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Cosmological observations are used to test for imprints of an ultralight axionlike field (ULA), with a

range of potentials VðϕÞ ∝ ½1 − cosðϕ=fÞ�n set by the axion-field value ϕ and decay constant f. Scalar field

dynamics dictate that the field is initially frozen and then begins to oscillate around its minimum when the

Hubble parameter drops below some critical value. For n ¼ 1, once dynamical, the axion energy density

dilutes as matter; for n ¼ 2 it dilutes as radiation and for n ¼ 3 it dilutes faster than radiation. Both the

homogeneous evolution of the ULA and the dynamics of its linear perturbations are included, using an

effective fluid approximation generalized from the usual n ¼ 1 case. ULA models are parametrized by the

redshift zc when the field becomes dynamical, the fractional energy density fzc ≡ ΩaðzcÞ=ΩtotðzcÞ in the

axion field at zc, and the effective sound speed c
2
s . Using Planck, BAO and JLA data, constraints on fzc are

obtained. ULAs are degenerate with dark energy for all three potentials if 1þ zc ≲ 10. When

3 × 104 ≳ 1þ zc ≳ 10, fzc is constrained to be ≲0.004 for n ¼ 1 and fzc ≲ 0.02 for the other two

potentials. The constraints then relax with increasing zc. These results have implications for ULAs as a

resolution to cosmological tensions, such as discrepant measurements of the Hubble constant, or the

EDGES measurement of the global 21 cm signal.

DOI: 10.1103/PhysRevD.98.083525

I. INTRODUCTION

The nature of the dark matter (DM) and dark energy
(DE) that dominate our universe today is one of the biggest
mysteries of modern cosmology. The dominant paradigm is
the ΛCDM model, in which DM is a cold, gravitationally
interacting particle, while DE is a pure cosmological
constant. Remarkably, this simple model is consistent with
precise measurements of the cosmic microwave back-
ground (CMB) anisotropies by Planck [1], but remains
purely parametric.

Ultralight axionlike (ULA) fields arise generically in

string theory [2,3]. They may be cosmologically relevant,

contributing to the cold dark matter (CDM) and DE in our

universe (see [3] and references therein). These models

have also been invoked to solve tensions within the ΛCDM

model, calling on the presence of an early dark energy

(EDE) phase [4,5].

For example, increasingly precise measurements of the

local expansion rate have led to a potentially significant

disagreement (see, e.g., Ref. [6]) between measurements of

the Hubble constant inferred from the CMB [1] at high

redshifts and Cepheid variables/supernovae at low redshifts

[7]. Additionally, if the recently claimed measurement of

21-cm absorption at z ∼ 20 by the EDGES experiment [8]

withstands experimental scrutiny [9], the presence of such

early cosmological structure [10] sets a lower bound on the

ULA mass of ∼10−21 eV [11], if ULAs compose all of the

dark matter.

The apparent anomalously low baryon temperature mea-

sured by EDGES could indicate that the expansion history at

high redshifts could differ from standard assumptions. These

observations could be explained through the cosmological

effects of a collection of scalar fields, as envisioned in the

“string-axiverse” scenario [2,12–14]. These fields would

also affect a variety of cosmological observables, such as

CMB and matter power-spectra [15,16] and characterizing

their impact is therefore crucial in order to disentangle the

axiverse over some other DM or DE scenario.

In this paper we explore the observational implications

of a cosmological scalar field with a potential of the form

VnðϕÞ ∝ ½1 − cosðϕ=fÞ�n that becomes dynamical at a

range of times, which arises nonperturbatively and breaks

the approximate ULA shift symmetry. The standard axion

potential is obtained in the n ¼ 1 case, while higher-n

potentials may be generated by higher-order instanton

corrections [17].

Here ϕ denotes the field value and f the ULA decay

constant. These fields become dynamical as the Hubble
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parameter decreases, eventually settling down at the min-

ima of their potentials. Up to the point when the fields

become dynamical (i.e., during the period of “slow-roll”

evolution) their equations of state are dark-energy like:

wa ≃ −1.

Soon after the field becomes dynamical it starts to oscillate

and, when averaged over the oscillation period, has an

equation of state equal to wa ≃ ðn − 1Þ=ðnþ 1Þ for a

potential of the form VnðϕÞ ∝ ϕ2n [18]. As the field oscil-

lates, its energy density dilutes as cold darkmatter (CDM) for

n ¼ 1, for n ¼ 2 it dilutes as radiation and forn ¼ 3 it dilutes

faster than radiation.With a statistical ensemble of such fields

(i.e., the “axiverse”) the universe may have gone through

several periods of “anomalous” expansion, alleviating the

coincidence problem today [4,19–22], and possibly reducing

the Hubble constant tension [4] and explaining the anoma-

lously low baryon temperature inferred by the EDGES

experiment [5]. This general scenario may also provide a

way to connect the physics of cosmic inflation to our current

period of accelerated expansion [21].

Here, we extend previous work in several significant ways.

First, we present a fluid approximation that parametrizes the

ULA dynamics for arbitrary n in terms of the redshift when

the field becomes dynamical, zc, and the fractional energy

density in the axion field at zc, fzc ≡ΩaðzcÞ=ΩtotðzcÞ. A key

result of thiswork is the inclusion ofULAperturbations using

an effective fluid approach for n ¼ 2 and n ¼ 3. These

perturbations can be approximately described by a time-

averaged fluid component with a time and scale dependent

effective sound speed [3,15,23–27] within the “generalized

dark matter” parametrization [28].

Past applications of this effective fluid approach were

restricted to a scalar field of mass m in a quadratic potential.

The effect of anharmonicities on the background has been

explored (e.g., Ref. [29]), and in Ref. [30,31], a preliminary

effective fluid treatment of anharmonic scalar fields was

considered. Anharmonic effects would also alter the imprint

of ULA DM on the Lyman-α forest power spectrum, with

potentially significant implications for the implied lower

limit to the ULA mass, if it composes all or most of hte

cosmological DM [32]. Similar results are obtained by

taking the Schrödinger limit of the Klein-Gordon equation

for small length scales, as shown in Ref. [33]. Here, we

generalize past work systematically to anharmonic potentials

(n ¼ 2, and 3), deriving a new straightforward expression

for the sound speed ceff which is easy to compute once the

behavior of the homogeneous field is known. Moreover, we

derive a mapping between this parametrization and the ULA

mass, decay constant and initial field value. We show that

our fluid formalism is adequate for n ≤ 3, but breaks down

for larger values of n for which the period of oscillation is

never much shorter than a Hubble time.

Using Planck, measurements of the baryon acoustic

oscillations (BAO) and the Joint Light-Curve Analysis

(JLA) data [34], we place constraints on ULAs in the

n ¼ 1, 2 and 3 models. Using a Markov Chain

Monte Carlo (MCMC) analysis, we are able to fully explore

degeneracies between the ULA parameters and the standard

cosmological parameters. We derive constraints on fzc as a

function of zc.We find in particular that fzc becomes partially

degenerate with dark energy for all three potentials once

1þ zc > 10. When 3 × 104 ≲ 1þ zc ≲ 10, we find that fzc
is constrained to be≲0.004 formatter-dilution andfzc ≲ 0.02

for the other two potentials. The constraints then relax with

increasing zc, but we demonstrate that current measurements

of the CMB
1
require that fzc be less than unity as early as

zc ¼ 1010. Remarkably, we find that the details of the ULA

dynamics could distinguish its effects from other cosmologi-

cal components, even if the ULA time-averaged equation of

state is equal to zero (CDM-like) or 1=3 (radiationlike).

The organization of this paper is as follows. In Sec. II, we

review the basics of the cosmological dynamics of ULAs

by laying out the equations for the homogeneous field

dynamics and introducing the dynamics of the perturbed

field. We also present our fluid approximation and how it

maps to the ULA theory parameters. Equipped with this

formalism, we describe in Sec. III A the rich dynamics of

ULA perturbations. Then, in Sec. IV we calculate the CMB

and matter power-spectra that arise in our scenario using a

modified version of the CLASSBoltzmann code
2
[35–38]. In

Sec. V, we use the MONTEPYTHON
3
[39] MCMC package

to obtain constraints on our scenario. We discuss implica-

tions for cosmological tensions in Sec. VI. We conclude in

Sec. VII. In Appendix A, we obtain the generalized

effective fluid equations for anharmonic potentials and

the effective sound speed for arbitrary n, a result which may

be of interest beyond the specific ULA scenario considered

here. We compare our fluid formalism to exact solutions of

the Klein-Gordon (KG) equations in Appendix B.

II. THE COSMOLOGICAL DYNAMICS OF ULAS

A. Background dynamics

The background dynamics of a ULA have a simple

description. The field is initially pinned at some value due

to Hubble friction. Once the expansion rate drops below

some critical value (related to themass of the ULA), the field

is free to evolve to the minimum of the potential. It then

oscillates around the bottom of its potential such that its

energy density is diluted due to the subsequent expansion.

The homogeneous Klein-Gordon (KG) equation of

motion for the field is given by

ϕ̈þ 3H _ϕþ dVnðϕÞ
dϕ

¼ 0: ð1Þ

1
Naturally, alternative probes such as BBN can constrain the

parameter space further at such times.
2
http://class-code.net.
3
http://baudren.github.io/montepython.html.
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The ULA potential is given by

VnðϕÞ ¼ Λ
4ð1 − cosϕ=fÞn; ð2Þ

where f is the energy scale at which the globalUð1Þ related
to axions is spontaneously broken. The ULA homogeneous

energy-density and pressure are

ρa ¼
1

2
_ϕ2 þ VnðϕÞ; ð3Þ

Pa ¼
1

2
_ϕ2

− VnðϕÞ: ð4Þ

The Hubble equation can be written

H¼H0EðaÞ¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩmðaÞþΩrðaÞþΩΛþΩaðaÞ
p

; ð5Þ

where ΩX ≡ ρX=ρcrit and ρcrit ¼ 3H2
0M

2
P, where MP ≡

ð8πGÞ−1=2 is the reduced Planck mass. In order to solve

these equations numerically it is useful to redefine the

variables so that they are dimensionless. If we define

Θ≡ ϕ=f, m≡ Λ
2=f, α≡ f=MP, x≡H0t, and μ≡

m=H0 these equations can be written

VnðΘÞ ¼ μ2α2ð1 − cosΘÞn; ð6Þ

Θ
00 ¼ −3EΘ0 − α−2

dVn

dΘ
; ð7Þ

ΩaðaÞ ¼
1

3

�

1

2
α2Θ02 þ VnðΘÞ

�

; ð8Þ

where a prime indicates a derivative with respect to x.
Before the field starts to oscillate it undergoes “slow-

roll” evolution (that is, _ϕ2=2 ≪ V and the dynamics are

dominated by Hubble friction) which we will refer to as an

“early dark energy” (EDE) phase. To obtain a useful

parametrization for all the models under consideration,

we have found an analytic approximation to the initial field

evolution. First, we expand the potential to linear order

around the initial field value Θi to obtain a solution for the

field evolution (assuming that Θ0
i → 0 as x → 0):

ΘðxÞ ≃ Θi þ
sinðΘiÞð0F1½12 ð3pþ 1Þ;Ax2� − 1Þ

n cosΘi þ n − 1
;

≃ Θi −
μ2nx2 sinΘið1 − cosΘiÞn−1

2ð3pþ 1Þ þOðA2x4Þ ð9Þ

where 0F1 is the confluent hypergeometric function and

A≡
1

4
μ2nð1 − cosΘiÞn−1ð1 − n cosΘi − nÞ; ð10Þ

and where Θi is the initial value of the field at x ¼ 0 and

a0=a ¼ p=x so that during radiation domination p ¼ 1=2

and during matter domination p ¼ 2=3. When numerically

solving for the evolution of the homogeneous scalar field,

we take the initial field value to be 0 < Θi < π and the

initial velocity of the field is determined by the curvature of

the potential at Θi through Eq. (9). We set p ¼ 1=2 since

the field is always initialized during radiation domination.

After a period of slow-roll evolution, the field transitions

to an oscillatory phase with a decreasing amplitude due to

the dilution of the field’s energy density from expansion.

The potential during the oscillating phase takes the form

VnðΘÞ ≃ 2−nμ2α2Θ2n so that for n ¼ 1 the field undergoes

simple harmonic oscillation with a frequency which is

independent of its amplitude and for n > 1 the oscillations

are anharmonic and the frequency depends on the ampli-

tude. We show the evolution of Θ for the three forms of the

potential considered here in Fig. 1.

Once oscillating, over timescales shorter than a Hubble

time the field evolves according to the equation of motion

Θ
00 þ α−2

dVn

dΘ
¼ 0: ð11Þ

Furthermore if we assume that the oscillation frequency

ϖ ≫ H, the total energy will be approximately conserved

over several oscillations so that we have

1

2
Θ

02 þ α−2VnðΘÞ ¼ α−2VnðΘmÞ; ð12Þ

where Θm is the maximum field value, reached when

Θ
0 ¼ 0. We can use the virial theorem to write h1=2Θ02i ¼

nα−2hVni so that

hΩΘi ≃
1

3

μ2α2

2n
Θ

2n
m ≃Ωa;0a

−3ð1þwnÞ; ð13Þ

FIG. 1. The evolution of the background field with μ ¼ 106,

α ¼ 0.05, and Θi ¼ π − 0.1 for the three forms of the axion

potential explored in this paper.
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which shows that, due to the expansion of the universe, the

maximum field value will decrease as Θm ∝ a−3=ð1þnÞ. As
in Ref. [18], we find that the axion energy density is

constant at early times and decays as a−3ð1þwnÞ with

wn ≡
n − 1

nþ 1
: ð14Þ

With this we will parametrize the axion energy density by

ΩaðzÞ ¼
2ΩaðzcÞ

½ð1þ zcÞ=ð1þ zÞ�3ðwnþ1Þ þ 1
; ð15Þ

which has an associated equation of state

waðzÞ ¼
1þ wn

1þ ½ð1þ zÞ=ð1þ zcÞ�3ð1þwnÞ
− 1; ð16Þ

and which asymptotically approaches −1 as a → 0 and wn

for z ≪ zc. We show a comparison between the exact axion

energy density and our parametrization in Fig. 1. This

shows that when n ¼ 1, the homogeneous axion energy

density dilutes like matter once the field is dynamical. On

the other hand it dilutes like radiation when n ¼ 2. When

n ≥ 3, dilution is faster than radiation.
4

B. On the validity of the fluid approximation

From Eq. (12) we can compute the time for one full

oscillation:

T ≃ 4H−1
0

Z

Θm

0

dΘ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2α−2½VðΘ0Þ − VðΘÞ�
p ; ð17Þ

¼ 4H0

ffiffiffi

π
p

2
n−1
2 Θ

1−n
m Γð1þ 1

2n
Þ

μΓðnþ1
2n
Þ ð18Þ

This leads to an angular frequency

ϖ ¼ ϖ0a
−3wn ; ð19Þ

ϖ0 ¼ H0

ffiffiffi

π
p

2−
n2þ1
2n Ω

n−1
2n

Θ;0Γðnþ1
2n
ÞðαμÞ1=n

αΓð1þ 1
2n
Þ : ð20Þ

This shows that the angular frequency is only constant if

n ¼ 1; for n > 1 the oscillation frequency decreases in

time [42]. In particular, the fluid approximation is only

accurate if ϖ=H ≫ 1 and, assuming that the axion field

never dominates the energy budget, we have

ϖ

H
∝

(

að5−nÞ=ð1þnÞ a < aeq;

a6=ð1þnÞ−3=2 a > aeq;
ð21Þ

where aeq ≡Ωr;0=Ωm;0 is the value of the scale-factor at

matter/radiation equality. This ratio increases with time for

n < 5 during radiation domination and for n < 3 for matter

domination. During a period of accelerated expansion the

ratio will decrease in time for any positive value of n.
Therefore, in this work we limit our study to n ≤ 3 such

that ifϖ=H ≳ 1 at the start of the oscillatory phase, then the

ratio will remain large up until almost today, when the latest

epoch of cosmic acceleration began.

C. Perturbed dynamics in the fluid formalism:

A first look

Linear perturbations to the axion field will develop and

evolve according to the perturbed Klein-Gordon equation.

However, these equations are computationally expensive to

solve and would not allow us to scan over the parameters of

the ULA theory and the standard cosmological parameters.

Since the oscillations of the scalar field generally occur

with periods much shorter than a Hubble time, much of the

dynamics can be captured by averaging over the oscilla-

tions and dealing with fluid equations [18]. The equations

governing the evolution of density and bulk velocity

perturbations can be written in terms of fluid variables

in the synchronous gauge as [28]

_δa ¼ −ð1þ waÞ
�

θa þ
_h

2

�

− 3ðc2s − waÞHδa

− 9ð1þ waÞðc2s − c2aÞH
θa

k2
; ð22Þ

_θa ¼ −ð1 − 3c2sÞHθa þ
c2sk

2

1þ wa

δa; ð23Þ

where in these equations the dot refers to a derivative with

respect to conformal time. From the background dynamics,

wa is known. Note that the effective sound speed

c2s ≡ δp=δρ, is possibly different from unity for an

ULA, and the adiabatic sound speed

c2a ≡
_Pa

_ρa
¼ wa −

_wa

3ð1þ waÞH
: ð24Þ

The adiabatic sound speed is straight forward to calculate

since it depends only on background quantities. Using the

initial EDE evolution of the field given in Eq. (9) and

assuming _ϕi ¼ 0,
5
one can show that c2a ≃ −7=3 [15]

during slow-roll for any form of the potential.

4
A qualitatively similar stiff dilution phase occurs in complex

scalar-field dark-matter models, with the relevant phenomenol-
ogy discussed in Refs. [40,41].

5
In our model, this is naturally realized because of the large

Hubble friction at early times.
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In the approximation for wa given by Eq. (16) the

adiabatic sound-speed during the EDE period is given by

c2a ¼ −
3nþ 1

nþ 1
; ð25Þ

it then evolves to wa once the field starts oscillating. At

early times, except for the case n ¼ 2, this parametrized

adiabatic sound-speed differs from the exact value of −7=3

(with a range −7=3 ≤ c2a ≤ −5=2). We have checked that

given that both the exact and parametrized c2a are negative
and of order unity, our parametrization gives a good

approximation to the exact evolution of the perturbations.

We show a comparison between the exact mode evolution

and the approximate mode evolution in Appendix B.

Finally, in order to utilize the GDM equations of motion,

we must determine c2s . During the EDE phase c2s ¼ 1 for a

slowly rolling scalar field, but deviates strongly from 1

once the field starts oscillating. We discuss our derivation

of the time-averaged effective sound speed in Appendix A.

We find that for a ULA potential which takes the form

V ∝ ϕ2n around the minimum:

c2s ¼
2a2ðn − 1Þϖ2 þ k2

2a2ðnþ 1Þϖ2 þ k2
; ð26Þ

with the frequency ϖ given by Eq. (19). We discuss the

dynamics of perturbations in Sec. III A. Before entering

into these details, we relate our parametrization to the ULA

theory parameters.

Note that c2s—the sound speed of the ULA in its local

rest-frame—is never negative, since during the Hubble

friction dominated evolution c2s ¼ 1, and then once it is

oscillating it is given by our Eq. (26), which clearly shows it

is always positive. On the other hand, the adiabatic sound

speed, c2a , can be negative. The adiabatic sound speed does

not govern the speed at which perturbations in the field

propagate, so a negative value does not indicate any issues

with stability. Instead the adiabatic sound speed gives the

relative rate of change of the pressure to the density—so if

one increases while the other decreases the adiabatic

sound speed can be negative. This is exactly what happens

during the Hubble dominated evolution of the field

when the field’s pressure increases while its energy density

decreases.

D. Approximate translation between

model and theory parameters

The axion model is fully specified by four “theory”

parameters: the potential-index n, the initial field value

Θi ≡ ϕi=f, the mass parameter μ≡m=H0, and the cou-

pling parameter α≡ f=MP. Our model is also described by

four parameters: the redshift zc when the field begins to

oscillate, the energy density of the field ΩϕðzcÞ at zc, the
time-averaged equation of state wn during oscillations, and

the scale dependence ϖ0 of the effective sound-speed. The

equation of state wn and the index n are related through

Eq. (14) and ϖ0 is related to α and μ through Eq. (20). The

last two parameters are related by more involved expres-

sions, as we now discuss.

First, note that we can use Eqs. (9) and (15) to relate

ΩaðzcÞ to μ, α, and Θi by computing the energy density in

the axion field at very early times:

ΩaðzcÞ ¼
1

6
α2μ2ð1 − cosΘiÞn: ð27Þ

We can obtain an approximate expression for zc by noting

that the field starts to oscillate soon after the field evolves

away from its initial value, Θi. We can compute the time at

which the field starts to evolve using the approximate

evolution of ΘðxÞ given in Eq. (9). We define xc as the time

at which the field evolves to some fraction of its initial

value, ΘðxcÞ ¼ FΘi:

xc ≡
ð1 − cosΘiÞ

1−n
2

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − F Þð6pþ 2ÞΘi

n sinΘi

s

: ð28Þ

We can relate this to zc by using the fact that during

radiation or matter domination the Hubble parameter is

given by E ≃ p=x so that

EðzcÞ ≃
p

xc
; ð29Þ

where, as before, p ¼ 1=2 for zc > zeq ¼ Ωr;0=ΩM;0 ≃

10−5 and p ¼ 2=3 for zc < zeq. We compare our approxi-

mate xc to the full field evolution by solving Eq. (7) and

find that zc is most accurately approximated when we

choose F ¼ 7=8. Note that our approximate solution for

the field evolution in Eq. (9) fails in the limit Θi → π and

we have found that this mapping can reproduce the full

dynamics up until Θi ≃ 3. Also note that for n ¼ 1 and

Θi ≪ 1 our results give HðzcÞ ≃m which agrees with

previous work [25].

This mapping can be used to go from our model

parameters to the theory parameters. Assuming that the

field makes up a small fraction of the total energy density at

zc, we can use Eq. (29) to determine xc and then Eq. (28)

provides a relationship between μ and Θi. Given ΩϕðzcÞ,
Eq. (27) provides a relationship between μ, α, and Θi.

Combining these together we can then write ϖ0 as a

function of zc, and Θi:

ϖ0ðzc;Θi;nÞ¼H0μðzc;Θi;nÞð1−cosΘiÞ
n−1
2 Gðzc;nÞ; ð30Þ

Gðzc; nÞ≡
ffiffiffi

π
p

Γðnþ1
2n
Þ

Γð1þ 1
2n
Þ 2

−n2þ1
2n 3

1
2
ð1
n
−1Þ

× ð1þ zcÞ
6

nþ1
−3½ð1þ zcÞ

−6n
nþ1 þ 1�12ð1n−1Þ: ð31Þ
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This shows that, in principle, the homogeneous and

perturbative effects of this field on cosmological observa-

tion can give us enough information to reconstruct all of the

theory parameters. Said another way, an estimate of zc and
ΩaðzcÞ from the homogeneous dynamics of the field will

determine the evolution of perturbations up to the unknown

initial field value, Θi; an estimate of ϖ0 from the pertur-

bations then determines Θi.

Finally, we can use these expressions to relate the theory

parameters to the model parameters. In particular Eqs. (28)

and (30) show that zc andϖ0 are both determined by μ and

Θi. These can then be combined to give an estimate of the

fractional contribution of the ULA to the total energy

density fzc at zc. Recall that these expressions have

assumed fzc ≪ 1 and our analytic expressions for the field

evolution are only accurate for Θi ≲ π − 0.1.

III. DETAILED STUDY OF ULA PERTURBATIONS

IN THE FLUID APPROXIMATION

A. Setup and initial conditions of perturbations

As explained previously, we solve for the ULA dynamics

using the GDM equations of motion [28], which require the

specification of the ULA equation-of-state wa, the adiabatic

sound speed c2a , and effective sound speed c2s . During slow

roll, generic scalar fields have thatwa ≃ −1, c2a ≃ −7=3, and

c2s ¼ 1. Since wa ≃ −1 the linear perturbation equations

written in terms of the velocity perturbation θa are unstable.

To deal with this we solve the evolution of the perturbations

in terms of the heat-flux, ua ≡ ð1þ waÞθa [15].

_δa ¼ −

�

ua þ ð1þ waÞ
_h

2

�

− 3ðc2s − waÞHδa

− 9ðc2s − c2aÞH
ua

k2
; ð32Þ

_ua ¼ −ð1 − 3c2sÞHua þ 3Hðwa − c2aÞua
þ c2sk

2δa: ð33Þ

In practice, when z > zc, we set wa ≃ −1, c2s ¼ 1 and c2a is
given by Eq. (25). During the oscillatory phase, when

z < zc, c
2
s is given by the time and scale-dependent effective

sound speed inEq. (26), c2a is given byEq. (24)withwa given

by Eq. (16). Abrupt changes in these quantities can lead to

the generation of transients in numerical solutions. We have

verified that these had no significant effects on the predicted

power spectra used to constrain this model. A comparison

between the approximate and exact ULA evolution is

discussed in Appendix B and shows very good agreement.

In general, adiabatic initial conditions on super-Hubble

scales are expected when the perturbations within each

component are due to a single degree of freedom (e.g.,

slight time delay in the decay of the inflaton field) and lead

to simple relations of the type

δiðτ; x⃗Þ
1þ wi

¼ δi0ðτ; x⃗Þ
1þ wi0

¼ −
h

2
; ð34Þ

where i and i0 are two species and h ∼ ðkτ2Þ corresponds to
the growingmode solution of a fourth order linear differential

equation for the trace of the metric perturbation in the

synchronous gauge [43]. For a specieswith zero nonadiabatic

sound speed, thiswould typically beenough.However, a fluid

with c2s ≠ c2a does not generally obey such relations. In the

ULA scenario considered here theULAcomponent is always

subdominant on superhorizon scales and at early times. In that

case, the ULA perturbations fall inside the gravitational

potential wells created by the radiation component, such that

there is a generic attractor solution [44]

δa ¼ −
C

2
ð1þ waÞ

4 − 3c2s

4 − 6wa þ 3c2s
ðkτÞ2; ð35Þ

ua ¼ −
C

2
ð1þ waÞ

c2s

4 − 6wa þ 3c2s
ðkτÞ3k; ð36Þ

where C is the initial amplitude and τ is the conformal time.

Note that we take δa ¼ ua ¼ 0 initially since these quantities

are quickly driven to the attractor solution [44].

Moregenerally, if the axion symmetry-breaking scalef >
HI (whereHI is the inflationary Hubble parameter), axions

will carry isocurvature perturbations, as a light relic present

during the inflationary era (see Ref. [45] and references

therein). Indeed, this scenariomay be natural in light of relic-

density bounds on the complementaryf < HI scenario [46],

though in practice, isocurvature signatures may be quite

small for observationally allowed values of HI.

Isocurvature perturbations will change the height of the

Sachs-Wolfe plateau and alter the phases of CMB acoustic

peaks. Limits to isocurvature perturbation from CMB data

are now quite stringent, and constrain the ratio f=HI , with

implications for the amplitude of inflationary gravitational

waves. The complementarity between isocurvature and

tensor modes in axion models is explored more fully (for

the harmonic limit of the n ¼ 1 potential) in Ref. [45]. In

future work, we plan to explore the phenomenology of and

constraints to ULA isocurvature perturbations for the much

more general class of models considered here.

B. Time evolution of ULA perturbations

For a fixed wave number k there are three timescales that

are important for the ULA mode evolution: (i) horizon

crossing k ¼ akHðakÞ; (ii) the redshift zc at which the field
starts to oscillate around its minimum; (iii) the time as after
which the sound speed is equal to the oscillation-averaged

ULA equation of state, k ¼ asϖðasÞ. Note that, ac ≡
1=ð1þ zcÞ is always smaller than as, or in other words

the field starts oscillating before its sound speed starts to

evolve. This is because, for the field to acquire c2s < 1, it

must be oscillating. However, for a given k, one can
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potentially have an arbitrary hierarchy between ak and ac,
and ak and as.
We wish to explore the mode evolution of different

Fourier modes for the three forms of the ULA potential

at fixed zc, which we set to be 10
−4. We choose a fraction of

the total energy density at zc in the ULA to be fzc ¼ 0.01. In

doing so, the ULA never makes a significant contribution to

the total energy density of the universe. Since the ULA is

always sub-dominant, comparing the evolution of the same

wave number leads to equal ak for each ULA potential.

For each value of n, we can use Eq. (28) to translate our

condition on zc to a relationship between α and Θi.

Similarly by specifying fzc we fix the relationship between

μ and Θi. We are left with one degree of freedom to fully

specify the model: the value of the frequency ϖ0, which

enters the effective sound speed after the field starts

oscillating and is specified by further fixing Θi. In the

following discussion we arbitrarily set Θi ¼ π=2 (choosing
another value would not affect our conclusions). The

resulting theory and parameter values for the specific

model discussed in this section are shown in Table I.

We explore the evolution of three modes: k1 ¼ 1 Mpc−1,

k2 ¼ 10−2 Mpc−1, and k3 ¼ 10−3 Mpc−1. We show these

modes, along with other important scales, in Fig. 2. From

Eq. (26) we can see that if k ≫ aϖ the sound speed goes

to 1. Hence, for a fixed k, the time-evolution of the effective

sound speed is different for different values of n: c2s goes

from one to less than one for n ¼ 1, it is a constant for

n ¼ 2, and it evolves from less than one to one for n ¼ 3.

TABLE I. Theory parameters (determined using the translation

equations in Sec. II D) for zc ¼ 104, fzc ¼ 0.01, and Θi ¼ π=2.

Parameter n ¼ 1 n ¼ 2 n ¼ 3

μ 1.54 × 106 1.09 × 106 8.92 × 105

α 0.124 0.175 0.215

ϖ0 (Mpc−1) 341.7 0.0185 1.11 × 10−4

FIG. 2. The evolution of a series of scales associated with ULA

perturbations. Note that while k > aϖ the mode has c2s ≃ 1.

FIG. 3. Evolution of the density contrast for the three forms of

the ULA potential considered in this paper and with zc ¼ 104,

fzc ¼ 0.01, and Θi ¼ π=2. The vertical dashed black line shows

ac, while the vertical dashed colored lines show Horizon crossing

for each mode.
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These modes were chosen because they have different

hierarchies: k1 has ak1 < ac < as1 , k2 has ac < ak2 and

no as2 , and k3 has ac < as3 < ak3 . In Fig. 3 we show the

evolution of the ULA density contrast for these three modes.

At early times, as long as the mode is superhorizon and

a < ac, we have wa ≃ −1þ cnða=acÞ3ð1þwnÞ, where cn is a
factor of order unity. The evolution of density perturbations

is similar for each ULA potential and each mode, as

dictated by the initial behavior in Eqs. (35) and (36).

Since both the density contrast and the heat flux are

proportional to 1þ wa, this shows that for a fixed ac we

expect that the lower values of n will have larger pertur-

bations. This is indeed the case in Fig. 3.

As illustrated by the wave number k1, modes with

ak < ac enter the horizon while the field is still undergoing
slow-roll, EDE, evolution. This results in a suppression in

the growth of the perturbations compared to their super-

horizon evolution. Once a≳ ac, the field starts to oscillate

in its potential and wa → ðn − 1Þ=ðnþ 1Þ. As long as

a < as, c
2
s ¼ 1 and the pressure support leads to a strong

decrease in the perturbation amplitude. This suppression is

present for both superhorizon and subhorizon modes.

Once a > as, c
2
s → wa and the field’s internal pressure

support will decrease. In the case where n ¼ 1 the field is

effectively pressure-free and the density perturbation starts

tracking that of CDM. For n > 1 some residual pressure

support remains, leading to rapid oscillations in the ULA’s

density perturbations with an oscillation frequency and

amplitude that differs for each n and k.

IV. IMPACT OF AN ULTRALIGHT AXION ON

THE CMB AND MATTER POWER SPECTRA

We compute the CMB and matter power spectra using

CLASS for several values of the potential exponent n ¼
ð1; 2; 3Þ and decay redshift 1þ zc ¼ ð10; 105Þ. We set the

six ΛCDM parameters to their best fit values of Planck

TT;TE;EEþ lowP 2015 [1]. We fix the angular scale of

the sound horizon, θs, which requires us to adjust the value

ofH0 (this is done using a shooting method implemented in

CLASS). We set the density of ULAs to its upper limit at

95% C.L. derived in the next Section. The results are shown

in Figs. 4 and 5.

A. The CMB power spectra in the presence of a ULA

We start by discussing the case where the dilution starts

much before matter-radiation equality, shown in Fig. 4. In

that case, the CMB power spectra show clear differences

depending on the value of n, i.e., on the properties of the

ULA once it starts diluting.

For n ¼ 1, the effects of the ULA are very similar to that

of an extra matter component. We illustrate this by

comparing it to a universe with an additional pure CDM

component, represented by the black curve on each panel of

Fig. 4. At the highest multipoles, the amplitude of the

acoustic peaks is altered by an earlier epoch of matter/

radiation equality, changes to the gravitational driving of

acoustic oscillations (affecting the Sachs-Wolfe term), and

modifications to the blue shift of photons in decaying

gravitational wells, the early integrated Sachs-Wolfe

(EISW) effect [47,48]. Since we hold the angular sound

horizon θs fixed the angular scale θd of diffusion damping

will vary and this leads to an altered damping tail. Keeping

θs fixed for a flat universe required adjusting the value of

ΩΛ, changes the late integrated Sachs-Wolfe (LISW)

plateau visible at low-l’s. It is also visible in the EE

spectrum as the reionization history is affected by a change

in ΩΛ. Note that the effect of this ULA on the CMB power

spectra makes it a viable CDM candidate (see, e.g.,

Ref. [25]): had we adjusted ωcdm accordingly, the remain-

ing effects would have been due to a suppression of the

matter power spectrum on small scales (which we comment

on later) and therefore almost invisible in the CMB, aside

from a moderately altered lensing power spectrum.

For n ¼ 2, the effects of the ULA are very similar to that

of an extra radiation component [49]. CMB anisotropies are

then altered for two reasons. First, at the background level,

FIG. 4. Residuals of the (lensed) CMB TT power spectrum (first

panel), EEpower spectrum (secondpanel), lensing power spectrum

(third) and matter power spectrum (fourth panel) computed

for several values of the potential exponent n ¼ ð1; 2; 3Þ and

1þ zc ¼ 105. Residuals are taken with respect to the ΛCDM

model, with parameters given by the best fit of Planck TT, TE,

EEþ lowP [1]. Axion densities are set at their constraints at

95% C.L. The grey bands show Planck 1σ sensitivity.
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the additional relativistic species shift matter-radiation

equality, which produces modified gravitationally driven

oscillations in the photon-baryon plasma and EISW. Hence,

the main background effect is due to the requirement that θs
is kept fixed and manifests as a shift in the damping scale

θd, a very mild LISW effect and some oscillation patterns

due to different reionization history in the EE spectrum.

Second, at the level of perturbations, such an ULA

produces a BAO phase-shift distinct from that of true

free-streaming particles like neutrinos [50]. Planck data are

not only sensitive to the background effect of neutrinos, but

also to the “neutrino-drag” [51–55], and have already been

used to constrain the effective sound speed c2s and viscosity

c2vis of the non-CMB radiation component and found to be

consistent with that of free-streaming neutrinos [28]. These

parameters are distinct in ULA models, and so we do not

expect strong degeneracies between ULAs and neutrinos.

For n ¼ 3, the energy density of the axion dilutes faster

than any known cosmological species. This leaves less of

an imprint on the CMB than the n ¼ 1 or n ¼ 2 cases, and

most of the effects can be attributed to the EDE phase,

rather than to the diluting fluid which becomes quickly

invisible. Since θs is kept fixed, the most important effect of

the extra amount of expansion is to reduce the amplitude of

the damping tail. On the other hand, the nonadiabatic sound

speed of the diluting ULA also leads to small peculiar

phase-shift of the acoustic peaks, in a manner different from

that of n ¼ 2 or a free-streaming species.

If the dilution begins after recombination, the exponent n
has much less impact. The EDE phase has a slight impact

on the growth of metric potentials around recombination,

which leads to features at high multipoles (and especially

around l ∼ 300). The additional residual wiggles at high-

l’s are mostly due to the different amount of lensing. It

depends on the impact of the ULA on the matter power

spectrum which we comment on below. The difference

between the dynamics of the perturbations are mostly

visible at small l’s. Since we keep θs fixed, ΩΛ is changed

which in turn affects zΛ. However, in the n ¼ 1 case the

additional matter component shifts zΛ further, in turn

affecting more strongly the LISW plateau, in a manner

similar to massive neutrinos. Further differences can be

attributed to the impact of the different wðaÞ as the fluids

dilute differently, but fall well below cosmic variance.

However, we expect that experiments sensitive to late-time

expansion (e.g., JLA, BAO) are sensitive to these effects.

B. The matter power spectrum in the presence of a ULA

We now turn to the matter power spectrum, which also

shows interesting features strongly dependent on the EDE

dilution time and potential power-law index n. In general,

once As and ns are fixed, the matter power spectrum

depends on: (i) the sound horizon at baryon drag rsðzdragÞ
which dictates the phase of the BAO; (ii) the Hubble scale

at matter radiation equality keq ≡ aeqHeq which sets the

position of the peak; (iii) the ratio ωb=ωcdm, which affects

the power on scales k > keq and the contrast of the BAO;

(iv) the ratio ½gða0;ΩmÞ=Ωm�2 which dictates k < keq and

where gða;ΩmÞ ¼ DðaÞ=a is a function expressing how

much the growth rate of structures DðaÞ is suppressed

during Λ domination.

When the dilution starts before matter-radiation equality,

the ULA affects zeq especially if it dilutes like matter or

radiation. The peak position keq therefore depends on n. If

n ¼ 1, the ratio ωb=ωcdm decreases which leads to a large

increase for k > keq until the mode-dependent sound speed

of the ULA kicks in. This creates a turnover at k > keq that

is very specific to such a ULA. One can see that the only

difference between a pure CDM component and a ULA is

this cutoff on very small sales because of the nonzero

pressure support. For n ¼ 2 and n ¼ 3, this branch is

almost unaffected for such small values of Ωa. The small-k
branch on the other hand is affected by the increase in

ΩM ¼ 1 − ΩΛ (decrease in ΩΛ) that is required to keep θs
fixed. Moreover, for all values of n the BAO is shifted

because of different rsðzdragÞ.
When the dilution starts after matter-radiation equality,

the effects are very similar to that of massive neutrinos,

and manifests in two ways. First, the ratio keq=ða0H0Þ

FIG. 5. Same legend as Fig. 5 for 1þ zc ¼ 10.
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governing the location of the maximum in the matter power

spectrum depends on the duration of matter domination.

Any modification of this ratio leads to an overall shift of the

spectrum. It is affected by the presence of an EDE, but the

additional matter component (for the n ¼ 1 case) partially

counteracts the effect of the EDE. Hence, the power

spectrum in the n ¼ 2 and 3 case is shifted in the same

way, and slightly more than in the n ¼ 1 case. Second, the

additional pressure support leads to suppression of power

on small scales in a manner that depends on each fluid

sound speed, and thus differs for each n.

V. CURRENT CONSTRAINTS TO ULAS

Using current measurements of the CMB and other

probes of large-scale structure we place constraints on the

energy density of ULAs as a function of the time when they

become dynamical. As mentioned before, although the

CMB decouples around z ∼ 1000, each multipole carries

with it information about the evolution of the universe

around the time the scales that form it entered the causal

horizon. This, in principle, makes the CMB sensitive to

cosmological dynamics as long ago as z ∼ 105–106 [4,20].

To perform this analysis we consider a series of fixed

values for zc at which we constrain the energy density in the
ULA. In addition to this we assume a uniform prior on

the initial field value, Θi, which in turn implies a particular

prior on the ULA’s oscillation frequency today, ϖ0 [see

Eq. (20)].

A. Description of the data sets and analysis

We run Monte Carlo Markov chains using the public

code MONTE PYTHON [39]. We perform the analysis with a

Metropolis Hasting algorithm, assuming flat priors on

fωb; θs; As; ns; τreio;ωcdmg and a logarithmic prior on Ωa.

We scan over 9 points in 1þ zc logarithmically distributed

between 1 and 108. We also vary n to be equal to (1,2,3).

We make use of Planck high-l and low-l TT, TE, EE and

lensing likelihood. We include the anisotropic BAO data at

z ¼ 0.2–0.75 from the BOSS DR12 data release [56] and

isotropic BAO data at z ¼ 0.105 [57] and z ¼ 0.15 [58].

We include the Joint Likelihood Analysis (JLA) of super-

novae, which includes measurements of the luminosity

distance of SN1a up to redshift z ∼ 1 [34].

Although not specified here for brevity, there are

many nuisance parameters that we analyze together with

the cosmological ones. To this end, we make use of a

Choleski decomposition which helps in handling the large

number of nuisance parameters [59]. We consider chains to

be converged using the Gelman-Rubin [60] criterion

R − 1 < 0.05. The constraints on the density of ULAs today

as a function of their dilution redshift 1þ zc are shown in

Fig. 6. These have the characteristic “belly” or U-shape first

estimated in Refs. [61,62], then generated more robustly

from a Boltzmann code with MCMC methods in Ref. [15],

and confirmed in Ref. [45].
6

B. Late time constraints

Constraints on the ULA at late times are driven by

measurements of the luminosity distance up to z ≃ 1 using

the JLA data set [34] and angular diameter distance

[56–58]. Note that even for zc ¼ 0 the field evolves away

from wϕ ¼ −1- in particular, fitting the parametrization

wϕðzÞ ¼ wa;0 þ wa;1½1 − 1=ð1þ zÞ� to the three forms of

the potential gives an axion equation of state

n ¼ 1→ wa;0 ¼ −0.50; wa;1 ¼ −0.79; ð37Þ

n ¼ 2→ wa;0 ¼ −0.37; wa;1 ¼ −1.18; ð38Þ

n ¼ 3→ wa;0 ¼ −0.31; wa;1 ¼ −1.36: ð39Þ

The values of these parameters show the behavior we

expect as a function of n: as n increases the scalar field’s

energy density decreases more rapidly, leading to a smaller

wa;0 and wa;1 with increasing n.

The JLA data (combined with measurements of the

temperature anisotropy from Planck, polarization measured

by WMAP and measurements of the BAO) yield a con-

straint of w0 ¼ −0.957� 0.124 and w1 ¼ −0.336� 0.552

[34], where wðzÞ ¼ w0 þ w1½1 − 1=ð1þ zÞ�. If we choose

FIG. 6. Top panel—Constraints on the density of the ULA

today as a function of its dilution time 1þ zc. Bottom panel—

Constraints on the fraction of the total energy content in the form

of a ULA at ac ≡ ð1þ zcÞ−1.

6
This shape seems to be somewhat generic in models for which

a species behaves as something other than matter up until a
critical transition redshift zc. For example, if the dark matter is
generated at late times by the decay of a relativistic species, as in
the late-forming dark matter model of Ref. [63], a qualitatively
similar constraint plot results.
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a small value of zc then the ULA will behave as quintes-

sence and contribute to driving the current epoch of

accelerated expansion. Fixing the matter component at

Ωm;0 ¼ 0.3 the equation of state of the late-time dark sector

(consisting of ϕ and a cosmological constant) is given by

wðzÞ ¼ −1þ waρa=ρΛ

1þ ρa=ρΛ
;

¼ −1þ waðzÞΩaðzÞ=ð0.7 − Ωa;0Þ
1þΩaðzÞ=ð0.7 −Ωa;0Þ

ð40Þ

Note that the cosmological constant plus ULA dark sector

has w ≥ −1.

We can then use this equation of state and fit for w0 and

wa up to z ¼ 1 to find the JLA-driven constraint on a

late-time ULA. For example, if zc ¼ 0 then we find

that constraints to ULAs are driven by the fact that

w0 < −0.833 and we find that at a 68% CL we have

n ¼ 1 → Ωa;0 < 0.22; ð41Þ

n ¼ 2 → Ωa;0 < 0.16; ð42Þ

n ¼ 3 → Ωa;0 < 0.15: ð43Þ

This discussion also shows that we expect the JLA

constraint to give a degeneracy between Ωa;0 and ΩΛ such

that Ωa;0 þ ΩΛ ¼ 1 − Ωm ≃ 0.7. This simple estimate is

very close, albeit slightly stronger, than what is obtained in

a real analysis:

n ¼ 1 → Ωa;0 < 0.25; ð44Þ

n ¼ 2 → Ωa;0 < 0.22; ð45Þ

n ¼ 3 → Ωa;0 < 0.20: ð46Þ

Note that there are some additional effects on the CMB

(LISW, reduced lensing amplitude) which are well below

Planck sensitivity but could be probedby future experiments.

C. Constraints for z
c
around recombination

When the dilution begins after matter-radiation equality

but before recombination, the n ¼ 2 and n ¼ 3 cases are

basically identical; indeed, the very fast diluting fluid

leaves no significant additional impact on the CMB as

the universe is largely matter dominated by then. Hence, the

constraints are purely driven by the EDE phase. The

strongest degeneracy visible on Fig. 7—middle panel—

appears to be with ωb, which can be adjusted to counteract

the effect of a faster recombination. Additional mild

degeneracies appear with parameters governing the overall

shape of the power spectrum fAs expð−τreioÞ; nsg and the

amplitude of the EISW term (ωcdmÞ. Note thatH0 shows no

degeneracy with faðzcÞ. In fact zc ¼ 103 represents a

turning point in the direction of the degeneracy; for higher

value of zc, the correlation is positive, and can be under-

stood in the same manner as the degeneracy between an

additional ultra-relativistic species and H0 (e.g., Ref. [49]).

For lower values of zc however, the correlation becomes

FIG. 7. Posterior distributions of the density of ULAs today vs the other ΛCDM parameters for 1þ zc ¼ 1 (bottom panel), 103

(middle panel) and 106 (top panel). For some cases, the density of the ULA has been multiply by a factor written in the row’s legend.
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negative and is driven by the requirement of keeping the

angular size of sound horizon at recombination θs fixed.

The n ¼ 1 case, however, represents a very distinct case:

as the fluid dilutes like matter, it increases the total matter

component of the universe. Hence, the constraints are driven

by the additional matter component and degeneracies

with ΛCDM parameters can be understood accordingly.

As expected, a strong negative degeneracy appears with

ωcdm, as well as withΩΛ ¼ 1 −ΩM (valid in a flat universe)

because ΩM increases. Similarly to the previous case, some

mild degeneracies appear with fAs expð−τreioÞ; nsg as to

compensate the overall shape of the spectra. Finally, a strong

negative correlation appears with H0 and is due to purely

geometric effects: one needs to compensate the increase in

theHubble rate (∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩMð1þ zÞ3
p

) by decreasingH0 in order

to keep the same angular diameter distance to recombina-

tion [15].

D. Constraints for z
c
earlier than

matter-radiation equality

We have described in Sec. IV the effect of an early

dilution on the CMB power spectra, well before matter

radiation equality. The degeneracies visible on Fig. 7—

bottom panel—are straightforward to understand. First and

foremost, when zc ≳ 105 and n ¼ 1, the ULA becomes

fully degenerate with a matter component. This represents a

range of mass for which the axion is a valid DM candidate,

as pointed out in Refs. [3,15]. Note that the degeneracy is

not perfect at zc ¼ zeq; this is because this requirement does

not ensure that zeq is exactly fixed, zc represents a transition

redshift and the fluid does not behave exactly like matter at

that time. Moreover, the CMB is sensitive to details of the

expansion history around matter-radiation equality through

the EISW, which further increases the value of zc at which
the ULA is degenerate (inCMBobservations) with the CDM

component. Note that there are no strong degeneracies

between the n ¼ 1 ULA and any other cosmological

parameters in this case: this is expected because ωcdm shows

no strong degeneracy with any parameters within ΛCDM.

In the n ¼ 2 case, the fluid dilutes like an extra radiation

component: the constraint is therefore driven by this

additional relativistic species. As explained in Sec. IV,

we expect a degeneracy with Neff to some extent. Indeed, at

the background level if the dilution starts early enough

(z≳ 106), they have exactly the same behavior. However,

we confirm that the degeneracy is far from perfect because

perturbations in the ULA fluid are very different from that

of a free-streaming species like neutrinos. The ULA has a

scale-dependent sound speed and viscosity that differs

strongly from thatmeasured byPlanck high-l, TT, TE, EEþ
low-P fc2s ¼ 0.3240� 0.0060; c2vis ¼ 0.327� 0.037g [1]

and therefore cannot replace the totality of the non-CMB

radiation bath. We find that it can account at most for ∼20%

of the total Neff . Degeneracies with other parameters can be

understood in a similar way as that of an additional

relativistic species (e.g., Ref. [49]), and we comment in

Sec. VI on the strong correlation with H0.

Finally, for n ¼ 3 the constraints come mostly from the

EDE phase and are thus very similar to that of zc ∼ 103. In

particular it is straightforward to show that if CMB

measurements constrain the fractional ULA contribution

at zCMB—the largest redshift that the CMB is sensitive to

(for Planck zCMB ∼ 105–106)—to be less than fCMB then as

zc ≫ zCMB the limit on Ωa;0 asymptotes to

Ωa;0 <
fCMBΩr;0

ð1 − fCMBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ zCMBÞ
p : ð47Þ

Taking Ωr;0 ¼ 9.2 × 10−5 for photons, three massless neu-

trinos and h ¼ 0.68 and setting zCMB ¼ 105 and fCMB ¼
0.06we find that the asymptotic constraint toΩa;0 for a ULA

with n ¼ 3 is approximately Ωa;0 < 2 × 10−8 which agrees

well with the constraints shown in Fig. 6. We can also

translate this into a constraint on the fzc :

fzc <
fCMB

ffiffiffiffiffiffiffiffiffiffiffiffi

1þzc
1þzCMB

q

1þ fCMB

� ffiffiffiffiffiffiffiffiffiffiffiffi

1þzc
1þzCMB

q

− 1

� : ð48Þ

This expression shows that with the current constraint

fCMB ¼ 0.06 at zCMB ¼ 105 we limit fzc to be less than

unity as far back as zc ¼ 1010. At this time constraints on the

rate of expansion of the universe during big bang nucleo-

synthesis frommeasurements of the primordial light element

abundances can, in principle, be used to further restrict fzc
(see, e.g., Ref. [64]).

When looking at thedegeneracies between then ¼ 3ULA

and other cosmological parameters the only difference

relative to the other cases is with ωb, for which the

degeneracy is flipped: in that case, the EDE does not affect

the recombination physics, but it decreases the damping

tail of the CMB. This effect can be partially compensated by

increasing ωb. This fact also drives the degeneracy with ns.
Note that, as zc increases, the constraint onΩa today flattens:

this means that the constraints on faðzcÞ relaxes as zc
increases. This is expected because Planck (limited to

l < 2500) is less and less sensitive to physics above z ∼ 105.

E. The role of perturbations

Finally, we comment on the extent to which the details of

perturbations play a role in the constraining power. In

previous discussion, we have seen that the n ¼ 1 case is

purely degenerate with a CDM component if zc ≳ 105;

naturally this degeneracy disappears if we neglect pertur-

bations in the fluid. However, when zc ≲ 104, we find that

neglecting perturbations leads to constraints that differ by

no more than ∼20%. In the n ¼ 2 and n ¼ 3 case, we find a

similar difference.
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Note however, that in the n ¼ 2 case conclusions would

have changed if the perturbations of the ULAwere that of a

free-streaming species. In that case, we would have found a

perfect degeneracy for high-enough zc that would not have

been present if perturbations are neglected. It is only

because the ULA is constrained to be a subdominant

fraction of the universe components (and thus never drives

the expansion and evolution of perturbations), that the

details of their perturbations do not matter too much.

However, in the future, next generation CMB experi-

ments and LSS surveys are expected to improve sensitivity

on ULA. Hence, any detection will require an accurate

description of perturbations, potentially even beyond the

fluid approximation described in this paper. In future work,

we will investigate the accuracy of this approximation

compared to a full solution of the KG equation, with an eye

towards the sensitivity levels of future CMB experiments

like CMB-S4 [65].

VI. IMPLICATIONS FOR

COSMOLOGICAL TENSIONS

Although most cosmological observables are individu-

ally consistent with a ΛCDM cosmology, tensions exist

between the predictions of various data sets, such as the

Hubble tension [1,7]. Furthermore, the recent measurement

of the sky-averaged 21-cm signal by the Experiment to

Detect the Global Epoch of Reionization Signature

(EDGES) is inconsistent with predictions of ΛCDM [8],

although the interpretation of the signal is still being

explored [9]. In this section, we examine the effect of

ULAs on these two tensions.

A. The Hubble tension

One of the most prominent and persistent tensions in

cosmology is the Hubble tension [66,67]. The current

expansion rate of the universe as predicted by the ΛCDM

model when fit to the CMB disagrees with local measure-

ments at greater than 3σ [7]. Planck determines H0 to be

66.93� 0.62 km s−1 Mpc−1, while the SH0ES (Supernova

H0 for the Equation of State Collaboration) collaboration

measures a value of 73.24� 1.74 km s−1Mpc−1 [7].

Numerous explanations have been proposed and studied

in the literature [4,7,68–75].

In this section, we investigate whether ULAs can

alleviate the tension and what regions in the Ωa − zc plane
are best suited to do so, similar to Ref. [4]. We use the

Friedmann equation to compute H0 today, given fiducial

values for the other cosmological parameters, and the

indicated values for zc and Ωa. We keep θs fixed and let

CLASS solve for the value of H0. The results are shown

in Fig. 8.

For n ¼ 1, we find that no value of Ωa;0 for values of

1þ zc ∈ ½100; 106� diminished the H0 tension. With refer-

ence to Fig. 7 and Sec. V D, for zc ≫ zeq, the fluid is fully

degenerate with CDM, and ωcdm and Ωa are negatively

correlated. That is, the CMB cannot distinguish between

the fluid and CDM. An increase in the energy density of the

fluid today will be accompanied by a decrease in the energy

density of CDM and there is no change to the value of the

Hubble parameter. At the other end, for zc ≃ 0, the fluid is

strongly degenerate withΛ. This degeneracy is weaker than

FIG. 8. Hubble parameter H0 for various values of Ω
0
a and zc,

for the n ¼ 1 (top panel), n ¼ 2 (middle panel) and n ¼ 3 case

(bottom panel). The cyan line represents the constraints shown in

Fig. 6. The white contours show the 1σ contour on the H0 value

measured by SH0ES.
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that with ωcdm at zc ≫ zeq, because the equation of state

parameter of the fluid is not exactly −1, as discussed in

Sec. V B. Again, an increase in Ωa is accompanied with a

decrease in ΩΛ and the value of H0 remains unaltered. The

tension is, however, somewhat alleviated as the fluid is

degenerate with H0 and leads to a larger error on H0. For

intermediate redshifts zc ≲ zeq, the fluid reduces the value

of H0, exacerbating the tension. Planck data constrain

especially well the combination Ωmh
3 [1] and therefore,

effectively increasingΩm leads to a reduction in h. Hence at

best, the n ¼ 1 scenario leaves H0 unaltered, at worst,

exacerbates the tension.

The n ¼ 2 scenario fares better, as seen from Fig. 8. For

zc < z�, it fares similarly to the n ¼ 1 case. It is strongly

degenerate with ΩΛ for zc ≃ 0. For 0 < zc ≪ z�, the fluid

exacerbates the tension. Again, this is due to its effect on

DAðz�Þ—it adds to the expansion rate at late times and H0

must decrease to compensate and preserve DAðz�Þ. For
zc ≃ 103, as mentioned in Sec. V C, Ωa and H0 are

uncorrelated. As we are already in matter domination by

z ¼ 103, a fluid that behaves like Λ before and radiation

after recombination will impact expansion history only

over a finite redshift range around zc. As the angular

diameter distance DAðz�Þ to recombination gets most of its

contribution from lower redshifts, its value and therefore

H0 remain largely unchanged. For zc > z�, the n ¼ 2

scenario is degenerate with Neff , as it effectively adds

more radiation to the Universe. Hence the impact of the

fluid on H0 is similar to that of Neff : it increases H0 and

diminishes the tension [7]. However, our CMB constraints

disfavor this solution.

Finally, for the n ¼ 3 scenario, for zc ≲ z�, the impact of

the fluid is similar to the n ¼ 2 case. As mentioned before,

the n ¼ 3 case only impacts expansion history over a small

range in redshift centered around zc. For zc > z� and Ω
0
a

larger than our current constraints, pre-recombination

expansion rate is increased. This decreases the radius rs
of the sound horizon at recombination and H0 increases to

compensate and preserve θs. Hence, the fluid is capable of

increasingH0 as seen in Fig. 8, but for values ofΩ
0
a that are

much larger than our constraints.

The CMB becomes insensitive to physics above z ∼ 106

as noted by [4,20]. Therefore, for a given Ω
0
a, even as zc

increases above 106, the energy density of the fluid for

z≲ 106 remains unchanged, as does the Hubble parameter.

We hence only show the change to the Hubble parameter

due to the addition of ULAs up to 1þ zc ¼ 106.

To summarize, we find that in order for ULAs to

diminish the Hubble tension, with n ¼ 2 and 3, it requires

z� < zc ≲ 106 and Ωa larger than our constraints. Still, in

the n ¼ 2 case the tension is reduced from ∼3.5σ to less

than 2σ, which is a more significant easing of this tension

than a relativistic species with arbitrary sound speed and

viscosity (see e.g., [76,77]).

B. EDGES exotic 21 cm measurement

EDGES recently measured the sky-averaged 21 cm

brightness temperature [8] around the redshift range z ¼
15–20 to be roughly 2.5 times smaller (3.8σ) than that

predicted by ΛCDM.
7
Two main classes of solution have

been suggested to explain this measurement: either the

temperature of the photons against which the 21-cm

temperature of the gas is measured is brighter than that

of the CMB [78–80] or the baryon temperature Tb is cooler

than expected based on ΛCDM [5,8,81,82]. In the latter

scenario, the EDGESmeasurement indicates that the baryon

temperature Tb at z ¼ 20 is smaller than 7K at 99% C.L.

In Ref. [5], the implications of EDGES were explored for

an EDE model equivalent to the limit n → ∞, including

only the effect of EDE on the homogeneous evolution of

densities and temperatures. Here we perform a similar

analysis for n ¼ 1, 2, and 3, including perturbations in a

ULA fluid.

In the absence of any additional sources, the baryon gas

temperature is driven by the balance between Compton

heating and Hubble cooling

dTb

dz
¼ TbðzÞ − TCMBðzÞ

ð1þ zÞHðzÞtCðzÞ
þ 2TbðzÞ
ð1þ zÞ : ð49Þ

where tCðzÞ is the Compton-heating timescale. The key

idea used in Ref. [5] is that, if the expansion rate before

z ∼ 20 is increased, the gas temperature decouples from the

CMB temperature earlier, giving the gas more time to

adiabatically cool. Within ΛCDM, baryons decouple

around z ∼ 150. To reach the 99% C.L. upper limit on

the level of absorption measured by EDGES at z ∼ 20, the

decoupling would need to happen around z ∼ 210. The

presence of a ULA that would dominate the expansion rate

over a short period of time can potentially lead to a

decoupling satisfying this condition.

We show in Fig. 9 the baryon temperature at z ¼ 20

(close to the minimum of the absorption trough measured

by EDGES [8]) as a function of the ULA density today Ω
0
a

and critical redshift zc, for each value of n. To produce this

figure, we fixed all ΛCDM parameters including the

Hubble rate H0 to values compatible with Planck 2015

data.
8
Interestingly, we confirm that there exists a region of

parameter space, centered around zc ∼ 100 where the

7
The proper interpretation of this measurement is still under

discussion [9].
8
In CLASS, these equations can be solved using either Recfast

[83,84] or HyRec [85] and Eq. (49). Our choice of keeping H0

fixed is motivated by the fact that adjusting θs requires strongly
un-physical values of the Hubble rate (sometimes smaller than
0.01 km=s=Mpc) for which both Recfast and HyRec have
difficulties to solve the cosmological recombination history. This
also allows for a direct comparison with Ref. [5] where the same
approach was used.
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EDGES signal can be explained, in the n ¼ 2 and n ¼ 3

case. Our constraints on the ULA density from Planck data

however strongly exclude all of these models, in agreement

with Ref. [5].

VII. CONCLUSIONS

In this paper, we have studied the impact of ULAs on

cosmological observations as they become dynamical at

different times. We have considered potentials of the form

VnðϕÞ ∝ ð1 − cosϕÞn, which show a wide variety of

phenomenological consequences. At early times, each field

is frozen in its potential due to Hubble friction such that

their equations of state are dark-energy like, i.e., wa ≃ −1.

Once Hubble friction becomes weak enough, the field

becomes dynamical and eventually starts to oscillate at the

bottom of its potential. Once averaged over the oscillation

period, the potential leads to an equation of state equal

to wa ≃ ðn − 1Þ=ðnþ 1Þ.
Such fields had been previously invoked in several

contexts. First, ULAs with n ¼ 1 and becoming dynamical

at early times (z≳ 105) are known to be a viable DM

candidate. On the other hand, ULAs still frozen today are a

viable dark energy candidate [3,15]. Second, a statistical

ensemble of such fields may alleviate the coincidence

problem today [4,19,21,22]. This general scenario may

also provide a way to connect the physics of cosmic

inflation to our current period of accelerated expansion

[21]. Third, the presence of an EDE can possibly reduce the

Hubble constant tension [4] and explain the anomalously

low baryon temperature inferred by the EDGES experiment

[5]. More generally, the presence of a collection of scalar

fields (beyond the sole DM or DE) is a generic feature of

the axiverse which gives us additional handle on this

scenario and should thus be looked for.

We have extended these previous studies in several

significant ways. First, we have presented a parametrization

of the ULA dynamics in terms of the redshift when the field

becomes dynamical, zc, and the fractional energy density in

the axion field at zc, fzc . Second of all, we have extended the

effective fluid formalism for ULAs to anharmonic ULA

potentials. These perturbations can be approximately

described by a time-averaged fluid component with a time

and scale dependent effective sound speed [3,15,23–27]

within the “generalized dark matter” parametrization [28].

Recently, alternative formalisms have been proposed to deal

with the numerical challenges that arise when modeling

perturbations to a coherently oscillating scalar field in the

expanding universe [86]. Under an appropriate change of

variables, these are equivalent to the effective fluid formalism

used here, modulo subtleties to be explored in future work.

Moreover, we derived a mapping between this para-

metrization and the ULA mass, decay constant and initial

field value and attested of the accuracy of our fluid

approximation by direct comparison with the exact KG

solution in Appendix B.We have also shown that this WKB

approximation is strictly only valid for potentials with

n ≤ 3, otherwise the period of oscillation is shorter than a

Hubble time, violating the WKB assumptions.

Second, equipped with this fluid formalism we

have compared the phenomenological consequences of

FIG. 9. Baryon temperature at z ¼ 20 (close to the minimum of

the absorption trough measured by EDGES [8]) as a function of

the ULA density today Ω
0
a and critical redshift zc. The top panel

presents the n ¼ 1 case, the middle panel the n ¼ 2 case and the

bottom panel the n ¼ 3 case. The white line shows Tb ¼ 7 K,

i.e., the 99% upper-limit on the temperature measured by

EDGES. The cyan line shows the Planck 95% C.L. limit derived

in this work. All models of interest are excluded by our analysis.
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axionlike potentials with n ¼ 1 which dilutes as cold dark

matter (CDM), n ¼ 2 which dilutes as radiation, and n ¼ 3

which dilutes faster than radiation. We were thus able to

explore any degeneracy the ULAs may have with known

cosmological components, in particular CDM and neutri-

nos, and quantify the sensitivity of the data to a ULA

component that decays even faster than radiation. We have

constrained the abundance of ULAs as a function of zc
using current cosmological data sets with a MCMC

analysis, in order to fully explore degeneracies between

the ULA parameters and the standard cosmological param-

eters. Remarkably, the details of the ULA effective sound

speed could distinguish the effects of a ULA from other

cosmological components, even if the ULA time-averaged

equation of state is equal to zero (CDM-like) or 1=3
(radiationlike). Moreover, we have found that the CMB

is sensitive to the field becoming dynamical as early as

zc ∼ 1010. Interestingly, such an EDE could change the

frequency spectrum of gravitational waves generated by

phase transitions in the early universe, and could have

implications for experimental efforts like LIGO and LISA

[87], a possibility to be explored in future work.

We illustrate in Fig. 10 how the constraints derived in

this work in the ðzc; Ω0
aÞ—plane translate onto constraints

on the axion parameters, i.e., (μ, α). We use the relations

introduced in Sec. II D to map the ULA parameters to our

fluid formalism. As an example, we choose three different

initial field values, namely θi ¼ 0.1; π=2; 3. The smallest

value of θi allows direct comparison with results from

Refs. [15,45] (derived in the quadratic approximation),

while the two others show how these constraints vary with

the initial field value.

Finally, we have studied the implications of our con-

straints for cosmological tensions. We have shown that

fields with n ¼ 2 and n ¼ 3 can significantly ease the

tension, as previously found for n→ ∞. However, our

results put this scenario under strong pressure. On the one

hand, the explanation of the EDGES signal is excluded by

more than three orders of magnitude. On the other hand, we

find that ULAs could at best ease the H0 tension from

∼3.4σ to ∼2σ given the level of our constraints. Contrary to

expectation, the n ¼ 2 scenario is favored over n ¼ 3 even

if the latter dilutes faster. This scenario also does slightly

better than a relativistic species with arbitrary sound speed

and viscosity, which can only relax the tension at the 3σ

level [76,77].

Our formalism represents a state-of-the-art treatment of

the effect of ULAs on cosmological observables and can be

used safely to analyze Planck data. In the future, CMB and

LSS experiments with yet unreached precision will be built.

It is still to be established whether the fluid approximation

will be accurate enough to describe the impact of ULAs

without introducing strong bias in the reconstruction of

cosmological parameters. However, this formalism is

essential in order to perform extensive MCMC scan given

the difficulty of solving the full KG equations. It will

therefore be necessary to further develop methods to

calculate the cosmological implications of ULAs as obser-

vations become more precise.

FIG. 10. Constraints on the axion model parameters (μ, α). We

illustrate the impact of the initial field values by choosing

θi ¼ 0.1; π=2; 3.
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APPENDIX A: DERIVATION OF THE

TIME-AVERAGED EFFECTIVE SOUND SPEED

FOR A GENERIC OSCILLATING POTENTIAL

Here we derive the effective sound speed, following the

covariant perturbation theory notation used in Refs. [28,88].

We can write the linearly perturbed Friedman-Robertson-

Walker (FRW) metric as

g00 ¼ −a−2ð1 − 2AÞ; ðA1Þ

g0i ¼ −a−2Bi; ðA2Þ

gij ¼ a−2ðγij − 2HLγ
ij − 2H

ij
T Þ; ðA3Þ

where γijdx
idxj ¼ dχ2 þ χ2dΩ and χ is the comoving

distance. Using conformal time, the equation of motion

for the linear perturbation of the axion field is given by

ϕ̈1 þ 3H _ϕ1 þ
�

k2

a2
þ V 00

�

ϕ1

¼ ð _Aþ 3 _HL − k=aBÞ _ϕ0 − 2AV 0; ðA4Þ

where B is the longitudinal part of Bi. In synchronous gauge

we haveA ¼ B ¼ 0, η≡ −1=3HT −HL, h≡ 6HL, where η

and h are the metric variables used in Ref. [43].

We can write the density, pressure, and velocity pertur-

bations in the scalar field stress energy as

δρa ¼ ð _ϕ0
_ϕ1 −

_ϕ2
0AÞ þ V 0ϕ1; ðA5Þ

δPa ¼ ð _ϕ0
_ϕ1 −

_ϕ2
0AÞ − V 0ϕ1; ðA6Þ

T0
i ¼ ∇iQϕ ¼ ∇i

_ϕ0ϕ1; ðA7Þ

where Qϕ ≡ ðρa þ paÞðva − BÞ. We suppose that the field

is oscillating about the minimum of its potential with a

frequency ϖ ≫ H and we want to find the sound speed in

the axion’s average “rest frame.” In this rest frame when

averaging over the fast oscillations we have

hT0
i i ¼ 0 → h _ϕ0ϕ1i ¼ 0; ðA8Þ

which fixes thegauge condition for themetric perturbationB.
We also require that in the axion rest frame the time-averaged

axion heat-flux is locally conserved:

	�

∂

∂η
þ 4H

�

Qa




¼ 0 ðA9Þ

which, through theEuler equation for the axion stress energy,

implies our second gauge condition [24,88]

hρa þ PaiA ¼ −hδPai: ðA10Þ

We can write the linearly perturbed axion energy density as

δρa ¼ _ϕ0
_ϕ1 − ðρa þ PaÞAþ V 0ϕ1; ðA11Þ

δPa ¼ _ϕ0
_ϕ1 − ðρa þ PaÞA − V 0ϕ1; ðA12Þ

which along with our gauge condition in Eq. (A10) gives

ϖ2hϕ0ϕ1i ¼ hV 0ϕ1i; ðA13Þ

hδρai ¼ hδPai þ 2ϖ2hϕ0ϕ1i: ðA14Þ

Keeping only the terms which vary on the (short)

oscillation timescale, the perturbedKlein-Gordon equation is

ϕ̈1 þ
�

k2

a2
þ V00

�

ϕ1 ≃ −2AV 0: ðA15Þ

Multiplying this equation byϕ0 and averaging over the short

period we have

−ϖ2hϕ1ϕ0i þ
k2

a2
hϕ1ϕ0i þ ð2n − 1ÞhV 0ϕ1i

≃ −4AnhVi ðA16Þ

Finally, the virial theorem allows us to write

hρai ¼ ðnþ 1ÞhVi; ðA17Þ

hPai ¼ ðn − 1ÞhVi; ðA18Þ

so that
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hρa þ Pai ¼ 2nhVi; ðA19Þ

and the Klein-Gordon equation can be written

�

k2

a2
þ 2ðn − 1Þϖ2

�

hϕ1ϕ0i ≃ 2hδPai: ðA20Þ

This allows us to write

c2s ≡
hδPai
hδρai

¼ 2a2ðn − 1Þϖ2 þ k2

2a2ðnþ 1Þϖ2 þ k2
: ðA21Þ

The effective sound speed is computed in a gauge where

B ¼ hvai; ðA22Þ

A ¼ −
hδPai

hρa þ Pai
; ðA23Þ

but we are doing our calculations in synchronous gauge

where A ¼ B ¼ 0. Next we will show that by transforming

to synchronous gauge the effective sound speed enters into

the fluid dynamics as dictated by the GDM equations of

motion [28].

A general gauge transformation takes the form

η ¼ η̃þ T; ðA24Þ

xi ¼ x̃i þ Li; ðA25Þ

which leads to a transformation of the scalar metric

potentials

A ¼ Ã − _T −HT; ðA26Þ

B ¼ B̃þ _Lþ kT; ðA27Þ

HL ¼ H̃L −
k

3
L −HT; ðA28Þ

HT ¼ H̃T þ kL; ðA29Þ

and transformation of the components of the stress-energy

tensor

δρa ¼ δρ̃a − _ρaT; ðA30Þ

δPa ¼ δP̃a −
_PaT; ðA31Þ

va ¼ ṽa þ _L: ðA32Þ

This tells us that to transform from our comoving gauge to

synchronous gauge where B ¼ 0 we must have

_Lþ kT ¼ −hvai; ðA33Þ

which in turn, using the transformation for the velocity,

implies

T ¼ −va=k; ðA34Þ

where vϕ is the axion velocity perturbation in synchro-

nous gauge.

In order to determine how c2s affects the evolution of

the averaged field in synchronous gauge we now compute

the synchronous gauge entropy perturbation, PaΓa≡

δPa − c2aδρa, where c2a ¼ _Pa=_ρa, in terms of the averaged

field variable in the comoving gauge. We start with an

expression for the pressure perturbation in synchronous

gauge:

δPa ¼ hδPai þ _Pava=k; ðA35Þ

¼ c2shδρai þ _Pava=k; ðA36Þ

where in the second line we have used the effective sound

speed. Next we write the comoving density perturbation in

terms of the synchronous density perturbation and use the

homogeneous continuity equation:

δPa ¼ c2sðδρa − _ρavϕ=kÞ þ _Pava=k; ðA37Þ

¼ c2sδρa þ 3Hð1þ waÞρaðc2s − c2adÞva=k: ðA38Þ

This leads to

PaΓa ¼ ðc2s − c2aÞ½δρa þ 3Hð1þ waÞρava=k�: ðA39Þ

This implies that we can use the GDM equations of motion

to approximate the evolution of the perturbations in the

axion field with an effective sound-speed which transitions

from c2s ¼ 1 for z > zc to Eq. (A21) for z < zc.

APPENDIX B: APPROXIMATE

VS. EXACT DYNAMICS

To check the validity of our fluid approach, we compare

it to the solution of the full KG equations for specific

(arbitrary) values ðμ; αÞ ¼ ð105; 0.05Þ. We choose an initial

field value Θi ¼ 1.5, 2.5, 3 for n ¼ 1, 2, 3 respectively. We

use the relations introduced in Sec. II D to map the ULA

parameters to our fluid formalism. From a given mu, α and

Θi, we can easily calculate ΩaðzcÞ and xc. We then make

use of a shooting method in order to achieve Eq. (29) (that

cannot be solved analytically except if we assume that a

single species dominates the universe energy content). We

have checked that changing these parameters do not affect

our conclusions. We plot the evolution of density pertur-

bations with wave number k ¼ 1, 10−3 Mpc−1 in Fig. 11.

The impact of our approximation on the CMB and power

VIVIAN POULIN et al. PHYS. REV. D 98, 083525 (2018)

083525-18



spectra is shown in Fig. 12. We also show the case of

neglecting perturbations of the ULA for comparison.

By looking at Fig. 11, one can see that our parametrization

captures well the overall behavior of the density perturba-

tions. While it fails at following all of the oscillations, the

envelope (i.e., the amplitude) of these is well reproduced.

The agreement improves when the ULA starts oscillating,

since our parametrization is designed for that regime.

In Fig. 12, one can see that the CMB TT and EE power

spectra are calculated at a few percent accuracy. The

agreement is better for n ¼ 1 (it is always below a percent

point) and degrades when going to higher power of n. This
is expected as the WKB approximation, valid when the

field oscillations are much more rapid than the Hubble

time, breaks-down for n ≥ 3. One can also gauge the

impact of including perturbations: it is particularly impor-

tant to avoid creating large deviations at multipoles

l≲ 100. Remarkably, below multipoles of a few hundred

the agreement is always well below a percent when

including perturbations. Perturbations also have an impact

at high multipoles, especially in the n ¼ 1 and 2 case, but

does not improve the agreement very significantly in the

n ¼ 3 case. From this quick comparison, we conclude that

it is safe to use our parametrization given the precision of

Planck data and the fact that we merely derive constraints

on the ULAs abundances. However, we note that given the

accuracy of next generation CMB experiments at high

multipoles, searches for ULA in future cosmological data

might require the evolution of the full KG equations

(especially in the n > 1 cases).

FIG. 11. The exact and approximate evolution of density

perturbations with wave number k ¼ 1 Mpc−1 (top panel) and

k ¼ 10−3 Mpc−1 (bottom panel) for n ¼ 1, 2, 3 and ðμ; αÞ ¼
ð105; 0.05Þ. The initial field values Θi were set to 1.5,2.5,3,

respectively.

FIG. 12. Residuals of the CMB TT (top panel) and EE (bottom

panel) power spectra calculated in the fluid approximation with

respect to solving exactly the KG equations for n ¼ 1, 2, 3 and

ðμ; αÞ ¼ ð105; 0.05Þ. The initial field values Θi were set to

1.5,2.5,3. We show the case of neglecting perturbations of the

ULA for comparison.
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