
Faculty of Technology and Science
Physics

DISSERTATION
Karlstad University Studies

2011:46

Patrik Sandin

Cosmological Models 
and Singularities in  
General Relativity



Patrik Sandin

Cosmological Models 
and Singularities in  
General Relativity

Karlstad University Studies
2011:46



Patrik Sandin. Cosmological Models and Singularities in General Relativity

Dissertation

Karlstad University Studies 2011:46
ISSN 1403-8099    
ISBN 978-91-7063-381-2     

© The author

Distribution:
Karlstad University
Faculty of Technology and Science
Physics and Electrical Engineering
S-651 88 Karlstad
Sweden
+46 54 700 10 00

www.kau.se

Print: Universitetstryckeriet, Karlstad 2011



Abstract

This is a thesis on general relativity. It analyzes dynamical properties of Ein-
stein’s field equations in cosmology and in the vicinity of spacetime singularities
in a number of different situations. Different techniques are used depending on
the particular problem under study; dynamical systems methods are applied to
cosmological models with spatial homogeneity; Hamiltonian methods are used
in connection with dynamical systems to find global monotone quantities de-
termining the asymptotic states; Fuchsian methods are used to quantify the
structure of singularities in spacetimes without symmetries. All these separate
methods of analysis provide insights about different facets of the structure of
the equations, while at the same time they show the relationships between those
facets when the different methods are used to analyze overlapping areas.

The thesis consists of two parts. Part I reviews the areas of mathematics and
cosmology necessary to understand the material in part II, which consists of
five papers. The first two of those papers uses dynamical systems methods to
analyze the simplest possible homogeneous model with two tilted perfect fluids
with a linear equation of state. The third paper investigates the past asymptotic
dynamics of barotropic multi-fluid models that approach a ‘silent and local’
space-like singularity to the past. The fourth paper uses Hamiltonian methods
to derive new monotone functions for the tilted Bianchi type II model that
can be used to completely characterize the future asymptotic states globally.
The last paper proves that there exists a full set of solutions to Einstein’s field
equations coupled to an ultra-stiff perfect fluid that has an initial singularity
that is very much like the singularity in Friedman models in a precisely defined
way.
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Part I

A Companion to the Papers





Notation

Latin indices from the beginning of the alphabet, a, b, c, and so on generally
run over four spacetime indices 0, 1, 2, 3, where v0 denotes the time component
of the vector va. An exception to this convention occurs in paper V and the re-
lated section in chapter 5 where they label spatial coordinate indices from 1 to 3.

Greek indices from the beginning of the alphabet, α, β, γ, and so on gener-
ally run over three spatial indices 1, 2, 3, and are used to label components
relative an orthonormal frame, except in paper V where they label spacetime
components from 1 to 4.

Greek indices from the middle of the alphabet, μ, ν, and so on are used to
label spacetime coordinate components.

Latin indices from the middle of the alphabet, i, j, k, and so on are used
to label spatial coordinate components, or as in paper IV, components relative
a group invariant frame.

Repeated upper and lower indices are summed over, unless otherwise indicated.

The metric has signature − + + +.

Units for which 8πG = 1 and c = 1, where G is the gravitational constant
and c is the speed of light, are used throughout the thesis.

Vectors and tensors are represented by symbols in bold font, x, 0, g, T for
example, where the dimension and rank should be discernable from the con-
text.

3
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Chapter 1

Introduction

A cosmological model is a mathematical representation of the universe at some
averaging scale. It describes the geometry of space and time and the distribution
and properties of matter in the universe within the framework of some physical
theory (most commonly Newtonian or Einsteinian theories of gravity).

The most important guide for choosing a good model for spacetime and matter
should be the observational data collected by land and space based observato-
ries, which puts some constraints on permissable models. What evidence about
the geometry of the universe can be made from observations? According to Mal-
colm MacCallum in 1973 [67] there were three main deductions about geometry
observations could bring us at that time. The scientific community has since
then acquired a wealth of new observational data but the three conclusions are
still considered valid. These are listed below as points 1–3, together with the
observational data found in support of them. At present time, two more major
observations have been made which can be added to that list. These are given
below as points 4 and 5.

1. The universe is expanding. This conclusion is supported by several dif-
ferent pieces of evidence. The first is the velocity-distance relation or
magnitude-redshift relation. As first noted by Edwin Hubble in 1929 [49]1,

1Hubble drew his conclusions on the basis of a very limited set of data points with a
considerable spread, but he considered his result “fairly definite [...] for such scanty material,
so poorly distributed”. He emphasized that the linear relation only should be viewed as “a
first approximation representing a restricted range in distance.” and interestingly enough
speculated that the velocity-distance relation might indicate a de Sitter type cosmology with
an accelerating universe.

5



6 CHAPTER 1. INTRODUCTION

measurements of the redshift of the light from galaxies show that there is a
general relation between the distance to a galaxy and its velocity, where a
galaxy is moving away from us with a radial velocity that is proportional to
the distance from us. The velocity-distance relation is in itself not enough
to rule out other scenarios, like the “steady state” theories proposed by
Bondi, Gold [9] and Hoyle [48] for example, but other observations do give
further support to the expanding picture. The perhaps most important
of these comes from the observation of the cosmic microwave background
(CMB) that indicates that the universe once was in a very hot and dense
state, and has since expanded and cooled. The existence of a background
of microwave radiation with a black-body spectrum in an expanding uni-
verse was first theoretically predicted by Gamow (1946) [30], and Alpher
and Herman (1949) [1], but their predictions did not result in any attempt
to try to observe it, and the subsequent discovery was made by chance by
Penzias and Wilson (1965) [74] when they tried to understand the unex-
pected noise in their radio receiver. The details of the spectrum of the
microwave background is now arguably the most important observational
source of information about the early universe, and have resulted in the
Nobel Prize in physics in 1978 and 2006.

2. The universe is isotropic about us. The most convincing support for this
conclusion comes from the observation that the microwave background is
isotropic about us to about one part in a hundred thousand (if one disre-
gards the anisotropy-effect from the earth’s relative motion with respect
to the background) [92], [93]. It was however pointed out in [71] that an
isotropic CMB does not necessarily imply a isotropic universe (although it
does in most circumstances). Other independent, but weaker, constraints
on the anisotropies can be obtained by observing that the distribution
of extragalactic radio- [66] and x-ray sources is approximately isotropic
about us.

3. The universe is spatially homogeneous. Assuming that we do not oc-
cupy any special position in the universe and thus that the universe looks
isotropic about all points in space, one can draw the conclusion that the
universe is spatially homogeneous. The homogeneity is a feature of the
universe at large scales; the inhomogeneities are large on galactic scales,
but on scales �100 megaparsec (Mpc), the inhomogeneities are evenly
distributed, and result in a homogeneous universe. The currently largest
inhomogeneity one has detected is a void, a fairly empty volume of space,
of order of ∼140 Mpc [87], but on larger scales than that the universe
appears increasingly homogeneous.

4. Most of the matter in the universe is of an unknown form. Observations
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of the rotation velocities of galaxies and velocities of galaxies in galaxy
clusters show that most of the matter in galaxies and clusters is not in the
form of stars, gas, or dust but in some form that does not emit light. This
conclusion is further supported by observations of acoustic oscillations in
the CMB (and similar acoustic signatures in the large scale clustering of
galaxies) [98], [25], observations of x-ray emissions from galaxy clusters
[38], [10], and by measuring the amount of gravitational lensing by which
foreground clusters affect the light from more distant galaxies [109]. It is
currently believed that this matter is different from any hitherto discov-
ered type of matter, and it is normally called dark matter.

5. The expansion is accelerating. Observations of supernova explosions of
type Ia, from the spectra of which one believes one can determine the
absolute brightness and thereby determine the distance, have led to the
conclusion that the universe is not only expanding, but also accelerat-
ing [76], [89]. This is also supported by the detailed observations of the
structure of the CMB [98]. The cause and mechanism of this accelerated
expansion is unknown, but is a popular subject of theoretical speculations.
The expansion can be modeled by adding a term proportional to the met-
ric in the Einstein Field Equations for gravity, what is normally known as
the cosmological constant2. In analogy with the dark matter cognomen,
the accelerated expansion is commonly described as a dark energy3.

The topic of this thesis will not be the causes of the accelerating expansion,
or the nature of the dark matter, although those are questions that should
be, and are, addressed elsewhere. It will in the following be assumed that the
accelerated expansion can be modeled by a cosmological constant, and in terms
of gravitational properties, dark matter is assumed to obey the same laws as
ordinary matter. The models studied could therefore be considered as models
of dark matter or ordinary matter, or both.

Cosmological models that obey the first three assumptions above were first de-
scribed by Friedman4 [29], and then later analyzed from a geometrical perspec-
tive by Robertson [81], [82] and Walker [105]. These models will here be referred

2The cosmological constant was first introduced by Einstein [23] as a way to obtain a static
universe, but was abandoned by him when it was discovered that the universe is expanding,
only later to be revived in light of the new observations of an accelerating universe.

3The names dark matter/energy are a bit misleading. It may sound like dark matter is
completely black, absorbing all light, but in reality it is totally transparent, not interacting
with light or normal matter at all, except through its gravitational pull (and possibly through
weak interactions that are of no relevance on astronomical scales). More appropriate names
would be invisible matter/energy.

4Aleksander Aleksanderoviq Friedman’s last name is sometimes translated Friedmann
and sometimes Friedman.
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to as FRW-models5. The FRW-models may or may not include a cosmological
constant (Friedman considered models with the value of the cosmological con-
stant left undetermined) and they can thus be reconciled with all five points
above. They are widely used by cosmologists and astronomers as the back-
ground by which they interpret their observations. All observations obtained
so far are consistent with a large scale structure of the spacetime geometry
consistent with the FRW-models with a cosmological constant since the time
of last scattering6. We cannot probe further into the past than that time by
any currently available observational means, although there exists proposals of
future observatories, based on neutrinos [50] and gravitational waves [62], that
can see through the opaque beginnings of time. The structure of the universe
before the time when photons began to propagate freely can presently only be
inferred from theoretical considerations. The most detailed predictions comes
from calculations describing nucleosynthesis and comparisons with the relative
abundances of the elements observed in the universe. The received view states
that there was a period of nucleosynthesis, when the matter inhabiting the uni-
verse today was created, which was preceded by another period of accelerated
expansion, what is called the era of inflation; see Weinberg (2008) [107] for an
up to date account on the current state of physical cosmology.

This thesis is based on a series of papers that investigate the dynamics of cos-
mological models that do not – a priori – obey the constraints of homogeneity
and isotropy above. For models that are homogeneous but not isotropic the dy-
namics can be formulated as a dynamical system, where the state of the system
characterizes the properties of the universe. In this framework one can investi-
gate questions like whether such models will evolve into isotropic states or not,
and under what circumstances this will happen. Using bifurcation theory one
can use parameter dependent matter models, and by varying the parameters
continuously find exactly when the dynamics change qualitatively. By studying
models that are close to FRW-universes at some stage in their evolution one
can find what models that are compatible with the observational results, and
by studying models under the early dense stages of the universe one can make
statements about the evolution of the universe from a time where no observa-
tional data exists. The difference from the mainstream analysis of the early
universe as described in [107] lies in the focus on the spacetime geometry rather
than the matter model. Instead of studying what happens with the matter in an
expanding FRW-universe one can find out whether an expanding universe that

5Sometimes called FLRW-models, where the L refers to Georges Lemâıtre who also studied
them in the early 30’s [59].

6The time of last scattering is the idealized moment of time when the matter permeating
the universe became transparent and the photons emitted by the hot matter could traverse
the space freely. It is these photons that now reach us in the form of the cosmic microwave
background radiation.
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is close but not exactly FRW will remain so, and whether the matter will affect
the dynamics or not, and if so, what properties of matter will be important.

All of the models studied in this thesis are solutions of Einstein’s field equations
that are ill defined in a certain sense. The variables describing the properties
of the spacetimes – the metric components, the curvature, and so on – become
infinite at some time in the past; a solution found on a patch of spacetime
cannot be extended indefinitely to the past without breaking down and forming
a singularity. This is not only a pathology of the solutions under study here,
but says something about the physics of gravitating systems.

Singularities signal the breakdown of known physical laws and point to situa-
tions where the nature of space, time and matter is not adequately understood.
It has been believed that this can be resolved by finding a theory of quantum
gravity that does for general relativity what quantum field theory has done for
electrodynamics; but finding such a theory has been more difficult than first
expected. At the present time there are several different proposals for theories
of quantum gravity that differ quite a lot on both conceptual and mathematical
levels. None have so far obtained any observational support in favor of any
other so the proponents of the different theories are at present resorted to rest
on aesthetic or ideological grounds.

In this thesis it is investigated how much one can say about singularities within
the present theory of general relativity. Although the solutions become infinite
at the singularity there may be some information still as to how the solutions
become singular. For expanding spatially homogeneous models it is possible to
introduce new variables that are scaled with the overall expansion in such a way
that the new variables are finite even at the singularity. The singular behavior
is characterized by a single function, and the remaining finite variables can
be analyzed as a dynamical system. Inhomogeneous models are not directly
susceptible to dynamical systems methods since the dynamics is governed by
PDEs rather than ODEs, but in special situations, such as in the asymptotic
limit in an approach to a space-like spacetime singularity, the equations can
effectively be reduced to ODEs for a large class of spacetimes. Two different
ways to study such situations are investigated in papers III and V.

The rest of part I of this thesis is written in a way as to introduce the necessary
means to understand the papers in part II for someone with a background in
physics, but outside this particular field. Chapter 2 introduces the necessary
mathematics needed by introducing the basic concepts of dynamical systems
theory. Chapter 3 formulates the equations governing the dynamics of the
matter and geometry of the universe in a way as to be susceptible to analysis by
the means of chapter 2. Chapter 4 introduces the concept of Fuchsian reduction
and its application in relativistic cosmology. Chapter 5 discusses the methods
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used in the papers and presents some examples of the analysis to illustrate in a
concrete way how the work was performed. It also makes comparisons between
the papers where the analysis differed.

Part of chapter I, most of chapters II and III, except for the section on Bianchi
cosmology, as well as the first two sections of chapter V, have previously been
published together with the first two papers and an early version of paper III un-
der the title The Asymptotic States of Perfect Fluid Cosmological Models [88], to
obtain the Degree of Licentiate of Philosophy in accordance with the provisions
of the Higher Education Ordinance, Swedish Code of Statutes (1993:100).



Chapter 2

Dynamical Systems

This chapter gives a brief introduction to the mathematical theory of continuous
dynamical systems, or in other words: Systems of autonomous coupled ordinary
differential equations. Discrete dynamical systems can also be defined in a sim-
ilar way but such systems will not be covered here, see instead the books by
Clark Robinson [83] or Robert Devaney [21]. This chapter is no substitute for
an introductory course to dynamical systems; theorems will be stated without
proofs, and beyond the most basic concepts and most important theorems, only
areas which have been shown to be useful in research in cosmology will be cov-
ered. The purpose of this chapter is mainly to make the reader familiar with the
concepts and terminology used in the following chapters and the accompanying
papers; the interested reader is instead referred to Lawrence Perko’s book [75]
for a more thorough introduction to continuous dynamical systems, and then to
Guckenheimer & Holmes [32] and Hirsch & Smale [47] for an in-depth treatment
of the subject.

A rough description of a dynamical system is something that has a state space
which parameterizes the states of a physical (or purely mathematical) system.
Different states are described by different points in this state space. Usually
the state space is defined as a subset of a finite dimensional Euclidian space.
In addition there also exists a law that evolves the points in the state space in
time. This law can either be a discrete time evolution law that successively maps
points from one place to another in discrete jumps, or a continuous evolution
that can be described as a flow on the state space. As mentioned above, only the
latter kind will be considered here. For the system to be considered a Dynamical
System it is also necessary that no other input than a point’s position in the
state space is required to determine its future evolution, the evolution law can

11
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not be explicitly dependent on time for example.

What was just described can formally be formulated as a system of first order
ordinary differential equations (ODEs) where the time derivatives of points in
the state space are equal to some function on the state space. The function
cannot be explicitly dependent on time since the evolution of points can only
be dependent on the position in the state space, i.e. the system of differential
equations is autonomous.

An n-dimensional system of first order, autonomous, ODEs can be expressed in
the form:

ẋ = f(x), (2.1)

where x ∈ R
n, f : Rn → R

n, ẋ ≡ dx
dt , and where t usually denotes time. Solving

the system is to find all curves on the state space who’s time derivative obeys
equation (2.1) on some time interval. Formally we define:

A solution to the differential equation (2.1) on an interval I is a differentiable
function x(t) which for all t ∈ I and x(t) ∈ R

n satisfies

dx(t)

dt
= f(x(t)).

Given an x0 ∈ R
n, x(t) is a solution of the initial value problem

ẋ = f(x),

x(t0) = x0, (2.2)

on an interval I if t0 ∈ I, x(t0) = x0 and x(t) is a solution of the differential
equation (2.1).

One more condition is usually required for a system of differential equations like
(2.1) to be deemed a dynamical system, and it is that a solution exists for all
t ∈ R, i.e. I = R. It can however be shown that for every system of equations
like (2.2) there exists a topological equivalent7 system of equations that has a
solution for all t ∈ R, this is what is called the Global Existence Theorem (a
proof can be found in [75]).

Flows and Orbits

Consider a differential equation ẋ = f(x) that has solutions {x(t)}, where
x(0) = x0, which are defined for all t ∈ R and x0 ∈ R

n, then the flow of

7See note on page 18.
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the equation is defined as the one-parameter family of maps {φt}t∈R of Rn into
itself such that

φt(x0) = x(t) ∀x0 ∈ R
n. (2.3)

Properties of the flow:

• The flow of a differential equation forms a commutative group of maps of
R

n into itself.

• If the function f in the system (2.1) is C1(Rn) then the corresponding
flow {φt} consists of C1 maps.

Formally it is the flow (2.3) of a system of equations like (2.1) that is called
a dynamical system, but in an informal sense also the system of equations go
under that name, or in an even more general sense, any physical system that
evolves in time. In this text a ’dynamical system’ will refer to either the flow
or the system of equations.

The image of a solution of the initial value problem (2.2) is called an orbit, or
trajectory, through x0 and is here denoted by γ(x0). Alternatively the orbit can
be defined as the set of all points that can be mapped to (or from) x0 by an
element of the flow {φt}. Orbits can be categorized into several different types:

Equilibrium points are orbits that consist of a single point γ(x0) = x0. These
points satisfy f(x0) = 0 in eq. (2.1) and corresponds to an equilibrium
state of the physical system described by the equation. Equilibrium points
are alternatively called fixed points, stationary points, or critical points.

Periodic orbits are closed curves in R
n.

Recurrent orbits describe physical systems that for all times will return ar-
bitrarily close to to an earlier state. Formally an orbit γ(x0) is recur-
rent if for all neighborhoods N(x0) and all T ∈ R ∃ t > T such that
φt(x0) ∈ N(x0).

Homoclinic orbits connect equilibrium points to themselves.

Heteroclinic orbits connect equilibrium points to other equilibrium points.

Invariant Sets and Limit Sets

An invariant set is defined as a set U ∈ R
n that is mapped into itself by the

flow {φt}, i.e. φt(x) ∈ U ∀ x ∈ U, t ∈ R. One can think of invariant sets as
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describing subsystems of the physical system. Finding invariant sets simplifies
the description of the dynamical system since they can be studied separately.
Often they have lower dimension than the original system and are therefore
simpler to analyze. Information about the complete system can afterwards be
obtained from the solutions on the lower dimensional invariant sets, especially
if one can show that orbits approach an invariant subset for large positive or
negative t. This behavior warrants the introduction of yet another concept, the
limit set. The behavior of non-linear systems of equations are often too com-
plicated for solutions to be found explicitly; the system may however stabilize
after some time and it may then be possible to find solutions valid for large
t. Solving Newton’s equations for the solar system with the initial conditions
relevant 4.5 billion years ago is a difficult task for example, but now the system
has stabilized and the orbits of the planets are near Keplerian. The ω-limit set
is a mathematical description of this behavior.

Definition. A point p ∈ R
n is an ω-limit point of the trajectory γ(x0) if there

exists a sequence tn → ∞ such that limn→∞ φtn(x0) = p. The set of all ω-limit
points of γ(x0) is called the ω-limit set of γ(x0).

One can similarly define the α-limit using a sequence tn → −∞. Even if one
cannot solve the equations explicitly it may be possible to find the ω- and α-
limits of some set of initial conditions, or at least constrain the limit sets to
lie within some subset of the state space and thereby obtain information about
the asymptotic states of the physical system. The limit sets can be equilibrium
points or periodic orbits, or networks of equilibrium points connected by homo-
clinic or heteroclinic orbits, or even more complicated sets when the dimension
of the system is higher than 2.

2.1 Linear Systems

The solutions of linear systems of equations is an important ingredient for un-
derstanding non-linear systems, and it will therefore be helpful to study these
systems first.

If f is a linear function, i.e. f(x) = Ax, where A is an n × n matrix of real
numbers, then the ODE (2.1) is linear.8 It can be shown that the initial value

8Some would call f(x) = Ax a linear, homogeneous function to distinguish it from the
function f(x) = Ax + b, but here and elsewhere in this text such functions are called affine
functions, and the term linear is reserved for the homogenous variety.
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problem

ẋ = Ax,

x(0) = x0, (2.4)

has the solution x(t) = eAtx0, where eAt is defined by the Taylor series

eAt = I +At+
1

2!
(At)2 +

1

3!
(At)3 + ... ,

where I is the unit matrix. Thus to solve the system of equations one only has
to compute the matrix eAt. If the matrix A is diagonal, the system of equations
is uncoupled and consists of n linear equations of the kind

ẋ1 = A11x1,
...

...
...

ẋn = Annxn,

for which the general solutions can be written

x1(t) = c1e
A11t,

...
...

...
xn(t) = cne

Annt,

or in matrix form

x(t) =

⎛
⎜⎝

eA11t . . . 0
...

. . .
...

0 . . . eAnnt

⎞
⎟⎠ c.

For coupled systems with real distinct eigenvalues one can diagonalize the ma-
trix A and then find a solution of the form

x(t) =

n∑
i=1

cie
λitvi,

where λi are the eigenvalues and vi the eigenvectors of the matrix A. For
coupled systems with complex or several identical real eigenvalues it is not
possible to diagonalize the matrix completely, although one can always reduce
it to its Jordan canonical form, which can be used to give the explicit time
dependence of the solution (see Hirsch and Smale [47]). Often it is more useful
to obtain a pictorial representation of the solution in terms of a phase portrait
where the flow is visualized as directed curves on the state space.
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Classification of Equilibrium Points

The origin, 0, is an equilibrium point for all linear systems. It is classified after
the values of the eigenvalues of the defining matrix A. If the real parts of all
eigenvalues are positive the equilibrium point is called a source or an unstable
fixed point ; if the real parts of all eigenvalues are negative it is called a sink or a
stable fixed point ; if some eigenvalues have negative real part and some positive
real part the equilibrium point is called a saddle; if the real part is zero for any
of the eigenvalues the point is called a center. These names refer to the behavior
of the dynamical system in the vicinity of the fixed points. In the neighborhood
of a source the flow of the system is directed away from the fixed point; if the
fixed point is a sink it is directed towards the fixed point. A center has at least
one direction where the flow is neither too or from the fixed point.

To each eigenvalue corresponds an eigenvector (if the eigenvalue is complex it
corresponds to two real vectors). The eigenvectors span three invariant sub-
spaces of the state space, the stable subspace, the unstable subspace, and the
center subspace; Eu, Es and Ec respectively.

Definition. Let λj = aj + ibj be a complex eigenvalue of the matrix A in (2.4)
and wj = uj + ivj the corresponding complex eigenvector. Then

Es = span{uj ,vj | aj < 0},
Ec = span{uj ,vj | aj = 0},
Eu = span{uj ,vj | aj > 0}.

Together the stable, center, and unstable subspaces span the full state space:
R

n = Eu ⊕Es ⊕Ec (see Perko [75] for a simple proof). All solutions that start
in Es will approach 0 as t → ∞, and all solutions that start in Eu will approach
0 as t → −∞. In other words: 0 is the ω-limit of Es and the α-limit of Eu.
If 0 is a sink then Es = R

n and Eu = Ec = {0}; and likewise Eu = R
n and

Es = Ec = {0} if 0 is a source. If none of the eigenvalues have vanishing real
part the equilibrium point is called hyperbolic; sinks, saddles, and sources are
all hyperbolic fixed points.

2.2 The Hartman-Grobman Theorem

Leaving now the linear equations for the general case (2.1) once again, we shall
see how the flow in the neighborhood of an equilibrium point can be approxi-
mated by the flow of a linear system of equations.
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If a is an equilibrium point then the Taylor expansion to first order of the
defining function f in (2.1) around a gives (since f(a) = 0)

f i(x) ≈ (xj − aj
)(∂f i

∂xj

)
x=a

.

The linearization of the dynamical system (2.1) is then obtained by replacing
the defining function by its first order Taylor expansion

ẏ = Df(a)y, (2.5)

where y = x − a and Df(a) =
(

∂fi

∂xj

)
x=a

=
(

∂fi

∂yj

)
y=0

. Equilibrium points

of non-linear systems can be classified in the same way as for linear systems
by considering the eigenvalues of the matrix Df(a). While hyperbolic linear
systems only have a fixed point at the origin, non-linear systems may have
many fixed points, say a, b, c, ..., and they are then classified by the matrices
Df(a), Df(b), Df(c), and so on.

For non-linear dynamical systems there is an analogy to the stable, center and
unstable subspaces in linear Dynamical Systems. This is proved by the Stable
Manifold Theorem for non-linear systems.

Theorem 2.2.1 (The Stable Manifold Theorem). Let N be a neighborhood of
a fixed point a of the equation (2.1) where f is at least C1(N), and let φt be the
flow of the system. Suppose a is hyperbolic and that Df(a) has k eigenvalues
with negative real part and n-k eigenvalues with positive real part. Then there
exists a k-dimensional differential manifold S tangent to the stable subspace Es

of the linear system (2.5) at a, and a (n-k)-dimensional differential manifold U
tangent to the unstable subspace Eu of (2.5) such that

φt(S) ∈ S ∀t ≥ 0 ; limt→∞ φt(S) = a,
φt(U) ∈ U ∀t ≤ 0 ; limt→−∞ φt(U) = a.

Proof See Perko [75].

S and U are called the local stable and unstable manifolds of a; they can be
extended outside the neighborhood N in Theorem (2.2.1) by application of the
flow on S and U .

Definition. The global stable and unstable manifolds of an equilibrium point a
of (2.1) are defined by

W s(a) =
⋃
t≤0

φt(S) ; Wu(a) =
⋃
t≥0

φt(U) .
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Thus the neighborhoods of hyperbolic fixed points of a non-linear dynamical
system (2.1) are very similar to the neighborhood of the origin of the corre-
sponding linearized system (2.5). For a linear system like (2.4) one can always
find the explicit solution x(t) = eAtx0, but in the non-linear case it is not
as easy. But the theorem after which this subsection is named states that in
a neighborhood of a critical point there exists a solution that is similar, in a
precisely defined way, to the solution of the corresponding linearized system,
namely a solution that is topologically conjugate:

Theorem 2.2.2 (Hartman-Grobman Theorem). If a is a hyperbolic fixed point
of eq. (2.1), then there exists a homeomorphism9 H from some neighborhood U
of a to some neighborhood V of the origin such that

H ◦ φt(x) = eAtH(x),

where φt is the flow of (2.1) and A = Df(a).

Proof. See the book by Philip Hartman himself [33].

The solution curves of the non-linear system and the ones of its linearization
are thus in one-to-one correspondence near a hyperbolic fixed point, and the
time direction and parametrization is preserved by the map as well.10

2.3 Center Manifolds

The previous sections have been focused on the behavior of dynamical systems in
the neighborhood of hyperbolic fixed points, but many systems have fixed points
which are not hyperbolic. Like in the linear case there exists an invariant subset
associated with the eigenvectors with eigenvalues located on the imaginary axis,
called the center manifold, denoted byW c. The behavior on the center manifold
is truly non-linear and can be complicated to solve, and in this thesis no center
manifold analysis have been made in the problems considered, with one trivial
exception – the transversally hyperbolic sets described below; the discussion of
center manifolds here will therefore be short.

There exists a theorem analogous to the Hartman-Grobman theorem that is rel-
evant for non-hyperbolic equilibrium points. It is called the reduction principle

9Two sets U and V are said to be homeomorphic if there exists a continuous, one-to-one
map from U onto V with a continuous inverse. Such a map is called a homeomorphism.

10A homeomorphism that only preserves the time direction and not the parametrization,
H ◦ φτ(t,x)(x) = eAtH(x), is called a topological equivalency, a slightly weaker relation than
topological conjugacy.
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[68], or sometimes the Shoshitaishvili theorem11 [18]:

Theorem 2.3.1. Suppose that f in (2.1) is at least C1(N) in a neighborhood
N of the origin, 0, where f(0) = 0 (if the fixed point is located elsewhere it
can be moved to the origin by a constant translation). The n× n matrix Df(0)
can then be written as diag[A,B] where A is a square matrix with c eigenvalues
on the imaginary axis and B is a square matrix with (n − c) eigenvalues with
non-zero real part. The system is topologically conjugate to the system

ẋ = Ax+ F(x),
ẏ = By,

for x ∈ R
c, y ∈ R

(n−c) in a neighborhood of 0, where F(0) = 0,DF(0) = 0.

The theorem thus tells us that the system decouples into one part that contains
all the non-linear behavior and one that behaves similar to a linear system in
the neighborhood of the equilibrium point. One must still solve a non-linear
problem, but the dimension of the problem has been reduced to the dimension
of the center manifold.

A special case of center manifolds that occurs sometimes is when one has one-
two- or multi-dimensional sets of fixed points. The eigenvalues corresponding
to eigendirections within these sets are then naturally identical to zero and all
of the fixed points are classified as non-hyperbolic; but the non-linear part of
the equation related to the directions within the ‘center-manifold’ is trivial, the
matrix A and vector field F of Theorem 2.3.1 are both identically zero. The be-
havior in the neighborhood of these fixed point manifolds are then determined
solely by the behavior in directions transversal to the manifold, i.e. by the ma-
trix B of Theorem 2.3.1. The fixed point are then called transversally hyperbolic
and the problem can be considered as a linear problem in the neighborhood of
the fixed point set, but one where the matrix B normally is dependent on the
position of the fixed point within the set. The stability properties can thus be
different on different parts of the fixed point set.

2.4 Monotonicity Principle

The Hartman-Grobman theorem and the reduction principle only tells us that
there exists a neighborhood of an equilibrium point where the dynamics can

11Proved first by Šošitǎı̌svili in the more general, parameter dependent, form of the theorem
that that normally bears his name, see V. I. Arnold [4] p. 269, also [94] for an English
translation of the theorem and [95] for a translation of the proof.
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be faithfully mimicked by a linear system (at least off the center manifold in
the case of non-hyperbolic fixed points), but give no information about what
happens far away from equilibrium. A useful help for obtaining results about
the global behavior of the Dynamical System is if one can find functions on some
invariant subset of the state space that are always decreasing or increasing in
value. Then the following proposition places strong restrictions on the behavior
on this subset.

Proposition 2.4.1 (Monotonicity principle). Let {φt} be a flow on R
n, and

S an invariant set of {φt}. Let Z : S → R be a C1-function whose range is
the interval (a, b), where a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞} and a < b. If Z is
monotone decreasing on orbits in S, then for all x ∈ S,

ω(x) ⊆ {s ∈ S̄\S| limy→s Z(y) �= b},
α(x) ⊆ {s ∈ S̄\S| limy→s Z(y) �= a}.

Proof See appendix A in the paper by LeBlanc et al. [58].

If one wants to find the ω- and α-limits of a set of initial data of a dynamical
system, then a monotone function on an invariant subset tells us that the limit
sets of the subset can be found on the boundary of this subset.

2.5 Systems with Constraints

If the variables of the dynamical system are not independent, but some fixed
relation exists between them, the system of differential equations (2.1) must be
supplemented by a set of constraints

ẋ = f(x),
Φi(x) = 0, i = 1 . . . k.

(2.6)

For the constrained system to be consistent, the constraints must be propagated
by the equation

Φ̇i = Cj
iΦj , (2.7)

where the Cj
i are functions of the state space, otherwise one has to add ad-

ditional constraints until relation (2.7) is satisfied. Assuming then that (2.7)
is satisfied and also that the constraints are linearly independent (which one
can assume without loss of generality) the set of constraints define an (n− k)-
dimensional submanifold of R

n, on which the orbits of the system lie. If a
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constraint can be solved analytically everywhere for one of the variables, it can
be used to eliminate this variable (and constraint) from the state space. Elimi-
nating all of the constraints in this way amounts to finding a global coordinate
system for the reduced submanifold. This can in general not be done, one nor-
mally obtains only a coordinate system defined in some coordinate patch by
elimination of the constraints, which is not suitable for describing the global
behavior of the dynamical system. Instead one keeps the constraints and solve
them only locally in the neighborhood of fixed points.

Assume x = a is a fixed point of the system (2.6), then one can linearize the
constraints in the neighborhood of this fixed point by making a first order Taylor
expansion

Φi(x) ≈ Φi(a) +
(
xj − aj

)(∂Φi

∂xj

)
x=a

,

which gives the linear equation (since Φi(a) = 0):

DΦi(a)y = 0, (2.8)

where y = x − a and DΦi(a) =
(
∂Φi

∂xj

)
x=a

=
(

∂Φi

∂yj

)
y=0

. Eq. (2.8) is a linear

equation and can be used to eliminate one of the variables at the fixed point.
Solving all of the constraints in this way reduces the system to the tangent
space of the physical manifold, where one can use the linearization of the ODE
to obtain the stability properties of the fixed point. A problem that may occur
is that the gradient of the constraint function may be identically zero at the
fixed point, DΦi(a) = 0; one can then not use the linear approximation to solve
for one of the variables. This occurs in papers I and II at the fixed point set
named the Kasner circle.
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Chapter 3

Cosmological Models

This chapter is meant as an introduction to the field of relativistic cosmology,
introducing certain methods and areas of general relativity that are not part of
a first course on the subject, in particular orthonormal frames, 1+3 splitting of
spacetime, expansion normalized variables, and anisotropic Bianchi cosmologies.

In a relativistic cosmological model space and time is described by a four-
dimensional differential manifold M with a Lorentzian metric g, and matter
by a symmetric tensor T – the stress-energy tensor (or energy-momentum ten-
sor). The dynamical laws are the Einstein Field Equations (EFE)12 that relate
the curvature of spacetime, described by the Einstein tensor G, to the energy-
momentum tensor:

Gab = Tab. (3.1)

In addition one must further specify the properties of matter by making some
assumption of the type of matter model one wishes to use, possibly adding
equations governing the interaction of the matter with itself or with other forms
of matter, as for example Maxwell’s equations for electromagnetic fields, or the
equation of state for a perfect fluid, or the Vlasov equation for a kinetic gas;
one then ends up with a system of coupled partial differential equations relating
the different matter types with each other and the geometry of spacetime.

12For an introductory course in Einstein’s general theory of relativity one could start with
Bernard Schutz’s book [91]; the mathematically inclined could thereafter continue with the
book by Robert Wald [104], and for a “rigorous, full-year course at the graduate level” is the
extensive but very readable classic Gravitation [70] by Misner, Thorne and Wheeler a good
choice.

23
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3.1 Choosing a Frame

The fundamental objects in general relativity are all represented as tensors (or
spinors) on the tangent space of the manifold, and to extract information such
as the energy density of matter at some point, or “the gravitational potential”13,
one must specify a basis (also called a frame).

Let {ea} be a basis of vector fields and {ωa} the dual14 basis of one-forms,
where a = 0, 1, 2, 3. A vector field, v, can then be expressed in this frame as

v = vaea,

where va are the components of the vector field relative to the basis. The
components of the metric g relative to this basis can be obtained by acting
with the metric on the basis vectors

gab = g(ea, eb),

and the metric can conversely be expanded by summing the metric components
over the tensor product of the dual basis

ds2 ≡ g = gab ω
a ⊗ ωb,

where the common notation ds2 for the metric is introduced. The notation ds2

emphasizes the role of the metric to represent “infinitesimal squared distance”
and with this notation the metric is normally called the line element.

Any set of linearly independent vectors that span the tangent space is permiss-
able as a frame, but two choices stand out as especially convenient:

1. The coordinate frame. In a given coordinate chart {xμ}, μ = 0, 1, 2, 3,
one can choose the partial derivatives with respect to the coordinate func-
tions {∂/∂xμ} as a basis, with the dual basis being the coordinate one-
forms {dxμ}.

2. The orthonormal frame (also tetrad, or vierbein). On a metric space one
can choose a basis where the four vector fields are mutually orthogonal
and of unit length (with the time-like basis vector of negative unit length).
In this frame the metric components are given by

g(ea, eb) = ηab,

13The Newtonian gravitational potential can be defined for a metric “close to flatness” as
the time-time component of the object 1

4
( 1
2
γ ημν −γμν), where γ = γμ

μ, and γμν = gμν −ημν

is the deviation from the Minkowski metric, ημν = diag(-1, 1, 1, 1). See for example Wald [104]
p. 74–75.

14ωa and eb satisfy the duality relation ωa(eb) = δab, where δab is the Kronecker delta.
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where ηab = diag(-1, 1, 1, 1), and the line element is given by

ds2 = ηab ω
a ⊗ ωb.

The components Γa
bc of the Levi-Civita connection15 (or covariant derivative),

∇, relative the frame {ea} are defined through the relation

∇eb
ea = Γc

abec. (3.2)

The Γa
bc are called the connection coefficients16. They can be expressed in

terms of derivatives of the metric components and commutators of the frame
fields:

Γabc =
1
2

[
eb(gac) + ec(gba)− ea(gbc) + cdcbgad + cdacgbd − cdbagcd

]
, (3.3)

where Γabc = gadΓ
d
bc, and cabc(x

i) = ωa([eb, ec]) are called the commutator
functions (also commutator coefficients [70]).

In the coordinate frame the commutator functions are identically zero (since
partial derivatives commute) and the connection coefficients take the form

1. Γμνρ = 1
2 [∂ν(gμρ) + ∂ρ(gνμ)− ∂μ(gνρ)] , (3.4)

where ∂μ ≡ ∂/∂xμ. The connection coefficients are then called Christoffel
symbols16, which are symmetric in the last two indices, Γμνρ = Γμ(νρ).

In the orthonormal frame on the other hand, the metric components are constant
and the connection coefficients take the form

2. Γabc =
1
2

[
cdcbηad + cdacηbd − cdbaηcd

]
. (3.5)

The connection coefficients are then called Ricci rotation coefficients16, which
are anti-symmetric in the first two indices, Γabc = Γ[ab]c. In this case there is a
one-to-one correspondence between the connection coefficients and the commu-
tator functions, where the inverse relation is given by

cabc = − [Γa
bc − Γa

cb] . (3.6)

15A Levi-Civita connection is the unique affine connection that is: 1. Compatible with the
metric, 2. Torsion free [86].

16The terminology in this area is a bit confusing. Misner et al. [70] uses the name connec-
tion coefficients, but Schutz [90] calls them Christoffel symbols. Another name is Christoffel
symbols of the second kind (see Mathworld.com [108] for references, there Christoffel sym-
bols of the second kind are mapped to Christoffel symbols of the first kind by the metric,
Γabc = gadΓ

d
bc, but here no distinction is made between the two). Here the name Christoffel

symbol is reserved for the components relative a coordinate basis, as in [70] and Wald [104].
The components relative an orthonormal frame are called Ricci rotation coefficients.
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For a completely general frame there are n3 independent commutator coeffi-
cients (or in four dimensions 64). In a coordinate basis the symmetry in the
two last indices reduce the number to n2(n + 1)/2 (or 40 in 4D) independent
Christoffel symbols, and in the orthonormal frame there are as many Ricci rota-
tion coefficients as there are independent commutator functions, i.e. n2(n−1)/2
(or 24 in 4D).

From relation (3.2) one can show that the covariant derivative acting on a vector
v produces a (1,1) tensor ∇v with components va;b = eb(v

a) + Γa
cbv

c, where
sometimes the notation ∇bv

a for va;b is used.17

The Riemann curvature tensor is defined from the connection through the cur-
vature operator, R(u,v) = [∇u,∇v]−∇[u,v], as R

a
bcd = ωa(R(ec, ed)eb).

18 Its
components of can be written in terms of the connection coefficients and their
derivatives

Ra
bcd = ec(Γ

a
bd)− ed(Γ

a
bc) + Γa

fcΓ
f
bd − Γa

fdΓ
f
bc − Γa

bfc
f
cd.

Through contractions of the Riemann curvature tensor one can define the Ricci
tensor and the Ricci scalar,

Rab = Rc
acb, R = Ra

a,

and in terms of these objects the Einstein tensor is defined as

Gab := Rab − 1
2Rgab.

In a coordinate basis the fundamental variables are the 10 metric components,
the EFE are then second order partial differential in these variables and the
gauge group is the group of diffeomorphisms on the spacetime manifold.

In an orthonormal basis the metric components are trivial, the fundamental
variables are instead the 16 tetrad components (also called frame functions),
ea

μ, relating the tetrad basis fields to a coordinate basis:

ea = ea
μ∂/∂xμ = ea

μ∂μ, ωa = eaμ dx
μ, (μ = 0, 1, 2, 3)

where the tetrad components ea
μ(xν) and their inverse components eaμ(x

ν)
satisfy the following duality relations and orthogonality conditions

ea
μ eaν = δμν , ηab e

a
μ e

b
ν = gμν ,

ea
μ ebμ = δba, gμν ea

μ eb
ν = ηab.

17The index on ∇b now is a representation of its status as a (0,1)-differential operator, some-
thing different from when a vector is used as an index as in ∇u which is a scalar differential
operator related to ∇b as ∇u = ub∇b.

18The definition of Ra
bcd is the same as in Hawking & Ellis [35], Misner et al. [70] and

Schutz [91], but different in sign from other textbooks, such as Weinberg’s [106].
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In addition an extra SO(3, 1) gauge freedom is introduced through the choice
of orthonormal frame.

One precondition to the use of dynamical systems methods on a system of dif-
ferential equations is that the equations are of first order. To this end the 24
commutator functions cabc are elevated to the status of independent variables,
which make the EFE first order partial differential equations in these variables.
The defining relation of the commutator functions become 24 differential equa-
tions:

[ea, eb] = ccab ec ⇒ ea
ν∂ν eb

μ − eb
ν∂ν ea

μ = ccab ec
μ. (3.7)

The Jacobi identities become integrability conditions for the equations above,

e[cc
d
ab] − cde[cc

e
ab] = 0, (3.8)

and give first order equations for some of the commutator functions. This first
order approach is called the orthonormal frame formalism [102].19

3.2 Spacetime to Space and Time

For computational reasons it may be advantageous to introduce a preferred
time-like direction, even though the kinematical structure does not provide one
to start with. The direction of time might be physically motivated, e.g. by a
time-like vector field u describing the average motion of matter, or defined as
being the direction orthogonal to a preferred space-like hypersurface foliation
Σ for example; or it may be a purely mathematical construct.

Assume u is a unit vector field determining some time-like fibration of the space-
time manifold, physical or otherwise. The orthonormal frame can be aligned
with the fibers such that e0 = u. All tensors can then be split into components
along u and components orthogonal to u (just by taking their components rel-
ative the orthonormal basis), i.e. v = vaea = v0e0+ vαeα for a vector v, where
{eα} (α = 1, 2, 3) is the spatial triad orthogonal to e0. The introduction of
the vector field u can be viewed as a partial frame gauge fixation, since the

19This is of course not the only way to obtain first order equations; one could for example
use a coordinate frame and use the metric components together with the Christoffel symbols as
a kind of generalized momenta as variables (this is normally known as the “Palatini method”
but was actually first investigated by Einstein [24]. See Ferraris et al. [28] for the historical
developments of the method.), or as in the ADM formalism [5] use the 3-metric on a spatial
foliation together with the extrinsic curvature as variables, which yields a formulation that is
first order only in the time derivative, not in the spatial derivatives. This is the formulation
used in paper V.
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existence of a preferred direction of time reduces the gauge group in the equa-
tions involving only tetrad components from the Lorentz group SO(1, 3) to the
subgroup SO(3) of spatial rotations preserving the form of the spatial metric
components.

Splitting the Commutator Functions

A 1+3 split of the commutator functions is commonly written in terms of the
following variables (see Ellis & MacCallum [26], Wainwright & Ellis [102], or
Ellis & van Elst [27])20:

(θ, σαβ , u̇α, ωα, Ωα, nαβ , aα), (3.9)

where

θ = cα0α = ua
;a is the expansion of the congruence u.

σαβ = c〈αβ〉0 (where cabc = gadc
d
bc, and 〈...〉 is used to denote trace-free sym-

metrization21 of indices) is the shear tensor. The shear tensor can be de-
fined covariantly as the trace-free symmetric part of the spatial projection
of the covariant derivative of u; σab = hc〈ahd

b〉uc;d, where hab = gab+uaub.
The σαβ are then the spatial components of this tensor, all the others are
zero since σabu

a = σabu
b = σaμe0

μ = 0.

u̇α = c00α = uα;bu
b is the acceleration vector. Note that u is a geodesic

congruence when u̇α = 0.

ωα = 1
2ε

αβγωβγ = 1
4ε

αβγc0βγ is the vorticity vector, and ωβγ is the equivalent
vorticity tensor. The vorticity vector (or tensor) describes the rotation of
the congruence u. The congruence is hyper-surface normal if the vortic-
ity is zero. The vorticity tensor can be defined covariantly as the anti-
symmetric part of the spatial projection of the covariant derivative of u;
ωab = hc

[ah
d
b]uc;d.

Ωα = −( 12ε
α
β
γcβ0γ + ωα) = 1

2ε
αbcdubec

μedμ;fu
f is the local angular velocity

of the spatial frame with respect to a Fermi-propagated frame.

nαβ and aα are derived from the spatial components of the commutator func-
tions by first mapping them to a 3 × 3 matrix with the totally antisym-
metric tensor, cαβ = cαγδε

βγδ, and then separating it into a symmetric

20There are some differences in the literature as of how to define the variables Ωα and ωα.
Here the conventions of [27] are followed, but in [102] both Ωα and ωα are defined with the
opposite sign. In van Elst & Uggla [101] only ωα is defined with the opposite sign.

21A〈αβ〉 = A(αβ) − 1
3
δαβA

γ
γ
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and a antisymmetric part, and finally mapping the antisymmetric part to
a three-vector, cαβ = c(αβ) + c[αβ] = nαβ + εαδγaγ . The decomposition is
due to Engelbert Shücking, and was introduced as a way to classify the
three-dimensional structure constants of real Lie algebras (as described in
Krasiński et al. [57]).

The scalar θ, the five components of the trace-free symmetric matrix σαβ , the
three components of each of u̇α, ωα, Ωα, aα, and the six components of nαβ

completely characterize the 24 commutator functions cabc. Expanding the com-
mutator equations in terms of the decomposed commutator functions one ob-
tains:

[ e0, eα ] = u̇α e0 − [ 1
3θ δα

β + σα
β + εα

β
γ (ω

γ +Ωγ) ] eβ , (3.10a)

[ eα, eβ ] = 2εαβγ ω
γ e0 + (2a[α δβ]

γ + εαβδ n
δγ) eγ . (3.10b)

From the commutator equations (3.10b) one can immediately see that a van-
ishing ωα implies that the algebra [ eα, eβ ] closes and that the spatial frame
becomes hyper-surface forming by Frobenius’ theorem (see Schutz [90] p. 81).

Splitting the Energy-Momentum Tensor

To relate the variables (3.9), describing the properties of the geometry and
the frame, to the energy-momentum tensor through the EFE one must make a
similar split of T ab w.r.t. the time-like congruence u:

Tab = ρ ua ub + 2q(a ub) + p hab + πab, (3.11)

where ρ = Tabu
aub is the energy density relative to u, qa = −Tbcu

bhca is
interpreted as the relativistic momentum density or energy flux relative to u,
p = 1

3Tabh
ab is the isotropic pressure, and πab = Tcdh

c〈ahd
b〉 is the anisotropic

pressure, or stress-tensor. From the definitions of the variables (ρ, qa, p, πab) it
follows that they satisfy the properties

qau
a = 0, πabu

a = πabu
b = 0, πa

a = 0, πab = π(ab).

The tensors qa and πab can be completely characterized by their spatial com-
ponents, qα and παβ , since neither has any components along u = e0. The ten
components of the tensor Tab are thus expressed in the two scalars ρ and p,
the three components of the spatial vector qα, and the five components of the
trace-free, symmetric spatial stress-tensor παβ .
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The Einstein Field Equations

Writing the EFE in the form

Rab = Tab − 1
2T

c
cgab,

expressing the Ricci tensor in the variables (3.9), the energy-momentum tensor
in the variables (3.11), and then projecting them onto a 00-part, a 0α-part, a
(00) + (11) + (22) + (33)-part, and an 〈αβ〉-part one obtains the equations

e0(θ) =− 1
3θ

2 − σ2 + 2ω2 + (eα + u̇α − 2aα)u̇
α − 1

2 (ρ+ 3p), (3.12a)

qα = 2
3eα(θ)− (eβ − 3aβ)σα

β − εα
γδσγ

βnβδ

− εα
βγ(eβ + 2u̇β − aβ)ωγ − nα

βωβ , (3.12b)

ρ = 1
3θ

2 − σ2 + ω2 − 2ωαΩ
α + 1

2
3R, (3.12c)

e0(σαβ) =− θσαβ − 2εγδ〈ασβ〉γΩδ − 2ω〈αΩβ〉 − 3Sαβ + παβ

+ (e〈α + u̇〈α + a〈α)(u̇β〉)− εγδ〈αnβ〉γ u̇δ, (3.12d)

where

3Sαβ =b〈αβ〉 + 2εγδ〈α nβ〉δ aγ + eγ(δ
γ〈α aβ〉 + εγ〈αδ nβ〉δ), (3.13a)

3R =− 1
2b

α
α − 6a2 + 4eα aα, (3.13b)

bαβ =2nαγ n
γ
β − nγ

γ nαβ . (3.13c)

The first equation is the Raychaudhuri equation [77], from which one immedi-
ately can see that all non-spinning, geodesic, time-like congruences in a universe
where the matter obeys the strong energy condition22 have a forever decreasing
expansion. The objects 3R and 3Sαβ have no physical meaning in general but
when the congruence is irrotational they represent the scalar and trace-free part
of the 3-curvature of the hyper-surfaces spanned by the spatial frame.

The Jacobi Identities

A 1+3-split of the Jacobi identities can be obtained by mapping them onto a
4 × 4-matrix-system with the 4-dimensional totally antisymmetric tensor and
then projecting it onto directions parallel or orthogonal to u. Let

(e× c)ab := εacdeecc
b
de, (c× c)ab := εacdecbfcc

f
de;

the Jacobi identities are then expressed through the equation

(e× c)ab − (c× c)ab = 0.

22The strong energy condition: ρ+ 3p ≥ 0.
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Separating it into a 00-component, 0α- and α0-components, symmetric αβ-
components, and anti-symmetric αβ-components results in the following equa-
tions:

eαω
α − (u̇α + 2aα)ω

α = 0, (3.14a)

eβn
βα + εαβγeβaγ + 2θωα + 2σα

βω
β − 2nα

βa
β − 2εαβγωβΩγ = 0, (3.14b)

2e0ω
α − εαβγeβ u̇γ + nαβ u̇γ + εαβγaβ u̇γ + 4

3θω
α − σα

βω
β + 2εαβγωβΩγ = 0,

(3.14c)

e0n
αβ + 1

3θn
αβ − 2σ(α

γn
β)γ + 2εγδ(αnβ)

γ(ωδ +Ωδ) + (eγ + u̇γ)σ
(α

δε
β)γδ

− [e(α + u̇(α][ωβ) +Ωβ)] + [eγ + u̇γ ][ω
γ +Ωγ ]δαβ = 0, (3.14d)

2e0aα − [eβ − 2aβ + u̇β ][
1
3θδ

β
α + σβ

α + εα
βγ(ωγ +Ωγ)] = 0, (3.14e)

where the three components of the anti-symmetric matrix equation have been
mapped to a three-component vector equation with εαβγ in (3.14e).

Energy-Momentum Conservation

From the definition of the Riemann tensor follows the Bianchi identities23:

Ra
b[cd;e] = 0, (3.15)

which contracted once and twice gives, respectively

Ra
bcd;a = 2Rb[c;d] and 2Ra

d;a = R;d.

Applying the twice contracted identity to the EFE results in local energy mo-
mentum conservation24

T ab
;b = 0. (3.16)

One can use equation (3.16) to obtain evolution equations for ρ and qα along
the congruence u. These equations do not provide any further dynamical input,
since they can in principle be derived from equations (3.12). Splitting (3.16)
into its time- and spatial components yields:

e0ρ =− θ(ρ+ p)− παβσ
αβ − (eα + 2u̇α − 2aα)q

α, (3.17a)

e0qα =− 4
3θqα − σα

βqβ − εα
βγ(ωγ − Ωγ)qβ + εα

βγnβ
δπδγ

− eαp− (eβ + u̇β − (ρ+ p)u̇β − 3aβ)πα
β . (3.17b)

23A proof can be found in most textbooks on general relativity, for example Wald [104] p.
39–40.

24The reasoning should actually be reversed. The need for local energy conservation was
the original motivation for the form (3.1) of the EFE (see Einstein [22]).
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The Bianchi identities do not provide evolution equations for the rest of the
components of the energy-momentum tensor, (p, παβ); to determine their evo-
lution it is necessary to further specify the properties of matter.

Frame Equations

To complete the picture one also want to be able to relate the frame variables to
a coordinate system. Coordinates naturally adapted to a given 1 + 3 decompo-
sition of a spacetime is given by the threading approach (Boersma & Dray [7])
where the metric takes the form

ds2 = −M2dt2 +M2Midtdx
i + (hij −MiMj)dx

idxj ,

where now t is a coordinate along our reference congruence u, M is the thread-
ing lapse function, Mi are the components of the threading lapse one form,
and hij are the components of the threading metric. In these coordinates the
orthonormal frame vectors take the form

u = e0 = M−1∂t, eα = eα
i(Mi∂t + ∂i) ≡ Mα∂t + eα

i∂i. (3.18)

This amounts to a partial fixing of the tetrad component functions, ea
μ, where

e0
t = M−1, eα

t = Mα, and where

e0
i = 0.

From (3.7) one obtains equations for the non-vanishing tetrad component func-
tions:

e0 eα
i = −[ 1

3θ δα
β + σα

β + εα
β
γ (ω

γ +Ωγ)] eβ
i, (3.19a)

e0 Mα = −[ 1
3θ δα

β + σα
β + εα

β
γ (ω

γ +Ωγ) ]Mβ + (eα + u̇α)M
−1, (3.19b)

nα
β eβ

i = εα
γβ (eγ − aγ)eβ

i, (3.19c)

2M−1ωα = [εα
γβ (eγ − aγ)− nα

β ]Mβ . (3.19d)

3.3 Modeling Matter as a Perfect Fluid

In choosing a matter model one must weigh the advantages of a detailed and
highly accurate description of the matter in the universe against the disadvan-
tages of computational complexity such a model is equipped with. A simpler
and more coarse model may be enough to model the most important features,
but it may be difficult on the other hand to see when the simple model breaks
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down as a useful description of reality, especially when modeling phenomena far
from experimental realization.

A reasonably simple model of the matter content of the universe on large scales
is that of a ideal or perfect fluid, where the viscosity and heat flow can be
neglected. The energy-momentum tensor is described by the fluid’s four velocity
û, its energy density ρ̂, and pressure p̂ (in the rest frame of û):

Tab = (ρ̂+ p̂)ûaûb + p̂ gab. (3.20)

Hatted objects are used to distinguish the fluid’s velocity, energy density and
pressure from the energy density ρ, and pressure p, measured with respect to
the congruence u. So far u has only been a purely mathematical construct to be
used as a reference along which one can measure time. If no physical structure
other than the perfect fluid exists on the spacetime the most natural choice
would be to pick the fluid velocity û as the reference congruence, in which one
could dispense with the hats and equate (3.20) with (3.11) where the shear and
momentum density terms are dropped.

If one wants to keep the option open to measure time along another congruence
than the fluid’s velocity congruence one keep the hats and make a 1+3 split
of the energy-momentum tensor (3.20) along u, which will result in shear and
momentum density terms as measured by an observer moving with u. In such a
reference frame the fluid is said to be tilted, while when the reference and fluid
congruences are aligned the fluid is called non-tilted or comoving25.

For a tilted fluid it is convenient to express the fluid’s velocity with a space-like
vector orthogonal to u representing the three-velocity of the fluid in the rest
spaces of u (a three-vector is sufficient to determine the four-velocity since the
constraint u ·u = −1 reduces the number of independent components to three).
Let

ûa = γ(ua + va), uav
a = 0, γ ≡ 1/

√
1− v2, (3.21)

25When the reference congruence is normal to a space-like hypersurface the non-tilted mod-
els are also called orthogonal models (see e.g. Wainwright & Ellis [103]).
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where γ is the usual Lorentz factor26,27. From (3.11) one can compute

ρ = γ2(1 + wv2)ρ̂, qa = (1 + w)(1 + wv2)−1ρva,
p = wρ+ 1

3 (1− 3w)qav
a, πab = q〈avb〉,

(3.22)

where w ≡ p̂/ρ̂. The perfect fluid have five degrees of freedom (ρ̂, p̂, vα) while
the conservation equations (3.16) determines evolution equations of only four of
them; to completely specify the system one must specify an equation of state for
the fluid. In the following it shall be assumed that the fluid obeys a barotropic
state equation where the pressure is dependent on the energy density only,

p̂ = p̂(ρ̂). (3.23)

Through the relations (3.22) and knowledge of the function (3.23) it is possible
to completely determine the properties of the fluid with the variables (ρ, vα),
and from (3.17) together with (3.22) one can obtain an evolution equation for
vα:

e0v
α =

3θ(1 + wv2)

ρ(1 + w)

[(
δαβ +

(
2c2s

1− c2sv
2

)
vαvβ

)
e0q

β − vα
(

1 + c2s
1− c2sv

2

)
e0ρ

]
,

where c2s ≡ dp̂/dρ̂ is the square of the speed of sound in the fluid when dp̂/dρ̂
is non-negative and less than, or equal to, one.

3.4 Scaling the Variables with the Expansion

The expansion of a family of observers can be interpreted as a change in a rela-
tive length scale determined by the observers, as the fluid congruence determine
the length scale in FRW-models,

θ = 3l̇/l,

26In flat spacetime the orthonormal basis can also be a coordinate basis and the relation
(3.21) can be expressed as a relation between partial derivatives

∂t̂ = γ(∂t + v · ∂∂∂) ⇒ dt̂ = γ(dt− v · dx),
which, for constant v, can be integrated to yield the standard Lorentz transformation relation

t̂ = γ(t− v · x).

27Sometimes in the literature on perfect fluids in curved spacetimes, Γ is used instead to
denote the Lorentz factor while γ is reserved for the adiabatic index Cp/CV (in for example
Uggla et al. [100] or the papers in Part II of this thesis).
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where the ˙ refers to the derivative along the congruence. A positive expansion
at the present implies that the length scale was smaller in the past (i.e. the
spatial distance between any two fibres was smaller). If l̇ was constant one
could conclude that l was zero a time T = l/l̇ ago. The Raychaudhuri equation
shows that for any non-rotating, geodesic, time-like congruence, l̇ was actually
larger before if the strong energy condition holds (which is not necessarily the
case in the presence of a cosmological constant). This conclusion is relevant
both for the fluid congruence in FRW as well as in anisotropic generalizations,
which means that the length scale for such models was zero at a time closer
to the present. The time where l was zero is referred to as the Big Bang and
indicates that the universe started as a spacetime singularity. Originally it was
assumed that the singularity in the past of FRW-models was an artifact of the
exact symmetry of those models and that a singularity would not occur in more
realistic models, but in 1965 Penrose [73] proved the existence of singularities
in models of collapsing matter without any assumptions of symmetry, and then
Hawking [34] and Geroch [31] produced similar proofs of singularities in cosmo-
logical models.28 These proofs gave very little information of the nature of the
singularities though. Lifshitz and Khalatnikov [61] provided heuristical argu-
ments for that the approach of a cosmological singularity would in general be
characterized by a metric where “The evolution of the metric proceeds through
successive periods (call them eras) which condense towards t = 0. During every
era the spatial distances in two directions oscillate, and in the third direction
decrease monotonically”.

The study of the structure of singularities and the evolution of cosmological
models have been studied more recently by the methods of orthonormal frames
and dynamical systems, as described above. Wainwright & Hsu [103] intro-
duced variables in Bianchi cosmology that were scaled with the expansion of
the reference congruence to produce a system which remained finite even as one
approaches a initial singularity; Uggla et al. [100] then used these variables to
study inhomogeneous models. For spatially homogeneous models it was possible
to formulate the equations determining the evolution of the variables describing
the matter and the geometry of spacetime as a constrained system of ODEs
on a state space, i.e. a dynamical system. The initial singularity could then
be described by the properties of the past asymptotic states of the dynamical
system.

Variables very similar to those in [100] can be obtained through a slightly differ-
ent viewpoint proposed by Röhr and Uggla [84] where the singularity is mapped
to the boundary of a spacetime that is conformally related to the original one
in a manner somewhat analogous to Penrose’s “conformal infinity” [72]. This

28See Hawking & Ellis [35] ch. 8 for a discussion of the singularity theorems.
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approach was used in paper III.

3.4.1 Normalized Variables Through a Conformal Rescal-
ing of the Metric

Let g̃ be an unphysical metric related to the physical metric g through a con-
formal transformation,

g = Ψ2g̃,

and let {ẽ} be an orthonormal basis and ∇̃ a connection compatible with the
unphysical metric. Using the commutator functions of the frame as the basic
variables,

[ẽa, ẽb] = c̃cab ẽc,

and making a 1 + 3 split with respect to some time-like reference congruence
one obtains

[ ẽ0, ẽα ] = ˙̃uα ẽ0 − [ 1
3 θ̃ δα

β + σ̃α
β + εα

β
γ (ω̃

γ + Ω̃γ) ] ẽβ , (3.24a)

[ ẽα, ẽβ ] = 2εαβγ ω̃
γ ẽ0 + (2ã[α δβ]

γ + εαβδ ñ
δγ) ẽγ . (3.24b)

The relation between the variables obtained from cabc and c̃abc are

θ̃ + 3r0 = Ψθ, σ̃αβ = Ψσαβ , ˙̃uα + rα = Ψu̇α, ω̃α = Ψωα,

ñαβ = Ψnαβ , ãα − rα = Ψaα, Ω̃α = ΨΩα,
(3.25)

where ra = ẽaΨ/Ψ, a = 0, 1, 2, 3, and where the objects associated with g (g̃)
are calculated in an ON-frame of g (g̃).29

In the above Ψ is a completely arbitrary function on the spacetime manifold.
In cosmological models the Raychaudhuri equation shows that θ, which carries
the physical dimension of [length]−1, diverges to the past under quite general
circumstances. To study the vicinity of a singularity characterized by such a
divergence it is advantageous to find variables that stay finite even as θ diverges.
Any conformal factor Ψ that asymptotically scales as the inverse of θ should
be a natural choice for an anzats to obtain finite variables. In the literature
on physical cosmology the inverse of the Hubble scalar, H = θ/3 = l̇/l, is
often used to scale the variables, and to comply with the standard variables we
choose it as the appropriate conformal factor; thus we set Ψ = H−1 to define

29The α on the left hand side of equations (3.25) refers to components relative a frame {ẽα}
whereas the α on the right hand side refers to components relative a frame {eα}.
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the conformally Hubble normalized variables:

M = HM, Mα = H−1Mα, Eα
i = H−1eα

i, (3.26a)

Σαβ = H−1σαβ , Wα = H−1ωα, U̇α = H−1u̇α − rα, (3.26b)

Rα = H−1Ωα, Aα = H−1aα + rα, Nαβ = H−1nαβ , (3.26c)

where we also have included the frame components of the frame {∂∂∂a} = {H−1ea}.
The conformally Hubble normalized variables in (3.26) are all written in cap-
ital letters (or calligraphic script when the un-normalized variable is denoted
by a capital letter) instead of with a ˜ to emphasize the choice of a particular
conformal factor.

In addition to the Hubble scalar, which measures the expansion, another pa-
rameter, which measures whether the expansion is speeding up or slowing down
is often used in the cosmological literature, this is the deceleration parameter,

q = −l̈l/(l̇)2.

Rewriting this in terms of the Hubble scalar and its time derivative,

1 + q = −∂∂∂0H/H = r0,

one can express the normalized Hubble scalar through (3.25) as

H̃ = H−1H − r0 = −q.

The full set of variables describing the commutator functions c̃abc are then

(q,Σαβ , U̇α,Wα, N
αβ , Aα, R

α).

In the cosmological literature the energy density in the universe is often de-
scribed by the density parameter Ω, defined by

Ω =
ρ

3H2
.

To obtain dimensionless variables for the full energy-momentum tensor one
therefore uses the same normalization also for the pressure, energy flux, and
anisotropic pressure:

(Ω, P,Qα,Παβ) = (ρ, p, qα, παβ)/3H
2. (3.27)
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The Dimensionless Equations

Expressing the equations (3.12), (3.14), and (3.17) in the variables (3.26) and
(3.27) one obtains a system of equations where the physical length scale is
factored out. The equations describe the evolution of the commutator functions
and matter relative the overall expansion of the time lines. The equations are
of two types – those that only contain spatial frame derivatives, and those
that also contain time frame derivatives of the variables. The latter are called
evolution equations and the first constraint equations. Note that the differential
operators ∂∂∂0 and ∂∂∂α are not simply partial derivatives but differential operators
that themselves evolve with time, and may include combinations of all partial
derivatives. The separation into evolution and constraints may at this stage
therefore might seem a bit arbitrary, but we will see below a situation where
the notions really becomes well and uniquely defined.

Einstein field equations:

3Qα =(3δα
γ Aβ + εα

δγ Nδβ) Σ
β
γ − (∂∂∂β + 2rβ) Σα

β

− [Cα
β + 2εα

γβ(U̇γ + rγ)]Wβ − 2rα, (3.28a)

Ω =1− Σ2 + 1
6
3R+ 1

3W
2 − 2

3WαR
α − 1

3 (2∂∂∂α − 4Aα + rα) r
α, (3.28b)

∂∂∂0 Σαβ =− (2− q)Σαβ + 2εγδ〈α Σβ〉δ Rγ − 3Sαβ + 3Παβ − 2W〈α Rβ〉
+ (∂∂∂〈α + U̇〈α +A〈α) U̇β〉 + 2(∂∂∂〈α − r〈α +A〈α) rβ〉
− εγδ〈α Nβ〉γ (U̇δ + 2rδ), (3.28c)

Jacobi identities:

(∂∂∂α − U̇α − 2Aα)W
α = 0, (3.29a)

Aβ N
β
α − 1

2∂∂∂β (εα
βγAγ +Nα

β)− (Fα
β − 2qδα

β + 2Σα
β)Wβ = 0, (3.29b)

∂∂∂0 Wα = (Fα
β + qδα

β + 2Σα
β)Wβ + 1

2Cα
β U̇β , (3.29c)

∂∂∂0 N
αβ = (3qδγ

(α − 2Fγ
(α)Nβ)γ + εγδ(α(∂∂∂γ + U̇γ)Fδ

β), (3.29d)

∂∂∂0 Aα = Fα
β Aβ + 1

2 (∂∂∂β + U̇β)(3qδα
β − Fα

β). (3.29e)

The symbols Cα
β and Fα

β denote collections of frequently occurring combina-
tions of terms, and are defined by

Fα
β = q δα

β − Σα
β − εα

β
γ (W

γ +Rγ),

Cα
β = εα

γβ (∂∂∂γ −Aγ)−Nα
β ,
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and the terms 3Sαβ ,
3R, and Bαβ are the dimensionless versions of the variables

(3.13):

3Sαβ = B〈αβ〉 + 2εγδ〈α Nβ〉δ Aγ + ∂∂∂γ(δ
γ〈α Aβ〉 + εγ〈αδ Nβ〉δ),

3R = − 1
2B

α
α − 6A2 + 4∂∂∂α Aα,

Bαβ = 2Nαγ N
γ
β −Nγ

γ Nαβ .

The deceleration parameter q is given in terms of the other variables through
the Raychaudhuri equation

q = 2Σ2 + 1
2 (Ω + 3P )− 2

3 W
2 − 1

3 [∂∂∂α + U̇α − 2(Aα − rα)] (U̇
α + rα), (3.32)

and W 2 and Σ2 are contractions of the shear and rotation, and are defined by
Σ2 = 1

6ΣαβΣ
αβ , and W 2 = WαW

α.

The twice contracted Bianchi identities give evolution equations for some of the
normalized matter variables

Matter equations:

∂∂∂0 Ω = (2q − 1)Ω− 3P + 2Aα Qα − ΣαβΠ
αβ − [∂∂∂α + 2(U̇α + rα)]Q

α,
(3.33a)

∂∂∂0 Qα = (Fα
β − (2− q) δα

β)Qβ + (3δα
γ Aβ + εα

δγ Nδβ)Π
β
γ

+ 2εα
βγ Wγ Qβ − (∂∂∂β + U̇β + 2rβ) (Pδα

β +Πα
β)− U̇α Ω− rα(Ω− 3P ).

(3.33b)

Specializing to a perfect fluid one obtains from (3.33) equations for the energy
density and three-velocity of the fluid.

Perfect fluid equations :

∂∂∂0 Ω = (2q − 1− 3w) Ω + [(3w − 1) vα − Σαβ v
β + 2(Aα − U̇α − rα)− ∂∂∂α]Q

α,

(3.34a)

∂∂∂0vα = Ḡ−1
−
[
(1− v2)(3c2s − 1− c2s A

β vβ) + (1− c2s)(A
β +Σγ

β vγ) vβ
]
vα

− [Σα
β + εα

βγ (Rγ +Nγ
δ vδ)] vβ −Aα v2 + εα

βγWγ vβ

− (δα
β − vα vβ)U̇β − (1 + w)−1(1− v2)[(1− w)δα

β − 4w c2s Ḡ
−1
− vαv

β ]rβ

−
(
v

Q

)[
(δα

β + 2c2s Ḡ
−1
− vαv

β)∂∂∂γ(Pδβ
γ +Πβ

γ)− (1 + c2s)Ḡ
−1
− vα ∂∂∂βQ

β
]
,

(3.34b)

where

Qα = (1 + w)(G+)
−1 Ω vα, G± = 1± w v2, Ḡ± = 1± c2s v

2.
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From the frame equations (3.19) finally, evolution equations and constraints are
obtained for the Hubble normalized shift- and lapse functions, and spatial frame
components,

Frame equations:

∂∂∂0 Mα = Fα
β Mβ + (∂∂∂α + U̇α)M−1, (3.35a)

∂∂∂0 Eα
i = Fα

β Eβ
i, (3.35b)

Cα
βMβ = 2M−1Wα, (3.35c)

Cα
β Eβ

i = 0. (3.35d)

The system of equations (3.28) - (3.35) involves the space of functions

X = (Eα
i,M,Mα, rα,Wα, Rα, U̇α,Σαβ , Aα, Nαβ ,Ω, vα). (3.36)

Note that there are no evolution equations for the variables (Rα, U̇α, rα,M).
The quantities U̇α and M can be related to the other variables and their deriva-
tives algebraically through the constraints (3.28a), (3.29a), and (3.35c) when
Wα is non-vanishing:

U̇α =W−1
{
Wα(∂∂∂β − 2Aβ)W

β −W β(∂∂∂[α −A[α + 2r[α)Wβ] +W βNσ[αΣ
σ
β]

− 1
2W

βεβαγ
[
ΣγδAδ − 3Qγ − (∂∂∂σ + 2rσ)Σ

γσ +NγσWσ − 2rγ
] }

,

M−1 = 1
2W

−2WαCα
βMβ .

whereas only the part of Rα that is parallel to Wα is related to the other
variables in a similar fashion through (3.28b). Equations for rα can be obtained
by writing the commutator equations in operator form

(∂∂∂α + U̇α)∂∂∂0 − (δα
β ∂∂∂0 − Fα

β)∂∂∂β = 0, (3.38a)

2Wα ∂∂∂0 −Cα
β ∂∂∂β = 0, (3.38b)

and applying them to ln(H):

∂∂∂0rα = Fα
β rβ + (∂∂∂α + U̇α)(q + 1), (3.39a)

0 = Cα
β rβ − 2(q + 1)Wα. (3.39b)

If the reference congruence u is chosen to be orthogonal to a spatial foliation
of the spacetime, then Wα is identical to zero, and for consistency with (3.29c)
also Cα

βU̇β must vanish, but this is consistent with the other equations since

they no longer constrain U̇α when Wα vanishes. In this sense both Wα and U̇α
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are gauge variables, dependent on how one chooses to foliate the spacetime with
time-like curves. If instead u represents the 4-velocity of a physical object in
the spacetime, like a fluid for example, then both quantities represent physical
properties of this object, the rotation and acceleration of the fluid elements
in this case, and setting them to zero is then a physical statement about the
dynamics of the fluid.

3.4.2 Asymptotic Silence and Locality

Asymptotic silence towards a singularity is heuristically defined in Lim et al. [65]
as the shrinking of particle horizons to zero size towards the singularity along
any timeline (that does not become null) that approaches it; a singularity with
this property is called asymptotically silent. The notion was introduced by Uggla
et al. [100] with the belief that this would imply that spatial inhomogeneities
would asymptotically have superhorizon scale and would not be relevant to
the asymptotical dynamics. Uggla et al. [100] links the formation of shrinking
particle horizons to the condition Eα

i → 0, which by Andersson et al. [3] is used
to define asymptotic silence instead. There the notion of asymptotic silence was
separated from the condition that inhomogeneities would have superhorizon
scale, something that requires that spatial frame derivatives of all the variables
in X vanishes, Eα

i∂iX → 0. This condition is called asymptotic locality. It may
appear that the first condition would imply the second but it is possible that
spatial coordinate derivatives of X may blow up and counteract the vanishing
of Eα

i, something that have been shown to occur in numerical computations
([3], Lim [63]), so called “recurrent spike formation”. This occurs along some
timelines where the dynamics is not “local” in the sense above even though
the singularity is asymptotically silent. Still we conjecture in paper III that the
conditions of asymptotic silence and locality hold for most timelines of a generic
class of models and hence that the study of these conditions are relevant for the
understanding of singularities under quite general circumstances.

From equations (3.28) - (3.39) one finds that there exists an invariant subset
of the total space X where Eα

i = U̇α = rα = Wα = Mα = 0, i.e. systems
with this property retains it for all times. This invariant set is called the silent
boundary, or local boundary [100], and the conjecture that asymptotic locality
will hold in a limit is in the dynamical systems formulation a conjecture that
the asymptotic state of the system will be contained in this subset.
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Equations on the Silent Boundary

On the silent boundary, the spatial frame derivatives of the functions in X
vanishes, and the dynamics of the system is the same as if the state space
functions were independent of the spatial coordinates. They are not, but the
spatial coordinates have ceased to play a dynamical rôle, and are now reduced to
passive indices labeling a separate system of equations at each spatial point. Of
the remaining variables, M and Rα can now be specified completely arbitrarily
and are considered as gauge variables. The remaining space of functions, which
now can be regarded as a state space, consists of

S = (Σαβ(x
i), Nαβ(x

i), Aα(xi),Ω(xi), vα(xi)), (3.40)

and the reduced system of equations on the silent boundary is a system of
ordinary differential equations on a constrained state space of functions, where
∂∂∂0 = M−1∂t ≡ ∂τ is a partial derivative with respect to the dimensionless time
variable τ . Now the separation of equations into evolution and constraints really
become just that and the system can be analyzed by the methods described
in chapter 2. The equations are those of the spatially homogeneous Bianchi
models:

Evolution equations:

∂∂∂0 Σαβ = −(2− q)Σαβ + 2εγδ〈α Σβ〉δ Rγ − 3Sαβ + 3Παβ , (3.41a)

∂∂∂0 Aα = Fα
β Aβ , (3.41b)

∂∂∂0 N
αβ = (3qδγ

(α − 2Fγ
(α)Nβ)γ . (3.41c)

Constraint equations:

0 = 1− Σ2 − Ωk − Ω, (3.41d)

0 = (3δα
γ Aβ + εα

δγ Nδβ) Σ
β
γ − 3Qα, (3.41e)

0 = Aβ N
β
α, (3.41f)

where

q = 2Σ2 + 1
2 (Ω + 3P ), P = wΩ+ 1

3 (1− 3w)Qαv
α,

Qα = (1 + w)G−1
+ Ωvα, Παβ = Q〈αvβ〉,

3Sαβ = B〈αβ〉 + 2εγδ〈α Nβ〉δ Aγ , Bαβ = 2Nαγ N
γ
β −Nγ

γ Nαβ ,
3R = − 1

2B
α
α − 6A2, Ωk = − 1

6
3R.
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Perfect fluid equations :

∂∂∂0 Ω = (2q − 1− 3w) Ω + [(3w − 1) vα − Σαβ v
β + 2Aα]Q

α, (3.41g)

∂∂∂0vα = Ḡ−1
−
[
(1− v2)(3c2s − 1− c2s A

β vβ) + (1− c2s)(A
β +Σγ

β vγ) vβ
]
vα

− [Σα
β + εα

βγ (Rγ +Nγ
δ vδ)] vβ −Aα v2. (3.41h)

3.5 Bianchi Cosmologies

The Bianchi cosmologies are spatially homogeneous spacetimes with a three-
parameter isometry group acting on spatial slices. They can be described dy-
namically by the dynamical system above, with the only difference that the
state space variables S are now actually independent of the spatial coordinates.
The variables (Nαβ , A

α) are are directly related to the structure constants of
the Lie algebra corresponding to the group of motions on the surfaces of ho-
mogeneity. Following Schücking and Behr [57] and Ellis & MacCallum [26] the
Bianchi cosmologies are usually first classified into class A (Aα = 0) and class
B (Aα �= 0), and then further into subgroups using the eigenvalues of the ma-
trix Nαβ . In class B there exists a constant of motion, h, defined through the
relation AαAβ = 1

2hεαρσεβγδN
ργNσδ. If Nαβ and Aα are given in an eigenbasis

of Nαβ ,

(Nαβ) = diag(N1, N2, N3), (Aα) = (A, 0, 0),

then the classification is given by the table 3.1,30 where A2 = hN2N3. The

Table 3.1: Classification of Bianchi cosmologies.

Class A (A = 0) Class B (A �= 0)
Group type I II VI0 VII0 VIII IX V IV VIh VIIh

N1 0 + 0 0 − + 0 0 0 0
N2 0 0 + + + + 0 0 + +
N3 0 0 − + + + 0 + − +
h - - 0 0 0 0 - - − +

Bianchi cosmologies are anisotropic generalizations of the homogeneous FRW-
cosmologies, and orthonormal frame methods have been very useful in the study
of them because of the close connection between the orthonormal frame variables

30The table is adapted from Table 1.1 in [102].



44 CHAPTER 3. COSMOLOGICAL MODELS

and the structure constants of the Lie algebra of the Killing vector fields of the
isometry group. The different group types correspond to different invariant
subsets of the state space S, defined above, and arranges the different Bianchi
types into a hierarchy of increasing complexity.

The Bianchi models have been studied extensively since the late 60’s as exam-
ples of exact solutions (see Stephani et al. [97]), and from a dynamical systems
perspective at least since 1971 by Collins [17], and developed further by Bogoy-
avlensky [8], Rosquist/Jantzen [85], and others. The book by Coley [12], and the
collaborative work edited by Wainwright and Ellis [102] give detailed accounts
of the uses of dynamical systems in Bianchi cosmologies. Worth mentioning is
the proof by Ringström [80] that the past asymptotic states of Bianchi type IX
models with an orthogonal perfect fluid, obeying the strong and weak energy
condition, generically are contained on the closure of the union of the vacuum
Bianchi type I and II subsets. The important role of these two Bianchi models
in connection with the early state of Bianchi type IX models and possibly also
with the physical universe itself merits them with a closer description here.

Vacuum Models of Bianchi Type I (The Kasner Solutions)

If the energy-momentum tensor vanishes and the isometry group on the spatial
slices is the trivial one, then one obtains the Kasner [53] solutions. The metric
is usually written as

ds2Kasner = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, (3.42)

where p1 + p2 + p3 = 1 and p21 + p22 + p23 = 1. In terms of the dynamical
system (3.41) they correspond to fixed points where Nαβ = Aα = Ω = 0, and
Σαβ = const (the vα’s are ignored here since they are irrelevant in a vacuum
model, and the Rα’s can be put to zero). The only dynamics occurs in the
overall expansion, given by the equation

∂τH = −3H,

where τ is the dimensionless time parameter along the congruence generated by
∂∂∂0 = M−1∂t = H−1∂t = ∂τ . This equation have the solution

H = H0e
−3τ =

1

3t
.

The conditions on the Kasner exponents pα defines a circle in the space spanned
by (p1, p2, p3), or equivalently the space spanned by the Hubble normalized
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shear eigenvalues Σα = 3pα − 1 (fig. 3.1). The Kasner exponents can be repre-
sented in parametric form:

p1 =
−u

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p3 =

u(1 + u)

1 + u+ u2
, (3.43)

where the Kasner parameter u usually is taken to vary in the interval [1,∞], for
which the Kasner exponents assume all their values and are ordered according to
p1 ≤ p2 ≤ p3, corresponding to sector (123) in fig. 3.1. If one extends the domain
to the entire real line one can parameterize the entire circle of fixed points.31

This is usually not done however (except in a recent paper by Damour and
Lecian [20]), instead one keeps the interval of u bounded and switch the ordering
of the definition of the Kasner exponents in terms of the Kasner parameter on
each new sector. Each value of u ∈ [1,∞] then corresponds to six points on the
circle (except u = 1 that correspond to the three points Qα, and u = ∞ that
correspond to the three points Tα), but each multiplet of points correspond to a
unique physical state, the only difference being the labeling of the different axes.
The circle therefore gives a redundant representation of the Kasner solutions.
The extended definition of the Kasner parameter is nevertheless a convenient
representation when the Kasner solutions are viewed as a subclass of a larger
set of solutions, where the permutation symmetry of the axes is not necessarily
present.

The importance of the Kasner circle lies in its connection with the dynamics
at early times close to the initial singularity in a Big Bang cosmology. If one
linearizes the dynamical system (3.41) with w < 1 at the Kasner fixed points,
one finds that at each point (with the exception of the Taub points Tα) there
is a single negative eigenvalue of the linearized system. The stable manifold
corresponding to the negative eigenvalue describes a vacuum model where a
single eigenvalue of the matrix (Nαβ) is non-zero, i.e. a vacuum model of Bianchi
type II.

Vacuum Models of Bianchi Type II

In terms of the dynamical system (3.41) the vacuum Bianchi type II models
define invariant subsets where N2 = N3 = Aα = Ω = 0, and N1 is either
positive or negative (or similarly with N2 and N3). Denote these sets Bvac.

N±
α
. In

31The transformations u �→ u, 1/u, −(1 + u), −u/(1 + u), −1/(1 + u), −(1 + u)/u form
a representation of the symmetric group S3 as permutations of the Kasner exponents, and
each of the corresponding intervals [1,∞], [0, 1], [−∞,−2], [−1,−1/2], [−1/2, 0], [−2,−1] is a
suitable domain for the parametrization of the Kasner exponents.
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Σ1

Σ2

Σ3

(321)

(231)

(213)(123)

(132)

(312)

T3

T2 T1

Q3

Q2Q1

Figure 3.1: The Kasner circle, defined in terms of the shear eigenvalues. The
circle is divided into six sectors (αβγ) where the numbers denote order of the
shear eigenvalues (sector (123) has Σ1 < Σ2 < Σ3, and so on). Separating
the sections are points where the two of the shear eigenvalues coincide. These
points correspond to special solutions, that are isotropic in the plane of these
eigendirections. The points Qα correspond to the LRS Kasner solutions, where
two of the Kasner exponents are equal but non-zero. The points Tα correspond
to the Taub form of flat spacetime, where two of the Kasner exponents are zero.

a Fermi transported (Rα = 0) Σ and N -eigenframe, the equations reduces to:

∂τΣ1 = − 1
6N

2
1 (Σ1 + 4), (3.44a)

∂τΣ2 = − 1
6N

2
1 (Σ2 − 2), (3.44b)

∂τΣ3 = − 1
6N

2
1 (Σ3 − 2), (3.44c)

∂τN1 = 2(Σ2 +Σ1)N1, (3.44d)

with the constraints

Σ1 +Σ2 +Σ3 = 0, 2Σ2
1 + 2Σ2

2 + 2Σ2
3 +N2

1 = 12. (3.44e)

The constraints (3.44e) bound the absolute values of the shear variables strictly
away from 2 on the proper Bianchi type II subsets. This results in a monotone
decreasing Σ1 and monotone increasing Σ2 and Σ3. A monotone function on a
bounded codomain must have a limit value on the closure of the codomain, in
particular one has limτ±∞ Σ1 ∈ [−2, 2]. Eq. (3.44a) shows that this implies
that limτ±∞ N1 = 0 – the vacuum Bianchi type II orbits both start and end at
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the Kasner circle. The figure 3.2 shows the projection of the orbits on the plane
in shear-space defined by the first constraint in (3.44e).

Σ1Σ2

Σ3

T3

T2 T1

Q3

Q2Q1

Σ1Σ2

Σ3

T3

T2 T1

Q3

Q2Q1

Σ1Σ2

Σ3

T3

T2 T1

Q3

Q2Q1

Figure 3.2: Projection of the vacuum type II orbits onto shear eigenvalue space.
Arrows point in the reverse time direction.

The Mixmaster Attractor

One can view the set of orbits as a map from the Kasner circle to itself. Usually
one considers this map in the reverse time direction since its importance lies
in the τ → −∞ limit. The one-dimensional stable manifold of each Kasner
point connects it to another Kasner point and so on, in a never ending sequence
(unless it finally connects to a Taub point), see fig. 3.3. In terms of the Kasner
parameter u, the map defines a sequence {ui} that obeys the simple rule

ui+1 = ui − 1, if ui ≥ 2,

ui+1 =
1

ui − 1
, if ui ≤ 2.

If the sequence is infinite and non-periodic it corresponds to an infinite hetero-
clinic network on the Kasner circle. Other possible types of sequences are finite
(if the ui’s are rational numbers) or eventually periodic (see Heinzle and Uggla
[36] for a detailed account on the different possible types of sequences and their
statistical properties).

The importance of this heteroclinic network and corresponding Kasner map lies
in its conjectured property as a template for the past dynamics for most orbits
in the space of Bianchi type VIII and type IX-models, and in extension as an
asymptotic limit of “almost all” cosmological models close to the singularity,
including inhomogeneous models. For orthogonal models of Bianchi type IX
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Σ1Σ2

Σ3

T3

T2 T1

Q3

Q2Q1

Figure 3.3: A few orbits of one of the possible heteroclinc networks on the
Kasner circle. The arrows are directed towards the past.

it has been proved that the α-limit of almost all orbits is contained in the
closure of the set defined by the union of all the different vacuum Bianchi type
II subsets of the same sign and the Kasner circle (Ringström [80]), although it
was not established definitely whether the α-limit sets coincide with this set or
with subsets of it. The set is called the “Mixmaster attractor” since it gives
rise to a so called Mixmaster oscillatory singularity (Wainwright & Ellis [102],
Misner [69]). Recent work by Liebscher et al. [60], Béguin [6], and Reiterer &
Trubowitz [78] have provided more detailed results on Mixmaster dynamics and
its relevance for Bianchi models of type IX.

The Kasner solutions and the Mixmaster attractor are believed to be impor-
tant models close to the initial singularity not only for homogeneous Bianchi
cosmologies but for also for more general, inhomogeneous cosmologies, assum-
ing that the matter obeys certain restrictions. Other matter sources will have
different asymptotic states, see e.g. paper V in this thesis. But even defining
in what way an inhomogeneous cosmology is close to a given solution requires
some sort of measure on the space of all solutions, something that is much more
complicated when dealing with spatially dependent objects rather than with
spatial constants. The dynamical systems approach have as of yet not provided
any general proofs about the asymptotic structure of inhomogeneous space-
times without a priori imposing simplifying assumptions. One way to define
“closeness” of different inhomogeneous cosmologies is provided by the Fuchsian
method, which is used in paper V to prove statements about the initial sin-
gularity of inhomogeneous ultra-stiff perfect fluid cosmologies. The Fuchsian
method is described in the next chapter.
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3.5.1 Tilted Bianchi Cosmologies

Tilted Bianchi cosmologies, where the fluid velocity is not normal to surfaces
of homogeneity, had not been studied as extensively as the non-tilted models
until the beginning of the new millennium, although they are now quite well
described in terms of dynamical systems essentially like (3.41), at least in terms
of the existence of fixed points and their stability properties.

First of the tilted models to be fully described by means of dynamical systems
were the non-rotational type V models with a linear equation of state (by Hewitt
and Wainwright [46] in 1992), then followed studies of: the tilted Bianchi type II
models in 2001 (Hewitt et al. [45]); the type VI0 models in 2004 (Hervik [39]); the
late time behavior of type IV, and VIIh models in 2005 (Coley and Hervik [14],
Hervik et al. [41]); the late time behavior of type VII0 in 2006 (Hervik et al. [42],
Lim et al. [64]); the late time behavior of type VIII (Hervik and Lim 2006 [40]);
the late time behavior of type VIh models (Hervik et al. 2007 [43], Coley and
Hervik 2008 [15]); and the the late time behavior of the exceptional type VI−1/9

model (Hervik et al. [44] 2008). The main focus of these investigations was the
late time behavior of the models, and in particular whether future stable fixed
points exist for them. Fixed points that are future stable were found for all the
models except for a small range in parameter space (h,w) of some of the class B
models where the future attractor instead had the structure of a periodic orbit
(type IV, IVh) or a torus (type VIIh). The fixed point analysis was supported
by numerical results, and in some cases monotone functions that provided global
results for subranges of parameter space and on invariant subspaces, but global
analytical results are lacking in most cases.

In paper IV in this thesis we use Hamiltonian methods to provide new monotone
functions for the tilted type II model and thereby prove that the future local
attractors found in [45] also are global attractors.

The tilted Bianchi models can be generalized to multi-fluid matter sources in
a straight forward manner by assuming that the fluids are non-interacting, i.e.
that each fluid is separately conserved. The state space is extended in three
dimensions for each extra fluid, and even finding all possible fixed points quickly
become a laborious task. The tilted two-fluid type VI0 model was partially
analyzed by dynamical systems methods by Coley and Hervik [13], where they
found all future stable fixed points of the system. Bianchi type I models have
not been studied in connection with tilted fluids for the simple reason that
the constraint equation (3.41e) forces the momentum density to vanish in the
Bianchi type I case, thereby making the Bianchi type I model incompatible with
tilted fluids. When considering multi-fluid models however, this constraint only
states that the total momentum density of all the fluids together must vanish.
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The tilted two-fluid Bianchi type I model can be considered as a subspace of
the two-fluid type VI0 model, and this subset is studied in detail in paper I and
II in this thesis.



Chapter 4

Fuchsian Reduction

Another mathematical concept that is used in this thesis is that of the Fuchsian
reduction, or of a Fuchsian system of equations. The concept of Fuchsian reduc-
tion has successfully been applied to the study of singularities in inhomogeneous
cosmology in the past decade, where the aim has been to make rigorous math-
ematical statements about the structure of the singularity and the dynamics
in its vicinity. This chapter reviews the basic idea of Fuchsian reduction and
states a useful theorem and then describes the uses in General Relativity, with
emphasis on spacetime singularities.

4.1 Fuchsian Reduction in an Analytic Setting

The denomination “Fuchsian” in Fuchsian reduction is derived from Fuchs32

theorem and Fuchsian differential equations, where it essentially has come to
denote differential equations for which all formal power series are convergent.
Here, as in the cosmological literature, the term Fuchsian equation will have a
more specific meaning, which will be described below. The “reduction” in the
same term describes the representation of a singular solution u of a nonlinear
differential equation in the form

u = s+ tmv, (m > 0)

where s is a known function, singular at t = 0, and where v represents the
regular part of u. The reduction is useful when the solution u is unknown but

32Lazarus Immanuel Fuchs 1833-1902

51
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expected from various considerations to have the same asymptotic behavior at
t = 0 as s. If it can be shown that the remaining part really is regular, then
this expectation is confirmed. The trick to show this is to obtain an equation
for v that has the particular form

t∂tv +A(x)v = f(t, x,v,vx). (4.1)

Here v(t, x) takes values in R
k, and x = (x1, x2, ..., xn) ∈ R

n (or C
n), but t is

real and positive; A is a matrix-valued function of x, independent of t, and f
is a function of t, x,v and the spatial derivatives of v, vx, that takes values in
R

k. If the functions A and f satisfies certain regularity conditions one calls this
a Fuchsian system of equations. The regularity conditions can actually be of
different types, e.g. one can consider Fuchsian systems in analytic or smooth
settings, and corresponding to the different conditions are theorems about the
existence of solutions to the system. Only the most regular type of Fuchsian
system will be considered here. For this system there also exists the strongest
theorem, which will now be stated.

Theorem 4.1.1 (Kichenassamy & Rendall 1998 [55]). If f is continuous in t,
analytic in the other variables for t > 0, and vanishes like some power of t as
t → 0; A is analytic in x and satisfies the condition that tA(x) is bounded on
compact subsets of x-space near t = 0, then the equation (4.1) has a unique
solution v defined near t = 0 which is continuous in t and analytic in x and
tends to zero as t → 0.

The positivity condition on A(x) is satisfied if A(x) has no eigenvalues with
negative real part or purely imaginary eigenvalues, and that the dimension of
the kernel of A equals the number of zero eigenvalues, i.e. no zero eigenvalues
give rise to non-diagonal Jordan blocks.

The solution of the Fuchsian system that the theorem guarantees gives through
the reduction a unique one-to-one correspondence between solutions u of the
original system and the functions s. In the limit t → 0, this one-to-one map
becomes the identity map. The generality of an obtained solution u, counted
as the number of free functions that can be given as initial data, depends on
the generality of the leading order functions s.

Generalizations of the above theorem exists where the differential operator D =
t∂t is replaced with an operator depending on several “time variables”, N =∑l

k=0(tk + ktk−1)∂/∂tk (see Kichenassamy [54, thm. 4.5]), or when the right
hand side of eq. (4.1) also contains a term g(t, x,v)t∂tv where g fulfills the
same regularity conditions as f (see Andersson & Rendall [2]).

The equation (4.1) is of first order and partial derivatives with respect to t only
appears through the scale invariant operator D = t∂t. To reduce an equation
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of higher order to this form it is necessary to introduce auxiliary variables
representing the derivatives of the variables occurring in the original equation,
and often to make a space-dependent shift of the time coordinate such that
the singularity under study appears at t = 0. It is also necessary to “extract”
the divergent behavior by splitting the solution into a sum of terms, i.e. by
making a formal series solution ansatz where the first terms should contain the
divergent parts. The Kichenassamy/Rendall theorem is then used to show that
this formal solution is an actual solution. What the theorem does not do is to
provide any information on how to find the leading order terms. In physically
motivated problems one can sometimes guess the leading order behavior from
physical arguments or intuition, and then just use the theorem as confirmation
of that guess. An indirect way of guessing the leading order terms is to suppose
they are exact solutions to a different set of equations whose solutions have the
same asymptotics close to t = 0. This has been the route taken in problems
relating to general relativity, although it is not at all obvious how to find these
equations. In most cases the equations are found by removing dependence of
such variables that are expected to be irrelevant close to the singularity. When
the system includes constraint equations (equations that do not include any
derivatives with respect to the time variable t) one must also check that the
new set of constraints obtained are preserved under time evolution.

4.2 Fuchsian Reduction and Spacetime Singu-
larities

Fuchsian methods were first applied to general relativity in the context of con-
structing large classes of spacetimes with Cauchy horizons (see Rendall [79]
for a review of the uses of Fuchsian methods in general relativity up to 2004).
Their use in the study of spacetime singularities began with Gowdy models with
spatial topology T 3 (Kischenassamy & Rendall [55]).

Gowdy models are vacuum spacetimes with compact spatial topology and two
commuting spatial Killing vectors, thus having essentially only one degree of
spatial inhomogeneity. In addition they have a discrete symmetry, characterized
by the vanishing of the so called “twist constants”33. The spatial topology can
be that of T 3, S2 × S1, S3 or a lens space L(p, q) (St̊ahl [96]), and the Einstein
equations reduce to two equations of two unknown functions of two variables,
plus two decoupled equations arising from the Gauss and Codazzi constraints.

33The twist constants are defined from the two Killing vector fields ξ, χ through the relations
κξ = εabcdξaχb∇cξd and κχ = εabcdξaχb∇cχd.
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In the T 3-case one has:

The Gowdy metric:

ds2 = eλ(t,θ)/2t−1/2(−dt2 + dθ2) + t[eP (t,θ)(dy +Q(t, θ)dz)2 + e−P (t,θ)dz2].

The field equations:

D2Q− t2Qθθ = −2(DQDP − t2QθPθ), (4.2a)

D2P − t2Pθθ = e2P [(DQ)2 − t2Q2
θ], (4.2b)

λθ = 2(PθDP + e2PQθDQ), (4.2c)

Dλ = (DP )2 + t2P 2
θ + e2P [(DQ)2 − t2Q2

θ], (4.2d)

where D = t∂t. In [55] it was proven through Fuchsian methods that a solution
of the Gowdy system (4.2), analytic in θ, could be expanded like

P (t, θ) = k(θ) ln t+ φ(θ) + tεu(t, θ), (4.3)

Q(t, θ) = Q0(θ) + t2k(θ)(ψ(θ) + v(t, θ)), (4.4)

for some constant ε > 0 and analytic functions 0 < k(θ) < 1, φ(θ), Q0(θ), and
ψ(θ), where the functions u and v vanish with t. The condition on k is called
“the low velocity condition”34, and such solutions are called “asymptotically
velocity term dominated” (AVTD) (or just “velocity term dominated”, VTD).
The function k(θ) can be related to the generalized Kasner exponents of the
Kasner solution. If one chooses Q = 0, P = k ln t for any real constant value
of k, the metric reduces as ds2Gowdy → t(k

2+3)/2ds2Kasner in terms of the form
(3.42) of the Kasner line element given in the previous section. This is of course
a line element equivalent to (3.42), the difference only being a simple rescaling of
the time coordinate. An AVTD solution can therefore be viewed as asymptotic
to a different Kasner solution at each spatial point. The corresponding Kasner
exponents are (k2 − 1)/(k2 + 3), 2(1 − k)/(k2 + 3), and 2(1 + k)/(k2 + 3).
The asymptotic velocity k is related to the Kasner parameter u through k =
(u − 1)/(u + 1) (see eq. (3.43)). Negative k could be treated analogously in
[55], which gives an asymptotic value of k between −1 and 1. This corresponds
to two sectors on the Kasner circle, namely the ones where the direction of
inhomogeneity has the smallest Kasner parameter.

St̊ahl [96] used Fuchsian methods to study the Gowdy models with S2×S1 and
S3 topologies, but the existence of symmetry axes where the defining Killing vec-
tors vanish due to the imposed isotropy complicated the analysis. Any solution

34The equations (4.2) can be interpreted as a harmonic-like map from 1 + 1 Mikowski
space to 1 + 1 hyperbolic space with metric dP 2 + e2P dQ2. The “velocity”, defined as
ν(t, θ) = ((DP )2 + exp(2P )(DQ)2)1/2, approaches |k(θ)| in the limit of small t.
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must respect the isotropy about the symmetry axis, and if the past asymp-
totic state of a point on the axis is to be represented by a Kasner solution, it
must be a locally rotationally symmetric (LRS) Kasner solution, i.e. either a
Taub point or the opposite LRS point corresponding to the symmetry axis. In
[96] this symmetry axis corresponded to the asymptotic velocities of −1 or 3
while all points off the symmetry axis could be treated like the T 3-case and had
asymptotic velocities between 0 and 1 as above. This seems to contradict the
existence of any continuous solution, k(θ), asymptotic to the Kasner solution
for the S2×S1 and S3 models, although it is unclear whether this is an artefact
of the parametrization of the metric in [96] or an actual property of the models.

Isenberg & Kichenassamy [51] applied the Fuchsian method to so called polar-
ized T 2-symmetric models. They are a subclass of the full class of T 2-symmetric
models, which are like the Gowdy models but where the twist constants do
not vanish. Like the Gowdy models the polarized T 2-symmetric models where
shown to have solutions depending on the maximal set of free functions asymp-
totic to the Kasner solutions.

If the isometry group of the T 2 models is reduced to a single U(1)-group act-
ing on a compact spatial dimension one obtain the U(1) symmetric vacuum
spacetimes. These models can be divided into classes of decreasing general-
ity: generic, half-polarized, and polarized, and like the Gowdy models come
with several different compact spatial topologies. Isenberg & Moncrief [52] used
Fuchsian methods to show that the polarized and half-polarized U(1)-models
with spatial topology T 3 have AVTD behavior. This result was later extended
by Choquet-Bruhat & Isenberg [11] to all half polarized35 U(1)-bundles over
Σ×R, where Σ is any compact surface.

In all cases described here, the Fuchsian method have been able to prove that
analytic solutions of the equations under consideration have VTD (Kasner-like)
behavior in the limit when t → 0. Such dynamics is not, however, expected
to happen in generic models. The generic behavior is supposed instead to
be captured by the Mixmaster model, and so far such complicated oscillating
dynamics have been beyond what the Fuchsian method can handle. Therefore
the Fuchsian method have not been applied to generic T 2 symmetric or U(1)
symmetric models, since numerical studies and heuristic analytical results show
that these models do exhibit oscillatory dynamics close to the singularity as
the Mixmaster model predicts. Only special cases have singularities where the
oscillatory behavior is suppressed, such as:

35The condition of half polarization can be interpreted geometrically. The asymptotic
solutions can be interpreted as geodesics in the hyperbolic plane described in note 34 and
the condition of half polarization as picking only geodesics that at t = 0 emanate from a
particular point in the plane. (see [11, sec. 5.1.2]).
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• Models with some of the gravitational degrees of freedom turned off, e.g.
by reasons of symmetry. All of the models above are of this type.

• Models with more than four spacetime dimensions.

• Models with special matter sources.

Damour et al. [19] used Fuchsian methods to show that Einstein-vacuum mod-
els of dimension larger than 10 have Kasner-like singularities. The same was
proved for spacetimes of lower dimension if the matter source consists of a scalar
field, or a scalar field and several p-form fields with certain restrictions on the
couplings between the scalar field and the p-form fields. This paper general-
ized, in terms of the number of dimensions studied and the inclusion of p-forms
in the matter content, the analysis of Andersson & Rendall [2] where the 4-
dimensional Einstein-scalar field system without symmetries was first studied
with Fuchsian methods. This paper also included an analogous analysis of the
Einstein-Euler system with a stiff fluid, which also could be proved to exhibit
Kasner-like behavior close to the singularity.

The analysis of Andersson and Rendall can also be applied to the Einstein-Euler
system with an ultra-stiff fluid, a system that have been predicted through
heuristical arguments to have a singularity structure similar to the initial sin-
gularity in the Friedman universe. That this is the case is proved in the last
paper included in this thesis. For further explanatory comments, see the next
chapter.



Chapter 5

Comments on
Accompanying Papers

Three of the five papers (I, II, and IV) in this thesis investigate homogeneous
Bianchi models with tilted perfect fluids. The first two are studies of Bianchi
type I models with two perfect fluids with linear equations of state where the
focus has been on finding the past and future asymptotic states of the system.
Paper IV combines Hamiltonian methods with the dynamical systems formu-
lation to find monotone functions that can be used to determine the global
dynamics fully. Paper III investigates the dynamics of more general cosmolog-
ical models with multiple perfect fluids, with a general barotropic equation of
state, where the past asymptotic state of the system is described by a local and
silent singularity as defined above. The last paper uses Fuchsian methods to
prove the existence of a large class of solutions to the Einstein equations coupled
to an ultra-stiff fluid with a initial singularity of VTD-type.

5.1 Papers I and II

In these papers we investigate Bianchi type I models that contain two perfect
fluids that are tilted with respect to the hypersurfaces of homogeneity, and
in addition, a cosmological constant in paper I. To be compatible with type I
the total energy flux of the two fluids must vanish, but this turns out to be a
constraint that is preserved under time evolution and hence the model is self-
consistent. The tilted two-fluid type I model is contained as a subspace of the

57
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tilted two-fluid type VI0 model studied by Coley and Hervik [13], but they did
not analyze it in their paper. We restrict ourselves to type I, but perform a
rather thorough analysis that illustrates how the complexity of the dynamical
system increases with the complexity of the source.

The kinematical structure of the problem closely resembles that of a Bianchi
type I model with a magnetic field, studied in [58], and we therefore choose
our variables in a way analogous to that paper. The resulting variables are not
identical to those in [58], due mainly to the necessity to fix the frame rotation
variables Rα with a different sign. The resulting dynamical system take the
form:

Evolution equations:

Σ′
+ = −(2− q)Σ+ + 3Σ2

A −Q(1)v(1) −Q(2)v(2), (5.1a)

Σ′
A = −(2− q + 3Σ+ +

√
3ΣB)ΣA, (5.1b)

Σ′
B = −(2− q)ΣB +

√
3Σ2

A − 2
√
3Σ2

C , (5.1c)

Σ′
C = −(2− q − 2

√
3ΣB)ΣC , (5.1d)

v′(i) = (G
(i)
− )−1(1− v2(i))(3w(i) − 1 + 2Σ+)v(i), (5.1e)

Ω′
(i) = (2q − 1− 3w(i))Ω(i) + (3w(i) − 1 + 2Σ+)Q(i)v(i), (5.1f)

Ω′
Λ = 2(1 + q)ΩΛ. (5.1g)

where i = 1, 2 denote the two fluids.

Constraint equations:

0 = 1− Σ2 − Ω(1) − Ω(2) − ΩΛ, (5.2a)

0 = Q(1) +Q(2), (5.2b)

where

q = 2Σ2 + 1
2 (Ωm + 3Pm)− ΩΛ , G

(i)
± = 1± wv2(i),

Q(i) = (1 + w)(G
(i)
+ )−1Ω(i)v(i), Ωm = Ω(1) +Ω(2),

Σ2 = Σ2
+ +Σ2

A +Σ2
B +Σ2

C , Pm = P(1) + P(2),

and ′ denotes differentiation w.r.t. the time parameter τ related to the vector
field ∂∂∂0 = d/dτ .

One of the five variables determining the Hubble normalized shear (in the pa-
per denoted by φ) have decoupled from the other variables and is left out of
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the dynamical system. The remaining four are denoted (Σ+,ΣA,ΣB ,ΣC); the
variables (Ω(i), v(i),ΩΛ) are the Hubble normalized energy densities of the two
fluids, their three-velocities, and the Hubble normalized cosmological constant.
The equation of state parameters w(i) take values from (and including) 0 to
(and not including) 1. In paper I the inequality w(2) < w(1) is imposed whereas
in paper II the equality w(2) = w(1) is studied instead. The separation into two
papers is made because of a qualitative difference in the dynamics between the
two cases, and to keep the papers reasonably short.

The analysis of the system consists of mainly three parts:

• Try to find constants of motion or monotone functions to solve, or asymp-
totically solve, part of the system.

• Finding all the fixed points of the system and linearizing the equations
in their neighborhood to obtain the qualitative dynamics on an open set
around the fixed points.

• Solve the equations numerically for randomly chosen initial data to study
if the conclusions from the local stability analysis holds globally.

5.1.1 The Linear Analysis

The linear analysis was performed on the subset where ΩΛ = 0 since the asymp-
totic states can easily be found globally to the future when ΩΛ is non-zero, and
resides on the subset ΩΛ = 0 towards the past. The Gauss constraint (5.2a)
was used to solve for Ω(2) while the Codazzi constraint (5.2b) was left unsolved
since it cannot be solved globally for any of the variables, instead it was solved
locally at each fixed point for one of the variables.

Example 1. In paper I where w(2) < w(1), there exists a FRW fixed point
with the softer fluid acting as an extremely tilted test fluid:

F10
01 : Ω(1) = 1, v(2) = −1, v(1) = Ω(2) = Σ+ = ΣA = ΣB = ΣC = 0.

At F10
01, the linearization of the constraint (5.2b) is

(1 + w(1))v(1) + (Ω(1) − 1) = 0,

and one can use it to solve for Ω(1). Reinserting this value for Ω(1) into the
remaining equations of (5.1) and linearizing at F10

01 one obtains the matrix equa-
tion
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⎡
⎢⎢⎢⎢⎢⎢⎣

Σ+

ΣA

ΣB

ΣC

v(1)
v(2)

⎤
⎥⎥⎥⎥⎥⎥⎦

′

=
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

−3(1−w(1)) 0 0 0 −2(1−w(1)) 0
0 −3(1−w(1)) 0 0 0 0
0 0 −3(1−w(1)) 0 0 0
0 0 0 −3(1−w(1)) 0 0
0 0 0 0 2(3w(1)−1) 0

0 0 0 0 0
2(1−3w(2))

1−w(2)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ+

ΣA

ΣB

ΣC

v(1)
v(2)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which immediately gives the eigenvalues

λ1,2,3,4 = − 3
2 (1− w(1)), λ5 = 3w(1) − 1, λ6 =

2(1− 3w(2))

1− w(2)
.

The fixed point F10
01 is non-hyperbolic when either of the state parameters w(i)

take the radiation value 1/3, and a saddle-point otherwise.

Not all of the fixed points are as easily diagonalized as the FRW-points, partic-
ularly those where the fluid velocities take a non-zero, non-extreme, tilt value
have linearizations that are dauntingly complex, but with the help of computer
algebra software (or a great deal of patience) one can extract the eigenvalues.
The eigenvalues of these points are long and are not written out explicitly in
the papers but as an example of how they look we can take a look at the fixed
point TW1v∗

(2)
in paper I:

Example 2. For values of w(2) between 1/2 and 3/5 there exists a fixed point
TW1v∗

(2)
, which is defined by:

TW1v∗
(2)

: Σ+ = − 1
2 (3w(2) − 1), ΣA =

√
3
2 (1− w(2))(2w(2) − 1),

ΣB =
√
3(2w(2) − 1), ΣC = 0,

v(1) = 1, v(2) = v∗(2) = − (1− w(2))(15w(2) − 7)

−25w2
(2) + 18w(2) − 1

,

Ω(1) = B(w(2)), Ω(2) = 1− 1
4 (3w(2) − 1)(15w(2) − 7)−B(w(2)),

where

B(w(2)) = −
3(1− w(2))(7− 15w(2))(25w

2
(2) − 18w(2) + 1)

32(5w2
(2) − 5w(2) + 1)

.
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Linearizing the constraint (5.2b) at any point P one obtains:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2Σ+v(2)
−2ΣAv(2)
−2ΣBv(2)
−2ΣCv(2)(

(1+w(1))G
(1)
− G

(2)
+

(1+w(2))(G
(1)
+ )2

)
Ω(1)(

G
(2)
−

G
(2)
+

)
(1− Σ2 − Ω(1))

(1+w(1))G
(2)
+

(1+w(2))G
(1)
+

v(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

|P

(S− S∗) = 0,

where S =
[
Σ+ ΣA ΣB ΣC v(1) v(2) Ω(1)

]T
and S∗ is S calculated at P . Insert-

ing the values of TW1v∗
(2)

one obtains:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(25w2
(2)+1−18w(2))(1−3w(2))(1−w(2))(7−15w(2))

54w2
(2)

+1+12w(2)−260w3
(2)

+225w4
(2)

(25w2
(2)+1−18w(2))(1−w(2))(7−15w(2))

√
18w(2)−12w2

(2)
−6

54w2
(2)

+1+12w(2)−260w3
(2)

+225w4
(2)

2
√
3
(25w2

(2)+1−18w(2))(1−w(2))(7−15w(2))(2w(2)−1)
54w2

(2)
+1+12w(2)−260w3

(2)
+225w4

(2)

0

3
32

(25w2
(2)+1−18w(2))(1−w(2))(7−15w(2))(−1+w(1))

(1+w(1))
(
5w2

(2)
+1−5w(2)

)

3
32

(25w2
(2)+1−18w(2))

2
(−1285w4

(2)−682w2
(2)+1594w3

(2)−1+85w(2)+225w5
(2))(

−35w4
(2)

+66w2
(2)

−206w3
(2)

+1+13w(2)+225w5
(2)

)(
5w2

(2)
+1−5w(2)

)

8
75w4

(2)−135w3
(2)+80w2

(2)−17w(2)+1

54w2
(2)

+1+12w(2)−260w3
(2)

+225w4
(2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(S− S∗) = 0.

The constraint can be used to solve for any variable but ΣC . Using MapleTM to
solve for Ω(1), linearize the reduced system, and find the eigenvalues we obtain:

λΣ1
= − 3

2 (5−9w(2)), λ2 = −6
w(1) − w(2)

1− w(1)
, λ3,4,5,6 = −3

4
(1−w(2))

(
1±
√

B ±A

C

)
,
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where

A =
(
793 + 41254w(2) − 767027w2

(2) + 5061056w3
(2) − 15973294w4

(2)

+21782564w5
(2) + 6015506w6

(2) − 55878280w7
(2) + 54125125w8

(2)

+8587750w9
(2) − 38089375w10

(2) + 12975000w11
(2) + 2250000w12

(2)

)1/2
,

B = 48225w6
(2) − 195310w5

(2) + 268519w4
(2) − 162868w3

(2) + 42575w2
(2)

−2942w(2) − 247,

C =
(
1− 85w(2) + 682w2

(2) − 1594w3
(2) + 1285w4

(2) − 225w5
(2)

) (
1− w(2)

)
.

The eigenvalues λ3,4,5,6 are plotted in figure 5.1. One can see that the fixed
point is a sink for any value of w(2) between 1/2 and 5/9.

Example 3. In both paper I and II there exist closed one-parameter families
of fixed points corresponding to the vacuum Kasner solutions [53]. Several
different representations of these solutions exist, with different values of the
three-velocities of the fluids, which act as test fields that can either be zero or
one. For the representation where both fluids are aligned with the normal to
the hypersurfaces of homogeneity, K�

00 , the linearization of the constraint (5.2b)
yields:

∂

∂S

(
Q(1) +Q(2)

)
|K�

00
= (0, 0, 0, 0, 0, 0, 0).

Thus we have that the constraint is completely degenerated at the fixed points
and cannot be used to eliminate any of the variables. Linearizing the system
without solving the constraint means that we have one unphysical degree of
freedom left. Normally then the linear analysis is not enough to determine the
dynamics in a neighborhood of the fixed points, but in this case a part of K�

00

has a complete set of positive eigenvalues, even without imposing the constraint,
which means that this part must be a source also in the constrained subspace.

5.1.2 Numerical Computations

The linear analysis can give a qualitative understanding of the dynamics in a
neighborhood of the hyperbolic fixed points through the Hartman-Grobman the-
orem, and the neighborhoods of fixed point sets like the Kasner circles through
the reduction principle, but the theorems do not determine a precise qualita-
tive asymptotic behavior, like an analytical asymptotic solution, or what will
happen with any given initial set of data. Theorems 5.1 – 5.4 in paper I show
that systems where one of the fluids are softer than radiation isotropizes to the
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Figure 5.1: The real parts of the eigenvalues λ3,4,5,6 are plotted with a solid
line; the imaginary parts are shown with a dashed line.

future, and systems where both are stiffer than radiation do not. Given that
there only exists one sink and one source for a given value of the parameters w(i)

one would like to think that all points (except for a set of measure zero) would
emanate from a neighborhood of the source and end up at the sink eventually,
but to confirm this we solve the system numerically for a number of different
data points to see if they all follow this pattern.

Example 1. In paper I, the linear analysis show that TW1v∗
(2)

is a future

attractor of a neighborhood around that point for values of w(2) between 1/2
and 5/9. Using MATLAB� to solve the equations (5.1), (5.2) numerically
for many different, randomly chosen, points with the internal MATLAB ODE
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solvers, one finds that the local attractor also seems to be a global attractor. In
solving the equations, Ω(2) is given through the Gauss constraint (5.2a), and the
Codazzi constraint (5.2b) is only imposed on the initial data. To confirm that
the constraint (5.2b) is preserved by the evolution, Q(1)+Q(2) is also computed
and plotted. Figure 5.2 shows the evolution of the 8 state space variables S =(
Σ+,ΣA,ΣB ,ΣC , v(1), v(2),Ω(1),Ω(2)

)
, and the constraint function Q(1) + Q(2)

for 4 randomly chosen points.
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Figure 5.2: The graphs show the future evolution of the state space variables
of 4 randomly chosen points that are evolved in time for equations of state
parameters w(1) = 20/36 and w(2) = 19/36. All of them approach the sink
TW1v∗

(2)
. The time parameter τ is related to the vector field ∂∂∂0 according to

∂∂∂0 = d/dτ .

The numerical computations show that the constraint (5.2b) is marginally sta-
ble; initially the points pick up computational errors and are thrown off the
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constraint surface by a few parts in a thousand, but then the constraint func-
tion stabilizes and stays close to zero in the future evolution, in comparison to
the other the other variables.

Example 2. The linear analysis of the 4 Kasner circles in paper I suggests
that when w(1) > w(2) > 2/3, then the past attractor is made up of sections

of the Kasner circles K�
11, K�

01, and K�
00 (defined by Ω(1) = Ω(2) = ΣA =

ΣC = 0, Σ2
+ + Σ2

B = 1, and (v(1) = −v(2) = 1), (v(1) = 0, v(2) = −1), and

(v(1) = v(2) = 0)) respectively; connected by the lines of fixed points KL+
v(1)1

and KL+
0v(2)

, (defined by Ω(1) = Ω(2) = ΣA = ΣC = 0, and

Σ+ = 1
2 (1− 3w(1)), ΣB =

√
1− Σ2

+, 0 ≤ v(1) ≤ 1, v(2) = −1

and

Σ+ = 1
2 (1− 3w(2)), ΣB =

√
1− Σ2

+, v(1) = 0, −1 ≤ v(2) ≤ 0

respectively, see appendix A and B in paper I).

Computing the evolution of the system numerically for 4 randomly chosen points
for equations of state parameters w(1) = 0.9 and w(2) = 0.8 one finds that the
shear and density parameters stabilize after about 15 units of time, see figure
5.3.

The variables v(1) and v(2) also seem to have stabilized at the extreme values
0,±1, but comparing with the linear analysis one finds that one points has
approached a saddle fixed point (the solid line). Evolving the system further
makes the state point leave the saddle point and approach the local source (since
the system is evolved backwards in time), see figure 5.4.
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Figure 5.3: The numerically computed evolution of four randomly chosen points
backwards in time for 15 units of time. The Codazzi constraint (5.2b) is only
imposed on the initial data and the constraint function is plotted in the last
frame to check that the condition Q(1) +Q(2) = 0 is preserved.

5.2 Paper III

In this paper we study the past asymptotic dynamics of cosmologies with an
arbitrary number of tilted perfect fluids, with arbitrary barotropic equations
of state. Under the assumption of asymptotic silence and locality as described
in section 3.4.2 we derive results about the relationship between properties of
matter, such as the stiffness of the fluids, and the asymptotic geometry.

Unexpectedly, the evolution equations for general barotropic fluids are struc-
turally identical, on the silent boundary, to the evolution equations of perfect
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Figure 5.4: Numerical evolution of the same initial data as in figure 5.3 back-
wards in time for 100 units of time. All points approach the local sources, which
also are global sources.

fluids with linear equations of state with the equation of state parameter w
replaced by the square of the speed of sound c2s in the medium defined by the
fluids. This result also holds for Bianchi cosmologies.

A fruitful way to analyze the motion of the fluids is to split the fluid velocities
vα into their speed, v = (vαv

α)1/2, and direction cα = vα/v (relative the local
rest spaces defined by the orthonormal frame). On the type I subset one finds
that the equations governing the evolution of the direction decouples from the
speed, and under the assumption that the asymptotic state either is a ‘vacuum
solution’ (Ω = 0) or described by the Jacobs or Friedman solutions (Ω = 1),
depending on the stiffness of the stiffest equation of state of the fluids, one
can find the asymptotic state of the fluid. In the asymptotic vacuum case one
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finds that the fluids will align (or anti-align) with the eigendirection of the shear
with the largest eigenvalue (see corollary 3.3 in paper III). One can compare this
analysis with the one done in paper I, which treats a similar although simpler
problem, but in a different frame, and other variables associated to the different
choice of frame.

5.2.1 Spatial Frame Choices

Since only two fluids are present in paper I, they have to be anti-aligned with
respect to each other to obey the Codazzi constraint (5.2b), and thus they
define a preferred direction in space. The spatial frame is chosen such that the
time derivative of the fluid velocities always stay proportional to their velocity;
the frame is ‘corotating’ with the fluids in the sense that the frame is rotating
relative a gyroscopically fixed frame in such a way that it is always aligned with
the fluids. The ‘rotation’ should not be confused with vorticity; the vorticity
of the fluids is always zero on the Bianchi type I subset (see [56]). This frame
choice removes two of the degrees of freedom from the velocities but instead the
shear becomes non-diagonal.

One can compare the two resulting systems of equations on the vacuum bound-
ary (one can of course compare the two systems off the vacuum boundary but
no analysis of the system was performed off the vacuum boundary in paper
III because it was there conjectured that the past asymptotic state would be
contained on the vacuum boundary):

Corotating frame (paper I and II):

vα(i) = (0, 0, v(i)), R1 = −Σ23, R2 = Σ31, R3 = 0.

Make the variable substitutions

Σ+ = 1
2 (Σ11+Σ22), Σ31+iΣ23 =

√
3ΣA eiφ, Σ−+

i√
3
Σ12 = (ΣB+iΣC)e

2iφ,

where Σ− = (Σ11 − Σ22)/(2
√
3), to obtain the system of equations:
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∂∂∂0Σ+ = 3Σ2
A, (5.5a)

∂∂∂0ΣA = −(3Σ+ +
√
3ΣB)ΣA, (5.5b)

∂∂∂0ΣB =
√
3Σ2

A − 2
√
3Σ2

C , (5.5c)

∂∂∂0ΣC = 2
√
3ΣBΣC , (5.5d)

∂∂∂0φ = −ΣC , (5.5e)

∂∂∂0v = G−1
− (1− v2)(3w − 1 + 2Σ+)v, (5.5f)

where
Σ2

+ +Σ2
A +Σ2

B +Σ2
C = 1.

In paper III, where a shear eigenframe was used, the same physical system is
expressed through the system of equations (where we can assume there are only
two fluids for comparison with the system above):

Shear eigenframe (paper III):

Σαβ = diag(Σ1,Σ2,Σ3), Rα = 0.

Make the variable substitutions

(Σ1,Σ2,Σ3) = (3p1 − 1, 3p2 − 1, 3p3 − 1),

to obtain the equations

∂∂∂0 pα = 0, (5.6a)

∂∂∂0v = 3Ḡ−1
− (1− v2)

[
c2s − p1 c

2
1 − p2 c

2
2 − p3 c

2
3

]
v, (5.6b)

∂∂∂0 c1 = 3[(p2 − p1)c
2
2 + (p3 − p1)c

2
3] c1, (5.6c)

∂∂∂0 c2 = 3[(p3 − p2)c
2
3 + (p1 − p2)c

2
1] c2, (5.6d)

∂∂∂0 c3 = 3[(p1 − p3)c
2
1 + (p2 − p3)c

2
2] c3, (5.6e)

where

p21 + p22 + p23 = 1, p1 + p2 + p3 = 1, c21 + c22 + c23 = 1.

In the corotating frame, the dynamics is given in terms of the shear variables and
the fluid speed, while in the shear eigenframe, the shear variables are constant
and the dynamics is given in terms of the fluid speed and direction. The result
of the analysis is the same: In the corotating frame one can show that ΣA
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and ΣC must vanish asymptotically to the past. This in turn implies that
∂∂∂0φ → 0, which means that the frame can be transformed to an asymptotic
shear eigenframe by choosing φ → 0. One concludes that the asymptotic state
of the shear variables is confined to the closure of the part of the Kasner circle
that is a source, which is the sector (213), and the two points T3 and Q2, given
in figure 3, appendix B, in paper II. This is the part of the Kasner circle where
Σ22 ≤ Σ11 ≤ Σ33. One thus finds that the fluid, which defines the ∂∂∂3-direction,
will asymptotically align or anti-align with the eigendirection of the shear with
the largest eigenvalue, which is exactly the same conclusion as in paper III.

The corotating frame choice only works for the particular case where there is
only one special direction along which to attach the frame, as is the case with
two anti-aligned fluids or with the similar problem with a magnetic field as
described in [58]; it is useful since the fluid analysis is simpler. On the vacuum
subset though, the motion of the fluid is easy to solve in a shear eigenframe,
and one can find the past asymptotic states for an arbitrary number of fluids,
and find that they will all be aligned or anti-aligned.

5.3 Paper IV

The main result of this paper is that the future asymptotic global dynamics of
tilted Bianchi type II models is completely described. This was possible due
to the construction of several hitherto unknown monotone functions that were
sufficiently restrictive to pinpoint the future attractors for all investigated values
of the equation of state parameter w.

The first of the monotone functions was found by using Hamiltonian methods,
a mode of procedure described in a paper by Heinzle and Uggla [37]. With-
out going into detail one can say that they show (for non-tilted perfect fluid
Bianchi models of type A) that the existence of certain symmetries (isometries
or homothetic symmetries w.r.t. the minisuperspace metric) of the Hamiltonian
lead to conserved quantities or monotone functions in the dynamical systems
formulation of the same system. The tilted type II models share certain features
with the class of spacetimes they studied and it is reasonable to believe that
their method also extends to more complicated systems such as these.

In our paper we did not perform a similarly thorough analysis to be able to state
under exactly what circumstances a monotone function can be constructed for
the model under investigation. Instead we first analyzed an invariant subspace of
the model (the orthogonally transitive case) where the Hamiltonian already was
known (Uggla et al. [99]). Then we used this Hamiltonian to identify a function
that is monotone decreasing to the future. Showing that it was possible to
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express this function in Hubble normalized variables confirmed the existence of
a monotone function in the dynamical system. Based on this monotone function
we could construct a set of monotone quantities valid in the full state space
and covering all values of the equation of state parameter w. In this section
I will present some of these calculations in detail, as well as adding clarifying
comments that could not fit into the original paper due to restrictions of space.

New Hubble Normalized Variables in Two Steps

The basic Hubble normalized equations for the tilted Bianchi models of class A
are given by

Evolution equations

Σ′
αβ = −(2− q)Σαβ − 2εγδ〈α Σβ〉γ Rδ − 3R〈αβ〉 + 3Παβ , (5.7a)

(Nαβ)
′ = qNαβ + 2Σγ

(αNβ)γ − 2εγδ(αNβ)γRδ, (5.7b)

Ω′ = (2q − 1)Ω− 3P − ΣαβΠ
αβ , (5.7c)

v′ = −G−1
− (1− v2)

[
1− 3w +Σαβ c

αcβ
]
v, (5.7d)

c′α = [δα
β − cαc

β ][q cβ − Σβ
γ cγ − εβγδR

δcγ − vεβ
γ
δ N

δζ cζ cγ ]. (5.7e)

Constraint equations

0 = 1− Σ2 − Ωk − Ω, (5.8a)

0 = εα
δγ Nδβ Σ

β
γ − 3Qα, (5.8b)

where

Ωk = 1
12

3Rα
α,

3Rαβ = 2Nαγ N
γ
β −Nγ

γ Nαβ −NγδNγδ δαβ + 1
2 (N

γ
γ)

2 δαβ .

The variables are the standard Wainwright-Hsu-variables except that the three-
velocity vα is split into its norm and a directional unit vector cα: vα = vcα.

For the type II models the matrix (Nαβ) only has one independent component.
It is possible do diagonalize it, usually to the form (Nαβ) = diag(N, 0, 0), by
setting the frame rotation coefficients to R2 = Σ13, and R3 = −Σ12 and then
making a time-independent frame rotation. From equation (5.8b) one then has
c1 = 0. It is also possible to align the spatial frame with the fluid velocity by
making a suitable choice of the remaining frame rotation coefficient R1. This
is what is done in Hewitt et al. where it is chosen such that the fluid is aligned
with the frame vector e3. Instead of making this frame choice we introduce



72 CHAPTER 5. COMMENTS ON ACCOMPANYING PAPERS

variables that are invariant under rotations in the 2-3-plane in two steps. If
we use capital Latin indices A,B, ... = 2, 3, define the rotation invariant shear
variable Σ̌2 = 1

3 (Σ
2
12+Σ2

13) =
1
3RAR

A, and solve the constraint equation (5.8a)
for Ω, the evolution equations reduce to

Evolution equations

Σ′
AB = −(2− q)ΣAB − 2R1 (ΣAC − 1

2Σ
B
BδAC)εB

C + 1
3N

2 δAB

− 2R2 (εAC cC)(εBD cD)−N Rv (cA cB − 1
3δAB), (5.9a)

(Σ̌2)′ = −2[2− q +ΣAB cA cB − 2ΣA
A) Σ̌2, (5.9b)

N ′ = (q − 2ΣA
A)N, (5.9c)

v′ = −G−1
− (1− v2)

[
1− 3w +ΣAB cAcB

]
v, (5.9d)

c′A = −(δA
B − cA cB)[ΣB

C cC +R1εBC cC ]. (5.9e)

The symmetric matrix (ΣAB) have three independent components that we want
to express in terms of variables that are invariant under rotations in the 2-3-
plane. One obvious such variable is the trace, so we split ΣAB into its trace
and trace-free parts: ΣAB = Σ〈AB〉 + Σ+δAB , where Σ+ = 1

2Σ
A
A. The two

independent components of Σ〈AB〉 can be extracted by contracting with the
fluid direction vector cA and its orthogonal complement εACc

C , and we therefore
define the variables Σ̄ = 1√

3
Σ〈AB〉cAcB and Σ̃ = 1√

3
Σ〈AB〉εBCc

AcC .36 When

the evolution equations are expressed in these variables the equation (5.9e),
expressing the fluid motion w.r.t. the frame, becomes redundant, and we are
left with a system of scalar equations under rotations in the 2-3-plane.

Evolution equations:

Σ′
+ = −(2− q)Σ+ − 3Σ̌2 + 4Ωk + 1

2 (1 + w)G−1
+ v2Ω, (5.10a)

Σ̄′ = −(2− q)Σ̄− 2
√
3Σ̃2 +

√
3Σ̌2 +

√
3
2 (1 + w)G−1

+ v2Ω, (5.10b)

(Σ̃2)′ = −2(2− q − 2
√
3Σ̄)Σ̃2, (5.10c)

(Σ̌2)′ = −2[2− q − 3Σ+ +
√
3Σ̄]Σ̌2, (5.10d)

Ω′
k = 2(q − 4Σ+)Ωk, (5.10e)

(v2)′ = 2G−1
− (1− v2)[3w − 1− Σ+ −

√
3Σ̄]v2. (5.10f)

36In paper IV we contracted with the projection operator (cAcB − 1
2
δAB) instead of cAcB

but the result is the same, the contraction with δAB does not contribute to any of the variables
since Σ〈AB〉 is both symmetric and trace-free.
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Constraint equation:

4Σ̌2Ωk − (1 + w)2G−2
+ v2Ω2 = 0. (5.10g)

The Hamiltonian for the Orthogonally Transitive Tilted Bianchi Type
II Models

The orthogonally transitive tilted Bianchi type II models are subcases of the
fully tilted Bianchi type II models where the fluid velocity only has one inde-
pendent component u3, and where the metric can be given in a form where it
has only one non-zero off-diagonal component g12 = g21,

ds2 = −N2dt2 + g11(t)(ω̂
1)2 + 2g12(t)ω̂

1ω̂2 + g22(t)(ω̂
2)2 + g33(t)(ω̂

3)2. (5.11)

The ω̂i’s are the one-forms generating the Lie algebra of the type II models,
usually chosen such that

dω̂1 = −n̂1ω̂
2 ∧ ω̂3, dω̂2 = 0, dω̂3 = 0.

It is convenient to introduce the metric variables (β1, β2, β3, θ3) through the
relations

g11 = e2β
1

, g12 = −
√
2θ3e2β

1

, g22 = e2β
2

+2(θ3)2e2β
1

, g33 = e2β
3

, (5.12)

with the inverse

g11 = e−2β1

+2(n̂1θ
3)2e−2β2

, g12 =
√
2θ3e−2β2

, g22 = e−2β2

, g33 = e−2β3

.
(5.13)

The usefulness of these variables is seen when the Hamiltonian function is ex-
pressed in terms of them. The Hamiltonian is defined as the time-time compo-
nent of the difference of the Einstein tensor and the energy-momentum tensor,
and can naturally be split into a gravitational and a fluid part. The gravita-
tional part can be further split into a kinetic part and a potential part while
the fluid part only contains potential terms.

H̃ := 2N g
1
2na nb(Gab − Tab) = 2Ñg

(
kijk

j
i − (tr k)2 − 3R+G+Γ

2ρ̃
)
,

where Ñ = Ng−1/2.
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The kinetic (gravitational) part consists of the first two terms quadratic in the
extrinsic curvature. Expressed in the variables (β1, β2, β3, θ3) it can be written
as

ÑT := Ñg
(− (tr k)2 + kijk

j
i

)
= Ñ−1

(Gij β̇
iβ̇j + e2(β

1−β2)(θ̇3)2
)
,

where

Gij =

⎛
⎝ 0 −1 −1
−1 0 −1
−1 −1 0

⎞
⎠ , Gij = 1

2

⎛
⎝ 1 −1 −1
−1 1 −1
−1 −1 1

⎞
⎠ , (5.14)

are the so called minisuperspace metric and its inverse.

The gravitational potential is identified with the term proportional to the three-
curvature

Ug := −2g3R = (n̂1)
2e4β

1

, (5.15)

and the fluid potential is
Uf := gG+Γ

2ρ̃.

One can use the constant of motion l = ñ
√
gΓ (see eq. (A.14) in paper IV) to

solve for ρ̃ in the fluid potential

Uf = gG+Γ
2ρ̃ = l1+wG+Γ

1−we(1−w)(β1+β2+β3). (5.16)

Likewise one can implicitly express the fluid velocity v2 in terms of metric
variables and Taub’s circulation one-form ((A.15) in paper IV), ta = μ̃ũa =
(1 + w)ñwũa = (1 + w)(lg−1/2Γ−1)wũa. The orthogonally transitive models
have only one non-zero fluid component, v3 and therefore only one non-zero
component t3. It is for this reason that the component t̂3 = eα3tα = e2β

3

t3 in
eq. (A.15) is conserved (t̂i=1,2 = 0 ⇒ Ĉk

3j t̂k t̂
j = 0). It then follows exactly as

through (B.11-14) that 37

F := v2Γ2(1−w) = (1 + w)−2l−2w t̂23 exp[2w(β
1 + β2)− 2(1− w)β3], (5.17)

and therefore that v2 is a function of the particular combination of metric
variables (w(β1 + β2)− (1− w)β3).

The Hamiltonian is independent of the variable θ3, and its corresponding mo-
menta, πθ := ∂H̃/∂θ̇3 = 2Ñ−1e2(β

1−β2)θ̇3,38 must therefore be conserved.

37There is a missprint in paper IV, eq. (B.13). Instead of exp[w(β1 + β2) − (1 − w)β3] it
should say exp[2w(β1 + β2)− 2(1− w)β3].

38The defining relation πi := ∂L/∂β̇i for some Lagrangian on the form L(βi, β̇i) =

Gklβ̇
kβ̇l − U(βi) have the relations πi = 2Gilβ̇

l and H := β̇iπi − L = Gklβ̇
kβ̇l + U(βi)

and thereby also πi = ∂H/∂β̇i when H is expressed as a function of the configuration space
variables (βi, β̇i).



5.3. PAPER IV 75

Hence one can solve θ̇3 in terms of the metric variables and the constant mo-
mentum and consider the corresponding term in the Hamiltonian as a potential
term instead, T = Td + Uc, where

Uc =
1

4
e−2(β1−β2)(πθ)

2 (5.18)

is the ‘centrifugal potential’ and Td is the remaining kinetic part, thus reducing
the independent variables to just the diagonal degrees of freedom, (β1, β2, β3).
It can be useful to introduce the variable β0 = 1

3 (β
1+β2+β3) and its conjugate

momentum π0 = π1 + π2 + π3. The Hamiltonian then, finally, is written as:

H̃ =
Ñ

4
[Gijπiπj + (πθ)

2e−2(β1−β2) + 4(n̂1)
2e4β

1

+ 4l1+wG+Γ
1−we3(1−w)β0

].

At this point it is also useful to specify the lapse such that the time coordinate
becomes dimensionless. This is done by setting NH = 1, or equivalently Ñ =
−12π−1

0 . With this special choice of lapse we denote the time coordinate as τ
instead of t.

The Monotone Function

It is then the main point that if there exists a scale symmetry transformation
of the potential U := Uc + Ug + Uf : ci ∂U

∂βi = rU , where the cis are constants,

then the function (ci πi) has the time derivative

˙(ci πi) = (ci π̇i) = −(ci
∂H̃
∂βi

) = 12π−1
0 (ci

∂(T + U)

∂βi
) = 12rπ−1

0 U,

thus if U/π0 has a definite sign then this function is monotone. The potential
U as it is defined above is a strictly positive function, thus the function is
monotone if π0 has a definite sign.

Another, more complicated function is

M := (ci πi) exp

[
−r

2

Gijc
i βj

Gklck cl

]
.
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Its time derivative is

Ṁ =

[
(cj π̇j)

(ci πi)
− r

2

Gijc
i β̇j

Gklck cl

]
M =

[
− ci

(cj πj)

∂H̃

∂βi
− r

2

Gijc
i

Gklck cl
∂H̃

∂πj

]
M

= 12rπ−1
0

[
U

(cj πj)
+

Gijc
i

2Gklck cl
∂T

∂πj

]
M = 12rπ−1

0

[
− Td

(cj πj)
+

ciπi

4Gklck cl

]
M

= 3rπ−1
0

[
−Gij +

cicj

Gklck cl

]
πiπj exp

[
−r

2

Gijc
i βj

Gklck cl

]
.

(5.19a)

If ci is a timelike vector w.r.t the minisuperspace metric then
[
−Gij + cicj

Gklck cl

]
is positive semidefinite. The function is then monotone if π0 has a definite sign.
In paper IV we use the function M2 instead. It has the derivative Ṁ2 = 2MṀ
and is thus monotone if M is strictly positive or negative.

The potentials (5.15), (5.16), (5.18) above have a homothetic symmetry for
c = (1−w, 3(1−w), 4w) and r = 4(1−w). The (minisuperspace-) norm of this
vector is |c|2G = −2(1−w)(3 + 13w), and a monotone function can therefore be
constructed for the orthogonally transitive subcase in the range −3/13 < w < 1
where c is timelike.

The Monotone Function in Hubble Normalized Variables

To be useful in the dynamical systems approach the monotone function must
be translated into the Hubble normalized variables (5.10) derived from the or-
thonormal frame. The group invariant frame can be related to the orthonormal
frame through a purely time-dependent linear transformation, ωα = eαiω̂

i :=
Dα

jS
j
iω̂

i:39

⎡
⎣ω1

ω2

ω3

⎤
⎦ =

⎡
⎢⎣e

β1

0 0

0 eβ
2

0

0 0 eβ
3

⎤
⎥⎦ ·
⎡
⎣1 −√

2θ3 0
0 1 0
0 0 1

⎤
⎦ ·
⎡
⎣ω̂1

ω̂2

ω̂3

⎤
⎦ , (5.20)

which put the line element in the form

ds2 = −N2dt2 + e2β
1

(ω̂1 −
√
2θ3ω̂2)2 + e2β

2

(ω̂2)2 + e2β
3

(ω̂3)2.

39The transformation between the group invariant frame ω̂i and the on-frame ω̂α is split into
a diagonal scaling D and a special unit determinant transformation S. There is a missprint in
eq. (B.4) in paper IV, where the matrix component −√

2n̂1θ3(x0) should be just −√
2θ3(x0).
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The orthonormal frame obeys the algebra (on a given slice dt = 0)

dω1 = −eβ
1−β2−β3

n̂1ω
2 ∧ ω3, dω2 = 0, dω3 = 0,

and we have that

H = − 1
3 (tr k) = − 1

12e
−3β0

π0, (5.21a)

(Σα
β) = (σα

β)/H = (eαi(
1
3 tr kδ

i
j − kij)e

j
β)/H =

= −1

3

⎛
⎝−2β̇1 + β̇2 + β̇3 (3/

√
2)θ̇3 0

(3/
√
2)θ̇3 β̇1 − 2β̇2 + β̇3 0

0 0 β̇1 + β̇2 − 2β̇3

⎞
⎠ (5.21b)

= 2π−1
0

⎛
⎝ −2π1 + π2 + π3 (3/

√
2)e−(β1−β2)πθ 0

(3/
√
2)e−(β1−β2)πθ π1 − 2π2 + π3 0

0 0 π1 + π2 − 2π3

⎞
⎠ ,

N1 = eβ
1−β2−β3

n̂1/H = −12n̂1π
−1
0 e2β

1

. (5.21c)

The Hamiltonian is proportional to eq. (3.41d) :

H̃ = 6g1/2NH2(Σ2 +Ωk +Ω− 1) = 6g1/2H(Σ2 +Ωk +Ω− 1) =

−1

2
π0(Σ

2 − 1 + Ωk +Ω) = Ñ(T + Ug + Uf ) = −12π−1
0 (T + Ug + Uf ),

and we have the relations

T =
π2
0

24
(Σ2 − 1), Ug =

π2
0

24
Ωk, Uf =

π2
0

24
Ω.

The homothetic property of the potential, ci∂βiU = 4(1−w)U , allows one write
it on the form

U = exp

[
4(1− w)

Gijc
iβj

|c|2G

]
V, (5.22)

where ci∂βiV = 0. The monotone function can in turn be expressed in terms
of V through the Hamiltonian constraint, and V can be expressed in terms of
the scale invariant variables (5.21). We have

T + Ug + Uf = 0 ⇐⇒ exp

[
4(1− w)

Gijc
iβj

|c|2G

]
= − T

Vg + Vf
=

π2
0

24

1− Σ2

Vg + Vf
,

which gives

M = (ci πi)
2 exp

[
−4(1− w)

Gijc
iβj

|c|2G

]
= 24

(
ci πi

π0

)2
Vg + Vf

1− Σ2
.
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It can be read of directly from eq. (5.21b) and the definition of π0 that π1 =
π0

6 (2− Σ11) and so on, and we have(
ci πi

π0

)
= 4

3 − 1
6 (1− w)Σ11 − 1

2 (1− w)Σ22 − 2
3wΣ33.

To be able to express it in terms of the variables (5.10) we note that the vari-
ables (5.21) correspond to a frame choice where the fluid is aligned with the 3-
direction, so we have the identification Σ+ = 1

2 (Σ33+Σ22), Σ̄ = 1
2
√
3
(Σ33−Σ22),

which gives (
ci πi

π0

)
= 4

3 − 1
6 (1 + 3w)Σ+ +

√
3
6 (3− 7w)Σ̄.

The second factor can be reset in scale invariant variables by considering the
quotients

Vg

Vf
=

Ωk

Ω
=

Ug

Uf
=

(n̂1)
2

l1+w
exp
[
(3 + w)β1 − (1− w)(β2 + β3)

]
, (5.23)

and by using the Hamiltonian constraint once again

Vg + Vf

1− Σ2
=

Vg/Vf + 1

1− Σ2
Vf =

Ωk/Ω+ 1

Ω + Ωk
Vf =

Vf

Ω
. (5.24)

From (5.22) and (5.16) we have

Vf = l1+wG+Γ
1−we−[(3−8w+13w2)β1−(1+4w−13w2)β2+(5−13w)(1−w)β3]/(3+13w),

which can be split into factors proportional to the scale invariant combinations
(5.17) and (5.23):

Vf = l1+wG+Γ
1−w
[
e−(1−w)[(3+w)β1−(1−w)(β2+β3)]e2(3−7w)[w(β1+β2)−(1−w)β3]

] 1
(3+13w)

= l1+wG+Γ
1−w

[(
l1+wΩk

(n̂1)2Ω

)−(1−w)(
(1 + w)lwvΓ(1−w)

t̂3

)2(3−7w)
] 1

(3+13w)

,

which gives the monotone function (B.25) in paper IV.

5.4 Paper V

Finding the Reduced System

An important step in the Fuchsian reduction is to find the correct ansatz for
the asymptotic solution. In this paper we do this by assuming that the asymp-
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totic solution is a general solution to a different set of equations. The new
set of equations are found by removing those variables that are assumed to be
negligible close to the singularity from the original equations.

What variables can we assume are negligible then? Studies of ultra-stiff spa-
tially inhomogeneous models by Coley & Lim [16] have shown that, under the
assumption that the past asymptotic state is contained on the silent boundary,
one has Σαβ , Nαβ , Aα, vα → 0 as t → 0+, in terms of the variables (3.40); which
is to say that the only dominating variables are the expansion θ (or Hubble
scalar H = 1

3θ) and the energy density, all other variables are negligible close
to the singularity. We want to translate this into the variables used in paper V.
The variables Nαβ , Aα determine the Hubble normalized spatial curvature, and
to say that they vanish is to say that the spatial curvature variables 3Ra

b are
small compared to (tr k)2.40 That Σαβ also vanishes is to say that σa

b is small
compared to (tr k) asymptotically, and finally that vα vanishes is the same as
eαiv

i → 0, that is to say that the vi are small compared to the eαi. It follows
that v2 = viv

i = vαv
α → 0. The corresponding variables in paper V are the

three spatial components of the four velocity, denoted ua in paper V. That the
three-velocity vanishes implies that u2 = 3gabu

aub → 0 as t → 0+.

The Einstein field equations (the Euler equations are left out here), given in a
initial value formulation, are stated in terms of the variables (gab, (tr k), σ

a
b, μ, ua)

as a system of evolution equations

∂tgab = 2gac
(
σc

b − 1
3 (tr k) δ

c
b

)
, (5.25a)

∂tσ
a
b = (tr k)σa

b −
(
Ra

b − 1
3Rδab

)
+ (1 + w)μ(uaub − 1

3u
2δab), (5.25b)

∂t(tr k) = R+ (tr k)2 − μ[(1 + w)u2 + 3
2 (1− w)], (5.25c)

and a system of constraints

R− σa
bσ

b
a + 2

3 (tr k)
2 = 2μ

(
1 + (1 + w)uaua

)
, (5.26a)

−∇aσ
a
b − 2

3∇b(tr k) = μ(1 + w)(1 + uau
a)1/2ub. (5.26b)

From the above considerations, one ansatz for the new set of equations would be
to discard the terms containing σa

b, ua, R
a
b from the constraint equations and

40The positions of the indices are important here since each raising or lowering of an index
requires a contraction with the metric or its inverse, which themselves carry dimensional
weight and thus affects the behavior at the approach to the singularity. It is the mixed
form of the three-curvature that corresponds to the quantities (3.13) constructed from the
orthonormal frames. When the slicing defining kab is identified with the planes spanned by
the spatial orthonormal frame fields one also has the relation θ = −(tr k) which gives the
conclusion above.
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right hand sides of the evolution equations. This does not turn out to be a good
ansatz however. By dropping the shear terms one loses too much structure in
the equations to obtain an asymptotic solution. The resulting set of equations is
no longer self-consistent even, since the constraint equations are not preserved
under time evolution. One way to remedy this is to keep the shear terms in the
equations. This ansatz is the one used in [2] to study the stiff case, although
the equations are here split into shear and (tr k). The resulting set of equations
is then

∂t
0gab = 2 0gac

(
0σc

b − 1
3 (tr

0k)δcb
)
, (5.27a)

∂t
0σa

b = (tr 0k) 0σa
b , (5.27b)

∂t(tr
0k) = (tr 0k)2 + 3

2 (w − 1) 0μ, (5.27c)

and

− 0σa
b
0σb

a +
2
3 (tr

0k)2 = 2 0μ, (5.28a)

− 0∇a
0σa

b − 2
3

0∇b(tr
0k) = 0μ(1 + w) 0ub, (5.28b)

where the variables are appended with a 0 to emphasize that they are not to be
interpreted as solutions of the Einstein field equations but as an ansatz for the
leading order terms of a solution close to t = 0. The constraint equations are
now preserved under time evolution. To obtain the ansatz for the leading order
terms one now just need to solve this system.

A Comparison Between the Stiff and the Ultra-Stiff Models

The inhomogeneous ultra-stiff cosmological model studied in paper V exhibits
many similarities, but naturally also some differences, with the stiff models,
described by Andersson and Rendall [2]. In this section I take the opportunity
to comment on some of them.

One very important similarity of both systems (and actually all systems that
have been solved by Fuchsian methods) is that the spatial derivatives of the
variables are dynamically irrelevant close to the singularity. The variables are
in this case the three-metric and the extrinsic curvature, and that the spatial
derivatives of these variables are irrelevant is to say that the spatial connection
and spatial curvature are dynamically irrelevant close to the singularity. Only
models that have this property can be hoped to be successfully analyzed by
Fuchsian methods with these variables. Spatial gradients become important
when a singularity is of Mixmaster type during the transitions that generate
the Kasner map, which is why only models that have so called AVTD behavior
have been analyzed so far.
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Perhaps the most important difference between the two models is the structure
of the asymptotic solution. The stiff model has an asymptotic structure resem-
bling the anisotropic Jacob’s solution while the ultra-stiff model have an asymp-
totic structure resembling the Friedman model. Technically this difference can
be seen in the components of the extrinsic curvature, kab, of a “simultaneous
bang slicing”. For the stiff models, all components of the extrinsic curvature
have the same scaling with time to first order, namely as t−1, while for the
ultra-stiff models, the trace and the trace-free parts of the extrinsic curvature
scale differently to leading order, where the trace-part is dominating over the
trace-free part close to t = 0. The reason for this can be seen directly from the
asymptotic system, eqs. (8b) and (8c), in paper V:

∂t
0σa

b = (tr 0k) 0σa
b ,

∂t(tr
0k) = (tr 0k)2 + 3

2 (w − 1) 0μ.

When w = 1, the energy decouples from the evolution of (tr 0k) and both the
trace and the trace-free parts are governed by structurally identical equations.
For w > 1 on the other hand, the energy density makes a positive contribution
to the time derivative of (tr 0k). In an expanding universe ((tr 0k) < 0) this
implies that the trace will have a steeper slope as a function of time in an ultra-
stiff cosmology than in a stiff cosmology, and hence diverge faster as t → 0+.
In particular it will diverge faster than the shear in the equation above.

In one sense the ultra-stiff model is much simpler than the stiff model, since
the asymptotic solution is dominated by the scalar function (tr 0k), which is a
spatial constant to leading order, instead of the full set 0kab, which not all can
be chosen to be spatial constants by a choice of foliation. In the stiff case, the
spatial dependence of the leading order requires spatially dependent exponents
in the Fuchsian ansatz, which complicates the analysis considerably.

In another sense the ultra-stiff cosmology is more complicated since the asymp-
totic system is much harder to solve when the arbitrary parameter w enters the
equations. In paper V we only managed to find a closed-form solution for the
asymptotic system when w = 3. This does not turn out to be a serious problem
though since series solutions could be found for general w > 1 and all estimates
works the same anyway.
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5.5 My Contribution to the Papers

Since the papers I, III, IV, and V are written in collaboration with co-authors it
is of particular importance to specify my contributions to the different papers.

Paper I This paper was an offshoot of paper III which was initialized when
I discovered that it was possible to have two (or more) tilted fluids in
Bianchi type I when their energy flux cancel each other. I performed
the linear analysis, and did all numerical computations that was used to
support the linear analysis. The choice of variables and frame was done
in collaboration and the structure of the paper and text was developed
through continuous discussions.

Paper III I formulated the conjectures and proved most of the theorems. I also
derived the equation for the velocity of the perfect fluid and the equations
for the electric and magnetic parts of the Weyl tensor, and the equations
for the particle number densities. As in paper I the text and the structure
of the paper was developed through continuous discussions.

Paper IV I constructed the new partially rotation invariant dynamical system,
expressed the function derived from the Hamiltonian in terms of them and
showed that it was monotone on the entire state space for a limited range
of the equation of state parameter.

Paper V I proved that the reduced system was of Fuchsian type for the special
case when w = 3, and showed symmetry for the solution. The final text
and structure of the paper was produced in collaboration with the co-
author.
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de Bruxelles A53 (1933), 51, reprinted in english translation as “The
expanding universe” in Gen. Rel. Grav. 29 (1997), 641-680.

[60] S. Liebscher, J. Härterich, K. Webster, and M. Georgi, Ancient Dynam-
ics in Bianchi Models: Approach to Periodic Cycles, Communications in
Mathematical Physics 305 (2011), 59, 10.1007/s00220-011-1248-3.

[61] E. M. Lifshitz and I. M. Khalatnikov, General Cosmological Solution of the
Gravitational Equations with a Singularity in Time, Phys. Rev. Letters
24 (1970), 76.

[62] LIGO, http://www.ligo.caltech.edu/.

[63] W. C. Lim, New Explicit Spike Solution – Non-Local Component of
the Generalized Mixmaster Attractor, Class. Quantum Grav. 25 (2008),
045014.

[64] W. C. Lim, R. J. Deeley, and J. Wainwright, Tilted Bianchi V II0 Cos-
mologies – The Radiation Bifurcation, Class. Quantum Grav. 23 (2006),
no. 9, 3215.



88 BIBLIOGRAPHY

[65] W.C. Lim, C. Uggla, and J. Wainwright, Asymptotic Silence-Breaking
Singularities, Class. Quantum Grav. 23 (2006), 2607.

[66] M. S. Longair, On the Interpretation of Radio Source Counts, Mon. Not.
R. ast. Soc. 133 (1966), 421.

[67] M. A. H. MacCallum, Cosmological Models From a Geometric Point of
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(2001), 405.

[81] H. P. Robertson, On the Foundations of Relativistic Cosmology, Proc.
Nat. Acad. Sci. 15 (1929), 822.



BIBLIOGRAPHY 89

[82] , Relativistic Cosmology, Rev. Mod. Phys. 5 (1933), 62.

[83] R. C. Robinson, An Introduction to Dynamical Systems, Continuous and
Discrete, Pearson Prentice Hall, 2004.
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