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Abstract We develop a novel model for cosmological
hyperfluids, that is fluids with intrinsic hypermomentum that
induce spacetime torsion and non-metricity. Imposing the
cosmological principle to metric-affine spaces, we present
the most general covariant form of the hypermomentum ten-
sor in an FLRW Universe along with its conservation laws
and therefore construct a novel hyperfluid model for cos-
mological purposes. Extending the previous model of the
unconstrained hyperfluid in a cosmological setting we estab-
lish the conservation laws for energy–momentum and hyper-
momentum and therefore provide the complete cosmological
setup to study non-Riemannian effects in Cosmology. With
the help of this we find the forms of torsion and non-metricity
that were earlier reported in the literature and also obtain the
most general form of the Friedmann equations with torsion
and non-metricity. We also discuss some applications of our
model, make contact with the known results in the literature
and point to future directions.
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1 Introduction

General relativity is undoubtedly one of the most well estab-
lished, mathematically beautiful and properly formulated
Theories of Physics. Its nice geometrical interpretation along
with its solid predictions give enough reasons to call the lat-
ter a successful Theory. However, despite its great success
general relativity falls short in explaining the current cos-
mological data. More specifically, it fails to properly explain
the cosmological evolution at early times and cannot pre-
dict a late time accelerated expansion. As a result many the-
ories of modified gravity have been proposed [1]. Among
the many possibilities, one most intriguing, well motivated
and in the spirit of geometrization of Gravity is to gener-
alize the affine connection and relax the torsion-free and
metric-compatibility conditions. Then one is dealing with
a non-Riemannian geometry [2,3], where curvature torsion
and non-metricity are the intrinsic characteristics of space.
Restricting the aforementioned non-Riemannian geometry in
a certain way one obtains different formulations of gravity.
For instance, imposing vanishing torsion and non-metricity
we arrive at the well known metric theories, of which GR
is a special case. On the other hand, demanding vanishing
curvature and non-metricity we have the standard teleparal-
lel formulation [4] while if we allow only for non-metricity
and set curvature and torsion to zero we get the symmetric
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teleparallel scheme [5,6]. Yet, it is also possible to impose
only vanishing curvature and arrive at a generalized telepar-
allel formulation exhibiting both torsion and no-metricity
[7]. Leaving the geometrical objects of the space free of
constraints, we have the most general gravitational theory
supporting a non-Riemannian geometry, which is known as
Metric-affine gravity (MAG) [8–10].

In this article we will focus on the latter. MAG is unique
in its own right, it is known to be a Gauge theory of gravity
[8,11], it takes into account the microscopic characteristics
of matter (see discussion bellow) and also the modifications
it introduces are of purely geometrical nature. Indeed as we
mentioned, the geometric arena of MAG is a generalized non-
Riemannian geometry where apart from curvature, the space
also possesses torsion and non-metricity. That is, the extra
degrees of freedom (compared to GR) are due to the torsion
and non-metricity of spacetime which are linked to the micro-
structure of matter. From the above discussion becomes clear
that fluids that carry hypermomentum are very interesting
especially with regards to their cosmological applications.
In this direction, there are some very interesting models of
matter that carries hypermomentum, these include the ideal
hyperfluid [12] and the unconstrained hyperfluid [13]. The
first model [12] is actually a generalization of the so-called
Weyssenhoff fluid [14] for spinning particles where now the
fluid has also non-metric degrees of freedom but it continuous
to satisfy the Frenkel-type condition Jμνuμ = 0 = Jμνuν ,
where Jμν is the hypermomentum density. That is why this
model is dubbed the constrained hyperfluid. Then, it was
suggested in [15] that the hyperfluid should be free from the
Frenkel constraint and in [13] Obukhov presented the very
interesting model of the unconstrained hyperfluid.1 We will
briefly review the latter in the subsequent chapters and also
discuss how it can be used to obtain some (but not all) of the
non-Riemannain degrees of freedom in cosmology. We will
then propose an extension which, as we will show, produces
all the torsional and non-metric degrees of freedom that are
present in cosmology. Our proposal for the perfect cosmolog-
ical hyperfluid follows directly by applying the cosmological
principle to the hypermomentum tensor and the conservation
laws associated with it are obtained, as usual, by the diffeo-
morphism invariance of the matter sector of the action.

The article is organized as follows. Firstly, we make a
brief introduction in non-Riemannian geometry and intro-
duce our conventions etc. We then turn our attention on
the hypermomentum and energy momentum (canonical and
metrical) tensors and also briefly review the model of the
unconstrained hyperfluid. Continuing we discuss the non-
Riemannian degrees of freedom in an FLRW cosmology and

1 An alternative and also interesting model for perfect hyperfluid was
developed in [16]. Yet another interesting model of a fluid possessing
both spin and twist was constructed in [17].

explain how the above hyperfluid model can produce but few
of the aforementioned degrees of freedom. We should note
that up to section V the results are by no means new, we sim-
ply setup the formalism and offer a mini review on the subject
of MAG. The reader familiar with these concepts may skip
them and head directly to section V I where the new results of
this article are presented. There we present our novel model
for the perfect (or ideal) cosmological hyperfluid. By extend-
ing the cosmological principle to the hypermomentum, we
impose a vanishing Lie derivative for the latter and obtain
its most general covariant form in a homogeneous Universe,
which is spanned by 5 degrees of freedom. Then decompos-
ing the hypermomentum, we show how these 5 degrees of
freedom nicely split into 2 + 3, two for torsion and three for
non-metricity respectively. We then, equip our model with
the conservation laws for the energy momentum and hyper-
momentum which follow by the diffeomorphism invariance
of the matter action and are essentially the same with the
case of the unconstrained hyperfluid. Having obtained the
complete cosmological setup for the perfect cosmological
hyperfluid, we consider a MAG model consisting of the usual
Einstein–Hilbert action and consider the matter sector to be
that of the perfect cosmological hyperfluid. First, considering
a vanishing non-metricity and then a vanishing torsion, we
obtain the most straightforward modifications of the Fried-
mann equations in the presence of solely torsion and non-
metricity respectively. Then allowing for both we derive the
modified Friedmann equations in a general non-Riemannian
geometry (i.e. both torsion and non-metricity non-vanishing)
and also discuss some subtleties associated with the projec-
tive invariance of the gravitational action and the constraints
it imposes on the hyperfluid. We wrap up our results and
discuss applications of the proposed hyperfluid model.

2 Non-Riemannian geometry

In this section we briefly review the basic aspects of a non-
Riemmannian geometry and set up the definitions for the var-
ious geometrical objects we are going to be using throughout.

The structure of a non-Riemannian space is determined by
the metric tensor gμν which measures distances, defines dot
products and raises and lowers indices along with an affine
connection �λ

μν (or just ∇) which defines parallel transfer
of tensor fields through covariant differentiation. In our con-
ventions the covariant derivative of, say, a (1, 1) type tensor
reads

∇αT
μ
ν = ∂αT

μ
ν − �λ

ναT
μ
λ + �

μ
λαT

λ
ν (1)

The antisymmetric part of the affine connection defines the
torsion tensor

Sλ
μν := �λ[μν] (2)
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which naturally arises by acting the antisymmetrized covari-
ant derivative on a scalar

∇[μ∇ν]φ = Sλ
μν∇λφ (3)

Given a torsion tensor contracting it in its last two indices we
may define the torsion vector

Sμ := S λ
μλ (4)

which is obtained without the use of any metric and exists for
arbitrary space dimension-n. For n = 4 in particular there
also exists the torsion pseudo-vector

Ŝμ := εμαβγ S
αβγ (5)

where εμαβγ is the d-dimensional totally antisymmetric
Levi-Civita tensor. Considering again the antisymmetrized
covariant derivative, but now acting it on a vector field uμ it
follows that

[∇α,∇β ]uμ = 2∇[α∇β]uμ = Rμ
ναβu

ν + 2S ν
αβ∇νu

μ (6)

where

Rμ
ναβ := 2∂[α�

μ
|ν|β] + 2�

μ
ρ[α�

ρ
|ν|β] (7)

is the so-called Riemann or curvature tensor and the hori-
zontal bars around an index denote that this index is left out
of the (anti)-symmetrization. In non-Riemannian geometries
the only symmetry the latter possesses is antisymmetry in
its last two indices as it is obvious by its definition above.
Without the use of any metric, we can construct the two inde-
pendent contractions for the Riemann tensor2

Rνβ := Rμ
νμβ, ̂Rαβ := Rμ

μαβ (8)

The former defines as usual the Ricci tensor while the latter
is the tensor of homothetic curvature and is of purely non-
Riemannian origin. Once a metric is given we can form yet
another contraction

R̆λ
κ := Rλ

μνκg
μν (9)

However, the Ricci scalar is still uniquely defined since

R := Rμνg
μν = −R̆μνg

μν, ̂Rμνg
μν = 0 (10)

Now, in a generic non-Riemannian space the metric need
not be covariantly conserved, and we say that the connec-
tion is not metric-compatible. Exactly this deviation from
compatibility, defines the non-metricity tensor

2 See [18] for a nice discussion on these two contractions of the Rie-
mann tensor.

Qαμν = −∇αgμν (11)

The above can be contracted in two independent ways, giving
us the two non-metricity vectors

Qα := Qαμνg
μν, Q̂ν = Qαμνg

αμ (12)

The former is commonly referred to as the Weyl vector. With
the above definitions it is trivial to show (see for instance
[3,10]) that the general affine-connection can be decomposed
according to

�λ
μν = ˜�λ

μν + Nλ
μν (13)

where

Nαμν = 1

2
(Qμνα + Qναμ − Qαμν)− (Sαμν + Sανμ − Sμνα)

(14)

is called the distortion tensor and˜�λ
μν is the usual Levi-Civita

connection given by

˜�λ
μν := 1

2
gαλ(∂μgνα + ∂νgαμ − ∂αgμν) (15)

Objects appearing with a tilde will always denote Rieman-
nian parts unless otherwise stated. With the above connection
decomposition we can express any geometrical object into its
Riemannian piece plus non-Riemannian contributions com-
ing from torsion and non-metricity. For instance, substituting
the decomposition (13) into the definition of the Riemann
tensor we deduce

Rμ
ναβ = ˜Rμ

ναβ + 2˜∇[αNμ
|ν|β] + 2Nμ

λ[αN
λ|ν|β] (16)

and by contracting the latter we also get the decomposi-
tions for the Ricci tensor, Ricci scalar etc. Having developed
the minimum geometrical setup needed for the rest of our
analysis will now turn our attention to metric-affine gravity
(MAG).

3 Hypermomentum, canonical and metrical energy
momentum tensors

As it is known in the general metric-affine gravity (MAG)
framework the action is a functional of the metric, the inde-
pendent affine connection and the matter fields, namely3

S[g, �, φ] = SG [g, �] + SM [g, �, φ] (17)

3 Of course the action will also depend on the derivatives of the metric
and the connection. We are suppressing this dependence on the grounds
of convenience.
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where

SG [g, �] = 1

2κ

∫

dnx
√−gLG(g, �) (18)

SM [g, �, φ] =
∫

dnx
√−gLM (g, �, φ) (19)

represent the gravitational and matter sectors respectively
and φ collectively denotes the matter fields. Now, given a
matter action, we define as usual the metrical (symmetric)
energy–momentum tensor(MEMT) by

Tαβ := − 2√−g

δSM
δgαβ

= − 2√−g

δ(
√−gLM )

δgαβ
(20)

In MAG, the connection naturally couples to matter so we
now also have the variation

�
μν
λ := − 2√−g

δSM
δ�λ

μν

= − 2√−g

δ(
√−gLM )

δ�λ
μν

(21)

which is the so-hypermomentum tensor (HMT) [19] and
encompasses the microscopic characteristics of matter such
as spin, dilation and shear [8]. Note that if one works in the
equivalent formalism based on the vielbeins e c

μ
4 and the spin

connection ωμab then we have the definition of the canonical
energy–momentum tensor(CEMT) given by

tμc = 1√−g

δSM
δe c

μ

(22)

which is not symmetric in general. We should stress out that
the latter is not independent from the above defined MEMT
and HMT.5 Indeed, from its very definition, the use of the
chain rule and converting all tangent space indices to holo-
nomic ones we find

tμλ := 1√−g

δSM
δe c

μ

e c
λ = Tμ

λ − 1

2
√−g

∇̂ν(
√−g� μν

λ ) (23)

where

∇̂ν = 2Sν − ∇ν (24)

is the modified covariant derivative and we have also made
use of the identity

∇νe
a

μ = 0 = ∂νe
a
μ − �ρ

μνe
a
ρ + ωa

ν be
b
μ (25)

4 Here Latin indices a, b, c . . . denote Lorentz indices, that is tangent
space indices. The connection between the metric and the vielbeins is, as
usual, gμν = e a

μ e b
ν ηab where ηab is the tangent space (flat) Minkowski

metric tensor.
5 This is also apparent if one regards, e c

μ , gμν and �λ
μν as independent

variables and start with an action S[e, g, �]. It can be shown then, that
the field equations for the metric tensor are not independent from the
set coming from the e and � variations [8].

that connects the two formalisms and is oftentimes called
the vielbein postulate (even though it is not!). Of course, this
connection was known in the literature a long time ago (see
for instance [20,21]). Equation (23) will be our reference
point in constructing the cosmological Hyperfluid Model. In
fact, as we will demonstrate this very equation would stem as
the starting point for the first conservation law of the cosmo-
logical Hyperfluid. Note now that bringing all indices down
in (23) and antisymmetrizing one arrives at the conservation
law for total angular momentum (orbital + spin) [22]

2t[μν] = 1√−g
∇̂α(

√−gτ α
μν) − Qαβ[μ�

βα
ν] (26)

τ α
μν := � α[μν] (27)

It is worth mentioning that the conservation law for angu-
lar momentum receives, in general, contributions from non-
metricity as is obvious from the above exposure. It is
also evident from (23) that for matter with no microstruc-
ture (�αμν ≡ 0) the canonical and the metrical energy–
momentum tensors coincide. In addition contracting (23) in
μ = λ we get the trace relation

t = T + 1

2
√−g

∂ν(
√−g�ν) (28)

where

t := tμμ , T := Tμ
μ , �ν := �λν

λ (29)

and we have used the trivial identity ∇̂νDν = −∂νDν which
holds for arbitrary vector densities of weight w = 1. From
the last equation we see that for specific matter types, the
following relations hold true

T = 0 ⇔ 2t = 1√−g
∂ν(

√−g�ν) (30)

t = 0 ⇔ 2T = − 1√−g
∂ν(

√−g�ν) (31)

t = T ⇔ ∂ν(
√−g�ν) = 0 (32)

corresponding to the cases of a conformally invariant, a
frame rescaling invariant and special projective transforma-
tion invariant Theories respectively (see also [23]).

4 Unconstrained hyperfluid

As we have discussed, MAG takes into account the micro-
scopic characteristics of matter such as spin, dilation and
shear [8]. These properties are encoded in the hypermomen-
tum tensor and result in the creation of spacetime torsion and
non-metricity. Perhaps the most known example of a fluid
with micro-structure is the Weyssenhoff [14] spinning fluid
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which produces a non-vanishing spacetime torsion and fits
nicely into the scheme of Einstein–Cartan Theory. However,
such a fluid is not compatible with the cosmological Prin-
ciple, as shown by Tsamparlis [24], and therefore this kind
of torsion cannot exist in a homogeneous FLRW Universe.
There are however two torsional degrees of freedom that are
allowed in a homogeneous 4-dim Cosmology, one of which
was analyzed in [25] (see also [26] for the general case).
The task would now be to develop a fluid model that encom-
passes the non-metric degrees of freedom as well. Such mod-
els do exist and are the ideal (constrained) hyperfluid [12] and
the revised unconstrained hyperfluid [13], the latter being a
refined version of the former where the Frenkel-type condi-
tion is relaxed. However, as we will demonstrate by extending
the cosmological Principle, this model can produce only two
of the five known non-Riemannian degrees of freedom in
an FLRW Universe and, in addition, cannot account for tor-
sional degrees of freedom. By extending it in a certain way
so as to respect the cosmological Principle we will present
the most general covariant form of the latter that produces
the expected non-Riemannian cosmological degrees of free-
dom. Before doing so, let us first briefly review the uncon-
strained hyperfluid model which is closer to the cosmological
Hyperfluid we are proposing here and will give us an insight
on how to proceed. First, we note that for the unconstrained
hyperfluid, the metric stress–energy and the canonical energy
momentum tensor coincide [13] and the conservation laws
for energy–momentum and hypermomentum read

− 2√−g
∇̂μ(

√−gTμ
ν) = �αβγ Rαβγ ν

−1

2
QναβT

αβ − 2SναβT
αβ (33)

∇̂ν

(√−g�μν
λ

)

= 0 (34)

which, as usual, are obtained from the diffeomorphism invari-
ance of the matter action. In addition, in this case the forms
of Tμν and �αμν decouple and are given by

Tμν = ρuμuν + phμν (35)

�
μν
λ = Jμ

λ uν (36)

respectively [13], in contrast to the (constrained) hyperfluid
where their forms mix-up [12]. In the above, Tμν is the usual
energy–momentum of the perfect fluid and Jμν is the hyper-
momentum density of the hyperfluid. In the first hyperfluid
model, the latter obeyed the Frenkel-type condition

Jμνu
μ = 0 = Jμνu

ν (37)

which is a direct generalization of the Frenkel condition
on spin density sμνuμ = 0 (sμν = −sνμ being the spin
density). Note that when non-metricity is switched-off the

hypermomentum density coincides with the spin density (i.e.
Jμν = sμν). In the general case, the spin density is given
by the antisymmetric part of Jμν which contains a symmet-
ric part as well. More information regarding the constrained
and the unconstrained ideal hyperfluid may be found in the
original and most interesting papers of Obukov [12,13]. We
shall now discuss how the above model is applied to Cos-
mology and also propose a slight generalization in order to
establish what we shall call a Perfect (or Ideal) cosmological
Hyperfluid. Before doing so we will briefly discuss the role
of torsion and non-metricity in cosmology.

5 Cosmology with torsion and non-metricity

To begin with let us note that in a cosmological setting, tor-
sion has one or two degrees of freedom depending on the
spatial dimensionality. Indeed, as shown by Tsamparlis [24]
if we consider a 1 + (n − 1) = 1 + m spacetime split6

where m is the number of spatial dimensions, and apply the
cosmological Principle to torsion7 then for m �= 3 the only
non-vanishing components of torsion read [24]

S1
01 = S2

02 = S3
03 = · · · = Sm0m (no sum) (38)

which are essentially described by one degree of freedom.
For m = 3, there also exists the possibility for a completely
antisymmetric torsion part and the only non-vanishing com-
ponents are

S1
01 = S2

02 = S3
03 (39)

Si jk ∝ εi jk (40)

and therefore, in a 4-dimensional FLRW Universe, tor-
sion contributes two degrees of freedom. Focusing on non-
metricity now, it was shown in [27] that in this case, the
non-vanishing components of the latter in a 4 − dim FLRW
Universe are

Q000 (41)

Q011 = Q022 = Q033 (42)

Q110 = Q220 = Q330 (43)

and we see that the non-metricity is essentially described by
three independent degrees of freedom. We should note that
each of the five components of torsion and non-metricity
can depend only on time as any other coordinate dependence

6 In his proof [24] Tsamparlis presented a more general split of the
form m + (n −m). However, for our purposes the classical 1 + (n − 1)

split will do, since this is relevant to cosmology.
7 This means to impose a vanishing Lie derivative on the torsion tensor,
i.e. £ξ Sλ

μν = 0.
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would break isotropy and therefore it is not allowed in such a
spacetime. Now, ideally, one would like to have a hypermo-
mentum model that naturally produces the 5 aforementioned
degrees of freedom for torsion and non-metricity in an FLRW
cosmology. This is the main purpose of this paper, and as we
will show, the hypermomentum model we propose consists
of exactly 5 degrees of freedom which naturally split into
2 for torsion and 3 for non-metricity. In addition, in order
to maintain generality we also present the model for arbi-
trary spacetime dimensions and discuss the differences that
arise compared to the special n = 4 case. Of course writ-
ing down the general ansatz for the hypermomentum in an
FLRW Universe is, by itself, somewhat trivial. To construct
a valid model we should also equip it with a set of conserva-
tion laws that specify the evolution of these non-Riemannian
degrees of freedom. Therefore our task would be to first write
down the most general form for hypermomentum in a homo-
geneous cosmology and then impose the proper conservation
laws governing the evolution of it.

6 Application of the unconstrained hyperfluid model to
cosmology

Let us see now how the aforementioned unconstrained hyper-
fluid model fits into a cosmological setting and also discuss
the modifications and extensions one should consider in order
to obtain a cosmological Hyperfluid that produces all the
degrees of freedom of torsion and non-metricity in cosmol-
ogy. Recall that in this model the hypermomentum tensor has
the form

�αμν = Jαμuν (44)

Let us now consider a homogeneous cosmological setup. As
usual, considering an observer with a normalized n-velocity
field (uμuμ = −1) we define the projection operator and
temporal derivative

hμν = gμν + uμuν (45)

˙= uα∇α (46)

which constitute an 1 + (n − 1) spacetime split.8 Then, the
most general form of Jαμ in such a setting reads

Jαμ = φhαμ + ωuαuμ (47)

8 In [28], in deriving the generalized Raychaudhuri equation with tor-
sion and non-metricity we considered a more general split when the
velocity field was not assumed to be normalized. Then the projection
also changes accordingly [28].

where φ(t) and ω(t) are functions of time only. It is obvious
then that in this case the hypermomentum, being of the form

�αμν = φhαμuν + ωuαuμuν (48)

can reproduce only two out of the five (or four) non-
Riemannian degrees of freedom. In addition, in this case

�[αμ]ν = 0 (49)

and therefore it is difficult to excite torsional degrees of free-
dom, at least in standard models. Indeed, let us consider the
torsional model studied in [25]. In this theory we start with
the usual Einstein–Hilbert action, assume vanishing non-
metricity and a fluid that produces torsion of the form

Sαμν = 2u[αhν]α�(t) (50)

The connection field equations of the Theory read

2
(

gμνSλ − Sμδν
λ + gμσ Sν

σλ

)

= κ�
μν
λ (51)

with this we can compute the form of hypermomentum that
produces such kind of torsion

κ�αμν = 4�
(

uαgμν − uμgαν

)

= κ�[αμ]ν (52)

Comparing the latter with (49) we see that the unconstrained
hyperfluid is incapable of producing the torsion form (50). It
is also evident that (48) cannot reproduce the pseudoscalar
form (40) either. In addition, the hypermomentum (48) in an
FLRW Universe is either purely dilatonic (for ω = −φ) or is
disformaly related to matter of dilatonic type. This is readily
seen by writing

�αμν = ĝαμ�ν, �ν := �αμνg
αμ (53)

where

ĝμν = 1

(n − 1)φ − ω

[

φgμν + (φ + ω)uμuν

]

(54)

is the deformed metric. This kind of matter (dilatonic) pro-
duces non-metricity that in a standard cosmological setting
always accelerates gravitational collapse. We demonstrate
this in greater detail in [29]. This behaviour had also reported
earlier in the work [30]. However, one would expect to have
more possibilities and also have contributions coming from
shear as well. In this direction, we shall now generalize the
form of the hypermomentum so as to encompass not only
dilatonic but also torsional and shear contributions.
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7 Novel model for cosmological perfect hyperfluid

To construct our cosmological hyperfluid model, firstly we
must restrict the form of the hypermomentum in order to sat-
isfy the cosmological principle and secondly we must inde-
pendently equip the model with a set of conservation laws for
the energy–momentum and hypermomentum tensors. Let us
start by deriving the allowed form of hypermomentum in an
FLRW Universe.

Our starting point is to use the high symmetry of the FLRW
spacetime and constrain the form of the hypermomentum in
such a space. This can be achieved by demanding a vanishing
Lie derivative of all objects living in the host spacetime. As
we already mentioned, this procedure was followed in [24]
in order to obtain the allowed forms of torsion in an FLRW
Universe and in [27] for the allowed non-metricity. Applying
this to the hypermomentum tensor we have

£ξ�
μν
λ = 0 (55)

or equivalently

£ξ�αμν = 0 (56)

where we have used the fact that £ξ gαλ = 0. The above
demand implies that9

�i00 = �0i0 = �00i = 0 (57)

This can be easily understood, since any of the above terms
given that it was not vanishing would create a preferred spa-
tial direction and therefore destroy the isotropy of the model.
In addition we have

�i jk = 0 (58)

for m �= 3 and

�i jk ∝ εi jk (59)

for m = 3 where m = n − 1 denotes spatial space dimen-
sionality. With the above results and given the fact that the
only building blocks of an FRW model are the metric (or the
projector hμν) and the four velocity uμ, we state the most
general covariant form of the hypermomentum to be

�αμν = φgμαuν + χgναuμ + ψuαgμν + ω̃uαuμuν

+εαμνκu
κζ (60)

9 The proof is direct a generalization of the proof of outlined in [24]
in order to obtain the possible forms of torsion in cosmology, the only
difference being that we now apply it to a general type-(0, 3) tensor
without any symmetry. For more details on this proof (in the case of
torsion), the reader is refereed to [24].

for m = 3 and

�αμν = φgμαuν + χgναuμ + ψuαgμν + ω̃uαuμuν (61)

for m �= 3, where φ, χ,ψ, ω̃ and ζ are functions of time.
The above can equivalently be expressed as

�αμν = φhμαuν + χhναuμ + ψuαhμν + ωuαuμuν

+εαμνκu
κζ, m = 3 (62)

�αμν = φhμαuν + χhναuμ + ψuαhμν

+ωuαuμuν, m �= 3 (63)

ω = ω̃ − φ − ψ − χ (64)

which turns out to be much more convenient for the calcula-
tions. We may combine the above into the single expression

�(n)
αμν = φhμαuν + χhναuμ + ψuαhμν + ωuαuμuν

+δn,4εαμνκu
κζ (65)

where δn,4 is Kronecker’s delta. This is the most general
covariant form of the hypermomentum tensor that is in accor-
dance with the Copernican Principle and thus the most gen-
eral form of hypermomentum for FRW Universes and (to the
best of our knowledge) it is presented here for the first time.
Any cosmological fluid carrying torsion and non-metricity
would be a subcase of the latter. Note that the evolution of
hypermomentum is governed by 5 (4 for m �= 3) functions
of time. This is in accordance with the fact that the symme-
try of FRW allows only for 2 (1 for m �= 3) torsional and 3
non-metric components. Our result is in perfect agreement
with these facts since the above 5 (4 for m �= 3) degrees of
freedom for hypermomentum beautifully split into the 2 + 3
(1 + 3 for m �= 3) components for torsion and non-metricity
respectively. This is easily seen by decomposing hypermo-
mentum into its antisymmetric, dilatonic, and proper shear
parts according to

�[αμ]ν = (ψ − χ)u[αhμ]ν + δn,4εαμνκu
κζ (66)

�ν := �αμνg
αμ =

[

(n − 1)φ − ω
]

uν (67)

�̆αμν = �(αμ)ν − 1

n
gαμ�ν

= (φ + ω)

n

[

hαμ + (n − 1)uαuμ

]

uν

+ (ψ + χ)u(μhα)ν (68)

respectively. The antisymmetric part is known to be related
with the spin part of torsion [8] while the dilation and proper
shear (symmetric traceless part) are most often related to
non-metricity. In particular, from the above three currents
the shear seems to be the most elusive one but there is an
interesting possibility of connecting it to the hadronic prop-
erties of matter [31–33]. From the above decompositions we
see that two degrees of freedom are related to torsion (or one
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for m �= 3) and the remaining three are reserved for non-
metricity. To be more specific, from the above we see that
two degrees of freedom (or one dof for m = 3) are given to
the antisymmetric (in the first two indices) and completely
antisymmetric part of hypermomentum, another degree of
freedom is given to the dilation (trace) and two degrees of
freedom govern the evolution of shear (symmetric traceless
part of hypermomentum). Of course the above results for the
covariant form of the hypermomentum can also be applied
to the distortion tensor and one finds

N (n)
αμν = X (t)uαhμν + Y (t)uμhαν + Z(t)uνhαμ

+V (t)uαuμuν + εαμνλu
λW (t)δn,4 (69)

representing the most general form of distortion tensor in an
FLRW Universe. Again W(t) is a pseudoscalar that exists
only for m = 3. In addition, we may express the covariant
forms for torsion and non-metricity as10

Qαμν = A(t)uαhμν + B(t)hα(μuν) + C(t)uαuμuν (71)

S(n)
μνα = 2u[μhν]α�(t) + εμναρu

ρ P(t)δn,4 (72)

Note that the functions determining the distortion are linearly
related with the functions of torsion and non-metricity! This
is easily shown by using the relations

Qναμ = 2N(αμ)ν, Sμνα = Nα[μν] (73)

which result in

2(X + Y ) = B, 2Z = A, 2V = C,

2� = Y − Z , P = W (74)

or inverting them

W = P, V = C/2, Z = A/2 (75)

Y = 2� + A

2
, X = B

2
− 2� − A

2
(76)

Given that the matter Lagrangian is linear in the connec-
tion and the Gravitational sector is linear in the curvature
and mostly quadratic in Sαμν and Qαμν , the above functions
spanning torsion and non-metricity would be algebraically
related (and produced by) with the functions that parametrize
the hypermomentum.

10 For highly symmetric cases, like spherical symmetry, it is also very
convenient to use the irreducible decompositions of torsion and non-
metricity [8,34]. For instance, non-metricity consists of the following
fields [35]

Qαβγ ∼ spin 3 ⊕ spin 2 ⊕ 2 × spin 1, (70)

while torsion’s maximal spin content is 2 (see [8]).

7.1 Conservation laws

In order to derive the conservation laws for our hyperfluid
model we will, as usual, employ the diffeomorphism invari-
ance of the matter action. These conservation laws for gen-
eral MAG theories have been obtained in [22,36].11 In our
notations they read

1√−g
∇̂μ(

√−gtμα) = 1

2
�λμνRλμνα + 1

2
QαμνT

μν

+2Sαμν t
μν (77)

tμλ = Tμ
λ − 1

2
√−g

∇̂ν(
√−g� μν

λ ),

∇̂ν := 2Sν − ∇ν (78)

Note that the second of the above is exactly the relation we
obtained in the previous section connecting the three energy
related tensors. In addition, as seen from the first one, the met-
rical energy momentum naturally couples to non-metricity
while the canonical couples to torsion. With the help of the
above we will construct the conservation laws for our model.
Our basic assumption is that the metrical coincides with the
canonical energy–momentum tensor, that is

tμν = Tμν (79)

Note that this was also a consequence of the unconstrained
hyperfluid of [12]. One could argue that (79) could not be so
since the CEMT is asymmetric in general while the MEMT
is symmetric by construction. However we should recall that
our model is tailored for homogeneous cosmologies, in which
any antisymmetric two index object vanishes identically. This
means that t[μν] ≡ 0 in a homogeneous cosmological setup
and therefore there is only the symmetric part it tμν = t(μν)

which we assume to be equal to Tμν . Having clarified this,
the conservation laws for our model take their final form

∇̃μT
μ
ν = 1

2
�αβγ Rαβγ ν (80)

∇̂ν

(√−g�μν
λ

)

= 0 (81)

where in arriving at the above we have also expanded ∇μT
μ
ν

into its Levi-Civita part plus non-Riemannian contributions.
It is also worth stressing out that the dilatonic part �ν

always scales as 1
an−1 (a being the scale factor) regardless of

the Gravitational action.12 This is easily proved by contract-

11 We also derive a mixing of these conservation laws in the Appendix.
Note also that their form when matter decouples from the connection
(Palatini) and the subsequent conservation of the energy–momentum
tensor was given in [37].
12 Of course the form of a(t) will depend upon the gravitational action,
but the relation between the dilation and the scale factor will always the
same as we prove.
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ing the conservation law (81) of hypermomentum in μ, λ to
obtain

∇̂ν(
√−g�ν) = 0 (82)

or equivalently

∂ν(
√−g�ν) = 0 (83)

that is

�ν = c0uν

an−1 (84)

where c0 is some integration constant. In addition, comparing
the latter with (67) we get the constraint

(n − 1)φ − ω = c0

an−1 (85)

The above equation is kinematical in the sense that its form
is independent of the gravitational action that we consider,
namely it is valid for any Theory. It is also worth pointing out
that if the gravitational part of the action depends explicitly
only on the curvature tensor (and the metric of course) then
Eq. (83) holds true identically not only for our hyperfluid
model but for any Theory. Indeed, any gravitational action
of the form

SG = S[gμν, R
λ
αβγ (�, ∂�)] (86)

is invariant under special projective transformations, the so-
called λ-transformations

�λ
μν −→ �λ

μν + δλ
μ∂νλ (87)

since, as can be trivially checked, the Riemann tensor remains
invariant (Rλ

αβγ → Rλ
αβγ ) under the above connection trans-

formation. Then implementing this to the matter action, up
to surface terms we obtain the constraint

∂μ(
√−g�μ) = 0 (88)

which has the form of a conservation law (see also [23,38])
and is valid for any model, not just for our cosmological
hyperfluid. Let us now try to see the conservation law from
another perspective and ask the following. What restrictions
does the conservation law (81) imposes on the underlying
geometry and under what circumstances does it hold as an
identity without affecting the geometry? Phrasing it differ-
ently we may ask, what kind of invariance could impose the
conservation law (81) identically? Giving it a little though we

come up with such a transformation. Consider the connection
transformation13

�λ
μν −→ �λ

μν + ∇νξ
λ
μ (89)

where ξλ
μ is an arbitrary type (1, 1) tensor field. Then, if the

Gravitational part is invariant under the above transforma-
tion, this invariance is carried over to the matter part and one
has

δSM = 0 = −1

2

∫

dnx
√−g�μν

λ ∇νξ
λ
μ (90)

Now, partially integrating, disregarding surface terms and
using the fact that ξλ

μ is arbitrary, the above invariance gives
us the desired conservation law

∇̂ν

(√−g�μν
λ

)

= 0 (91)

Note that if the action is not invariant under (89) additional
constraints must be imposed on the geometry so as to obtain
(91). To see this let us consider a MAG Theory consisting of
the usual Einstein Hilbert term and some matter fields that
carry hypermomentum. Then, considering the transforma-
tion (89) where ξλ

μ is an infinitesimal, the Riemann tensor
changes according to

Rμ
ναβ −→ Rμ

ναβ + Rμ
λαβξλ

ν − Rλ
ναβξ

μ
λ (92)

where in arriving at the above we have used the Bianchi
identity for ∇[α∇β]ξλ

μ and have kept only linear terms in ξλ
μ.

With this we can see that the Ricci scalar transforms as

R → R + (Rμν + R̆νμ)ξμν (93)

From this it is apparent that for the geometries for which

Rμν = −R̆νμ (94)

the Ricci scalar remains invariant under (89). When the Grav-
itational sector respects this invariance this is also applied to
the matter sector of the Theory and we get the conserva-
tion law (91) for hypermomentum. Put another way, if the
Theory at hand is invariant under (89) then the conservation
law (120) follows as a consequence of this invariance. If it
is not invariant, additional constraints must be imposed on
the underlying geometry to make it so. In fact for our above

13 Note also that the class of special projective transformations is
included in (89). Indeed, for ξλ

μ = δλ
μλ where λ is an arbitrary scalar, the

above connection transformations becomes a special projective. In this
sense, a Theory that is invariant under (89) is also invariant under spe-
cial projective transformations. Of course, it is evident that the converse
is not true.
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example we can check this statement explicitly. Consider the
Theory

S[g, �, φ] = 1

2κ

∫

dnx
√−gR + SM [g, �, φ] (95)

where the first term is the usual Einstein–Hilbert action, SM
denotes the matter sector and φ the matter fields that produce
spacetime torsion non-metricity. Variation of the latter with
respect to the metric and the independent connection, yields
the set of field equations

R(μν) − 1

2
Rgμν = κTμν (96)

P μν
λ := −∇λ(

√−ggμν)√−g
+ ∇σ (

√−ggμσ )δν
λ√−g

+ 2(Sλg
μν − Sμδν

λ + gμσ S ν
σλ) = κ�

μν
λ (97)

After some lengthy but rather straightforward calculations
we finally arrive at (see Appendix)

∇̂ν

(

− ∇λ(
√−ggμν) + ∇σ (

√−ggμσ )δν
λ

+√−g(Sλg
μν − Sμδν

λ + gμσ S ν
σλ)

)

= −√−ggμν(R̆νλ + Rλν) (98)

or employing the connection field equation

κ∇̂ν

(√−g�μν
λ

)

= −√−ggμν(R̆νλ + Rλν) (99)

From which we conclude that for the class of geometries for
which (94) holds true, the law (91) follows. We should note
that for an FLRW Universe and for vanishing non-metricity
the right hand side of (99) vanishes independently making
the left hand side of the latter equation an identity. We will
see the implications of this in the sequel. Moreover, it is also
worth mentioning that the above restriction on geometries
is also imposed on the unconstrained hyperfluid model [13]
since the conservation law (91) we impose is essentially the
same and only the covariant form of the hypermomentum
differs between the two models. This change however, is
very crucial and predicts a totally different dynamics as we
explicitly show in what follows.

7.2 Conservation laws in FLRW Universes

Notice that in deriving the conservation laws of the previous
section we made no assumption about the symmetries of the
space. In order to obtain their form for homogeneous cos-
mologies we combine Eqs. (35) and (65) with (80) and (81)
to arrive at

[

ρ̇ + (n − 1)H(ρ + p)
]

uν + (ρ + p)uμ
˜∇μuν

= 1

2
uμ(φ̂Rμν + χRμν + ψ R̆μν) (100)

−δ
μ
λ

∂ν(
√−gφuν)√−g

− uμuλ

∂ν

(√−g(φ + χ + ψ + ω)uν
)

√−g

+
[

(

2Sλ + Qλ

2

)

uμ − ∇λu
μ

]

χ

+
[

(

2Sμ + Qμ

2
− Q̃μ

)

uλ − gμν∇νuλ

]

ψ

+uμuλ(χ̇ + ψ̇) − (φ + χ + ψ

+ω)(u̇μuλ + uμu̇λ) = 0 (101)

The dynamics of the perfect cosmological hyperfluid is con-
tained in the above two equations. We can simplify (100) even
further by first noticing that the homothetic curvature (being
the field strength of Qμ) identically vanishes for homoge-
neous cosmologies R̂μν ≡ 0 and also that uνuα∇̃αuν = 0
since the Levi-Civita connection is metric compatible. Then,
contracting (80) with uν we get

ρ̇ + (n − 1)H(ρ + p) = −1

2
uμuν(χRμν + ψ R̆μν) (102)

Some comments are now in order. Firstly, from Eq. (81) it
is clear that the evolution of the non-Riemannian degrees of
freedom does not interfere with the perfect fluid elements
(ρ,p) but on the other hand, the perfect fluid continuity equa-
tion receives additional contributions coming from hyper-
momentum as seen from (144) (see also Eq. (80)). This
was not so for the unconstrained hyperfluid model where
one can easily see that for the hypermomentum of the form
�αβγ = Jαβuγ the contribution �αβγ Rαβγ ν vanishes iden-
tically for FLRW spacetimes and one arrives at the classic
continuity equation ˜∇μT

μ
ν = 0. Note that the additional con-

tribution we get on the right-hand side is in agreement (when
contacted with uν) with [25] for the purely torsion case. Sec-
ondly, we see that the pseudoscalar torsional degree of free-
dom ζ contains no direct dynamics since it is totally absent
from (101).

Another point worth mentioning is that due to the high
symmetry of the FLRW spacetime, the conservation law
(101) or equivalently (81) contains only two independent evo-
lution equations for the 5 (or 4) fields describing how hyper-
momentum develops with the passing of time. In order to get
a complete description for all degrees of freedom one must
provide three equations of state relating the fields φ, χ,ψ, ω

and ζ with one another. Note that this is really no different
from the classical prefect fluid description of GR (without
hypermomentum) where the conservation law for the energy
momentum tensor ˜∇μTμν = 0 really contains only one
equation (the continuity equation) in an FLRW spacetime.
Recall that in this case this is the continuity equation which
gives the evolution of fluid’s density ρ and one must also
impose an equation of state of the form p = wρ in order
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to close the system of equations and obtain the evolution for
the fluid’s pressure p as well. Similarly, in the case of the
perfect cosmological hyperfluid, one must provide 3 (or 2
for m �= 3) equations of state relating the hypermomentum
components, which when combined with (101) will give the
complete description of the hyperfluid. The exact relation
between these fields will depend on the hydrodynamic prop-
erties of the fluid under investigation much like the case of
the classical perfect fluid. In the appendix we demonstrate
how one can obtain such equations of state by considering
a concrete example of a scalar field coupled to the connec-
tion. Let us now recap our proposed cosmological hyperfluid
model with the following proposition.

Proposition 1 There exists a perfect cosmological hyper-
fluid for which the canonical and the metrical energy–
momentum tensors coincide, and is therefore subject to the
following conservation laws

˜∇μT
μ
ν = 1

2
�αβγ Rαβγ ν (103)

∇̂ν

(√−g�μν
λ

)

= 0 (104)

for the energy–momentum and hypermomentum currents
respectively. The former has the classic perfect fluid form

Tμν = ρuμuν + phμν (105)

while the latter is given by

�(n)
αμν = φhμαuν +χhναuμ +ψuαhμν +ωuαuμuν + δn,4εαμνκu

κζ

(106)

which is the most general covariant form for the hypermo-
mentum that is compatible with the cosmological principle.
The above doublet of conservation laws alongwith the proper
set of equations of state for the various fields, endowed with
the field equations of the Theory under consideration, pro-
vide a complete guide for the description of non-Riemannian
effects (torsion and non-metricity) in cosmology.

7.3 Fluid motion

Let us now discuss the motion of the elements of the hyper-
fluid. As usual the fluid motion is obtained by the conserva-
tion laws. In our case as we have seen previously, it holds
that

˜∇μT
μ
ν = 1

2
�αβγ Rαβγ ν (107)

Now, expanding the left hand side and using (144) the latter
is brought to the form

d2xλ

dλ2 + ˜�λ
μν

dxμ

dλ

dxν

dλ
= 1

2(ρ + p)
�αβγ Rαβγρh

ρλ (108)

where λ is an affine parameter and we have also developed
uμ

˜∇μuν and have raised the free index. Note now that in
a Cosmological setting, �αβγ Rαβγρ having one free space-
time index can only be proportional to the four-velocity uρ

which, on the other hand, is orthogonal to the projector hρν .
Therefore, the right hand side of the above vanishes leaving
us with the ordinary geodesic equation

d2xλ

dλ2 + ˜�λ
μν

dxμ

dλ

dxν

dλ
= 0 (109)

We therefore conclude that the elements of the hyperfluid
continue to follow the Riemannian geodesics. Of course this
result came as a consequence of the high symmetry of the
FLRW Universes and we do not expect it to hold true for
more general spacetimes, as is apparent from (107). We now
move on to discuss specific applications of the model.

8 Friedmann equations with torsion and non-metricity

Given that we are in the MAG framework, the most straight-
forward way to generalize the classic Friedmann equations,
is to consider the Einstein Hilbert action along with the pres-
ence of a hyperfluid which we shall take to be the perfect cos-
mological hyperfluid. In the following discussion we shall
consider a flat (K = 0) FLRW Universe with the usual
Robertson–Walker line element

ds2 = −dt2 + a2(t)δi j dx
i dx j (110)

Let us start our discussion with the case of vanishing non-
metricity.

8.1 The case of pure torsion

If we start with the Einstein–Hilbert action, considering van-
ishing non-metricity and allowing hyperfluid induced torsion
we have the following field equations

R(μν) − 1

2
Rgμν = κTμν (111)

Pμν
λ = κ�

μν
λ (112)

Now, since non-metricity is zero, the Palatini tensor reads

Pμν
λ = 2

(

gμνSλ − Sμδν
λ + gμσ S ν

σλ

)

(113)
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In addition, as we have seen in an FLRW Universe one of the
two allowed14 forms for torsion is

Sμνα = 2φu[μgν]α (114)

From the above we find the form of hypermomentum that
induces this kind of torsion

κ�αμν = 2(n − 2)φ
(

uαgμν − uμgαν

)

(115)

and thus for n = 4

κ�αμν = κ�[αμ]ν = 4φ
(

uαgμν − uμgαν

)

(116)

Then, considering the post Riemannian expansions of the
Ricci tensor and scalar, and taking the 00 and i j components
of the metric field equations we easily obtain the modified
Friedmann equations in the presence of torsion (see also [25])

H2 = κ

3
ρ + 4Hφ − 4φ2 (117)

ä

a
= −κ

6
(ρ + 3p) + 2φ̇ + 2Hφ (118)

Let us now recall our conservation laws for the perfect cos-
mological hyperfluid. They read

˜∇μT
μ
ν = 1

2
�αβγ Rαβγ ν (119)

∇̂ν

(√−g�μν
λ

)

= 0 (120)

where, as usual

Tμν = ρuμuν + phμν (121)

and for the given case �μνα is given by (115). Now, we
readily compute

�αβγ Rαβγ ν = 4φ
[

(n − 3)ρ + (n − 1)p
]

uν (122)

Then, expanding (119) and contracting with uν we finally
obtain

ρ̇ + 3H(ρ + p) = 2φ(ρ + 3p) (123)

which is in perfect agreement with the corresponding con-
tinuity equation used in [25].15 This justifies the self-
consistency of our proposed model. Note that the afore-
mentioned conservation law for the density was derived in
[25] by using the Bianchi identities. Here we obtained it

14 Recall that there is also the pseudoscalar degree of freedom which
we shall ignore here for the purposes of this example.
15 Note the different definitions used there. In particular our φ′s are
related through φ → −φ.

by employing the diffeomorphism invariance of the matter
action. The two procedures yield, as expected, the same result
with the only difference being that the second method leads
us straightforwardly to the conservation law. As far as the
evolution of φ is concerned in this case the conservation law
for the hypermomentum trivializes in an FLRW background
because the latter is antisymmetric in its first two indices as
is clear from (116). This feature of was already pointed out
in [26] but no explanation was given there. Here we have
already explained why this is so. The reason behind the arbi-
trariness of φ traces back to Eq. (99). As we have mentioned
the right-hand side of that equation vanishes identically in an
FLRW spacetime if the non-metricity is zero and therefore
the left-hand side of the same equation vanishes identically
as well without imposing any constraint on the sources. We
shall now switch off torsion and focus on the effect of non-
metricity.

8.2 The case of pure non-metricity

Turning now our attention to non-metricity, we shall start
with the simplest case which is the Weyl non-metricity and
then derive the equations for the general case. Considering
again a Theory consisting of the Einstein–Hilbert action and
a non-metric hyperfluid, the field equations read

R(μν) − 1

2
Rgμν = κTμν (124)

P (μν)
λ = κ�

(μν)
λ (125)

where P (μν)
λ is the torsion-free symmetrized Palatini tensor,

given by

P (μν)
λ = 1

2
Qλg

μν − Q μν
λ +

(

Q̃(μ − 1

2
Q(μ

)

δ
ν)
λ (126)

Note the symmetrization in μ, ν that occurs now due to the
fact that we started with a symmetric connection right from
the beginning (i.e. we imposed vanishing torsion).

8.2.1 Weyl non-metricity

We now assume that the non-metric hyperfluid is such that it
produces a Weyl non-metricity of the usual type

Qαμν = 1

n
Qαgμν = A(t)uαgμν (127)

where A(t) is the function that monitors the effect of non-
metricity. This follows as a special case of our Perfect Cos-
mological Hyperfluid, for which the symmetrized hypermo-
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mentum takes the form16

κ�
μν
λ = (n − 2)

2n

[

Qλg
μν − δ

(μ
λ Qμ)

]

(128)

or

κ�αμν = (n − 2)

2
A(t)

[

uαgμν − gα(μuν)

]

(129)

Following an identical procedure to the one we outlined pre-
viously, after some calculations we finally find the modified
Friedmann equations in the presence of Weyl non-metricity

H2 = κ

3
ρ + H A − A2

4
(130)

ä

a
= −κ

6
(ρ + 3p) + Ȧ

2
+ H A

2
(131)

Note that the torsional Friedmann equations of the previous
section are mapped to the ones here and vice versa upon the
duality exchange

A ↔ 4φ (132)

which holds between vectorial torsion and Weyl non-
metricity as we have reported in our previous works [28,39]
(see also [40]). Now, the conservation laws for the above case
read

ρ̇ + 3H(ρ + p) = A

2
(ρ + 3p) (133)

while the conservation law for hypermomentum trivializes.
This again has to do with the restricted geometry we imposed
in this simple example. Indeed, as can be straightforwardly
checked, for vanishing torsion and for Weyl non-metricity
it holds that Řμν + Rνμ = 0 in an FLRW spacetime. The
latter condition results in the trivialization of the conservation
law for hypermomentum just like the pure torsion case we
discussed earlier. We should note that such trivializations
occur only because we have greatly restricted the underlying
geometry. Allowing for a richer geometrical structure we get
a complete set of equations as we show with the following
example.

16 A cautionary remark is in order now. It should be strongly empha-
sized that one must first make an ansatz for the hypermomentum and
subsequently derive the desired form for non-metricity (or torsion) and
not the other way around since hypermomentum is the source. Consid-
ering an ansatz for non-metricity (or torsion) and then computing the
hypermomentum, one runs the risk of loosing degrees of freedom that
are originally contained in hypermomentum and subsequently arrive at
inconsistent conservation laws.

8.2.2 General non-metricity

Let us now allow all three degrees of freedom for non-
metricity and present the most straightforward generalization
of Friedmann equations in the presence of non-metricity.17

In the most general case where the non-metricity tensor is
given by (71) after some laborious calculations, from the
metric field equations we finally extract [29]

H2 = κ

3
ρ − 1

2
H

(

3

2
B − A + C

)

− 1

4
Ḃ

+1

8
B(A − C) + 1

4
AC (134)

ä

a
= −κ

6
(ρ + 3p) + H

(

A + C

2

)

+1

2
Ȧ − 1

4
A(A + C) (135)

These above constitute the most straightforward (minimal)
modification of Friedmann equations in the presence of non-
metricity. More details on the derivation and also on the anal-
ysis of the latter we will present elsewhere [29]. The above
equations are supplemented with the conservation laws (80)
and (81). Taking the various components of the aforemen-
tioned laws, we find the evolution of ρ, p and the hypermo-
mentum. Then, the functions spanning the hypermomentum
are algebraically related to the three non-metricity functions
as can be easily shown by using the relation between the
distortion and hypermomentum [41]. Again, the complete
study of this goes beyond the purposes of this paper and will
be studied separately [29]. As a note we should point out that
as can be easily seen from the second Friedmann equation
above, the non-metric degrees of freedom could account for
accelerated expansion. To clearly see this let us consider the
simple special case for which Ȧ > 0 and C = −2A, then the
acceleration equation becomes

ä

a
= −κ

6
(ρ + 3p) + 1

2
Ȧ + 1

4
A2 (136)

From which it is evident that this kind of non-metricity accel-
erates the Cosmological expansion. Of course in the general
case where all three functions of non-metricity are present,
the effect on acceleration equation is not quite totally clear
and deserves further investigation. We shall now discuss the
generalized case where both torsion and non-metricity are
allowed.

17 To be more accurate, in the presence of a hyperfluid induced non-
metricity.
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9 Friedmann equations with both torsion and
non-metricity

Starting again with the Einstein–Hilbert action and the pres-
ence of the Cosmological Hyperfluid in the matter sector,
leaving the connection general, varying with respect to the
metric and the connection, we obtain the field equations

R(μν) − gμν

2
R = κTμν (137)

Pμν
λ = κ�

μν
λ (138)

where

Pμν
λ = −∇λ(

√−ggμν)√−g
+ ∇σ (

√−ggμσ )δν
λ√−g

+2(Sλg
μν − Sμδν

λ + gμσ S ν
σλ) (139)

is the full Palatini tensor. After some rather heavy calcula-
tions and enough patience we finally find the most general
form of the Friedmann equations with both torsion and non-
metricity induced by the presence of the perfect cosmological
hyperfluid [42]

H2 = − 2

(n − 2)
H

[

(n − 1)

2
X − (n − 3)

2
Y + Z + V

]

− 1

(n − 2)
(Ẋ + Ẏ ) − 1

(n − 2)
(X − Y )(Z + V ) + XY

+ 2

(n − 2)
W 2δn,4 + 2κ

(n − 1)(n − 2)
ρ (140)

ä

a
= − κ

(n − 1)(n − 2)

[

(n − 3)ρ + (n − 1)p
]

+Ẏ + H(Y + Z + V ) − Y (V + Z) (141)

where we have expressed the additional contributions in
terms of the distortion functions due to computational con-
venience. Of course these can be written entirely in terms of
torsion and non-metricity functions by using the conversion
relations of the previous section

W = P, V = C/2, Z = A/2 (142)

Y = 2� + A

2
, X = B

2
− 2� − A

2
(143)

which in turn can be expressed solely in terms of the hyper-
momentum functions by using the relation between distortion
and hypermomentum [41]. The exact derivation of the above
generalized Friedmann equations, with all immediate steps,
along with solutions will be presented elsewhere [42]. The
generalized Friedmann equations are supplemented with the
conservation laws of the perfect cosmological hyperfluid

ρ̇ + (n − 1)H(ρ + p) = −1

2
uμuν(χRμν + ψ Řμν) (144)

−δ
μ
λ

∂ν(
√−gφuν)√−g

− uμuλ

∂ν

(√−g(φ + χ + ψ + ω)uν
)

√−g

+
[

(

2Sλ + Qλ

2

)

uμ − ∇λu
μ

]

χ

+
[

(

2Sμ + Qμ

2
− Q̃μ

)

uλ − gμν∇νuλ

]

ψ

+uμuλ(χ̇ + ψ̇) − (φ + χ + ψ + ω)(u̇μuλ + uμu̇λ) = 0 (145)

where the former is the modified continuity equation of
the perfect fluid components and the latter expresses con-
servation of the hypermomentum sector of the hyperfluid.
We should mention that there is a subtle difference between
this case and the cases of vanishing torsion or non-metricity
we discussed earlier. When one starts with a general (uncon-
strained) affine connection, as it is well known, the Ricci
scalar enjoys the projective symmetry

R −→ R (146)

under projective transformations of the connection

�λ
μν −→ �λ

μν + δλ
μξν (147)

where ξν is an arbitrary one form. The above invariance,
when transferred to the matter sector, demands a vanishing
dilation current, namely

�ν = �λν
λ =

[

(n − 1)φ − ω
]

uν = 0 (148)

and therefore restricts the form of the hyperfluid. However,
it should be noted that constraints like the latter have also
a pleasing consequence since they provide ’equations of
state’ between the hypermomentum components18 which,
as mentioned, are appropriate in order to determine the com-
plete Cosmological evolution. Anyway, the case of projective
invariance and its relevance to physics is an open issue with
some recent studies indicating that keeping the invariance
is needed in order to avoid ghosts [43,44] (see also [45]).
In our case, we see that the projective invariance supplies
the model with a desired equation of state among the hyper-
fluid variables. Below we expand a little more on the role of
invariances and the constraints they put on hypermomentum.

10 Hypermomentum matter types

As we noted above, a Gravitational action that is invariant
under projective transformations will only allow for matter
fields with vanishing dilation current (i.e. �ν = 0). In fact,
one can consider a more general class of unconstrained vec-
torial transformations of the form

�λ
μν −→ �λ

μν + δλ
μξν + δλ

ν ζμ + χλgμν (149)

where ξμ, ζμ, and χμ are in general independent one forms.
Some subclasses of the above transformations include

18 In this case we get the equation of state ω = (n − 1)φ relating two
of the hypermomentum variables.
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�λ
μν −→ �λ

μν + λ1δ
λ
μvν + λ2δ

λ
ν vμ + λ3v

λgμν (150)

�λ
μν −→ �λ

μν + δλ
μξν (151)

�λ
μν −→ �λ

μν + δλ
ν ζμ (152)

�λ
μν −→ �λ

μν + χλgμν (153)

where the former is called a constrained vectorial transfor-
mation and the latter three are transformations of the 1st , 2nd

and 3rd kind respectively [46]. In [46] we obtained classes
of actions that are invariant under the above connection trans-
formations and also derived the constraints imposed on the
hypermomentum by such invariances. Combining the above
connection transformations with our cosmological model
here we can attribute a clear physical meaning to transfor-
mations of the form (149). In a cosmological setting, if the
gravitational action is invariant under transformations of the
form (149) (or a subset thereof) then this invariance pro-
vides equations of state between the various components of
the hyperfluid. To be more specific, by using the results of
[46] we can state specific equations of state or conservation
laws for our Hyperfluid model. We start by reviewing the
three propositions we obtained in the aforementioned study
and then apply them to the cosmological hyperfluid model
presented here. Consider the theory

S[g, �, φ] = 1

2κ
SG [g, �] + SM [g, �, φ] (154)

where SG denotes the gravitational sector (geometry) and SM
represents the matter fields. Set

�ν
(1) := � λν

λ , �
μ

(2) := �
μλ

λ , �(3)λ := �
μν

λ gμν (155)

Then, we get the following three immediate propositions [46]

Proposition 2 If the gravity sector of (154) is invariant
under general vectorial transformations of the connection
of the form (149), then the hypermomentum tensor has all of
its contractions vanishing, namely

�
μ

(i) = 0,∀i = 1, 2, 3 (156)

Proposition 3 If the gravity sector of (154) is invariant
under constrained vectorial transformations of the form
(150), then the traces of the hypermomentum of the Theory
satisfy the constraint

3
∑

i=1

λi�
μ

(i) = 0 (157)

That is, the three traces of the hypermomentum are linearly
dependent.

Proposition 4 If the gravity sector of (154) is invariant
under connection transformations of the i th kind (i =

1, 2, 3) then this invariance demands a vanishing ith con-
traction of the hypermomentum

�
μ

(i) = 0 (158)

In the case of the perfect cosmological hyperfluid that we
present here, we have

�ν
(1) := � λν

λ =
[

(n − 1)φ − ω
]

uν (159)

�
μ

(2) := �
μλ

λ =
[

(n − 1)χ − ω
]

uμ (160)

�(3)λ := �
μν

λ gμν =
[

(n − 1)ψ − ω
]

uλ (161)

Combining the above results we may classify some special
cases of the perfect cosmological hyperfluid. For instance
if the gravitational sector of a given MAG theory is invari-
ant under general vectorial transformations of the connection
(149), than the associated cosmological hyperfluid satisfies
the three ‘equations of state’

φ = χ = ψ = ω

(n − 1)
(162)

We shall call such a fluid, a completely traceless hyperfluid.
On the other hand, if the Gravitational action is invariant
under only one of (151), (152) or (153) then one gets only
one hypermomentum equation of state for each case as seen
from the above. It is worth mentioning that if the connection
transformations are of the special kind, that is the one forms
appearing in (150) are all exact, then the corresponding con-
straints for the hypermomentum turn into conservation laws
among its constituents. For instance, a Theory that is invari-
ant under the action of special linear transformations of the
form

�λ
μν −→ �λ

μν + δλ
μ∂νX + δλ

ν ∂μY + gμν∂
λZ (163)

where X,Y and Z are arbitrary independent scalars, will have
an associated Cosmological Hyperfluid obeying the conser-
vation laws

∂μ

[√−g
(

(n − 1)φ − ω
)

uμ
]

= 0,

∂μ

[√−g
(

(n − 1)χ − ω
)

uμ
]

= 0,

∂μ

[√−g
(

(n − 1)ψ − ω
)

uμ
]

= 0 (164)

Of course the list could go on and on by considering different
types of transformations for the connection and deriving the
corresponding constraints on the matter. Our intention here
was to illustrate the procedure that one has to follow in order
to obtain the constraints of the matter sector. The aforemen-
tioned types of matter along with their extensions certainly
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deserve further investigation so as to unveil their true phys-
ical content in Cosmological situations. As a final note let
us mention that another interesting case is that of a frame
rescaling invariant fluid. In this case the density and pressure
of the fluid are related with the hypermomentum variables
through (recall Eq. (31))

2(ρ − 3p) = 3HF + Ḟ, F := 3φ − ω (165)

We should mention that this type of fluid is not contained
in our Cosmological Hyperfluid desrciption since its canoni-
cal and metrical energy–momentum tensors do not coincide.
However, it would also be very interesting to study the char-
acteristics of such a fluid especially with regards to its Cos-
mological effects. All the above aspects certainly deserve
further and careful investigation.

11 Conclusions

We have developed a novel model for a Cosmological hyper-
fluid, namely a fluid that carries hypermomentum and sub-
sequently induces torsional and non-metric degrees of free-
dom. In constructing the model we essentially imposed the
same conservation laws with the unconstrained hyperfluid
[13] but we have considered a different ansatz for the covari-
ant form of the hypermomentum that is compatible with the
Cosmological principle. Therefore even though the conser-
vation laws have the same covariant form, they predict dif-
ferent dynamics owed to the different form of the hyper-
momentum. In our approach the hyperfluid is described by
the usual energy–momentum tensor of a perfect fluid which
is characterized by the energy density ρ and pressure p of
the fluid’s elements, as well as by a hypermomentum ten-
sor containing the microscopic (can include macroscopic as
well) properties of the matter. The latter is spanned by 5 or
4 degrees of freedom depending on the dimensionality of
the spatial space. Given the ansatz for the Robertson–Walker
metric, the Cosmological evolution of the Perfect Cosmo-
logical Hyperfluid in 4-dim is described by 1 + 2 + 5 = 8
time functions corresponding to the scale factor (1) and the
degrees of freedom coming from the energy–momentum (2),
and the hypermomentum (5). Therefore, the complete Cos-
mological description in the presence of torsion and non-
metricity is achieved by finding the form of the 8 functions
a(t), ρ(t), p(t), φ(t), . . . etc.

As an immediate application of our model we considered
a Theory consisting of the usual Einstein–Hilbert action and
the presence of our Perfect Cosmological Hyperfluid. Con-
sequently we derived the (most straightforward) generalized
Friedmann equations in the presence of torsion and non-
metricity. The generalized Friedmann equations we obtained,
supplemented with the conservation laws (80) and (81), pro-

vide then a complete and minimal tool to study the impact
of torsion and non-metricity in Cosmology. We should note
that it is possible to generalize our model in a straightforward
way. Indeed, the two assumptions for the perfect cosmolog-
ical hyperfluid are (1) that the cosmological principle holds
true, and (2) that the canonical and metrical energy momen-
tum tensors coincide. Given that we would like to stay in a
cosmological context, we should keep the former assumption
but nothing prevents us to relax the latter. Then, our model
is readily generalized by relaxing the assumption that the
CEMT and MEMT coincide and leave them independent a
priori or relate them in a different way. In the last section we
discussed the example of the frame rescaling invariant fluid
which falls into that category. It would also be interesting to
explore the consequences of such a generalized models.

As closing remark let us mention that the establishment of
the perfect cosmological hyperfluid model opens up a whole
plethora of possibilities to study non-Riemannian effects
in cosmology. The presence of such a fluid is expected to
change the evolution of the Universe at early stages and there-
fore provide alternative well motivated inflationary scenar-
ios. In addition for non-standard gravitational actions (going
beyond the Einstein–Hilbert) the cosmological hyperfluid
could just as well be used in order to formulate late-time cos-
mological effects. Metric-affine f (R) Theories in the pres-
ence of perfect cosmological hyperfluids would be typical
representatives of such possibilities. The above points will
be addressed in future works.
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Appendix A: Diffeomorphisms

Let us consider the (active) diffeomorphism

x ′μ = xμ + ξμ(x) (A1)

which corresponds to a general(active) infinitesimal coordi-
nate transformation. From the transformation law of a scalar

φ′(x ′) = φ(x) (A2)

by expanding x ′ about x we find

φ′(x ′) = φ′(x + ξ) ≈ φ′(x) + ξμ∂μφ (A3)

Then by definition, the scalar field changes according to19

δφ := φ′(x) − φ(x) = −ξμ∂μφ (A4)

Considering now the transformation law of the connection
under diffeomorphisms

�
′λ
μν = ∂x

′λ

∂xα

∂xβ

∂x ′μ
∂xγ

∂x ′ν �
′α
βγ + ∂x

′λ

∂xα

∂2xα

∂x ′μ∂x ′ν (A5)

and expanding in the same manner as before, we finally arrive
at

δξ�
λ
μν = −ξα∂α�λ

μν − �λ
αν∂μξα − �λ

μα∂νξ
α

+�α
μν∂αξλ − ∂μ∂νξ

λ (A6)

Now, notice that this is in fact a tensor. To see this, we use
the definitions, of covariant derivative, torsion and curvature
to re-express the above in the equivalent form20

δξ�
λ
μν = ξαRλ

μνα − ∇ν∇μξλ − 2∇ν(S
λ

μαξα) (A7)

which is manifestly covariant and therefore reveals the ten-
sorial character of δξ�

λ
μν . Similarly, one can show that the

under diffeomorphisms (A1) the metric tensor transforms as

δξ gμν = −ξα∂αgμν − 2gα(μ∂ν)ξ
α (A8)

or equivalently

δξ gμν = −ξα∂αgμν − ∂νξμ + ξα∂νgμα − ∂μξν + ξα∂μgαν

(A9)

19 The symbol δ stands here for functional variations, that is measures
the difference of the field φ computed at two different points but in the
same coordinate system {x}, see also [47].
20 The proof is trivial but somewhat lengthy. It is a matter of sticking
to the definitions and rearranging the various terms.

Furthermore, using the definition of the covariant derivative,
the above can be expressed as

δξ gμν = −2∇̃(μξν) (A10)

or

δξ gμν = −2∇(μξν) − 2Nλ
(μν)ξλ (A11)

where ∇μ and ∇̃μ represent the covariant derivative of the
general affine connection and the Levi-Civita connection
respectively and Nλ

μν = �λ
μν − �̃λ

μν is the distortion. It will
be more useful to use the expression with the Levi-Civita
connection Let us consider now a matter action

SM [g, �, φ] =
∫

dnx
√−gLM (A12)

Then, considering a diffeomorphism, we have

δξ SM =
∫

dnx
[δ(

√−gLM )

δgμν

δξ gμν + δ(
√−gLM )

δ�λ
μν

δξ�
λ
μν

+δ(
√−gLM )

δφ
δξφ

]

(A13)

Now, given that the matter fields (φ) satisfy their field equa-
tions, the last term on the right hand side of the above van-
ishes. Then, using (A7), (A10) after some partial integrations
and assuming that ξα and its derivatives vanish at the bound-
ary, we arrive at

δξ SM =
∫

dnxξα
[√−g(2∇̃μT

μ
α − �λμνRλμνα)

+ ∇̂μ∇̂ν(
√−g� μν

α ) + 2S λ
μα∇̂ν(

√−g�μν
λ )

]

(A14)

So, since the matter action is invariant under diffeomor-
phisms we have the following conservation law
√−g(2∇̃μT

μ
α − �λμνRλμνα)

+∇̂μ∇̂ν(
√−g� μν

α ) + 2S λ
μα∇̂ν(

√−g�μν
λ ) = 0 (A15)

where we have defined as usual the energy–momentum tensor

Tμν := + 2√−g

δ(
√−gLM )

δgμν

(A16)

The hypermomentum

�
μν
λ := − 2√−g

δ(
√−gLM )

δ�λ
μν

(A17)

and the modified covariant derivative

∇̂μ := 2Sμ − ∇μ (A18)
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Then, solving for ∇̂ν(
√−g� μν

λ ) from

tμλ = Tμ
λ − 1

2
√−g

∇̂ν(
√−g� μν

λ ) (A19)

and substituting it back to (A15) we recover the second con-
servation law

1√−g
∇̂μ(

√−gtμα) = 1

2
�λμν Rλμνα + 1

2
QαμνT

μν + 2Sαμν t
μν

(A20)

showing that the sets (A15), (A19) and (A19), (A20) are
indeed equivalent.

Appendix B: Divergence of palatini tensor

We shall now prove the identity we used for the divergence
of the Palatini tensor

∇̂ν

(

− ∇λ(
√−ggμν) + ∇σ (

√−ggμσ )δν
λ

+√−g(Sλg
μν − Sμδν

λ + gμσ S ν
σλ)

)

= −√−ggμν(Řνλ + Rλν) (B1)

or equivalently

∇̂ν(
√−gPμν

λ ) = −√−ggμν(Řνλ + Rλν) (B2)

Proof Our starting point is two identities that hold in a non-
Riemannian space (see [10] for their derivation)

R(αβ)κλ = ∇[κQλ]αβ − S ρ
κλQραβ (B3)

R[λκ] = 1

2
̂Rλκ + 2∇[λSκ] + ∇νS

ν
λκ − 2SλκαS

α (B4)

where R̂μν := gαβ Rαβμν is the homothetic curvature. Now
contracting the former with gκβgμα and the latter with
gκμ we obtain the divergences of non-metricity and torsion
respectively

∇νQ
μν
λ = ∇λ Q̃

μ − 2SλαβQ
βαμ + (Rμ

λ + Řμ
λ) (B5)

∇νS
μν

λ = SλαβQ
βαμ + (Q μν

λ + 2Sμν
λ )Sν

− ∇λS
μ + gμν∇νSλ + gμν

(

R[λν] − 1

2
̂Rλν

)

(B6)

Considering now the above definition of the Palatini tensor
and using the definitions of torsion and non-metricity it can
be brought to the form [10,41]

Pμν
λ = δν

λ

(

Q̃μ − 1

2
Qμ − 2Sμ

)

+ gμν

(

1

2
Qλ + 2Sλ

)

−(Qμν
λ + 2S μν

λ ) (B7)

Now, multiplying the latter with
√−g, acting on it with the

operator ∇ν−2Sν and using the divergence relations (B5) and
(B6) various cancellations take place and we readily arrive
at

1√−g
(∇ν − 2Sν)(

√−gPμν
λ ) = gμν

̂Rνλ − gμν(R̆νλ + Rνλ)

+gμν(−2R[λν] + ̂Rλν)

(B8)

and expanding the terms on the right hand side of the above,
we complete the proof

∇̂ν(
√−gPμν

λ ) = −√−ggμν(R̆νλ + Rλν) (B9)

where ∇̂ν = 2Sν − ∇ν is the modified covariant derivative
operator. ��

Appendix C: Scalar field coupled to the connection

As a trivial example of an effective Perfect Cosmological
Hyperfluid, endowed with specific equations of state among
its variables, we will consider a scalar field ϕ that is coupled
to the connection. The most straightforward couplings would
be between the derivatives of the scalar field and torsion and
non-metricity vectors, such that the total matter action would
read21

SM [g, �, ϕ] =
∫

dnx
√−g

[

−1

2
gμν∂μϕ∂νϕ − V (ϕ)

+(a1Sμ + a2Qμ + a3 Q̃μ)∂μϕ

]

(C1)

where ai with i = 1, 2, 3 are coupling constants. The asso-
ciated hypermomentum can be trivially computed

�
μν

λ = −(a1+2a3)δ
ν
λ∂μϕ+(a1−4a2)δ

μ
λ ∂νϕ−2a3g

μν∂λϕ

(C2)

Then, lowering all indices and considering an FLRW space-
time so that ∂μϕ = δ0

μϕ̇ = −ϕ̇uμ holds true, the above
recasts to

�αμν = (a1+2a3)gανuμϕ̇+(4a2−a1)gαμuνϕ̇+2a3gμνuαϕ̇

(C3)

In addition, using the definition of the projection operator and
placing the above equation against (65) we find the relations

21 A similar action was considered in [48] in order to study inflation-like
scenarios in MAG.
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φ = (4a2 − a1)ϕ̇, χ = (a1 + 2a3)ϕ̇,

ψ = 2a3ϕ̇ω = −4(a2 + a3)ϕ̇, ζ = 0 (C4)

which serve as effective equations of state for the hyperfluid
variables. This can be seen clearly by considering one of
the above fields as a reference field. Indeed, if we take for
instance φ as our reference field, the rest of the hypermo-
mentum variables are expressed as

χ = w1φ, ψ = w2φ, ω = w3φ, ζ = 0 (C5)

where

(w1, w2, w3) = 1

(4a2 − a1)

(

a1 + 2a3, 2a3, −4a2 − 4a3

)

(C6)

are the ’barotropic’ indices of the hyperfluid in close anal-
ogy with the barotropic index w in the case of the perfect
fluid (recall the relation p = wρ). Note the similarity with
the perfect fluid inflaton field, where in the slow roll regime
(ϕ̇2 ≈ 0) it holds that

ρ ≈ V (ϕ), p ≈ −V (ϕ) (C7)

and one gets the equation of state p ≈ −ρ.
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