is a non-empty set.

Peixoto’s Theorem Let f be a C1-vector field on a com-

pact, two dimensional, differentiable manifold M . Then f is

structurally stable on M if and only if

(i) the number of critical points and cycles is finite and each

is hyperbolic;

(ii) there are no trajectories connecting saddle points; and

(iii) the set of all non-wandering points consists of critical

points and limit cycles only.

Recall that a limit cycle is an isolated closed path. By iso-

lated, it means that neighboring trajectories are either spiral

toward or away from a limit cycle.

When the dynamical system depends on some parame-

ters, the system’s phase portrait also varies as parameters

vary. Thus, either the phase portrait remains topologically

equivalent, or its topology changes as parameter changes.

The occurrence of topologically inequivalent phase portraits

under a change of parameters is called a bifurcation. A param-

eters’ value at which the topology changes is called a bifur-

cation value.

Different types of bifurcation can occur for a given dynam-

ical system. One can classify different types of bifurcation

using Sotomayor’s theorem (see [18] for more details). Since,

in our work, we obtained only transcritical bifurcation, in

what follows, we state this theorem to determine the occur-

rence of transcritical bifurcation.

Sotomayor’s theorem for transcritical bifurcation

Consider the system ẋ = f (x, μ) where the set of vector

fields f equipped with the standard C1-norm1 forms a Banach

space such that f(x0, μ0) = 0. Suppose the Jacobian matrix

(A ≡ Df(x0, μ0)) has a simple eigenvalue λ = 0 with eigen-

vector v and w is an eigenvector of the transpose of the Jaco-

bian matrix AT corresponds to the eigenvalue λ = 0. Then

the above system experiences a transcritical bifurcation at

the equilibrium point x0 as the parameter μ varies through

the bifurcation value μ = μ0, if the following three condi-

tions hold:

• wTfμ(x0, μ0) = 0

• wT[Dfμ(x0, μ0)v] = 0 and

• wT[D2f(x0, μ0)(v, v)] = 0

where

Dfμ(x0, μ0)v =
n

∑

i=1

∂fμ(x0, μ0)

∂xi

vi ,

D2f(x0, μ0)(v, v) =
n

∑

i, j=1

∂2f(x0, μ0)

∂xi x j

viv j .

and fμ denotes partial derivative of f with respect to μ.
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