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Abstract Some cosmological models based on the grav-

itational theory f (R) = R + ζ R2, and on fluids obey-

ing to the equations of state of Redlich–Kwong, Berthelot,

and Dieterici are proposed for describing smooth transitions

between different cosmic epochs. A dynamical system analy-

sis reveals that these models contain fixed points which corre-

spond to an inflationary, a radiation dominated and a late-time

accelerating epoch, and a nonsingular bouncing solution, the

latter being an asymptotic fixed point of the compactified

phase space. The infinity of the compactified phase space is

interpreted as a region in which the non-ideal behaviors of

the previously mentioned cosmic fluids are suppressed. Phys-

ical constraints on the adopted dimensionless variables are

derived by demanding the theory to be free from ghost and

tachyonic instabilities, and a novel cosmological interpreta-

tion of such variables is proposed through a cosmographic

analysis. The different effects of the equation of state param-

eters on the number of equilibrium solutions and on their sta-

bility nature are clarified. Some generic properties of these

models, which are not sensitive to the particular fluid con-

sidered, are identified, while differences are critically exam-

ined by showing that the Redlich–Kwong scenario admits a

second radiation-dominated epoch and a Big Rip Singularity.

1 Introduction

Despite being a challenging task, the search for a uni-

fied cosmological theory accounting for the entire known
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evolution history of the Universe, or at least providing a

smooth transition between two different cosmic epochs, has

been attempted both through single fluid approaches and by

proposing modifications of the gravity sector beyond gen-

eral relativity [1,2]. In the former case a certain single cos-

mic fluid is adopted to describe two different epochs in the

limits of high and low energy, while the latter framework

postulates some curvature modifications to the Lagrangian

which are dominant at a certain cosmic epoch but dilutes

at others. For example, Born–Infeld-like theories can lead

to an effective description of the cosmic matter interpo-

lating between dark matter and dark energy dominated

epochs as a consequence of the Friedman equations, in

terms of the Chaplygin Gas [3,4] or of the Anton–Schmidt

fluid [5,6]. Other thermodynamically-motivated fluid mod-

els like the Dieterici [7] or the Shan–Chen [8] can as well

exhibit a phase transition from a decelerating to an accel-

erating phase of the universe; the former from a matter-

dominated epoch to a dark energy epoch, and the latter

from an early radiation-dominated epoch to a dark energy

epoch. The Shan–Chen model can also be used for describ-

ing the exponential expansion occurring during the inflation-

ary epoch with the advantage of exhibiting a graceful exit

mechanism, but for a different choice of the free parame-

ters entering its equations of state than in the former analysis

[9].

On the other hand, extended gravity theories in which a

certain curvature invariant is added to, or used to replace, the

Ricci scalar inside the Einstein-Hilbert Lagrangian can pro-

vide as well an evolution between different cosmic epochs

as a consequence of the modified field equations themselves

[10–16]. In spite of the correspondence between modified

gravity theories and non-ideal fluid pictures (i.e. whose pres-

sure and energy density are connected via P = w(ρ)ρ) [17],

the former have the advantage of not violating some of the

energy conditions which instead are broken when exotic flu-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09697-2&domain=pdf
http://orcid.org/0000-0002-5472-304X
https://orcid.org/0000-0002-0448-3447
mailto:saikatnilch@gmail.com
mailto:snilch@yzu.edu.cn
mailto:danielegregoris@libero.it


944 Page 2 of 30 Eur. Phys. J. C (2021) 81 :944

ids with negative pressure are adopted, and they preserve

causality which would be lost when the adiabatic speed of

sound squared becomes negative.

In this paper, we will merge the fluid and the modified

gravity approaches and propose some cosmological models

in which the gravity sector is accounted for by a Lagrangian

of the type f (R) = R + ζ R2, while the matter content

is assumed to obey to some non-ideal equations of state

with a well-established thermodynamical foundation known

under the names of Redlich–Kwong, (modified) Berthelot,

and Dieterici fluid separately. The former assumption will

allow us to account for the early-time dynamics, while the

latter for the present-day epoch. Both these two models

have been investigated separately in a number of literature

works [18–27]. Here, we will obtain a cosmological dynam-

ics with a rich variety of different behaviors like a non-

singular bounce, two de Sitter-like epochs (thanks to the

non-linear equation of state of the cosmic fluid in which

w(ρ) is not a constant), possibly two radiation-dominated

epochs, and possibly a phantom regime (the latter only in the

Redlich–Kwong scenario). The comparison between three

different realizations of the equation of state parameter func-

tion w(ρ) (for example which can be either always regular

or admitting singularities, which can blow up or not at small

or high energy densities, etc.) will give us the opportunity of

enlightening which of our findings hold only when a partic-

ular fluid modeling is considered, and which instead seem

to be a general characteristic of the cosmological dynam-

ics. We must mention here that previously there have been

some attempts to unify early and late time cosmology under

certain forms of f (R) gravity [28–30]. However, it is worth-

while to remark also that the modifications utilized in those

works are completely ad-hoc, lacking any motivation from

the field theory point of view. The only modifications to

the Einstein-Hilbert Lagrangian with some field theoretical

motivations are the quadratic gravity theories. It has been

known for some time that gravity Lagrangian containing

additional quadratic curvature invariant terms are renormal-

izable [31,32]. Therefore in this work we do not intend to go

beyond quadratic modifications. In particular we consider

only the simplest case, namely, an R2 correction term, along

with fluids having a well-defined thermodynamic founda-

tion.

We will tackle the technical difficulties arising in a fourth-

order gravity theory like this one by adopting the set of dimen-

sionless variables constructed in [33] which allows to cast the

dynamical equations into a system of autonomous first-order

equations suited for a dynamical system analysis. Such tech-

nique constitutes a powerful mathematical tool for describ-

ing the qualitative evolution of the the cosmological model

under investigation not only in modified gravity [33–43],

but also in multi-interacting fluid models [25,44–51], and

in exact or perturbed anisotropic and inhomogeneous cos-

mological models [52–58], just to mention a few examples.

However, we will also propose a novel cosmologically trans-

parent interpretation for those variables which was still lack-

ing in the literature by deriving the physical restrictions they

should obey to for avoiding tachyonic and ghost instabilities

and connecting them to the cosmographic parameters, such as

the deceleration, jerk and snap parameters which can be astro-

physically constrained. Remarkably, we will show that such

physical restrictions still allow the existence of a region in the

phase space in which the energy density of the matter field

is equal to the energy density of the curvature, which may

be relevant for addressing the coincidence problem. Further-

more, our choice of variables will be useful also for showing

that certain regions of the phase space are free from any of the

five known types of cosmological singularities without the

need of using the dominant energy balance formalism [59].

Moreover, after compactifying the phase space we will show

that the region at infinity does not have only a geometrical

meaning but it is such that the cosmic fluid equation of state

reduce to the ideal behavior P ∝ ρ in which the interactions

between the fluid constituents are suppressed.

One of the most severe shortcomings of the standard cos-

mological modeling is the Hubble tension, which is the dis-

crepancy between the large and small scale estimates of

the Hubble constant from supernova and cosmic microwave

background data. Assuming that these predictions are not

affected by any systematics, as to gravitational lensing effects

on the cosmic microwave background angular spectrum [60]

or to calibration and reddening issues for supernovae [61–

63], an appropriate theoretical framework should be con-

structed for taming it. Several different proposals have been

formulated, but none of them still seem fully satisfactory.

For example the presence of a Proca field would reduce

the Hubble tension [64], but there are no laboratory evi-

dences of massive electrodynamic effects, and furthermore

gauge invariance is lost in this theory [65]. Also, interac-

tions between dark energy and dark matter may alleviate the

tension [66], but thermodynamical considerations based on

the Le Chatelier-Braun principle suggests that dark energy

should decay into dark matter [67] while the fact that the

structure formation era should precede the accelerating phase

would require otherwise [68]. Our present work is intended

as a rigorous dynamical study of a unified cosmic history

model, combining two important frameworks one each from

the study of early and late-time universe. Although we do

not address the issue of H0 tension here, an interesting scope

for further investigation would be whether a unified cosmic

history model, like the one we presented here, can provide an

alternative to introducing ad-hoc interactions in the dark sec-

tor when it comes to alleviating the H0 tension. Indeed this

is not the first time that modified gravity and other ingredi-

ents are merged together. For example, anisotropic models in

which the Copernican principle is relaxed have already been
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considered in Einstein–Aether gravity [69] also with a cou-

pling to a scalar field [53], in braneworld cosmologies [70],

or in f (R) gravity [71], just to cite a few examples. On the

other hand, for a recent phenomenological proposal which

may tame some observational challenges invoking two free

parameters and requiring only a modification of the gravity

sector in terms of a torsional Lagrangian see [72].

Our paper is organized as follows: in Sect. 2 we will review

the field equations of the class of models we want to analyze

and exhibit the equations of state of the cosmic fluids we are

adopting mentioning their basic features, and we will as well

introduce a formalism in which both curvature and matter

effects are combined into an effective picture. Sect. 3 con-

stitutes the main part of our work: in 3.1 we will recast the

equations governing the dynamics of our models as a sys-

tem of autonomous first order equations in terms of a set of

dimensionless variables on which we will also derive appro-

priate physical restrictions; in 3.2 we will identify the cos-

mologically meaningful equilibrium solutions, explain for

which ranges of the matter equation of state parameters they

can arise pointing out possible bifurcations among them for

particular types of matter contents, and report their stability

showing that radiation-dominated, de Sitter-like and power

law cosmologies can arise; in 3.3 we will compactify the

phase space and perform the analysis at infinity showing

that a nonsinglar bounce occurs; in 3.4, 3.5 and 3.6 we will

investigate the dynamics in the invariant submanifolds both

numerically by plotting the trajectories in the phase spaces,

by deriving analytically their stability, and by finding analyt-

ical results for the phase orbits in some specific cases; in 3.7

we will relate the dimensionless variables we have adopted

to the deceleration, jerk and snap cosmographic parameters

which can be astrophysically measured. Then, in Sect. 4 we

will explain why some regions of the phase space are not

affected by any cosmological singularity, and in Sect. 5 we

will summarize the patterns that have emerged in our analysis

by discussing which cosmological features we have discov-

ered are sensitive to the particular modeling of the fluid, and

which instead seem to be a general property. We will con-

clude in Sect. 6 by discussing the cosmological relevance of

our analysis and by putting the present work in the perspec-

tive of possible future projects. In “Appendix A” we review

the applicability of the fluid models considered in this paper

for the description of real gases beyond the cosmological

context. The analytical computations of the stability of the

isolated fixed points and of the invariant submanifolds are

reported in the “Appendices B, C, D, E” which make use of

both the standard notion of linear stability and of a much

more advanced technique like the “ center manifold analy-

sis”.

2 Basic equations of quadratic gravity

The action of quadratic gravity in the Ricci scalar1 reads as

[78]

S =
1

2κ

∫

d4x
√

−g f (R) + Sm , (1)

with2 f (R) = R+ζ R2 and κ = 8πG, G being the Newton’s

gravitational constant. ζ is a positive parameter quantifying

the deviation of the quadratic gravity from the general rela-

tivistic Einstein-Hilbert Lagrangian at high curvature. These

contributions are supposed to play an important role in the

early universe driving the inflationary dynamics but dilut-

ing at later epochs [18–24]. This model constitutes a specific

realization of a scalar-tensor theory of gravity because mod-

ifications in the gravity sector can be re-interpreted in the

Brans–Dicke language as a new degree of freedom associ-

ated to a propagating scalar field [17]. Moreover, Sm is the

aggregate matter action responsible for all the fluid content of

the Universe. In this paper we will assume the cosmic matter

to be a perfect fluid (it is fully characterized by its pressure

P and energy density ρ) obeying to a nonideal equation of

state (pressure and energy density are not directly propor-

tional to each other). To be more specific, we will consider

some fluid models which constitute examples of evolving

dark energy and/or unification of exotic and regular matter

since in this latter case the sign of the pressure can change

at different cosmic epochs as a consequence of the evolu-

tion of the energy density. Thus, our model is intended to

study the evolution from inflationary to dark energy epoch

by involving both quadratic corrections in the curvature and

some nonideal fluid.

Furthermore, in light of the Copernican principle, i.e. that

the universe is homogeneous and isotropic, and considering

an almost spatially flat universe, our geometrical model will

be based on the spacetime

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) . (2)

Defining F := ∂ f/∂ R, and introducing the Hubble function

H := ȧ/a, where an overdot denotes a derivative with respect

1 In this paper we will restrict ourselves to a modified gravity model

quadratic in the curvature. However, other types of corrections have

been proposed in the literature, either quadratic or beyond it, as in f (T )

theories with torsion [73], f (Q) with non-metricity [74], or f (G) with

a Gauss-Bonnet term [75].

2 In principle the most generic quadratic Lagrangian in curvature should

also contain the terms R2
αβ ≡ Rαβ Rαβ and R2

αβγ δ ≡ Rαβγ δ Rαβγ δ ,

which can be rewritten in terms of the Euler density E ≡ R2
αβγ δ −

4R2
αβ + R2 and the Weyl curvature invariant C ≡ R2

αβγ δ − 2R2
αβ + R2

3
.

E does not contribute to the equation of motion due to the Gauss-Bonnet

identity whereas C vanishes for FLRW metric [76,77]. Therefore the

action (1) can be taken to be the most generic quadratic Lagrangian in

terms of the curvature for a homogeneous and isotropic universe.
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to the cosmic time, we can write the field equations for a flat

Friedman universe under the action (1) as [10–12]:

3(1 + 2ζ R)H2 = ρ + ζ

(

R2

2
− 6H Ṙ

)

, (3a)

(1 + 2ζ R)Ḣ = ζ(H Ṙ − R̈) −
ρ + P

2
, (3b)

where we have adopted units such that κ = 1, and the Ricci

scalar is related to the Hubble function via

R =
6(ȧ2 + aä)

a2
= 6(2H2 + Ḣ) . (4)

The field equations should be complemented by the Bianchi

identity

ρ̇ = −3H(ρ + P) (5)

which governs the energy conservation of the cosmic fluid.

Furthermore, combining (3a) with (3b) we get

2Ḣ + 3H2 = −
1

F

(

P −
RF − f

2
+ F̈ + 2H Ḟ

)

, (6)

which will be invoked in what follows for providing a trans-
parent physical interpretation to the various quantities gov-
erning the cosmological dynamics. In fact, the joint effects
of the matter content and of the modifications to the gravity
sector can be combined into an effective total energy density
and an effective total pressure which read as [13, Eq. (IV.82)]:

ρeff := 3H2 =
1

F

(

ρ +
RF − f

2
− 3H Ḟ

)

=
1

1 + 2ζ R

[

ρ + ζ

(

R2

2
− 6H Ṙ

)]

, (7a)

Peff := −(2Ḣ + 3H2) = −
1

F

(

P −
RF − f

2
+ F̈ + 2H Ḟ

)

= −
1

1 + 2ζ R

[

P + ζ

(

−
R2

2
+ 2R̈ + 4H Ṙ

)]

. (7b)

Along this line of thinking, one can also define an effective

equation of state parameter which encodes information about

both the actual cosmic fluid and the curvature effects as

weff :=
Peff

ρeff
= −1 −

2Ḣ

3H2
. (8)

For the the description of the matter content of the universe,
we find convenient to follow the approach of [27] and con-
sider the following modelings for the equations of state of
the cosmic fluid separately:

P(ρ) =
1 − (

√
2 − 1)αρ

1 − (1 −
√

2)αρ
βρ (Redlich–Kwong [79]), (9a)

P(ρ) =
βρ

1 + αρ
[(modified) Berthelot [80]], (9b)

P(ρ) =
βρe2(1−αρ)

2 − αρ
(Dietrici [81]). (9c)

The fluid equation of state parameter defined as w := P/ρ

takes respectively the forms:

w(ρ) =
1 − (

√
2 − 1)αρ

1 − (1 −
√

2)αρ
β (Redlich–Kwong), (10a)

w(ρ) =
β

1 + αρ
[(modified) Berthelot], (10b)

w(ρ) =
βe2(1−αρ)

2 − αρ
(Dietrici). (10c)

Therefore, our class of models is based on three free param-

eters (ζ , α, β). Different interplay between these free param-

eters will affect the existence of certain equilibrium config-

urations and certain types of finite-time singularities that we

will classify in this paper with the purpose of constraining

the values that these free parameters can assume by requir-

ing these configurations to be physically meaningful. The

two free parameters entering the equation of state of the

cosmic fluid should be interpreted as: α > 0 is the tem-

perature at which a thermodynamic phase transition occurs

within the fluid, and it sets the strength of the interactions

between the fluid particles since in the limit α → 0 all

these equations of state describe an ideal fluid for which

pressure and energy density are directly proportional to each

other P ≃ βρ. This latter relation also shows the connection

between β and the adiabatic speed of sound inside the fluid.

The interested reader can find a more detailed review of the

thermodynamic foundation of these fluid approaches in the

Appendix of [27], and we will as well mention what the orig-

inal reasons for their introduction for accounting for some

features of real gases were in our Appendix A. More in gen-

eral, these models try to provide a founded thermodynamical

description of an evolving dark energy beyond ad hoc redshift

parametrizations for helping its possible direct detection in

the the far future. In fact, for accounting for both the Planck

and weak lensing datasets, a redshift-dependent modeling of

the dark energy equation of state parameter has been assumed

in the form of w = w0 + w1(1 + z) with w0 and w1 free

parameters [82, Sect.6.3]. However, in this simple frame-

work the analysis of the cosmic microwave background con-

straints on the distance to the last scattering surface is prob-

lematic, and therefore the refined Chevallier-Polarski-Linder

parametrization w = w0 +w1z/(1 + z) has been introduced

[83,84]. The Barboza-Alcaniz w = w0+w1z(1+z)/(1+z2)

is another proposal which can be used in the whole redshift

range z ∈ [1,∞) [85]. Although these frameworks have been

useful for studying the running of the dark energy potential

beyond a cosmological constant, they do not try to estab-

lish the microscopic properties of such an exotic fluid which

remain mysterious, calling for a physically deeper investiga-

tion. Finally, the functional w(ρ) can be interpreted also as

an energy-dependent chameleon field [86,87].
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3 Qualitative analysis of the dynamics of quadratic

gravity with nonideal fluids

In this section, we will derive the dynamical equations gov-

erning the evolution of the universe (2) in the gravity model

(1) including some nonideal fluids by implementing the set

of dimensionless variables considered in [33,36]. Particular

attention will be devoted to the rewriting of the equation of

state parameters (10) as functions of such dimensionless vari-

ables which are suited for a dynamical system analysis. Then,

we will set some further constraints on the values of the free

parameters of our model by requiring it to be free from insta-

bilities. Lastly, we will list the mathematical equilibria and

discuss their cosmological significance (which may provide

tighter restrictions on the free parameters), possible bifurca-

tions among them and their stability. Then, we will provide

a prescription for compactifying the phase space with the

purpose of investigating the dynamics at its infinity, and we

will reconstruct the cosmological evolution on some invari-

ant submanifolds also by analytically finding the equations

of the phase orbits. In this section we also derive a set of

relationships between the dimensionless variables employed

in the dynamical system analysis and the observationally-

relevant cosmographic parameters.

3.1 Derivation of the autonomous first-order dynamical

system in terms of dimensionless variables

The evolution equations to investigate in the R+ζ R2 gravity

are:

3H2 + 18(6H2 Ḣ + 2H Ḧ − Ḣ2)ζ − ρ = 0 , (11a)

6[
...
H + (ζ + 4)H Ḧ + (4 − 2ζ )Ḣ2] − Ḣ −

ρ + P

2
= 0 ,

(11b)

ρ̇ + 3H(ρ + P) = 0 , (11c)

where we have obtained the first two by plugging (4) into

(3a)–(3b). We can note that the first equation, which con-

stitutes the Generalized Friedman equation, is not sensitive

to the specific cosmic fluid modeling P = P(ρ), unlike the

other two dynamical equations. Furthermore, Eq. (6) can be

rewritten in terms of the Hubble function as:

6ζ(2
...
H + 12H Ḧ + 9Ḣ2)

+2(54ζ H2 + 1)Ḣ + 3H2 + P = 0 . (12)

Explicitly, for flat Friedman universes filled with the fluids

(9a), (9b), (9c) evolving under the action of quadratic gravity,

we get the following set of dynamical equations, respectively:

• Redlich–Kwong fluid:

3H2 + 18(6H2 Ḣ + 2H Ḧ − Ḣ2)ζ − ρ = 0 , (13a)

6[
...
H + (ζ + 4)H Ḧ + (4 − 2ζ )Ḣ2] − Ḣ

+
[αρ(

√
2 − 1)(β − 1) − β − 1]ρ
2[αρ(

√
2 − 1) + 1]

= 0 , (13b)

ρ̇ + 3Hρ

(

1 +
1 − (

√
2 − 1)αρ

1 − (1 −
√

2)αρ
β

)

= 0 . (13c)

• (Modified) Berthelot fluid:

3H2 + 18(6H2 Ḣ + 2H Ḧ − Ḣ2)ζ − ρ = 0 , (14a)

6[
...
H + (ζ + 4)H Ḧ + (4 − 2ζ )Ḣ2]

−Ḣ −
(αρ + β + 1)ρ

2(αρ + 1)
= 0 , (14b)

ρ̇ + 3Hρ

(

1 +
β

1 + αρ

)

= 0 . (14c)

• Dietrici fluid:

3H2 + 18(6H2 Ḣ + 2H Ḧ − Ḣ2)ζ − ρ = 0 , (15a)

6[
...
H + (ζ + 4)H Ḧ + (4 − 2ζ )Ḣ2] − Ḣ

+
[αρ − βe2(1−αρ) − 2]ρ

2(2 − αρ)
= 0 , (15b)

ρ̇ + 3Hρ

(

1 +
βe2(1−αρ)

2 − αρ

)

= 0 . (15c)

These differential equations are third order in the Hubble

function (or equivalently fourth order in the scale factor),

and non-linear in both the Hubble function and the energy

density. Thus, it is convenient to tackle them by adopting

dynamical system techniques and searching possible equilib-

rium configurations for clarifying their cosmological mean-

ing and analyzing their qualitative dynamics [88–91]. Fol-

lowing the formalism of [33,36], we can recast these dif-

ferential equations into a first-order autonomous dynamical

system in terms of the following dimensionless variables:

x :=
Ḟ

F H
= 12ζ

4H Ḣ + Ḧ

H [1 + 12ζ(2H2 + Ḣ)]
, (16a)

y :=
R

6H2
= 2 +

Ḣ

H2
≡

1 − 3weff

2
, (16b)

z :=
f

6F H2
=

(2H2 + Ḣ)[1 + 6ζ(2H2 + Ḣ)]
H2[1 + 12ζ(2H2 + Ḣ)]

, (16c)

� :=
ρ

3F H2
=

ρ

3H2[1 + 12ζ(2H2 + Ḣ)]
. (16d)

We introduce also the following auxiliary quantity:

q(y, z) :=
F

RF ′

=
1 + 12ζ(2H2 + Ḣ)

12ζ(2H2 + Ḣ)
≡

y

2(y − z)
. (17)
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It is clear from (16) that these dynamical variables are unde-

fined when H = 0. Therefore, this particular choice of

variables pushes any possible fixed point corresponding to

Minkowski solutions and bounce (a cosmological bounce is

an alternative to the inflationary paradigm3) or turnaround

scenarios to the infinity of the phase space. Taking into con-

sideration fixed points at infinity requires a global phase

space analysis (see e.g. [37,38] in the context of f (R) grav-

ity), which we will investigate separately in Sect. 3.3. Also,

we do not expect any moment of maximum expansion at

which ȧ = 0 = H since we are considering a flat ever-

expanding universe filled with the effective fluid (8). How-

ever restricting to a domain of the full solution space consist-

ing of only ever expanding (or ever contracting) solutions,

this choice of variables is very advantageous when looking

for a physical interpretation of the solutions and connecting

with the cosmological observables. Therefore, the expansion

normalized dynamical variables in (16) are appropriate for

the consideration of this paper.

The first-order autonomous dynamical system governing

the evolution of the cosmological variables (16) is:4

dx

d N
= −2z − x2 + (1 − y)x − (3w(ρ) + 1)� + 2 , (18a)

dy

d N
= y(xq(y, z) + 4 − 2y) , (18b)

dz

d N
= z(4 − x − 2y) + xyq(y, z) , (18c)

d�

d N
= �(1 − x − 2y − 3w(ρ)) , (18d)

where ρ = ρ(x, y, z,�), N = ln(a(t)) denotes the number

of e-folds of the universe [93], and where we have exploited

the chain rule

dX

d N
=

dX

dt
·

dt

da

·
da

d N
=

Ẋ

H
, (19)

for any generic quantity χ = χ(t). From (16) we can write

the Hubble function, its time derivative, and the fluid energy

density in terms of the dimensionless variables as:

H2 =
y − z

6ζ y(2z − y)
, Ḣ =

(y − z)(y − 2)

6ζ y(2z − y)
,

ρ =
�(y − z)

2ζ(2z − y)2
, (20)

3 It has already been shown that quadratic gravity can in fact give rise

to nonsingular bouncing scenarios for ζ < 0 [92]. In this paper, we will

investigate its occurrence for ζ > 0.

4 We remark that some differences should be noted between our dynam-

ical system and the one given in [33, Eq. (14)] which follow from the

different signatures between our Ricci scalar (4) and [33, Eq. (11)].

which, together with the definitions (9a), (9b), (9c), allow us

to rewrite the equation of state parameters as

w(y, z,�) =
2ζ(2z − y)2 − (

√
2 − 1)α�(y − z)

2ζ(2z − y)2 + (
√

2 − 1)α�(y − z)
β

(Redlich–Kwong), (21a)

w(y, z,�) =
2βζ(2z − y)2

2ζ(2z − y)2 + α�(y − z)

[(modified) Berthelot], (21b)

w(y, z,�) =
2βζ(2z − y)2

4ζ(2z − y)2 − α�(y − z)

× exp

[

2 −
α�(y − z)

ζ(2z − y)2

]

(Dietrici). (21c)

Furthermore, the Generalized Friedman equation (11a) is

reduced to the constraint

y + � − z − x = 1 , (22)

which should be used for removing one cosmological vari-
able from the dynamical system (18). We choose to eliminate
x for a twofold reason: the x-equation is apparently the most
complicated one, and the w(ρ) can be naturally expressed in
terms of (y, z,�) as done in (21). Keeping in mind Eq. (17),
the dynamical system (18) becomes:

dy

d N
=

y(7y − 8z − 3y2 + 3yz + y�)

2(y − z)
, (23a)

dz

d N
=

y3 + (� − 7z − 1)y2 + 2(4z + 5 − �)yz − 2z2(z − � + 5)

2(y − z)
,

(23b)

d�

d N
= �(2 − 3w(y, z, �) − 3y + z − �) . (23c)

There are three physical viability conditions which should be

accounted for when identifying the cosmologically relevant

regions inside the full 3-dimensional y-z-� phase space.5

They are the following:

• Firstly, absence of ghost instabilities in f (R) gravity

requires F(R) > 0, which implies 1 + 2ζ R > 0 for

our scenario [94]. From (4)–(20) we can write

R = 6Ḣ + 12H2 =
1

ζ

(

y − z

2z − y

)

, (24)

so that the absence of ghost instabilities requires

F = 1 + 2ζ R =
y

2z − y
> 0 , (25)

which can be satisfied for

0 < y < 2z or 2z < y < 0 . (26)

5 To the best of our knowledge this is the first time that these physical

viability conditions are used to constrain the viable region of the phase

space spanned by the expansion normalized variables (16).
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These conditions represent two disconnected regions on

the first and third quadrant of the y-z plane bounded by

the line y = 2z and the z-axis.

• Secondly, absence of tachyonic instabilities for a generic

f (R) gravity theory requires f ′′(R) > 0, which in our

case simply implies ζ > 0 [94]. From the definition of

the dynamical variables (16), we note that

y − z =
RF − f

6F H2
=

ζ R2

6F H2
> 0 ⇒ y > z . (27)

• Finally, the weak energy condition requires the energy

density to be locally non-negative:

ρ ≥ 0 ⇒ � ≥ 0. (28)

We can observe also that R is non-negative within the

semi-infinite y ≥ 0 region. Therefore,

� =
ρ

3F H2
≤

ρ

3F(ζ → 0)H2
≤ 1 , (29)

where the last equality follows from the observation that

in the General Relativity limit (which corresponds to

ζ → 0 in the system (11)), one recovers the usual Fried-

man equation

3H2 = ρ. (30)

To summarize, there are two disjoint regions of the phase

space which are physically relevant:

0 < z < y < 2z, 0 ≤ � ≤ 1 and

z < y < 0, 0 ≤ � ≤ 1 . (31)

These are two distinct semi-infinite wedge-shaped sectors

above the � = 0 plane, in the first and third quadrants of

the y-z plane, respectively. The region in the first quadrant

is confined between the two lines y = z and y = 2z, while

the region in the third quadrant is confined between the line

y = z and the z-axis. We stress that till now we have not

included the boundaries of these two regions (which are

represented by equalities rather than inequalities in (31)),

because they require a more careful treatment. The plane

defined by the equality y = z accounts for the General Rela-

tivity limit R + ζ R2 ≈ R (which can be expressed as ζ → 0

thanks to Eq. (27)) in which the quadratic modification in the

Lagrangian is negligible with respect to the Einstein-Hilbert

contribution. It is not appropriate to consider the plane y = z

in the analysis that follows because the dynamical variables

are undefined there and the dynamical system formulation

that we are adopting becomes singular on the plane y = z.

However, this does not prevent the origin (y, z) = (0, 0) to

be describe a physically meaningful configuration, as it can

be appreciated from

lim
y→0,z→0

dy

d N
= lim

y→0,z→0

dz

d N
= 0 . (32)

The dynamical system (23) is therefore singular everywhere

on the y-z plane except along the line y = z = 0. The other

boundary of the acceptable region in the first quadrant is the

plane defined by the equality y = 2z, while for the one in

the third quadrant is the z-� plane defined by the condition

y = 0. The plane y = 2z corresponds to the limit R+ζ R2 ≈
ζ R2 (which is equivalent to ζ → +∞, as it can be seen

from Eq. (25)) which occurs when the quadratic modification

term in the Lagrangian becomes dominant over the Einstein-

Hilbert contribution. At this stage, both the planes y = 2z

and y = 0 can be safely included in the physically viable

region of the phase space, which is thus given by

0 < z < y ≤ 2z ∪ z < y ≤ 0 ∪ y = 0 = z , 0 ≤ � ≤ 1 .

(33)

As a consistency check, one can note from (20) that H2 > 0

in both these regions. The dynamical system (23) admits the

two invariant submanifolds y = 0 and � = 0. An invariant

submanifold divides the entire phase space into two distinct

regions on its both sides. Although they can at most reach the

boundary, no phase trajectory can cross the invariant subman-

ifold leaving one region and entering the other. Also, any orbit

originating from a point on an invariant submanifold will

always remain on that submanifold signifying that the recon-

struction of the dynamics requires knowledge on the initial

data. We note that R is always negative in the third quadrant

of the y-z plane (because y is negative), and thus this region

cannot contain any fixed point interpreted as a De-Sitter cos-

mology (or any other cosmology with negative deceleration

parameter). Therefore, observational datasets suggest that the

cosmological evolution should not occur in this region of the

phase space.

3.2 Qualitative dynamics: equilibria, stability, and

bifurcations

In Table 1 we exhibit all the equilibrium points that arise

mathematically for the dynamical system (23), along with

the corresponding cosmological solution they represent, if

any. In fact, some of the fixed points should be ignored on

physical and observational grounds:

1. The point P3 is unphysical for the scenario of a universe

filled with the (modified) Berthelot fluid because it vio-

lates the weak energy condition. Should we consider the

Redlich–Kwong fluid, it can carry a physical interpre-

tation for 1 ≤ β ≤ 17
9

. Interestingly, the former point

corresponds to the β = 0 case of the latter.
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Table 1 In this Table we exhibit all the equilibrium points that can be

obtained mathematically for the dynamical system (23) once Eq. (21)

have been implemented for the different types of cosmic fluids. The

effective equation of state parameter weff is computed from (16b) and

it takes into account the contributions of both the actual matter content

and of the curvature effects (see also (8)). We refer to the main text

for a detailed explanation of why some equilibria do not represent any

meaningful cosmological model

Cosmic fluid Fixed point yeq zeq �eq weff Cosmology

Redlich–Kwong P1 2 1 0 −1 De-Sitter-like

P2 2 1 + �eq

(√
2−1

)

α(β−1)
(√

2−1
)

α(β−1)+8(β+1)ζ
−1 De-Sitter-like

P3
5+3β

4
5+3β

8
9
8
(β − 1) − 1

2
(β + 1)

{

De-Sitter like for β = 1

a ∼ (ts − t)4/(3(1−β)) for β �= 1

P4 0 −5 0 1
3

Unphysical

P5 0 �eq − 5
40ζ(1+β)

(
√

2−1)α(β−1)+8ζ(1+β)

1
3

Unphysical

P6 0 0 0 1
3

a ∼ t1/2

P7 0 0 2 + 3β 1
3

a ∼ t1/2

(Modified) Berthelot P1 2 1 0 −1 De-Sitter-like

P2 2 1 + �eq
α

α−8(β+1)ζ
−1 De-Sitter-like

P3
5
4

5
8

− 9
8

− 1
2

Unphysical

P4 0 −5 0 1
3

Unphysical

P5 0 �eq − 5
40ζ(1+β)

8ζ(1+β)−α
1
3

Unphysical

P6 0 0 0 1
3

a ∼ t1/2

P7 0 0 2 1
3

Unphysical

Dieterici P1 2 1 0 −1 De-Sitter-like

P2 2 1 + �eq
α

4ζ [W (2β/e2)+4]+α
−1 De-Sitter-like

P4 0 −5 0 1
3

Unphysical

P5 0 �eq − 5
20ζ [W (2β/e2)+4]

4ζ [W (2β/e2)+4]+α

1
3

Unphysical

P6 0 0 0 1
3

a ∼ t1/2

2. Any orbit that approaches the point P4 must reside inside

the third quadrant of the y-z plane in which the deceler-

ation parameter is always positive. Therefore, this point

should be ignored on observational ground.

3. Similarly for the state P5: we can note that 0 ≤ �eq ≤ 1

delivers a negative zeq implying that any orbit approach-

ing P5 must reside within the third quadrant of the y-z

plane. Therefore, this point should also be ignored on

observational ground.

4. The fixed point P7 is unphysical for a universe filled

with the (modified) Berthelot fluid because it violates the

energy condition �eq ≤ 1. In the Redlich–Kwong sce-

nario it is physical for − 2
3

≤ β ≤ − 1
3

.

The conditions on the model parameters which should be

imposed for endowing the remaining mathematical solutions

reported in Table 1 with a cosmological interpretation are

listed in Table 2. They follow by imposing 0 ≤ � ≤ 1. It

should be appreciated that this affects only the range of valid-

ity of β, while no further constraints other than the already

discussed are arising for α and ζ .

Among the physically viable fixed points we can identify

three distinct types of cosmological solutions:

1. De-Sitter-like cosmology There are two different pos-

sible realizations of a De-Sitter-like cosmology,6 which

are represented by the isolated fixed points P1 and P2.

The equilibrium P1 always constitutes a physical con-

figuration for all the three fluids, whereas P2 is relevant

in cosmology only imposing certain constraints on the

model parameter β as shown in Table 2. For all the three

6 Here, by De-Sitter-like cosmology we mean a cosmology in which

the Hubble function is constant. From the general system of equations

(11) we can note that also Minkowski can constitute an equilibrium

solution when we consider the Redlich–Kwong, (modified) Berthelot,

and Dieterici fluid models; this would correspond to the particular case

of H = const. = 0 (and ρ = P = 0). However, the dynamical

variables (16) are ill-defined for a Minkowski solution; we will address

this limitation by compactifying the phase space in Sect. 3.3. We also

remark that not all the fluid models currently adopted for a dark matter

- dark energy unification are compatible with the Minkowski spacetime

being an equilibrium solution, with the (Generalized) Chaplygin Gas

and the Anton-Schmidt proposals being some examples; see discussion

in [25].
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types of matter, the ideal fluid regime (α → 0) leads to

a saddle-node bifurcation between P1 and P2. Further-

more, in the case of the Redlich–Kwong fluid model, also

the equilibrium P3 reduces to P1 if we fix β = 1. In this

latter case a pitchfork bifurcation is possible if we choose

simultaneously α = 0 and β = 1 [95].

2. Power law evolution There are up to two different pos-

sible realizations of the power law evolution (a ∼ t1/2),

which are represented by the isolated fixed points P6 and

P7. P6 is always physical for all the three fluids whereas

P7 is relevant for cosmology only in the Redlich–Kwong

scenario and restricting − 2
3

≤ β ≤ − 1
3

.

3. Big-Rip singularity The fixed point P3, which is physi-

cally well-defined only considering the Redlich–Kwong

fluid, represents a big-rip singularity which is asymptoti-

cally approached at the finite time7

ts =
4

3(β − 1)H0
. (34)

In fact, we can note that the scale factor is diverging by

looking at its time evolution; the energy density is also

diverging because of (20) and taking into account that

y = 2z �= 0, and this comes also with a divergence in the

pressure because of the form of the equation of state (9a).

Therefore, all the conditions for the occurrence of a Big-

Rip singularity are fulfilled [96–99]. As the limiting case

of β = 1 is approached, which we showed corresponds to

a bifurcation with the De-Sitter-like cosmology, the time

at which this singularity occurs is shifted at infinity. For

β �= 1, ts ∼ 1/H0 and the singularity time is comparable

to the age of the Universe. Keeping in mind the parameter

range in Table 2, we can also see from Table 1 that both

the effective and the matter parameters weff , w < −1 for

this point, where for the latter w = −β as from (21a).

Therefore this fixed point also corresponds to a phantom

dominated phase at which the Redlich–Kwong fluid itself

behaves like a phantom fluid. Furthermore, the adiabatic

speed of sound for the Redlich–Kwong fluid, which can

be computed from (9a),

c2
s =

∂p

∂ρ
=

[(2
√

2 − 3)αρ − 1]β(αρ − 1)

[(
√

2 − 1)αρ + 1]2
, (35)

once specified to P3 via (20) delivers

c2
s =

(2
√

2 − 3)β

(
√

2 − 1)2
= −β , (36)

which is smaller than −1 in the range of interest of β.

7 For computing ts , note that
d(1/H)

dt
= 3(1 − β)/4, which provides

d ln a
dt

= 4H0
4+3(1−β)H0t

, and that we fixed a(t = 0) = 1.

The stability nature of the fixed points is listed in Table

3 and detailed calculation is presented in Appendix B. It is

possible to note that under the assumption that α, ζ > 0, only

the parameter β, which is related to the adiabatic speed of

sound within the fluid, affects the stability nature of the finite

isolated fixed point.

3.3 Phase space analysis at infinity

Compactification of an unbound phase space is necessary

to search for any possible fixed point that lies at its infin-

ity: thanks to this procedure the fixed points at infinity are

mapped to the boundary of the corresponding compact phase

space. In general all the dynamical variables can tend to infin-

ity, which means the phase space of the theory can exhibit a

unlimited extent in all the directions. There are different pre-

scriptions for f (R) cosmologies (see e.g. [38] for a generic

f (R) theory and [37] for the particular R + ζ Rn theory) for

compactifying the phase space in all the directions. However,

in this Sect. we introduce a new compactification technique

which directly exploits the physical viability conditions we

previously derived in (33). As we will show below, one can

use these constraints to define some invariant submanifolds

that border the physically viable region of the phase space

and then we are left with only one direction in which the

phase space need to be compactified.

From a mathematical point of view, the dynamical system

(23) is singular on the plane y = z. Since this plane is one of

the boundaries of the region of the phase space we are inter-

ested in, this singularity can be regularized by introducing a

new time variable τ such that

dτ =
d N

y − z
, (37)

in terms of which the dynamical system can be re-written as

dy

dτ
=

y(7y − 8z − 3y2 + 3yz + y�)

2
, (38a)

dz

dτ
=

y3 + (� − 7z − 1)y2 + 2(4z + 5 − �)yz − 2z2(z − � + 5)

2
,

(38b)

d�

dτ
= �(y − z)(2 − 3w(y, z, �) − 3y + z − �) . (38c)

Now one can write

d

dτ
(y − z) = −(y − z)[2y2 − y(3z + 4)

+z(−� + z + 5)], (39a)

d

dτ
(y − 2z) = −

1

2
(y − 2z)[5y2 + y(� − 7z − 9)

+2z(−� + z + 5)], (39b)

which show that the planes y = z and y = 2z are invariant

submanifolds as well. As discussed in Sect. 3.1, these two

planes are equivalent to the two limits ζ → 0 and ζ → +∞
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Table 2 Taking into account that α, ζ > 0, the necessary conditions for

promoting the solutions listed in Table 1 from mathematical to physical

are derived demanding 0 ≤ � ≤ 1. The limits α → 0 and ζ → 0 cor-

respond to ideal fluid and General Relativity, respectively. The points

P4 and P5 are not included in this Table because they belong to a region

of the phase in which the deceleration parameter is always positive

Fixed points Redlich–Kwong (Modified) Berthelot Dietrici

P1 Always exists Always exists Always exists

P2 β ≥ 1 ∪ β < −1 β < −1 β > −2/e2

P3 1 ≤ β ≤ 17
9

Unphysical Does not exist

P6 Always exists Always exists Always exists

P7 − 2
3

≤ β ≤ − 1
3

Unphysical Does not exist

Table 3 Stability nature of the finite fixed points. When investigating the stability of a fixed point it is important to keep in mind the range of β for

which the fixed point exists. The abbreviation c.m.a. stands for “ Center Manifold Analysis”

Points Redlich–Kwong (Modified) Berthelot Dietrici

P1

{

Saddle forβ �= −1

Requires more analysis forβ = −1

{

Saddle for β �= −1

Requires more analysis for β = −1

{

Saddle for β �= − 2
e2

Requires more analysis for β = − 2
e2

P2

⎧

⎪

⎨

⎪

⎩

Stable for β < −1

Saddle for β > 1

Saddle for β = 1

Stable Stable

P3

{

Stable for 1 < β ≤ 17
9

Saddle for β = 1
– –

P6

⎧

⎪

⎨

⎪

⎩

Unstable for β < 2
3

Saddle for β > 2
3

Requires c.m.a for β = 2
3

⎧

⎪

⎨

⎪

⎩

Unstable for β < 2
3

Saddle for β > 2
3

Requires c.m.afor β = 2
3

⎧

⎪

⎨

⎪

⎩

Unstable for β < 4
3e2

Saddle for β > 4
3e2

Requires c.m.a for β = 4
3e2

P7

{

Unstable for β = − 2
3

Saddle for β > − 2
3

– –

respectively. To the best of our knowledge this is the first

time that the physical viability conditions which follow from

the absence of ghost and tachyonic instabilities are recast

as invariant submanifolds on the phase space of quadratic

gravity. Linear stability analysis reveals that the invariant

submanifold y = z is always attracting whereas the invariant

submanifold y = 2z is attracting (repelling) for y2 + z2 >

5(1 − �)2 (y2 + z2 < 5(1 − �)2); detailed mathematical

analysis is given in “Appendix D”.

Before proceeding any further, it is important to comment

that the dynamical system in Eq. (38) should not be used to

determine the fixed points, because time redefinitions like

(37) may introduce artificial solutions which are not appear-

ing in the original dynamical system. For example, one can

notice that the system in Eq. (38) has two lines of fixed points

given by,

L1 ≡ (y = 0 = z, 0 ≤ � ≤ 1) and

L2 ≡ (y = z, � = 1) , (40)

both of which do not occur in the original dynamical system

(23). These fictitious fixed points are a pure mathematical

artefact due to the time redefinition (37). We stress that this

and the following steps are purely mathematical treatments

aimed towards compactifying the phase space by introducing

appropriate invariant submanifolds. All the finite fixed point

analysis should be carried out before these steps.

Along with � = 0, the physically relevant region of the

phase space is therefore bounded by three invariant subman-

ifolds. Since in this region the dynamical variable � is itself

bounded (0 ≤ � ≤ 1), as demonstrated in Sect. 3.1, one

needs only to compactify the radial direction in the y–z plane.

For achieving this goal we first switch to plane polar coordi-

nates in the y-z plane

y := r cos θ, z := r sin θ , (41)

subject to the restrictions

0 ≤ r < ∞, tan−1 1

2
≤ θ ≤

π

4
. (42)
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The dynamical system (38) in terms of the r -θ -� variables

(41) becomes

dr

dτ
= r2

[

r cos4 θ +
(

3(� − 1)

2
− 2r sin θ

)

cos3 θ

+
(1 − �) sin θ − 3r

2
cos2 θ

+ (4r sin θ + 5 − �) cos θ + (� − 5) sin θ − r

]

(43a)

dθ

dτ
= −2r2 cos4 θ

+
1 − � − 2r sin θ

2
r cos3 θ

+
5r + 3(1 − �) sin θ

2
r cos2 θ

+(� − 1 − r sin θ)r cos θ , (43b)

d�

dτ
= r�(cos θ − sin θ)(2 − 3w(r, θ,�)

−3r cos θ + r sin θ − �) , (43c)

where the fluid equation of state parameters (21) entering the
latter equation are given by

w(r, θ,�) =
2ζr(2 sin θ − cos θ)2 − (

√
2 − 1)α�(cos θ − sin θ)

2ζr(2 sin θ − cos θ)2 + (
√

2 − 1)α�(cos θ − sin θ)
β

(Redlich–Kwong), (44a)

w(r, θ,�) =
2βζr(2 sin θ − cos θ)2

2ζr(2 sin θ − cos θ)2 + α�(cos θ − sin θ)

(Modified Berthelot) , (44b)

w(r, θ,�) =
2βζr(2 sin θ − cos θ)2

4ζr(2 sin θ − cos θ)2 − α�(cos θ − sin θ)

× exp

[

2 −
α�(cos θ − sin θ)

ζr(2 sin θ − cos θ)2

]

(Dietrici) . (44c)

As we have previously remarked, the introduction of the arti-

ficial line of fixed points L1 ≡ (r = 0) is clearly confirmed

by inspecting the system in Eq. (43). We should remove this

fictitious fixed point by another time redefinition

dτ ∗ = rdτ , (45)

so that the dynamical system becomes

dr

dτ ∗ = r

[

r cos4 θ +
(

3(� − 1)

2
− 2r sin θ

)

cos3 θ

+
(1 − �) sin θ − 3r

2
cos2 θ

+ (4r sin θ + 5 − �) cos θ + (� − 5) sin θ − r

]

(46a)

dθ

dτ ∗ = −2r cos4 θ +
1 − � − 2r sin θ

2
cos3 θ

+
5r + 3(1 − �) sin θ

2
cos2 θ

+(� − 1 − r sin θ) cos θ , (46b)

d�

dτ ∗ = �(cos θ − sin θ)(2 − 3w(r, θ,�)

−3r cos θ + r sin θ − �) . (46c)

The radial direction can be compactified by introducing the

new compact variable [36,39,40]

R :=
r

1 + r
, (47)

so that r = 0 coincides with R = 0 and r = ∞ is mapped

onto R = 1. In terms of R the dynamical system to investigate

is

dR

dτ ∗ = −
R

2

[

− 2R cos4 θ

+[4R sin θ + 3(1 − �)(1 − R)] cos3 θ

+[3R − (1 − �)(1 − R) sin θ ] cos2 θ

−[8R sin θ + 2(5 − �)(1 − R)] cos θ

+2(5 − �)(1 − R) sin θ + 2R

]

, (48a)

dθ

dτ ∗ =
cos θ

2(1 − R)

[

− 4R cos3 θ

+[(1 − �)(1 − R) − 2R sin θ ] cos2 θ

+[3(1 − �)(1 − R) sin θ + 5R] cos θ

−2R sin θ − 2(1 − �)(1 − R)

]

, (48b)

d�

dτ ∗ =
�(cos θ − sin θ)

(1 − R)

[

(sin θ − 3 cos θ)R

+(2 − � − 3w(R, θ,�))(1 − R)

]

, (48c)
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with

w(R, θ,�) =
2ζR(2 sin θ − cos θ)2 − (

√
2 − 1)α�(1 − R)(cos θ − sin θ)

2ζR(2 sin θ − cos θ)2 + (
√

2 − 1)α�(1 − R)(cos θ − sin θ)
β (Redlich–Kwong), (49a)

w(R, θ,�) =
2βζR(2 sin θ − cos θ)2

2ζR(2 sin θ − cos θ)2 + α�(1 − R)(cos θ − sin θ)
(Modified Berthelot), (49b)

w(R, θ,�) =
2βζR(2 sin θ − cos θ)2

4ζR(2 sin θ − cos θ)2 − α�(1 − R)(cos θ − sin θ)
exp

[

2 −
α�(1 − R)(cos θ − sin θ)

ζR(2 sin θ − cos θ)2

]

(Dietrici).

(49c)

We can note that all the three fluid equations of state

remain well-behaved at infinity, i.e. have finite limits as

R → 1. The latter dynamical system has a pole at R = 1,

i.e. is apparently singular at the boundary. This can again be

eradicated by defining a new time variable η as

dη =
dτ ∗

1 − R
. (50)

Therefore, the dynamical system governing the evolution of

the compatified variables can be written as

dR

dη
= −

R(1 − R)

2

[

− 2R cos4 θ + [4R sin θ

+3(1 − �)(1 − R)] cos3 θ

+[3R − (1 − �)(1 − R) sin θ ] cos2 θ

−[8R sin θ + 2(5 − �)(1 − R)] cos θ

+2(5 − �)(1 − R) sin θ + 2R

]

, (51a)

dθ

dη
=

cos θ

2

[

− 4R cos3 θ

+[(1 − �)(1 − R) − 2R sin θ ] cos2 θ

+[3(1 − �)(1 − R) sin θ + 5R] cos θ

−2R sin θ − 2(1 − �)(1 − R)

]

, (51b)

d�

dη
= �(cos θ − sin θ)

[

(sin θ − 3 cos θ)R

+(2 − � − 3w(R, θ,�))(1 − R)

]

. (51c)

Since only the r -direction can be infinite, all the asymptotic

fixed points should correspond to r → ∞ (or R → 1).

Therefore we need to identify the fixed points in the R-θ -�

phase space which fulfill R = 1. Setting R = 1 in (51), we

obtain

dR

dη

∣

∣

∣

∣

R→1

= 0 , (52a)

dθ

dη

∣

∣

∣

∣

R→1

=
cos θ

2
(1 − sin 2θ)(cos θ − 2 sin θ) , (52b)

d�

dη

∣

∣

∣

∣

R→1

= �(cos θ − sin θ)(sin θ − 3 cos θ) . (52c)

Interestingly, the evolution at spatial infinity is not explic-

itly sensitive to the modeling of the cosmic fluid as it was

observed in the case of Rn gravity [36] because w does not

enter anylonger the dynamical system (however we remind

that we have used previously our particular equations of state

for checking that they well behave at infinity). A further infor-

mation that can be obtained from the analysis at infinity is

that R → 1 is an invariant submanifold. To determine the

cosmology corresponding to this submanifold first we note

that using (20) one can write

lim
r→∞

H2 = lim
r→∞

cos θ − sin θ

6ζr cos θ(2 sin θ − cos θ)
= 0 , (53a)

lim
r→∞

Ḣ = lim
r→∞

(cos θ − sin θ)(r cos θ − 2)

6ζr cos θ(2 sin θ − cos θ)

=
1

6ζ

(

cos θ − sin θ

2 sin θ − cos θ

)

, (53b)

lim
r→∞

ρ = lim
r→∞

�(cos θ − sin θ)

2rζ(2 sin θ − cos θ)2
= 0 , (53c)

within the range tan−1
(

1
2

)

≤ θ < π
4

. Ḣ is positive at all

points on this hypersurface whereas H , ρ vanish. This is

exactly the condition for a matter-less nonsingular bounce.

We remark that had we not compactified the phase space,

we would have not been able to discover this bounce solu-

tion in our cosmological models for the reasons discussed

below Eq. (17). Keeping in mind the range of θ given in

(42), asymptotic dynamical analysis reveals the following

features:

• The asymptotic invariant submanifold accounted for by

R = 1 is a repelling submanifold. Detailed calculation

regarding the stability of this submanifold is presented in

Appendix D. Therefore the nonsingular bouncing solu-

tions that lie on this submanifold may constitute past

epochs of the universe.

• The point Pi ≡ (R, θ,�) = (1, tan−1 1
2
, 0) is an isolated

fixed point at infinity. This fixed point, although repre-

sents a nonsingular bounce, does not necessarily need to

be matter-less, as at this point tan θ = 1
2

. In fact, as was

pointed out in [92], matter-less nonsingular bounce in

f (R) gravity requires the equation RF(R) − f (R) = 0
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to have a positive root Rb, which is not satisfied in case

of R + ζ R2 gravity. Linear stability analysis reveals Pi

is a saddle point. Stability calculation is presented in

“Appendix D”.

3.4 Evolution on the y = 2z invariant submanifold

The submanifold y = 2z corresponds to the limit ζ → ∞
which accounts for the high energy regime in which the grav-

itational field is so strong that the theory is dominated by the

R2 term. From (39b) it is seen that y = 2z is an invariant sub-

manifold for the dynamics of the system. This submanifold

is of attracting nature for (detailed calculations presented in

“Appendix D”)

y2 + z2 > 5(1 − �)2 ⇔ r >
√

5(1 − �)

⇔ � > 1 −
1

√
5

(

R

1 − R

)

, (54)

and of repelling nature for

y2 + z2 < 5(1 − �)2 ⇔ r <
√

5(1 − �)

⇔ � < 1 −
1

√
5

(

R

1 − R

)

. (55)

In terms of the variables r -θ -� (or R-θ -� for the compact

case) this submanifold corresponds to θ = tan−1(1/2). From

(44) or (49), for the fluid equation of state parameter we get

lim
θ→tan−1(1/2)

w =

⎧

⎪

⎨

⎪

⎩

−β (Redlich–Kwong),

0 [(Modified) Berthelot],
0 (Dietrici),

(56)

which shows that the (modified) Berthelot and Dieterici flu-

ids behave like presureless dust (which may account for dark

matter), and the Redlich–Kwong one behaves like an ideal

fluid in which the non-linearities are suppressed. Phase space

plot on the compactified version of this submanifold plane

is shown in Fig. 1 for the cases of equations of state corre-

sponding to dark matter (e.g. pressureless dust), stiff fluid

and a cosmological constant. We remark that stiff fluids are

canonically equivalent to massless scalar fields [100], and

some cosmological models indeed predict an epoch of the

universe in which they are the dominating energy content

[101,102].

On this invariant submanifold the dynamical equations

can be reduced to:

dz

dτ
= z[� + 3(1 − z)] ,

d�

dτ
= �(2 − � − 5z − 3w). (57)

For the case of stiff matter, we can find the orbit in the phase

space by solving the differential equation

d�

dz
=

�(1 + 5z + �)

z(3z − 3 − �)
, (58)

which delivers the implicit solution

[1 + z2 + z(� − 2)]2[z2 + 2(� − 1)z + (1 + �)2]
[z3 + (2� − 3)z2 + (�2 − � + 3)z − � − 1)]2

= J1 ,

(59)

where J1 is a constant of integration. The quantity J1(z, �)

is conserved along a particular orbit, but has different values

for different orbits, and therefore it can be interpreted as the

total “energy” of the Universe. The cosmological evolution

must respect the principle of energy conservation: we can

interpret Eq. (59) as a sort of “ energy conservation equa-

tion” which is providing a law describing how the energy of

the cosmic fluid accounted for by � is converted into the “

geometrical energy” accounted for by the Ricci scalar R; this

result is especially relevant for the description of the infla-

tionary epoch in which the quadratic term in the curvature is

dominating. Furthermore, in the case of a stringy fluid with

w = − 1
3
, which may describe some topological defects or

monopoles arising in the early universe [103], by integrating

the differential equation

d�

dz
=

�(5z − 3 + �)

z(3z − � − 3)
, (60)

we obtain the implicit orbit equation

[z3 + 2(� − 1)z2 + (�2 − 6� + 1)z + 4�](z + �)2

z[z2 + (2� − 1)z + �2 − 3�]2
= J2 ,

(61)

where J2 is a constant of integration. Also for the radiation

case w = 1
3

it is possible to integrate analytically the evolu-

tion equation

d�

dz
=

�(5z − 1 + �)

z(3z − � − 3)
, (62)

and we obtain the implicit orbit equation

z(z − 1 + �)4

�3
= J3 , (63)

where J3 is another constant of integration.

3.5 Evolution on the � = 0 submanifold

It appears either from (23c) or from (48c) that the plane

� = 0 is an invariant submanifold for the cosmic dynam-

ics. Taking into account that the physically viable region is

constituted by the wedge 0 < z < y < 2z, we depict the

phase orbits in this invariant submanifold in Fig. 2 by using

the evolution equations written in polar coordinates (51a)–

(51b). In this way we can get a graphical confirmation that
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Fig. 1 Phase trajectories on the compactified R-� plane with θ =
tan−1(1/2), which corresponds to the y = 2z submanifold, i.e. the R2

regime, for (a) w = −1, (b) w = 0, (c) w = 1. In this limit the equations

of state for (modified) Berthelot and Dietrici fluids reduce to that of pres-

sureless dust, so that they correspond to only figure (b). The equation of

state for the Redlich–Kwong fluid in this limit reduces to p = −βρ, so

that this can correspond to either cases (a)–(c) for the parameter choice

β = 1, 0,−1. The red curve corresponds to the boundary between the

attracting part (right side of the curve) and repelling part (left side of

the curve) of the submanifold. The fixed points P1, P6 and Pi lie on

this submanifold

the dynamics is indeed bounded inside this region and that

the boundary at spatial infinity R = 1 acts as a source for the

cosmic dynamics containing possible past epochs of the uni-

verse. Unlike the case of the invariant submanifold y = 2z

discussed in Sect. 3.4, the dynamics on the invariant subman-

ifold � = 0 does not depend on the particular modeling of

the cosmic fluid. However, the stability nature of this invari-

ant submanifold is sensitive to the value of the parameter

β as demonstrated in Appendix D, and more in detail it is

attracting (repelling) according to 2−3β −3y + z < 0 (> 0)

for the Redlich–Kwong and (modified) Berthelot fluids and

2 − 3e2β/2 − 3y + z < 0 (> 0) for the Dietrici fluid.

3.6 Evolution on the R = 1 submanifold

R = 1 is an invariant submanifold at the infinity of the phase

space. We can find the equation for the orbit J = J (θ, �) at

the infinity of the phase space by solving the partial derivative

equation

d J (θ, �)

dη
≡

∂ J (θ, �)

∂θ

dθ

dη

+
∂ J (θ, �)

∂�

d�

dη
= 0 . (64)

Implementing (52) we find

J (θ, �) = F

(

�(1 − tan θ)4

(2 tan θ − 1)5

)

, (65)

where F can be any arbitrary function. For reasons of math-

ematical simplicity, we choose:

J (θ, �) =
�(1 − tan θ)4

(2 tan θ − 1)5
. (66)

We note that the quantity J (θ, �) is a positive quantity within

our range of θ , which is conserved along a particular orbit but

can have different values for different orbits. This quantity

can again be interpreted as the total “energy” of the Universe

and the cosmological evolution must respect the principle of

energy conservation. Therefore, the orbits on this submani-

fold are a family of curves obeying to the equation

� =
J (2 tan θ − 1)5

(1 − tan θ)4
, (67)

where J is a constant. We stress as a consistency check that

the same result also follows by integrating a differential equa-

tion for d�
dθ

derived by dividing side by side (52c) with (52b).

In terms of the original dynamical variables one can write the

equation of the orbits as

� =
J (2z − y)5

y(y − z)4
. (68)

Finally, by using (16) this condition can be recast in terms

of the energy density, of the Hubble function and of its first

derivative as:

ρ(2H2 + Ḣ)4 − J̃ H2 = 0 , (69)

where we have introduced the new constant

J̃ =
3J

64ζ
. (70)

This result allows us to confirm independently what written

below Eq. (53a): since H = 0 and Ḣ �= 0 we get that the

submanifold R = 1 corresponds to a matterless cosmological

epoch. However, this should not be taken naively to imply

that � = 0 because this latter quantity comes with a factor
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Fig. 2 In panel (a) we show the

phase dynamics in the � = 0

submanifold accounted for by

the evolution Eqs. (51a)–(51b),

whilst in panel (b) we focus our

attention on the viable region

bounded between the lines

0 < z < y < 2z. This analysis

provides a graphical

confirmation that the

submanifold R = 1 acts as a

source for the dynamics, and

that the cosmic evolution is

indeed contained within the

physical region

H in the denominator and indeed this is true only on the

hypersurface y = 2z as it can be understood from (68).

3.7 Cosmographic analysis

We will now discuss some observational properties of the uni-

verse in correspondence of the physical equilibrium points

listed in Table 1 by computing the corresponding three cos-

mographic parameters, namely the deceleration, jerk and

snap parameters [104,105]:

q ≡ −
1

aH2
·

d2a

dt2
= −1 −

Ḣ

H2
, (71a)

j ≡
1

aH3
·

d3a

dt2
=

Ḧ

H3
− 3q − 2 , (71b)

s ≡
1

aH4
·

d4a

dt2
=

...
H

H4
+ 4 j + 3q(q + 4) + 6 . (71c)

It has been shown that the cosmographic parameters are

related to each other by [106, Eq. (15)], [107, Eq. (21)]:

j = 2q2 + q −
dq

d N
, (72a)

s =
d j

d N
− j (2 + 3q) . (72b)

The cosmographic parameters are connected to the luminos-

ity distance via [104,108–111]:

dL (z) ≃
z

H0

[

1 +
(1 − q0)z

2
+

(−1 + q0 + 3q2
0 + j0)z

2

6

+
(2 − 2q0 − 15q2

0 − 15q3
0 + 5 j0 + 10q0 j0 + s0)z

3

24

]

(73)

and to the cosmic history of the universe as:

H(z) ≃ H0

[

1 + (1 + q0)z +
( j0 − q2

0 )z2

2

+
(3q2

0 + 3q3
0 − j0(3 + 4q0) − s0)z

3

6

]

, (74)

where a subscript ‘0’ denotes that the quantity has been eval-

uated at the present time. In this Sect. instead we will esti-

mate the cosmographic parameters characterizing the rele-

vant equilibrium configurations. We exhibit our findings in

Table 4. We will achieve this goal by recasting the dimen-

sionless cosmographic parameters q, j , and s in terms of the

dimensionless variables introduced in (16). Using the inter-

relations between the cosmographic parameters (72), we can

write

q = 1 − y , (75a)

j = 3 − 5y + 2y2 +
dy

d N
, (75b)

s = − j (2 + 3q) − (5 − 4y)
dy

d N
+
(

dy

d N

)

,y

dy

d N

+
(

dy

d N

)

,z

dz

d N
+
(

dy

d N

)

,�

d�

d N
. (75c)

Calculating the right hand side of the above equations using

the dynamical evolution (23), we can provide explicit expres-

sions for the cosmographic parameters in terms of the phase

space coordinates:

q = 1 − y , (76a)

j = 3 − y +
1

2
y2 −

1

2

(

y2

y − z

)

(1 − �) , (76b)

s = −15 + 10y −
1

2
y2
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−
y3

y − z
+

1

2

(

y2

y − z

)

(3 − 2� − 3w(y, z,�)�) .

(76c)

These expressions can be directly generalized to include the

fixed points at the infinity of the phase space by switching to

the compact phase space coordinates

y =
(

R

1 − R

)

cos θ , z =
(

R

1 − R

)

sin θ . (77)

Substituting in Eq. (76) we get the following explicit expres-

sions for the cosmographic parameters in terms of the com-

pact phase space coordinates:

q = 1 −
(

R

1 − R

)

cos θ , (78a)

j = 3 −
(

R

1 − R

)

cos θ +
1

2

(

R

1 − R

)2

cos2 θ

−
1

2

(

R

1 − R

)(

cos2 θ

cos θ − sin θ

)

(1 − �) , (78b)

s = −15 + 10

(

R

1 − R

)

cos θ

−
1

2

(

R

1 − R

)2

cos2 θ

−
(

R

1 − R

)2 (
cos3 θ

cos θ − sin θ

)

+
1

2

(

R

1 − R

)

×
(

cos2 θ

cos θ − sin θ

)

(3 − 2� − 3w(R, θ,�)�) . (78c)

First of all, we easily get that (76a) implies that y =constant

submanifolds correspond to cosmic moments with the same

value of the deceleration parameter. Possible Minkowski

solutions necessarily lie on y = 1, and therefore our mod-

els do not contain them as equilibrium configurations (this

resolves the ambiguity whether the De-Sitter-like cosmolo-

gies we have identified in Sect. 3.2 can come with H =
const. = 0). The expression of the cosmographic parame-

ters in terms of compact variables also allows us to show that

the cosmographic quantities are diverging at spatial infinity

of the phase space which is consistent with having a bounce

there characterized by dL → ∞. We would like to mention

that a cross-check procedure for computing the jerk param-

eter which does not rely on inter-relations is the following.

We implement (20) into (16a) and then solve for the second

time derivative of the Hubble function:

Ḧ =
(8 − x)y2 − 8(z + 2)y + 16z

72ζ y(y − 2z)

√

6(z − y)

ζ y(y − 2z)
, (79)

from which x can be eliminated thanks to the constraint (22):

Ḧ =
(9 + z − � − y)y2 − 8(z + 2)y + 16z

72ζ y(y − 2z)

×

√

6(z − y)

ζ y(y − 2z)
. (80)

Finally, the jerk parameter is obtained just by algebraic

manipulations. We get:

j =
(x − 2)y2 + 2(z + 3)y − 6z

2(y − z)

=
y3 + (� − z − 3)y2 + 2(z + 3)y − 6z

2(y − z)
. (81)

Interestingly, the jerk parameter is regular on y = 2z because

the divergence in Ḧ has been cured by the likewise diver-

gence in H . For estimating it on y = z �= 0 it is appropriate

to choose a different set of variables taking into account that

in such case we fall back in the General Relativity framework.

The values we get for the deceleration parameter imply

that phase transitions between epochs in which the expansion

of the universe is accelerating and decelerating are allowed

in our class of models. In particular, at least one equilibrium

point comes with q > 0 and at least two with q < 0 for each

fluid model. Comparison between available astrophysical

datasets and the predicted values of the cosmographic param-

eters can constrain the theory parameters of f (R) theories

[107,112]. A cosmographic interpretation of the Gold SNeIa

dataset suggests that q0 ≃ −0.90 and j0 ≃ 2.7 [113,114].

It should be noted that due to the presence of w(y, z,�)

in the expression for the cosmographic parameter s (76c),

the present-day epoch would correspond to different triples

(y, z,�) in the phase space. However, the phase space point

representing today universe is located in the region y < 1.

Information on physically relevant trajectories in the phase

space can therefore be obtained by noticing that from the

expression of the jerk parameter in terms of the dynamical

system variables (81) we get

∂ j

∂�
=

y2

2(y − z)
,

∂ j

∂z
=

y2(� − 1)

2(y − z)2
, (82)

implying that the jerk parameter is an increasing function

with respect to � and decreasing with respect to z.

4 Singularities classification

In this section we will investigate the possible occurrence of

finite-time singularities in the class of Friedmannian f (R)

cosmologies we have previously introduced for clarifying

whether the different modelings of the cosmic fluid and the
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Table 4 This Table exhibits the values of the deceleration parameter q,

jerk parameter j and snap parameter s for the physically-relevant con-

figurations listed in Table 1. We refer to the main text on details about

the mathematical steps involved in these computations. We remark that

for a correct interpretation of these results it is necessary to take into

account the appropriate range of validity for the parameter β for each

equilibrium point separately, as summarized in Table 2

Cosmic fluid Fixed point q j s

Any fluid P1 −1 1 1

Any fluid P2 −1 1 1

Redlich–Kwong P3 − 3β+1
4

9β2−1
8

(9β−5)(3β−1)(3β+1)
32

Any fluid P6 1 3 −15

Redlich–Kwong P7 1 3 −15

Any fluid Pi ∞ ∞ ∞

modifications beyond general relativity to the gravity sector

affect them. In what follows we will denote with ts the time at

which a singularity may occur. Applying a literature scheme

[96,97], we will be interested in the following five different

possible types of singularity:

1. Big rip singularity or Type I is characterized by limt→ts

a(t) = ∞, limt→ts ρeff(t) = ∞, limt→ts |Peff(t)| = ∞
[98,99];

2. Sudden singularity or Type II is characterized by limt→ts

a(t) = as , limt→ts ρeff(t) = ρs , limt→ts |Peff(t)| = ∞
[115–118];

3. Big freeze singularity or Type III is characterized by

limt→ts a(t) = as , limt→ts ρeff(t)

= ∞, limt→ts |Peff(t)| = ∞ [119];

4. Generalized sudden singularity or Type IV is charac-

terized by limt→ts a(t) = as , limt→ts ρeff(t) = ρs ,

limt→ts |Peff(t)| = Ps , limt→ts H (i)(t) = ∞, i = 2, ...

[117,118,120,121];

5. w singularity or Type V is characterized by limt→ts a(t) =
as , limt→ts ρeff(t) = 0, limt→ts |Peff(t)| = 0, limt→ts weff

= limt→ts
Peff (t)
ρeff (t)

= ∞ [122,123].

In this classification, we have denoted with as , ρs and Ps

some finite constant values of the scale factor, the effective

energy density and its corresponding pressure at time ts . We

recall that in our analysis we will assume positive α and ζ ,

while we will not make any assumptions on the sign of β. We

also remark that we are working with the effective values of

the energy density, pressure and equation of state parameter

which encode information both on the actual matter fluid and

the curvature effects, as done for example in [124–127].

Before analyzing the possible occurrence of a finite-time

singularity in a generic point of the phase space, we inves-

tigate the situation in correspondence of the isolated fixed

points reported in Table 1. By looking at the evolution of

the scale factor, they can exhibit three different types of cos-

mological evolution: de Sitter-like (P1 and P2 for all the

three types of fluids), radiation (P6 for all the three types of

fluids, and P7 for Redlich–Kwong), and power-law (P3 for

Redlich–Kwong).

– The de Sitter-like cosmologies do not correspond to any

finite-time singularity because the effective energy den-

sity, pressure and equation of state parameter are finite

constants.

– In the case of an “effective” radiation domination, the

scale factor (a ∼ t1/2) would approach as = 0 at the time

t = 0 in correspondence of which ρeff , Peff ∼ 1/t →
∞, and therefore a finite-time (recalling that the present-

day time is t0 > 0) Type III singularity occurs in the

past.

– The isolated fixed point P3 in the Redlich–Kwong sce-

nario can correspond to a Type I singularity occurring at

a finite time ts (34) in future if 1 < β ≤ 17/9. We note

that in P3

ρeff = 3H2 =
4

3(β − 1)(ts − t)
, (83)

which diverges also for β → 1; however this does

not imply a finite-time singularity as can be seen from

Eq. (34).

We will now investigate whether some type of finite-time

singularity can occur in some other regions of the phase

space. By using the definition of effective energy density

(7a), and the relationships between the Hubble function and

the dimensionless variables (20), and (41), we have

ρeff =
y − z

2ζ y(2z − y)

=
cos θ − sin θ

2ζr cos θ(2 sin θ − cos θ)
. (84)

Furthermore, by using Eqs. (16b)–(41) we can get the effec-

tive equation of state parameter defined in (8), and pressure
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in terms of dimensionless variables as:

weff =
1 − 2y

3
=

1 − 2r cos θ

3
, (85)

Peff =
(y − z)(1 − 2y)

6ζ y(2z − y)
=

(cos θ − sin θ)(1 − 2r cos θ)

6ζr cos θ(2 sin θ − cos θ)
.

(86)

First of all, we note that on the planes y = 0 and y = 2z,

both the effective energy density (84) and effective pressure

(86) are diverging, so that two of the requirements for having

either a Type I or a Type III singularity are fulfilled. We

also remark that in these regions of the phase space both the

Hubble function and its first derivative are diverging, as we

can understand from Eq. (20), and therefore we have a true

curvature singularity in which the Ricci scalar (4) is blowing

up.

More in detail, everywhere on the plane y = 0 the effective

fluid behaves like radiation, implying a Type III singularity

since a ∼ t1/2 (see also the equilibrium points P6 in Table 1

for all the three types of fluids, and P7 for Redlich–Kwong);

this implies also that both energy density and pressure are

diverging as ρeff , Peff ∼ H ∼ t−1 ∼ 1/a2 ∼ (1 + z)2

(where this latter z denotes the redshift). Therefore, assuming

that the present-day is at the finite-time t0 > 0, a Type III

singularity occurs in the past at the time t = 0.

For understanding the behavior of the singularity on the

line y = 2z, we recall that a Type I singularity would require

weff < −1 [128], i.e. y > 2. Therefore the plane y = 2

separates the line y = 2z into two parts on whose sides a Type

I or a Type III singularity can occur; this finding is consistent

with the evolution of the scale factor exhibited in Table 1, and

the previous discussion about the equilibrium point P3 for the

Redlich–Kwong fluid. We can provide a rough estimate of the

time ts at which these singularities occur by approximating

y ≈ ys in a small neighborhood of the line y = 2z assuming

that the present-time t0 configuration is contained there. This

implies that
d(1/H)

dt
≈ 2− ys . Thus, H(t) ≈ H0

1+(2−ys )(t−t0)H0

which diverges at ts ≈ t0 + 1
(ys−2)H0

showing that the Type I

singularity would be a future singularity, while the Type III

a past singularity.

On the other hand, for having a finite energy density, but

a diverging pressure we would need a diverging equation of

state parameter. By looking at (85), we see that this is possible

at and only at infinity, that is for r → ∞. In fact, in such a

regime, by using Eq. (86) we get

lim
r→∞

|Peff | =
cos θ − sin θ

3ζ(2 sin θ − cos θ)
, (87)

which can diverge if and only if θ = arctan(1/2). Thus, a

Type II singularity may occur only at the point Pi . More-

over, in Sect. 3.3 we have showed that H = 0 there, i.e. we

have a well-behaving de Sitter-like scale factor and a finite

(zero) effective energy density fulfilling all the conditions for

having a Type II singularity. We remark that should we have

considered the pressure of the actual matter fluid only, a Type

II singularity may have arisen in the Dieterici framework only

[25].

Moreover, by looking at the second time derivative of the

Hubble function in terms of the dimensionless variables given

in Eq. (80), we see that a Type IV singularity may occur either

along y = 0 or along y = 2z. This is the mildest possible

singularity because it does not imply geodesic incompletness

nor diverging curvature scalars. However, in these regions of

the phase space also the energy density is diverging as it

can be understood from Eq. (84) violating (at least) one of

the requirements in the definition of a Type IV singularity;

as previously discussed also the Ricci scalar is diverging in

such circumstances violating the conditions for a Type IV sin-

gularity. Interestingly, this analysis shows that the effective

energy density and pressure arising from gravity modifica-

tions cannot mimic those of linearly interacting dark matter

- dark energy where the latter is modeled according to the

Redlich–Kwong or the (modified) Berthelot fluid, as in those

cases a type IV singularity is allowed for certain strengths of

the coupling term [25].

Finally, by looking at (85) we see that a Type V singular-

ity may occur only at spatial infinity for which r → ∞; this

would be consistent with having also a diverging decelera-

tion parameter there as we have found in Sect. 3.3. Then, by

recalling (87) we see that the effective pressure can vanish if

and only if θ = π
4

. Under these assumptions also ρeff = 0,

and taking into account the discussion of Sect. 3.6 we fur-

ther have a finite scale factor fulfilling all the requirements

for a Type V singularity. This result follows from the gravity

modifications and constitutes an important difference than

General Relativity in which a Type V singularity has been

excluded for the three types of Redlich–Kwong, (modified)

Berthelot and Dieterici fluids [25]. In fact, we can observe

that such type of singularity persists also in the limiting case

of ρ, P → 0, i.e. of absence of an actual cosmic fluid.

5 Discussion on generic behavior

Out of the global dynamical analysis of the system that we

have presented in this paper, we note that the finite fixed

points P1, P6 and the asymptotic fixed point Pi always exist

for all the three fluids irrespective of whatever values we

choose for the model parameters α, β, ζ , whereas all the

other fixed points either exist for a certain fluid or for a spe-

cific range of values for the model parameters, and coincide

with either P1 or P6 for certain values of those model param-

eters. The fixed points P1, P6 and Pi therefore characterize

some generic features of the cosmological model in quadratic

gravity consisting of the three fluids under consideration. We

note that all these three fixed points lie at the line of intersec-
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tion of the planes � = 0 and y = 2z. We stress that � = 0

does not necessarily imply a vacuum solution if either r = 0

or y = 2z, so that these three fixed points, although lying

on the � = 0 plane, should not necessarily correspond to

vacuum solutions of the R + ζ R2 gravity theory. Another

point to note is that, as we had discussed before, the plane

y = 2z corresponds to the limit ζ → ∞, so that the points

lying on this plane can be interpreted to be the solutions of

f (R) = R2 theory of gravity. As shown in [36], irrespec-

tive of the fluid under consideration, the phase space of Rn

(n ≥ 2) gravity is always 2-dimensional, which is consistent

with our interpretation.

Below we explicitly point out the generic dynamical fea-

tures of the scenario that we have considered.

• P1 is a De-Sitter solution that lies on the line of intersec-

tion of the planes � = 0 and y = 2z. This point rep-

resents the exact De-Sitter solution of R2 gravity, which

is the basis of Starobinski’s inflationary scenario [78].

Since it is always a non-hyperbolic fixed point one needs

to do a center manifold analysis to determine the stability,

which is done in Appendix C. From Eq. (C5) we see that

two of the eigenvectors of the Jacobian at that point lie on

the � = 0 plane. The eigenvector corresponding to the

negative eigenvalue is along the line (y = 2z, � = 0),

which implies that the De-Sitter solution in R2 gravity

is an attractor. The eigenvector corresponding to the zero

eigenvalue is along the line y+z = 3, and the center man-

ifold analysis reveals that the dynamics is always away

from the fixed point along this direction. In the complete

R + ζ R2 theory, this corresponds to an exit from the

De-Sitter phase.

• Pi is a nonsingular bouncing solution (H = 0, Ḣ > 0)

as discussed in Sect. 3.3. As demonstrated in Appendix

E, this point is a saddle: repelling in the direction nor-

mal to the surface R → 1 and attracting in the directions

normal to the planes � = 0 and y = 2z. The trajectories

flowing from Pi to P1 can be interpreted as early universe

solutions with an inflationary phase following a nonsin-

gular bounce.8 The flow at P1 away from it along the

line y + z = 3 in this case corresponds to the “graceful

exit”. This is consistent with the well known result that

Starobinski’s inflationary scenario is a transient attractor

in R + ζ R2 gravity [24].

• P6 is an “effective” radiation dominated phase (weff =
1
3
). The trajectories flowing from P6 to P1 can be inter-

preted as late time solutions with a transition from a radi-

ation dominated epoch to a late time accelerating epoch

corresponding to dark energy domination. The flow at P1

away from it along the line y + z = 3 in this case implies

8 Recent research has showed that astrophysical structures, whether

they exist, can survive a bounce [129].

an end to the accelerated phase of expansion, which, in

GR, is possible only if the cosmological constant changes

sign.

Apart from these generic features, there are some other inter-

esting points worthwhile for explicitly commenting upon:

• An interesting thing to note is that the same fixed point

P1 can be interpreted as either an inflationary epoch or a

late time acceleration epoch, depending on which of the

phase trajectories we choose to consider.

• It is also worth mentioning here that we do not get

any fixed point corresponding to a matter dominated

epoch because we have not considered any dust fluid that

may correspond to the CDM. A matter dominated epoch

requires weff = 0 or equivalently y = 1
2

. We note that

although any trajectory flowing from P6 to P1 crosses the

plane y = 1
2

, there is no actual fixed point with y = 1
2

,

and therefore no matter dominated “phase” in the picture.

It is however interesting that an “effective” radiation-like

epoch is arising even without explicitly including any

ultra-relativistic fluid in the picture.

• As clear from Tables 2-3, for specific ranges of the values

of the model parameter β, the fixed points P2 and/or P3

can exist and can also be stable. In such cases there might

be more than one De-Sitter phases in the complete evo-

lution of certain cosmological solutions. The trajectories

that encounter two De-Sitter fixed points (P1 and P2 or

P3), with P1 being saddle and P2 (or P3) being stable,

are particularly interesting. It should also be noted that

P2 (or P3), when exists, can only be reached after P1. For

such solutions P1 can represent Starobinski’s curvature

driven inflation, whereas P2 (or P3) can represent a future

attractor corresponding to the late time acceleration.

• It is worthwhile to note that the other two model param-

eters, namely α and ζ , do not affect neither the existence

nor the stability nature of the fixed points, as long as they

are assumed to be positive. These two parameters quan-

tify the deviations from ideal fluid and from GR respec-

tively. Existence and stability of fixed points depend only

on the model parameter β, which characterizes the equa-

tion of state parameter of the fluid in its ideal limit. The

parameter α however is crucial in relation to the bifur-

cation of the De-Sitter fixed points. It is precisely the

non-ideal nature of the fluid (α �= 0) that makes it possi-

ble to obtain two separate De-Sitter fixed points P1 and

P2, hence providing a scope for describing the early and

the late time De-Sitter epochs at one go.

• The only case in which a big-rip singularity can arise in

finite future is for the Redlich–Kwong fluid with β > 1.

In this case the De-Sitter fixed point P2 is a saddle, imply-

ing that the late time De-Sitter phase is an intermediate

cosmological phase and not an attractor. In this particu-
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lar case the true future attractor is P3, which is a big-rip

singularity.

The generic features and other interesting points listed in

this section are the take home messages from our present

study.

6 Conclusion

In this paper, we have investigated some cosmological mod-

els governed by a modified Friedman and a modified Ray-

chaudhuri equation (11) equivalent to the following algebraic

relations between the cosmographic parameters:9

ρ = 3H2�[1 + 12ζ H2(q − 1)] ,

ρ + P(ρ) = 12H4[6 + q2 + 8q

+s + ζ( j − q − 2q2)] − 2H2(q + 1) , (88)

which can be summarized into the a single expression in
which the parameter ζ does not enter directly:

3�(q − 1)[ρ + P(ρ)]

= 36H2

[

(q − 1)(q2 + 8q + s + 6)H2 +
2 + q − j

12

]

�

+ρ( j − q − 2q2) . (89)

Whether this evolution of the rate of expansion can tame some

of the problems related to the Hubble tension [131–133] is

beyond the purpose of the present paper, but already at this

stage we have demonstrated that these models come with

many desirable features: they exhibit an inflationary epoch

admitting a graceful exit, a radiation dominated epoch in

which light elements may form [134], and a late-time De Sit-

ter epoch consistent with supernovae observations [135,136].

Furthermore, more than one De Sitter epoch in the cosmo-

logical history can also be predicted from thermodynamical

arguments [137].

We have obtained these results by applying dynamical

system techniques making use of both the linear stability

analysis and of center manifold analysis to a Friedman uni-

verse filled with three different non-ideal fluids separately in

f (R) = R + ζ R2 gravity. We have adopted a set of dimen-

sionless variables proposed in [33] on which we have derived

the physical restrictions (33) for preserving the theory from

ghost and tachyonic instabilities, obtaining nevertheless a

model with a rich variety of cosmological behaviors as pre-

viously mentioned. It is also interesting to note that the dif-

9 For the relationship between the Ricci scalar and its time derivatives

and the cosmographic parameters see [130, Eq. (15)].

ference between the curvature energy density and the actual

matter content energy density, which can be computed from

(20), reads as:

ρC − ρ = 3H2 − 2ρ =
(y − z)(2z − y − 2y�)

2ζ y(2z − y)2
. (90)

Therefore, the two energy densities are equal on the line

2z − y − 2y� = 0, which describes a configuration that

can actually arise within the physical range (33). Whether

this can tame some aspects of the coincidence problem [138]

will be explored in future publications, but we should remark

that this result has not required to introduce any ad hoc inter-

action terms between the two fluids by modifying by hands

the Bianchi identities unlike in [139–141], and therefore we

can appreciate already at this stage that this potential solu-

tion would not be affected by inconsistent directions of such

energy flow. For example as mentioned in [138], the solar

system has formed at the epoch in which the abundance of

dark energy is of the same order of magnitude of the abun-

dance of regular matter so that a local gravitational collapse

can occur in a globally accelerated expanding universe, and

in our picture the roles of those two fluids would be played by

a gravitational effect and by an actual matter fluid separately.

We have as well derived a connection between the dynam-

ical system variables we have adopted and the cosmographic

deceleration, jerk and snap parameters. Two equilibria points

P1 and P2 come with the same values of these cosmographic

parameters, and while one of them (P2) admits a well-defined

energy density of the cosmic fluid, in the case of the other

(P1) it exhibits the indefinite form 0/0. Thus, in future we

will investigate whether the same dimensionless variables

used here can be connected as well to the positions of the

CMBR peaks for removing this ambiguity. We have extended

the dynamical system analysis up to infinity by introducing

an appropriate compactification of the phase space. As far as

the Redlich–Kwong, (modified) Berthelot, and Dieterici flu-

ids are considered, the region at infinity of the phase space

does not carry only an abstract geometrical interpretation,

but it corresponds to a regime in which the equation of state

for the cosmic fluid reduces to P ≃ βρ, as it can be seen

from (44). Thermodynamically, this means that the interac-

tions between the fluid constituents are suppressed as it would

happen in the limit α → 0. This transition to the ideal behav-

ior of P = w(ρ)ρ fluids has already been met in cosmology

[8,9,142], and it has been interpreted as a form of asymptotic

freedom analogue to the one which characterizes the quark-

gluon plasma [143,144], although in this case is occurring at

low rather then high energy densities.
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Finally, the dynamical system approach has given us the

opportunity of identifying the regions of the phase space

which are free from any of the known five finite-time cosmo-

logical singularity. In our cosmological models Type II and

Type V singularities can occur in the past only in correspon-

dence of the nonsingular bounce at the infinity of the phase

space, the latter being a direct consequence of the modifi-

cations to the gravity sector. A Type I singularity can occur

in the future along the line y = 2z, while a Type III in the

past in correspondence of the radiation dominated epochs.

Our cosmological models are not affected by a Type IV sin-

gularity. Our analysis was completely classical and whether

quantum gravity corrections á la Wheeler-DeWitt affect this

picture will be clarified in a future project, as for example

done in [145]. Other interesting future projects may con-

sist in analyzing the astrophysical data about recombination

epoch, 21-cm line excess at cosmic dawn, and Lyman α forest

by exploiting the existence of a radiation-dominated epoch in

our models; this can tame the previously mentioned disagree-

ment between the thermodynamical Le Chatelier-Braun prin-

ciple and the fact that a dark matter epoch should have come

before the dark energy one [67,68] since those phenomena

are usually addressed via interacting scenarios [146–148].
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Appendix A: Foundation and applicability of the Redlich–

Kwong, Berthelot and Dieterici fluid models

The first attempt of accounting for physical properties of real

gases beyond their ideal behavior has been performed by the

van der Waals equation of state which implements informa-

tion about the finite size of the molecules and their mutual

interactions assumed to be attractive at large distances and

repulsive at short ones via a Lennard-Jones type of potential.

Although this proposal came with many desirable features

because it can reproduce ideal gas isotherms at high tem-

perature and it exhibits a liquid-gas coexistence phase, the

experimental collections of more and more precise data about

chemical substances has called for some improved models,

as for example the Redlich–Kwong, Berthelot and Dieterici

formulations. These models are still based on just two free

parameters which are the critical temperature and critical

pressure at the coexistence of two phases. Van der Waals’

idea of combining the two contributions for the pressure due

to the volume occupied by the molecules (which sets a limit

on the fluid compressibility), and their internal energy (in the

ideal picture molecules only have kinetic energy) simply as

an algebraic sum P = Patt. + Prep. has been assumed also in

the Berthelot and Redlich–Kwong equations of state. They

have been proposed as more realistic models for account-

ing for datasets about the fugacity of hydrocarbons at low

(close to the ambient pressure) and high pressure respec-

tively. Intuitively the fugacity quantifies the fleeting proper-

ties of a material, while rigorously it is the effective pressure

of an ideal gas at the same temperature and with the same

molar Gibbs free energy as the real gas; its value for a certain

substance is determined from measurements of volume as a

function of pressure at constant temperature. The success of

the Berthelot and Redlich–Kwong formalisms is grounded

in being consistent with experimental data of different sub-

stances (methane, ethane, propane, isobutane, etc...) belong-

ing to the family of hydrocarbons just by changing the values

of the two free parameters α and β for each of them; before

it was necessary to consider a temperature-dependent coef-

ficient in the second-order virial expansion to be empirically

reconstructed in each case separately. Thus, this has consti-

tuted a great advantage in epochs at which computer simu-

lations were still not widely available. The Redlich–Kwong

equation of state has then been further improved by intro-

ducing a third parameter known as the acentric factor taking

into account non-spherical shapes of the molecules as the

Soave–Redlich–Kwong equation for a better description of

nonpolar compounds [149]. For a modern treatment of such

equations of state we refer to some textbooks as [150,151].

On the other hand, the Dieterici proposal still maintains the

idea that two contributions should be included in the pressure

(repulsive because molecules are assumed to be hard spheres

which cannot penetrate each other, and attractive for having

a bound system), but it combines them as P = Prep.e
−Patt.

improving the agreement with experimental data of the com-

pressibility factor at high pressure than the van der Waals

equation [150,151]. In cosmology a similar way of thinking

than in chemical thermodynamics has been followed by com-

bining into a single formalism the attractive effects of regular

matter and the repulsive one of dark energy: at first the van

der Waals equation of state has been chosen for the cosmic

fluid [154–157], and then the Redlich–Kwong, Berthelot and
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Dieterici ones have been used for enlightening whether those

different characteristics which have been observed in a lab-

oratory setting come with specific signatures in cosmology

[27].

Appendix B: Stability analysis of finite isolated fixed

points

In this Appendix we present in some details the calculations

regarding the linear stability analysis for the cosmologically

relevant isolated fixed points exhibited in Table 1. The sta-

bility nature of an isolated fixed point in the linear regime

is completely determined by the eigenvalues of the Jacobian

matrix evaluated at the fixed point, provided the fixed point

is hyperbolic, i.e. none of the eigenvalues is zero. There are

four distinct possibilities that may arise for a dynamical sys-

tem (for the stability classification criteria see for example

[88–91]; for the physical significance of a certain type of

stability see instead [158,159]):

• If all the eigenvalues have positive real parts, then the

fixed point is said to be unstable. An unstable fixed point

represents a past attractor in cosmology i.e. an epoch

which represents a possible initial state for a cosmologi-

cal evolution.

• If some of the eigenvalues have positive real parts and

some have negative real parts, then the fixed point is

called a saddle. A saddle fixed point represents a pos-

sible intermediate epoch for a cosmological evolution.

• If all the eigenvalues have negative real parts, then the

fixed point is said to be stable. A stable fixed point repre-

sents a future attractor in cosmology, i.e. an epoch which

represents a possible final state for a cosmological evo-

lution.

• If two of the eigenvalues are complex conjugate to each

other with vanishing real parts, then the fixed point is

unstable (stable) whether the third eigenvalue is posi-

tive (negative). This represents an oscillatory approach

towards the past (future) attractor. The past (future)

attractor itself represents an epoch around which the cos-

mological solution oscillates indefinitely.

If one or more of the eigenvalues of the Jacobian matrix

are zero then the fixed point is said to be non-hyperbolic.

For non-hyperbolic fixed points Jacobian eigenvalues cannot

completely determine the linear stability nature, and center

manifold analysis is required to determine the stability of

non-hyperbolic fixed points.

In Table 5 we list the eigenvalues of the Jacobian matrix for

the cosmologically relevant isolated fixed points presented in

Table 1. The eigenvalues are functions of the model param-

eters, and therefore to determine their signs one must keep

in mind that α, ζ > 0, and the existence conditions for the

various fixed points from Table 2.

It appears that the linear stability analysis fails for the

following cases:

• P1 for all the three fluids;

• P2 with β = 1 for the Redlich–Kwong fluid;

• P3 with β = 1 for the Redlich–Kwong fluid;

• P6 with β = 2
3

for the Redlich–Kwong and (modified)

Berthelot fluids, with β = 4
3e2 for the Dieterici fluid;

• P7 for β = − 2
3

for the Redlich–Kwong fluid.

For case of Redlich–Kwong fluid with β = − 2
3

, we note

however that the fixed point P7 coincides with P6. The fixed

point P6 exists for all values of β, and for β = − 2
3

it is

unstable. Therefore one can conclude that the fixed point P7

with β = − 2
3

for Redlich–Kwong fluid is unstable. Stability

analysis in the other cases requires the application of a center

manifold analysis. Also we note that for the Redlich–Kwong

fluid with β = 1, the fixed points P2 and P3 coincide with P1,

implying that a center manifold analysis for P1 also allows

us to complete the stability analysis of P2 and P3.

Appendix C: Center manifold analysis for P1

Center manifold analysis is significantly mathematically rig-

orous [95,160], and it has been applied in cosmology in

[34,39,161–164], just to mention a few examples. We carry

out this analysis only for the fixed point P1 ≡ (2, 1, 0),

because the Jacobian at this point has a vanishing eigenvalue

irrespective of the model parameters for all the three flu-

ids. Firstly we note that in the cases of Redlich–Kwong and

(modified) Berthelot fluids with β < −1 and in the case of

Dietrici fluid with β < − 2
e2 , P1 is clearly a saddle and center

manifold analysis is not required. In the cases of Redlich–

Kwong and (modified) Berthelot fluids with β = −1 and in

the case of Dietrici fluid with β = − 2
e2 , stability analysis of

P1 requires beyond center manifold analysis than presented

here, as two of the eigenvalues vanish, and therefore here

we investigate only the cases of Redlich–Kwong and (mod-

ified) Berthelot fluids with β > −1 and Dietrici fluid with

β > − 2
e2 . To perform a center manifold analysis we begin

by shifting the fixed point to the origin by applying the coor-

dinate translation

Y = y − 2 , Z = z − 1 . (C1)

In terms of Y, Z , � the system (23) becomes
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Table 5 Eigenvalues of the Jacobian at the finite fixed points for the dynamical system (23) and presented in Table 1. We remark that the correct

physical interpretation of these results require α, ζ > 0, whilst the restrictions on the parameters β can be found in Table 2

Fixed points Redlich–Kwong (Modified) Berthelot Dietrici

P1 −3, 0, −3(β + 1) −3, 0, −3(β + 1) −3, 0, −3
(

1 + e2β
2

)

P2
3(β2−1)

2β
− 3(1+β)

β
, −3W

(

2β

e2

)

− 12

W
(

2β

e2

) − 15,

− 3
2

(

1 ±
√

1 − 2(
√

2−1)α(β−1)
9ζ(β+1)

)

− 3
2

(

1 ±
√

1 + 2α
9(1+β)ζ

)

− 3
2

(

1 ±
√

1 − 4α

9ζ
(

W
(

2β

e2

)

+4
)

)

P3 − 3
2
(β − 1) – –

− 3
8

(

3β + 1 ±
√

41 − 5β(3β + 2)
)

– –

P6 2 − 3β, 4 ± 1√
2

2 − 3β, 4 ± 1√
2

2 − 3
2

e2β, 4 ± 1√
2

P7 −2 − 3β, 4 ± 1+3β√
2

– –

dY

d N
=

(Y + 2)(Y (−3Y + � + 3Z − 2) + 2� − 2Z)

2(Y − Z + 1)
, (C2a)

d Z

d N
=

Y 3 + Y 2(� − 7Z − 2) + 2Y
(

� + 4Z2 − (� + 1)Z − 1
)

+ 2
(

Z2 + 1
)

(� − Z)

2(Y − Z + 1)
, (C2b)

d�

d N
= −�(3w(Y, Z ,�) + 3Y + � − Z + 3) , (C2c)

with

w(Y, Z ,�) =
2ζ(Y − 2Z)2 −

(√
2 − 1

)

α�(Y − Z + 1)

2ζ(Y − 2Z)2 +
(√

2 − 1
)

α�(Y − Z + 1)
β

(Redlich–Kwong), (C3a)

w(Y, Z ,�) =
2βζ(Y − 2Z)2

α�(Y − Z + 1) + 2ζ(Y − 2Z)2

[(Modified) Berthelot)], (C3b)

w(Y, Z ,�) =
2βζ(Y − 2Z)2

α�(−Y + Z − 1) + 4ζ(Y − 2Z)2

× exp

[

2 +
α�(−Y + Z − 1)

ζ(Y − 2Z)2

]

(Dietrici).

(C3c)

The fixed point P1 corresponds to the origin in the new vari-

ables: P1 ≡ (Y, Z ,�) = (0, 0, 0). Jacobian at the origin

corresponding to the dynamical system (C2) is:

J (0, 0, 0) =

⎛

⎝

−2 −2 2

−1 −1 1

0 0 −3(β̃ + 1) ,

⎞

⎠ (C4)

where β̃ = β for the Redlich–Kwong and (modified) Berth-

elot fluids, while β̃ = e2β/2 for the Dieterici fluid. We stress

that in the ideal fluid regime α → 0 for which P = wρ, the

33-component of the matrix would be −3(1+w). The eigen-

values remain the same as given in Table 5. The eigenvectors

are

⎛

⎝

2

1

0

⎞

⎠ ,

⎛

⎝

−1

1

0

⎞

⎠ ,

⎛

⎜

⎝

− 2

3β̃

− 1

3β̃

1

⎞

⎟

⎠
. (C5)

The matrix that diagonalizes the Jacobian J (0, 0, 0) is the

matrix whose three columns are the three eigenvectors above:

S =

⎛

⎜

⎝

2 −1 − 2

3β̃

1 1 − 1

3β̃

0 0 1

⎞

⎟

⎠
. (C6)

One can indeed verify by direct multiplication that

S−1 J (0, 0, 0)S =

⎛

⎝

−3 0 0

0 0 0

0 0 −3(β̃ + 1)

⎞

⎠ . (C7)

The eigenvectors of the Jacobian at a point form an orthogo-

nal basis at that point. In the (Y, Z ,�) coordinates the basis

vectors are
⎛

⎝

1

0

0

⎞

⎠ ,

⎛

⎝

0

1

0

⎞

⎠ ,

⎛

⎝

0

0

1

⎞

⎠ (C8)
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everywhere in the Y -Z -� space. The particular diagonalizing

matrix S for the point (Y, Z ,�) = (0, 0, 0) represents a

coordinate transformation (Y, Z ,�) → (U, V, W ) at that

point such that the basis vectors are now along the Jacobian

eigenvectors:

⎛

⎝

U

V

W

⎞

⎠ = S−1

⎛

⎝

Y

Z

�

⎞

⎠ =

⎛

⎜

⎝

�

3β̃
+ Y

3
+ Z

3
2Z
3

− Y
3

�

⎞

⎟

⎠
(C9)

In terms of U, V, W the system (C2) becomes

dU

dτ
=

A + B + C

9β̃2[−W + 3(1 + U − 2V )β]
, (C10a)

A = −27[3U (1 + U )2 − 7U (1 + U )V + (2 + U )V 2 + 2V 3]β̃3 + W 3(6β̃ − 2) ,

B = 3W 2β̃[2 + U − 7V + 3w(U, V, W ) − 9(1 + U − V )β̃] ,

C = 9W β̃2[4U (1 + U ) + 3V − 7V 2

−3w(U, V, W )(1 + U − 2V ) + 3((1 + U )2 − (1 + U )V + V 2)β̃] ,

dV

dτ
= −V

8W 2 + 9[8U (1 + U ) − (4 + 23U )V + 14V 2]β̃2 − 3β̃W [8 + 16U + V (−23 + 9β̃)]
6β̃[3(1 + U − 2V )β̃ − W ]

, (C10b)

dW

dτ
= −W

[

3 + 5U − 4V + 3w(U, V, W ) + W

(

1 −
5

3β̃

)]

, (C10c)

with

w(U, V, W ) =

⎛

⎝

54βζ V 2 +
(√

2 − 1
)

αW (W − 3β(U − 2V + 1))

54βζ V 2 −
(√

2 − 1
)

αW (W − 3β(U − 2V + 1))

⎞

⎠β (Redlich–Kwong), (C11a)

w(U, V, W ) =
54β2ζ V 2

54βζ V 2 − αW (W − 3β(U − 2V + 1))
((modified) Berthelot), (C11b)

w(U, V, W ) =
54β2ζ V 2

αW [W − 3β(U − 2V + 1)] + 108βζ V 2
exp

(

αW [W − 3β(U − 2V + 1)]
27βζ V 2

+ 2

)

(Dietrici). (C11c)

We note that there is no linear term in V in any of the

equations in the system (C10). This is because by construc-

tion the V -axis is along the eigenvector corresponding to the

zero eigenvalue. Let us consider the phase trajectories in the

neighbourhood of the fixed point P1 = (0, 0, 0). Consider-

ing only the leading contributions at the vicinity of this point,

from the system (C10) we can write the following

• Redlich–Kwong fluid:

dV

dU
≈

2V

3β

[

1 + (1 − 2β)
3U

2W

]

, (C12a)

dV

dW
≈ −

4V

9β(1 − β)

[

1 − 3β
U

W

]

, (C12b)

dW

dU
≈ −

3(1 − β)

2

[

1 +
3

2
(

W
U

− 3β
)

]

. (C12c)

• (Modified) Berthelot and Dietrici fluid:

dV

dU
≈

4V

3β̃

[

1 + 3(1 − β̃)
U

W

]

, (C13a)

dV

dW
≈ −

4V

9β̃

[

1 − 3β̃
U

W

]

, (C13b)

dW

dU
≈ −3

[

1 +
3

W
U

− 3β̃

]

, (C13c)

with β̃ = β,
e2β

2
for (modified) Berthelot and Dietrici

fluid respectively, and where we have used dW
dU

≈ dV/dU
dV/dW

.
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Keeping in mind that W
U

≃ dW
dU

as W, U → 0, 0, we get

from Eqs. (C12c) and (C13c) that

W

U
≃

dW

dU
≈

⎧

⎨

⎩

3
4
(−1 + 3β ±

√

β2 + 6β − 3), (Redlich–Kwong)

3
2
(−1 + β̃ ±

√

β̃2 + 2β̃ − 3), [((modified) Berthelot and Dietrici] .
(C14)

Considering the leading order contribution in the vicinity

of P1 ≡ (0, 0, 0), the V −equation from (C10) can be written

as

d ln |V |
dτ

= −4

(

U −
W

3β̃

)

, (C15)

with β̃ = β for Redlich–Kwong, (modified) Berthelot fluid

and β̃ = e2β
2

for Dietrici fluid in this case. Taking one more

derivative we get

d2 ln |V |
dτ 2

= −4
d ln |V |

dτ

d

d ln |V |

(

U −
W

3β̃

)

. (C16)

To the leading order approximation, dU
d ln |V | ,

dW
d ln |V | are con-

stants depending on β, whose value for different fluids can

be calculated by substituting the values of W
U

from Eq. (C14)

into Eqs. (C12a), (C12b), (C13a), (C13b). If we define

γ = −4
d

d ln |V |

(

U −
W

3β̃

)

, (C17)

then γ is a β−dependent constant, and the first integral of

Eq. (C16) gives

d ln |V |
dτ

∼ eγ τ . (C18)

It is clear from the above result that irrespective of the sign

of γ , evolution of V (τ ) is always away from the origin. The

fixed point P1 is therefore always a saddle.

Appendix D: Stability analysis of invariant submanifolds

X i = C is called an invariant submanifold of the dynamical

system Ẋ = f(X) if

Ẋ i

∣

∣

∣

∣

Xi =C

= fi (X)

∣

∣

∣

∣

Xi =C

= 0 . (D1)

Stability of an invariant submanifold is determined by the

phase flow in its vicinity. If one considers a point in prox-

imity of the submanifold with a coordinate C + δX i , then

the component of the flow normal to the submanifold at that

point is determined by

˙δX i =
∂ fi

∂ X i

∣

∣

∣

∣

Xi =C

δX i . (D2)

If
∂ fi

∂ Xi

∣

∣

∣

∣

Xi =C

is negative (positive), then the phase flow

at that point is towards (away from) the submanifold

X i = C, and correspondingly the submanifold is attracting

(repelling). If
∂ fi

∂ Xi

∣

∣

∣

∣

Xi =C

= 0, further analysis is required.

Armed with this concept, we can determine the stability

of the invariant submanifolds that arise in our dynamical sys-

tem:

• The submanifold y = 2z can be better specified in the

polar coordinate as θ = tan−1
(

1
2

)

. From (46) one can

compute that

∂

∂θ

(

dθ

dτ ∗

)
∣

∣

∣

∣

θ=tan−1 1
2

= −
1

5

[

r +
√

5(� − 1)

]

. (D3)

Therefore the submanifold θ = tan−1
(

1
2

)

is attracting

(repelling) for r >
√

5(1 − �) (r <
√

5(1 − �)). In

Cartesian coordinates one can state that the submanifold

y = 2z is attracting (repelling) for y2 + z2 > 5(1 − �)2

(y2 +z2 < 5(1−�)2) respectively. The line r =
√

5(1−
�) (y2 + z2 = 5(1 − �)2) separates the two regions of

the submanifold with opposite dynamical characteristics.

• Regarding the invariant submanifold � = 0, one can

compute from (23c) that

∂

∂�

(

d�

d N

)
∣

∣

∣

∣

�=0

= 2 − 3w(� → 0) − 3y + z . (D4)

Using the expressions in Eq. (21) to calculate w(� → 0),

one can conclude that the invariant submanifold � = 0

is attracting (repelling) according to 2−3β −3y + z < 0

(> 0) for the Redlich–Kwong and (modified) Berthelot

fluids and 2−3e2β/2−3y + z < 0 (> 0) for the Dietrici

fluid.

• The submanifold R = 1 is an invariant submanifold at the

infinity of the phase space. Stability of this submanifold

can be determined from (51a) by calculating

∂

∂R

(

dR

dη

)
∣

∣

∣

∣

R→1

=
1

4
(3 − cos(2θ))(2 − 2 sin(2θ) + cos(2θ)) . (D5)
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The expression on the right hand side is positive within

the range tan−1
(

1
2

)

≤ θ < π
4

(z < y ≤ 2z). Therefore

the invariant submanifold at infinity R = 1 is everywhere

repelling.

Appendix E: Stability analysis of fixed points at infinity

The isolated fixed point at infinity Pi ≡
(

1, tan−1 1
2
, 0
)

lies

at the intersection of three invariant submanifolds, namely

� = 0, θ = tan−1
(

1
2

)

and R = 1. This observation com-

pletely determines the stability nature of this fixed point. The

submanifold R = 1 is everywhere repelling. The subman-

ifold θ = tan−1
(

1
2

)

is attracting at Pi (since � = 0 and

r → ∞ at Pi ). The submanifold � = 0 is also attracting at

Pi (since −3y + z = −2y − (y − z) → −∞ at Pi , assuming

β to be finite). Therefore the fixed point Pi is a saddle point

in the cases under consideration in this section.
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