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Abstract Fast Radio Bursts (FRBs) are millisecond-duration
radio transients with an observed dispersion measure (DM)
greater than the expected Milky Way contribution, which
suggests that such events are of extragalactic origin. Although
some models have been proposed to explain the physics of
the pulse, the mechanism behind the FRBs emission is still
unknown. From FRBs data with known host galaxies, the
redshift is directly measured and can be combined with esti-
mates of the DM to constrain the cosmological parameters,
such as the baryon number density and the Hubble constant.
However, the poor knowledge of the fraction of baryonic
mass in the intergalactic medium ( f IGM ) and its degener-
acy with the cosmological parameters impose limits on the
cosmological application of FRBs. In this work we present
a cosmological model-independent method to determine the
evolution of f IGM combining the latest FRBs observations
with localized host galaxy and current supernovae data. We
consider constant and time-dependent f IGM parameteriza-
tions and show, through a Bayesian model selection analysis,
that a conclusive answer about the time-evolution of f IGM

depend strongly on the DM fluctuations due to the spatial
variation in cosmic electron density (δ). In particular, our
analysis show that the evidence varies from strong (in favor
of a growing evolution of f IGM with redshift) to inconclu-
sive, as larger values of δ are considered.

1 Introduction

Fast Radio Bursts (FRBs) are energetic radio transients with
duration time of the order of millisecond and typical radiation

a e-mail: thaislemos@on.br (corresponding author)
b e-mail: rsg_goncalves@ufrrj.br
c e-mail: jcarvalho@on.br
d e-mail: alcaniz@on.br

frequency of ∼ GHz [1–4]. Although some models have been
proposed to explain the physics of the pulse and some of
these events are associated with magnetars [5], the origin of
the FRBs emission remains unknown [6]. Since the value of
the dispersion measure observed (DM) is greater than the one
expected from the Milky Way contribution, FRBs are thought
to be extragalactic events or even of cosmological origin [7].
The origin of the pulse is confirmed when it is possible to
identify its host galaxy and, consequently, its redshift.

The first FRB was discovered by the Parkes Telescope
in 2007 and was named FRB 010724 [1]. After that, more
than one hundred FRBs have been discovered [4,8]. These
events can be divided in two groups according to if they are
repeating or nonrepeating. Apparently, most of the bursts
found are nonrepeating [9,10]. If one can identify the host
galaxy of the bursts, we can use the dispersion measure (DM)
versus redshift (DM−z) relation of these events as a tool to
study the underlying cosmology. In fact, FRBs have been
used to constrain cosmological parameters [11,12], such as
the Hubble parameter H(z) [13] and Hubble constant H0

[14,15], to probe the anisotropic distribution of baryon matter
in Universe [16], as well as to constrain the fraction of baryon
mass in the intergalactic medium (IGM) [17–19].

One issue that restricts the application of FRBs in cos-
mology is the uncertainties on the evolution of the fraction
of baryon mass in the IGM ( f IGM ) and its degeneracy with
the cosmological parameters. In this concern, some studies
have been performed to discuss the baryon distribution in the
IGM using both numerical simulations [20–22] and obser-
vations [23–25]. For instance, in Ref. [22] the authors per-
formed numerical simulations and found that about 90% of
the baryons produced by the Big Bang are contained within
the IGM at z ≥ 1.5 (i.e., f IGM ≈ 0.9) whereas in Ref. [24],
the baryons existent in the collapsed phase at z ≥ 0.4 rep-
resent 18 ± 4% or, equivalently, f IGM ≈ 0.82. From these
results one may naively infer that the f IGM grows with red-
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shift. Other recent analyses have pointed out that if a sample
of FRBs can be localized, so their luminosity distance dL can
be determined [12,17,26].

In this paper, we propose a new cosmological model-
independent method to constrain a possible evolution of
f IGM (z) directly from observations of FRBs dispersion mea-
sure DM(z) and dL from type Ia supernovae (SNe) data. In
our analysis, we use a subsample of 17 FRBs with known red-
shifts [27–37] along with the Pantheon SNe catalogue [38].
We consider both constant and time-dependent parameteriza-
tions for f IGM and discuss the observational viability of them
through a Bayesian model selection analysis. We organized
this paper as follows. In Sect. 2 we introduce our method
to study the evolution of f IGM with redshift. The data sets
used in the analysis and their application are presented and
discussed in Sect. 3. We present our main results in Sect. 4.
The role of the DM fluctuations in the determination of the
f IGM evolution is discussed in Sect. 5. We end the paper in
Sect. 6 by presenting our main conclusions.

2 A new method to determine the baryon fraction

2.1 Dispersion measure

The observed DM of a FRB is a combination of several
components [26,39]:

DMobs(z) = DMMW + DMIGM (z) + DMhost (z), (1)

where the subscripts MW, IGM and host denote contribu-
tions from the Milky Way, IGM, and the FRB host galaxy,
respectively. The observed DM of a FRB is directly mea-
sured from the corresponding event while the DM of the
Milky Way has a contribution from the Milky Way interstel-
lar medium (ISM) and from the Milky Way halo, estimated
by the relation DMMW = DMMW,I SM + DMMW,halo [40].
DMMW,I SM can be well constrained using models of the
ISM galactic electron distribution in the Milky Way from
pulsar observations [41–43] whereas the Milky Way halo
contribution is not well constrained yet. In our analysis, we
follow [40] and assume DMMW,halo = 50 pc/cm3.

Subtracting the Galaxy contribution from the observation
of DM we define the observed extragalactic DM as

DMext (z) ≡ DMobs(z) − DMMW , (2)

so that, using Eq. (1), the theoretical extragalactic DM can
be calculated as

DMth
ext (z) ≡ DMIGM (z) + DMhost (z), (3)

where both terms on the right hand side are described as
follows.

The redshift evolution of DMhost (z) is given by [39,44]:

DMhost (z) = DMhost,0

(1 + z)
, (4)

where the (1 + z) factor accounts for the cosmic dilation.
The host galaxy contribution, DMhost,0, is a poorly known
parameter, as it depends on the type of the galaxy, the rela-
tive orientations of the FRBs source with respect to the host
and source, and the near-source plasma [45]. Therefore, the
host galaxy contribution DMhost,0 will be considered a free
parameter in our analysis. On the other hand, the average
dispersion measure from IGM can be written as function of
the redshift as [39]

DMIGM (z) = 3c�bH2
0

8πGmp

∫ z

0

(1 + z′) f IGM (z′)χ(z′)
H(z′)

dz′,

(5)

where c is the speed of light, �b is the present-day baryon
density parameter, H0 is the Hubble constant, G is the grav-
itational constant, mp is the proton mass, f IGM (z) is the
baryon fraction in the IGM, H(z) is the Hubble parameter at
redshift z and the free electron number fraction per baryon
is given by

χ(z) = YHχe,H (z) + YHeχe,He(z). (6)

The terms YH = 3/4 and YHe = 1/4 are the mass frac-
tions of hydrogen and helium, respectively, while χe,H (z)
and χe,He(z) are the ionization fractions of hydrogen and
helium, respectively. At z < 3 hydrogen and helium are fully
ionized (χe,H (z) = χe,He(z) = 1) [22,46], so that we have
χ(z) = 7/8. From the above equations, one can constrain a
possible evolution of the baryon fraction by modelling both
DMhost,0 and DMIGM and comparing the theoretical pre-
dictions with the observed values of DMext .

2.2 f IGM (z) from FRB and SNe observations

As mentioned earlier, one of the aspects that restricts the
application of FRBs in cosmology is the uncertainties on the
evolution f IGM with redshift. In order to investigate this mat-
ter further, we assume in our analysis two parameterizations
for this quantity:

f IGM = f IGM,0, (7a)

f IGM = f IGM,0 + α
z

1 + z
. (7b)

The parameter f IGM,0 is the present value of f IGM whereas
α quantifies a possible evolution of f IGM . In our analysis
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both are free parameters and since f IGM is understood to
be an increasing function of the redshift, α assumes only
positive values (α ≥ 0). Hereafter, we explicit the DMIGM

expression for both cases.
Considering the general case in which f IGM (z) is a func-

tion of redshift, one can calculate Eq. (5) by parts:

DMIGM (z) = A fIGM (z)
dL(z)

c
−

∫ z

0

dL(z′)
(1 + z′)c

×A fIGM (z′)dz′ − A
∫ z

0

dL(z′)
c

f ′
IGM (z′)dz′, (8)

where A = 21c�bH2
0

64πGmp
, f ′

IGM (z) = d fIGM (z)
dz and

dL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
(9)

is the luminosity distance. Now replacing parameterization
(7b) in the above expression we obtain

DMIGM (z) = A

(
f IGM,0 + α

z

1 + z

)
dL(z)

c

−A
(
f IGM,0 + α

) ∫ z

0

dL(z′)
c(1 + z′)

dz′. (10)

For the constant case (7a), we follow the same steps above
and find

DMIGM (z) = A fIGM,0

[
dL(z)

c
−

∫ z

0

dL(z′)
(1 + z′)c

dz′
]

.

(11)

Note that the last term of Eqs. (10) and (11) are equal and
can be numerically solved as (see [47]):

∫ z

0

dL(z′)
(1 + z′)c

dz′ = 1

2c

N∑
i=1

(zi+1 − zi )

×
[
dL(zi+1)

(1 + zi+1)
+ dL(zi )

(1 + zi )

]
. (12)

Therefore, using estimates of dL(z) from SNe observa-
tions, it is possible to constrain the evolution of f IGM (z)
with redshift from the above expressions.

3 Data and methodology

In order to discuss a possible evolution of the baryon frac-
tion, we use observational data for the dispersion measures
and luminosity distance. The former is obtained directly from
FRBs measurements whereas the latter comes from SNe
observations.

Currently, there are 19 FRBs events with localised host
galaxy and redshifts (for details of FRBs catalogue1 see [4]
and for host database2 see [30]). In our analysis, we use a
sample of 16 FRBs within the redshift interval 0.0337 ≤
z ≤ 0.66, which constitutes the most up-to-date FRB data
set currently available [27–35,37]. Our subsample excludes
the repeating burst FRB 20200120E [48] at z = −0.0001,
observed in the direction of M81, the FRB 20181030A [49]
since there is no SNe in the Pantheon catalogue near its red-
shift (z = 0.0039), and the FRB 190614D whose redshift
estimate lies in the interval 0.4 � z � 0.75 (68% confidence
interval), and can be associated with two host galaxies [36].
The main properties of these 16 FRB events are shown in
Table 1, namely: redshift, DMMW,I SM , DMobs and observed
DM error of all localised FRBs. The values of DMMW,I SM

are estimated from the NE2001 model [42].
From Table 1, we can calculate our observational quantity,

DMext , using Eq. (2), whose uncertainty is given by

σ 2
ext = σ 2

obs + σ 2
MW , (13)

where the average galactic uncertainty σMW is assumed to
be 10 pc/cm3 [50].

In order to obtain measurements of dL(z), we use the dis-
tance moduli (μ(z)) data obtained from current SNe Ia obser-
vations. This quantity is related to dL(z) by

μ(z) = mB − MB = 5 log10

[
dL(z)

1Mpc

]
+ 25, (14)

where mB is the apparent magnitude of SNe, and, in our
analysis, we fix the absolute peak magnitude at MB =
−19.214±0.037 mag, as given by [51]. The data set used for
SNe is the Pantheon catalogue [38], which comprises 1048
SNe within the redshift range 0.01 < z < 2.3. In order to
work with the equations derived in the previous section, we
perform a Gaussian Process (GP) reconstruction of the Pan-
theon data to obtain estimates of dL(z) at the same redshifts
of the FRBs (for details of GP reconstructions we refer the
reader to [52,53] and references therein).3

Summarizing, the steps of our analysis are the following:
first, we calculate DMext (zi ) observed and σext (zi ) using
the FRBs dataset. Second, the luminosity distance is calcu-
lated at the same DMext redshift, using the GP reconstruc-
tion of Pantheon catalogue. The integral given by Eq. (12)
is then calculated with the SNe data, considering that the

1 http://www.frbcat.org.
2 https://frbhosts.org/.
3 An alternative approach is to define a redshift interval centered at the
redshifts of each FRB and calculate the average values of dL (z) from
the SNe data within the interval. We verified this approach and obtained
results (not shown here) very similar to the ones derived through the
GP reconstruction.
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Table 1 Properties of FRB with known host galaxies

Name Redshift z DMMW,I SM [pc/cm3] DMobs [pc/cm3] σobs [pc/cm3] References

FRB 180916B 0.0337 200.0 348.8 0.2 [27]

FRB 201124A 0.098 123.2 413.52 0.5 [28]

FRB 190608B 0.1178 37.2 338.7 0.5 [29]

FRB 200430A 0.16 27.0 380.25 0.4 [30]

FRB 121102A 0.19273 188.0 557.0 2.0 [31]

FRB 191001A 0.234 44.7 506.92 0.04 [30]

FRB 190714A 0.2365 38.0 504.13 2.0 [30]

FRB 20191228A 0.2432 33.0 297.5 0.05 [32]

FRB 190102C 0.291 57.3 363.6 0.3 [33]

FRB 180924B 0.3214 40.5 361.42 0.06 [34]

FRB 20180301A 0.3305 152.0 536.0 8.0 [32]

FRB 20200906A 0.3688 36.0 577.8 0.02 [32]

FRB 190611B 0.378 57.83 321.4 0.2 [30]

FRB 181112A 0.4755 102.0 589.27 0.03 [35]

FRB 190711A 0.522 56.4 593.1 0.4 [30]

FRB 190523A 0.66 37.0 760.8 0.6 [30,37]

redshift limit of the sum (zL ) must be equal to the redshift
of the FRB (zL = zi ). Finally, we use the Monte Carlo
Markov Chain (MCMC) method to fit the free parameters
of our analysis, i.e., f IGM and DMhost,0 in the constant
case of Eq. (7a) and f IGM,0, α and DMhost,0 for the time-
dependent parameterization (7b). The MCMC analysis is
performed with the emcee sample [54], and to be consis-
tent with our choice of MB in Eq. (14) – since we are also
interested in model-independent approach – we adopt the
value of the Hubble constant from the SH0ES collaboration,
H0 = 74.03 ± 1.4 km s−1 Mpc−1 [51]. We also assume
�bh2 = 0.02235 ± 0.00037, as reported by [55].

4 Results

In Fig. 1, we show the posterior probability density func-
tion and 1 − 2σ constraint contours of the free parame-
ters ( f IGM,0, α, DMhost,0) for the constant case (left Panel)
and the time-dependent parameterization (right Panel). We
also present in Table 2 the results for the baryon fraction
for both cases. For the constant case, we obtain f IGM,0 =
0.764 ± 0.013 and the estimate for the host galaxy contri-
bution DMhost,0 = 158.1 ± 5.4 pc/cm3, both at 1σ level.
The result for the baryon fraction is in good agreement with
previous results obtained from observations [23–25,56] and
numerical simulations [14,20,21]. For the time-dependent
case, we obtain f IGM,0 = 0.483±0.066 (1σ ) for the present
value of the baryon fraction and α = 1.21 ± 0.28 (1σ ). We
also estimate the host galaxy contribution at DMhost,0 =
190.1 ± 9.1 pc/cm3 (1σ ). We note that the values of f IGM,0

and α do not show agreement with other recent studies that
used the same parameterization (7b) – see e.g. [18,57]. We
believe that such discrepancy may be primarily related to the
fact that these works do not consider the contribution of the
host galaxy DMhost as a free parameter in their analyses, as
well as to the more up-to-date FRB data used in our analysis.

Another important aspect of the above results concerns the
observational evidence for a evolution of the baryon fraction
f IGM with redshift. In order to evaluate the two cases studied
and quantify such evidence, we perform a Bayesian model
comparison. This kind of analysis offers a way to assess if
the extra complexity of a given model or parameterization
(here represented by the parameter α) is required by the data,
preferring the model that describes the data well over a large
fraction of their prior volume (see e.g. [58,59] for a detailed
discussion).

By defining the evidence as the marginal likelihood of the
models, we calculate the Bayes’ factor Bi j :

Bi j = Ei
E j

, (15)

where Ei and E j correspond to the evidence of parameter-
izations Pi and P j , respectively. We adopted the Jeffreys’
scale [60] to interpret the values of ln Bi j for the reference
parameterization P j : ln Bi j = 0 − 1, ln Bi j = 1 − 2.5,
ln Bi j = 2.5 − 5, and ln Bi j > 5 indicate, respectively, an
inconclusive, weak, moderate and strong preference of the
parameterization Pi with respect to P j . Negative values of
ln Bi j mean preference in favour of P j .
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Fig. 1 Left: Constraints on the baryon fraction f IGM and the mean
host galaxy contribution of dispersion measure DMhost,0 considering
the constant case (7a). Right: Constraints on the present-day baryon

fraction f IGM,0, α and the mean host galaxy contribution of dispersion
measure DMhost,0 for the time-dependent parameterization (7b)

Table 2 Estimates of the parameters f IGM,0, α and DMhost,0 for the
two parameterizations considered in the analysis

f IGM,0 α DMhost,0 [pc/cm3]

Constant 0.764 ± 0.013 – 158.1 ± 5.4

Time-dependent 0.483 ± 0.066 1.21 ± 0.28 190.1 ± 9.1

We use the MultiNest algorithm [61–63] to compute the
Bayesian evidence (ln E) and then calculate the Bayes’ fac-
tor. Adopting the constant case (7a) as reference, we obtain
ln E j = −565.349 and ln Ei = −557.032 for the refer-
ence and time-dependent cases, respectively, which results
in ln Bi j = 8.32. Such a result indicates a strong evidence
in favor of the time-dependent parameterization (7b) with
respect to the constant case (7a), with the interval of values
of the parameters f IGM,0, α and DMhost,0 given by Table 2.
For completeness, we also show in Fig. 2 the 3σ envelope
for the evolution of DMext with redshift (Eq. 3) considering
both parameterizations. The analysis above clearly shows
the potential of the method proposed here to probe a possible
evolution f IGM with redshift.

5 DM fluctuations

In the previous sections we presented and applied our method
to constrain the f IGM evolution without considering the DM

Fig. 2 The 3σ envelope for the evolution of DMext with redshift con-
sidering the constant (red) and time-dependent (blue) parameterizations

fluctuations (δ) due to the spatial variation in cosmic elec-
tron density (see e.g. [65] for a detailed discussion on the
DM fluctuations). Such fluctuations are not currently well
determined by observations and can be treated as a proba-
bility distribution or as fixed value in the statistical analyses
[15,40,64]. In order to assess the impact of theses fluctua-
tions in the results presented in Sect. 4, we redo the analysis
of Sect. 3 considering three different values for this quantity,
δ = 10, 50, 100 pc/cm3, being the latter in agreement with
the results reported in [65].
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Fig. 3 The same as in Fig. 1 considering fluctuations in the FRB’s DM

The results of our analysis are displayed in Fig. 3 and
Table 3. Figure 3 shows the posterior probability density
function and 1–2σ contours on the parametric spaces for dif-
ferent values of the DM fluctuations. The quantitative results
of the analysis, displayed in Table 3, show the impact of the
DM fluctuations in the determination of the f IGM evolution,
as the evidence varies from moderate (in favor of a growing
evolution of f IGM with redshift) to inconclusive and incon-
clusive for δ = 10, 50, 100 pc/cm3, respectively. Therefore,
differently from the results presented in Sect. 3 (δ = 0),
these results show that a conclusive answer about the time-
evolution of f IGM depend strongly on the DM fluctuations
and cannot be achieved from the current FRB observational
data.

6 Conclusions

A proper understanding of the evolution of the baryon frac-
tion in the intergalactic medium ( f IGM ) is one of the main
issues concerning the use of FRB observations as a cosmo-
logical test. In this paper, following previous studies (see
e.g. [17]) but proposing a completely different approach,
we presented a cosmological model-independent method for
estimating the evolution of f IGM and the local value of the
host-galaxy DM using current measurements of luminosity
distance from SNe observations and dispersion measures for
FRBs.

Following the semi-analytical method described in Sect. 2,
in which DMIGM (z) is written in terms of dL(z), we inves-

tigated the current constraints on the baryon fraction con-
sidering two different behaviours for this quantity, which
are expressed by the constant and time-dependent param-
eterizations given by Eqs. (7). We used 16 FRB observa-
tions, the most up-to-date data currently available, and a
GP reconstruction of 1048 SNe from the Pantheon cata-
logue to perform a MCMC analysis considering the host
galaxy contribution for the dispersion measure DMhost,0

as a free parameter and no DM fluctuation (δ = 0). For
the constant case, we found f IGM,0 = 0.764 ± 0.013 and
DMhost,0 = 158.1 ± 5.4 pc/cm3 (1σ ) whereas for the
time-dependent case we obtained f IGM,0 = 0.483 ± 0.066,
α = 1.21 ± 0.28, and DMhost,0 = 190.1 ± 9.1 pc/cm3 at
1σ level. In order to evaluate the observational viability of
the two cases considered in the analysis we also performed
a Bayesian model comparison. Such results showed a strong
evidence (ln Bi j = 8.32±0.01 at 1σ ) in favor of a increasing
evolution of f IGM with redshift.

The results are much less conclusive when the DM fluctu-
ations due to the spatial variation in cosmic electron density
are considered in the analysis. In this case, we considered
three values of δ and showed that the strong evidence in favor
of a growing evolution of f IGM with redshift obtained in
Sect. 3 (δ = 0 pc/cm3) changes to moderate (δ = 10 pc/cm3)
and inconclusive (δ = 50 and 100 pc/cm3). These results
clearly show the impact of DM fluctuations in the determi-
nation of the f IGM evolution. They also reinforce the interest
in searching for a larger sample of FRBs and the need for a
better understanding of their physical properties.
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Table 3 Estimates of the f IGM parameters for different values of the DM fluctuations

δ [pc/cm3] f IGM,0 α DMhost,0 [pc/cm3] ln Ei ln Bi j

10 0.76 ± 0.02 – 158.3 ± 7.5 −286.458 ± 0.007 –

50 0.76 ± 0.07 – 158.3 ± 30.0 −25.328 ± 0.005 –

100 0.76 ± 0.13 – 162.0 ± 50.0 −7.917 ± 0.003 –

10 0.48 ± 0.09 1.21 ± 0.39 190.44 ± 12.70 −282.452 ± 0.007 4.006 ± 0.007

50 0.43 ± 0.22 1.22 ± 0.39 197.22 ± 35.26 −24.757 ± 0.004 0.571 ± 0.006

100 0.40 ± 0.26 1.56 ± 1.08 196.56 ± 53.62 −7.670 ± 0.004 0.247 ± 0.005

Finally, it is worth mentioning that current and planned
observational programs, such as the Canadian Hydrogen
Intensity Mapping Experiment (CHIME) [8] are expected to
detect several thousands of FRBs in the next years. These
observations will improve significantly the constraints on
f IGM from the method proposed here, bringing important
information about the matter distribution in the universe as
well as demonstrating the potential of FRBs observations for
precision measurements of cosmological parameters.
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