
COSMOLOGICAL MODELS

AND

THE DECELERATION PARAMETER

by

Ramsamy N aidoo

Submitted in partial fulfilment of the

requirements for the degree of

Master of Science,

in the

Department of Mathematics and Applied Mathematics,

University of Natal

1992

Durban

1992



Abstract

In this thesis we utilise a form for the Hubble constant first proposed by Berman

(1983) to study a variety of cosmological models. In particular we investigate the

Robertson-Walker spacetimes, the Bianchi I spacetime, and the scalar-tensor theory

of gravitation of Lau and Prokhovnik (1986). The Einstein field equations with vari

able cosmological constant and gravitational constant are discussed and the Fried

mann models are reviewed. The relationship between observation and the Fried

mann models is reviewed. We present a number of new solutions to the Einstein

field equations with variable cosmological constant and gravitational constant in the

Robertson-Walker spacetimes for the assumed form of the Hubble parameter. We ex

plicitly find forms for the scale factor, cosmological constant, gravitational constant,

energy density and pressure in each case. Some of the models have an equation of

state for an ideal gas. The gravitational constant may be increasing in certain re

gions of spacetime. The Bianchi I spacetime, which is homogeneous and anisotropic,

is shown to be consistent with the Berman (1983) law by defining a function which

reduces to the scale factor of Robertson-Walker. We illustrate that the scalar-tensor

theory of Lau and Prokhovnik (1986) also admits solutions consistent with the Hub

ble variation proposed by Berman. This demonstrates that this approach is useful

in seeking solutions to the Einstein field equations in general relativity and alternate

theories of gravity.
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o Introduction

Cosmology is the study of the large scale evolution of the universe. Cosmologists

have now produced a consistent picture of the history of the development of the

universe from the big bang up to present times. The foundations of modern theoret

ical cosmology were laid with Einstein's publication of a paper indicating how the

equations of general relativity could be applied to describe the behaviour of matter

on a large scale. During the course of 1915, Einstein had published successive refine

ments of his basic field equations of general relativity. He had developed these as a

covariant modification of the Newtonian theory of gravitation which was known to

be consistent with observation to a high degree of accuracy. Hilbert (1915), however,

obtained the field equations using the Lagrangian approach. For a consistent theory

Einstein required that

(i) The form of the field equations are preserved under coordinate transformation,

i.e. the field equations are tensor equations.

(ii) The theory of general relativity reduces to special relativity in the appropriate

limit.

The theory of general relativity provides a model of the universe which is consistent

with observational results.
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The Einstein field equations couple the gravitational field to the matter

content. Gravity is built into the theory through the field equations which link

spacetime curvature to the matter distribution. The gravitational field in the Einstein

field equations is contained in the Einstein tensor which is related to the curvature

of spacetime via the Riemann tensor and the Ricci scalar. The matter content is

represented by the isotropic energy- momentum tensor. The energy-momentum

tensor is described by a relativistic fluid; for many applications in cosmology we

consider a dust universe in which the pressure is zero. The Einstein field equations

are a set of highly nonlinear partial differential equations subject- to conservation

laws, namely the Bianchi identities. In order to solve the highly nonlinear field

equations of general relativity it is often assumed that spacetime admits symmetries

in the hope that the field equations are simplified (Maharaj et al1991).

Exact solutions to Einstein's field equations are necessary for applications

in cosmology and astrophysics. Although a large number of solutions are known many

of them do not satisfy a physical equation of state (Kramer et al1980). Cosmological

models are exact solutions of the Einstein field equations which should reproduce the

physical properties of our universe. Every model is a great simplification of reality.

Therefore we need to analyse many solutions so that we can infer which simplifica

tions are valid and describe the physical universe. The standard cosmological models

are the Robertson-Walker spacetimes which satisfy the cosmological principle which

states that the universe is homogeneous and isotropic. The Friedmann models are

the solutions of Einstein's field equations obeying the cosmological principle for a

dust matter distribution. In the Friedmann models the universe originated at the

initial singularity or big bang and subsequently expanded. The expansion of the

2



universe was observationally verified by the observations of Hubble (1936). The

Robertson-Walker models are also consistent with the observations of Penzias and

Wilson (1965) that the universe is bathed in an isotropic microwave background ra

diation of approximately 3 degrees Kelvin. To investigate more general behaviour in

cosmology we need to relax the assumptions of homogeneity and isotropy. A variety

of such solutions is listed by Kramer et al (1980) amongst others.

At the time that Einstein proposed his field equations he wanted to find

a solution describing a static closed universe. At that time the prevailing belief was

that the universe was static. This belief was based on philosophical arguments rather

than on mathematical grounds. In order to make the field equations fit in with the

philosophical belief of the time, Einstein introduced an additional quantity, called

the cosmological constant in the field equations. This was necessary to prevent the

gravitational collapse of the universe. The cosmological constant acts as a repulsion

mechanism and is possibly due to negative matter. However this addition is not

necessary because the universe is expanding as discovered by Hubble (1936). In

recent times the cosmological constant has resurfaced in theories which attempt

to describe the mechanics of the early universe (Misner et al 1973). The classical

Einstein field equations are easily adapted to cater for the variable cosmological

constant and gravitational constant.

We outline briefly several different reasons for incorporating variable cos

mological terms in the analysis of theories of gravity. It is believed that the cos

mological constant corresponds to the vacuum energy density of the quantum field

(Zel'dovich 1968), and that the cosmological constant was large during the early uni

verse and has had an influence on its dynamics (DerSarkissian 1985; Kasper 1985;

Villi 1985). The mass of the Higgs boson is believed to be related to the cosmological
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constant and the gravitational constant (Dreitlein 1974). There is a possibility of the

cosmological constant being a function of temperature and that it is related to the

process of broken symmetry (Bergmann 1968; Linde 1974; Wagoner 1970). Further

interest in the cosmological constant arises within the contex of quantum gravity,

supergravity theories, Kaluza-Klein theories, the inflationary universe scenario, par

ticle physics and grand unified theories (Banerjee and Banerjee 1985; Lorenz-Petzold

1984; Singh and Singh 1983). The problems of singularity, horizon, flatness and

monopole may be solved in cosmological models with variable cosmological constant

(Ozer and Taha 1986, 1987). In some variable cosmological constant theories the

problem of fine tuning can be explained (Canuto et al1977).

In chapter I we consider some basic concepts of differentiable geometry and

those elements of tensor analysis which are essential for this thesis. We cite appro

priate literature for further details of results presented. Only results needed in later

sections are discussed. We briefly introduce the mathematical structure of general

relativity, namely a 4-dimensional differentiable manifold. Coordinate transforma

tions are defined on the manifold and these lead to the transformation properties of

tensor fields. The metric connection is defined and the covariant derivative is briefly

discussed. The curvature tensor is defined and its properties are listed. Also defined

are the Ricci tensor, Ricci scalar and the Einstein tensor. The energy-momentum

tensor is introduced and the classical Einstein field equations with vanishing cos

mological constant are motivated. Then the Einstein field equations with variable

cosmological constant and gravitational constant are introduced. We note that the

Einstein field equations may also be found using the variational principle of Hilbert

(1915) . The conservation laws for the classical Einstein field equations and the gen

eralisation for variable cosmological constant and gravitational constant are given.
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In chapter 2 we consider the geometry of the Robertson-Walker models.

These are simple models of the universe satisfying the cosmological principle which

states that the universe is homogeneous and isotropic. This model is described by

a uniform perfect fluid energy-momentum tensor. The line element of this model

and its various forms are given. Using the line element for the Robertson-Walker

model we calculate and list the components of the connection coefficients, the Ricci

tensor, curvature scalar, and the components of the Einstein tensor. The classical

Einstein field equations for the Robertson-Walker models reduce to a system of two

equations. We also present the field equations for the case of variable cosmological

constant and gravitational constant. The Friedmann equation and the generalised

Friedmann equations are obtained. In particular the dust Friedmann models are

derived in detail. The properties of the Friedmann model are briefly discussed.

Some elements of cosmology are discussed. The cosmological parameters such as the

Rubble constant, the critical density and the deceleration parameter are defined and

we present a brief discussion on their present day values.

In chapter 3 we assume the law of variation for Rubble's parameter which

was proposed by Berman (1983) to solve the Einstein field equations. We present

solutions to the classical Einstein field equations and relate these to Berman (1983)

and Berman and Gomide (1988). The solution of Berman (1991) to the Einstein

field equations with variable cosmological constant and gravitational constant are

also investigated. We also find seven classes of new solutions to the Einstein field

equations. These have the variable cosmological constant and gravitational constant

and satisfy the Berman law for the Rubble parameter. In each case we explicitly

present forms for the scale factor, the cosmological constant, the gravitational con

stant, the energy density and the pressure. The physical properties of the solutions
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are briefly discussed.

In chapter 4 we investigate the extension of the Berman (1983) law to the

Bianchi I spacetime and the scalar-tensor theory of Lau and Prokhovnik (1986). The

field equations of the Bianchi I spacetime are derived. By defining an analogue of

the scale factor for the Bianchi I spacetime we investigate the Berman (1983) Rubble

parameter. The field equations for the k = 0 Robertson-Walker spacetimes for the

Lau and Prokhovnik (1986) theory are derived and we show that this scalar-tensor

theory is consistent with our assumed form of the Rubble parameter.

In chapter 5 we briefly discuss the results obtained. We highlight the

applicability of the form of the Rubble parameter used. We point out that this

form may be useful in finding solutions to the Einstein field equations with variable

cosmological constant and gravitational constant. In addition the Rubble law may

be helpful in seeking solutions in scalar-tensor theories of gravity.
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1 Tensors, Curvature and Field Equations

1.1 Introduction

In this chapter we provide a brief review and discussion of those essential features

of differential geometry, manifolds and tensors that are necessary for this thesis. We

begin by describing the 4-dimensional spacetime structure of a manifold which ad

mits a Lorentzian metric at every point. A rigorous definition of a manifold is not

given; we describe the fundamental characteristics heuristically for our applications

in general relativity. The additional structure of an affine connection is introduced

on the manifold as a consequence of the fundamental theorem of Riemannian geom

etry. For the purposes of general relativity we take spacetime to be a 4-dimensional

pseudo-Riemannian manifold endowed with the metric connection. In §1.2 we also

consider general coordinate transformations, tensor products and tensor fields as

natural geometric objects on the manifold. For a more comprehensive treatment

of a manifold and related concepts the reader is referred to Bishop and Goldberg

(1968), Choquet-Bruhat et al (1977), Hawking and Ellis (1973), Misner et al (1973)

and Wald (1984). The metric connection plays a significant role when considering

curvature of spacetime in general relativity. The gravitational field is described by

the nondegenerate symmetric metric tensor field which reduces to the Lorentzian

metric of special relativity at a point. We consider the metric connection and the
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Christoffel symbols in §1.3. The curvature tensor is derived and the various identities

satisfied by the curvature tensor are given. Also the Ricci tensor, the Ricci scalar

and the Einstein tensor are considered in this section. In §1.4 we introduce the sym-

metric energy-momentum tensor describing the matter content. Then we are in a

position to introduce the classical Einstein field equations without the cosmological

constant. We also briefly mention how the Einstein field equations may be derived

from a variational principle. In addition we generalise the classical field equations to

include the case of both variable gravitational and cosmological constants.

1.2 Manifolds and Tensor Fields

A differentiable manifold is essentially a space which has a structure that is locally

similar to Euclidean space in that it may be covered by coordinate neighbourhoods.

Even though the local structure of a manifold and Euclidean space are similar, it

should be emphasised that their global structures may be very different. In general

relativity we require a curved manifold which only locally resembles the flat space-

time of special relativity. The curvature, reflecting deviations from flatness, may be

detected by means of geodesic deviation. An essential feature of a manifold is its

dimension n. For the purposes of relativity it is sufficient to consider only the case

n = 4. Points in the manifold may be labelled by the real coordinates

( a) (0 1 2 3) (t 1 2 3)X = X ,X ,X ,X = C ,X ,X ,X

where we adopt the convention that the speed of light c = 1. We require that the

manifold supports a differentiable structure so that differentiation of functions in-,

volving changes of coordinates, is permissible. For our purposes it is sufficient to
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assume that spacetime is a 4-dimensional, differentiable, connected, Hausdorff, ori-

ented manifold M. A 4-dimensional differentiable manifold M is a set of points

which is locally similar to ~4. Each point , contained in some coordinate neighbour-

hood of M, can be put into a bijective mapping with an open set of ~4 through a

coordinate function. A collection of coordinate neighbourhoods (or atlas), satisfy-

ing certain well-defined conditions, with differentiably related coordinate functions

transforms the set M into a differentiable manifold. The set M is connected so that

any two points may be joined by a continuous curve. This ensures that the various

parts of M interact and there are no disconnected regions. We require that M is

Hausdorff to ensure that distinct events have disjoint neighbourhoods; in particular

this means that geodesics have unique trajectories. The manifold M is orientable so

that coordinate transformations have positive Jacobians

J

in overlapping coordinate neighbourhoods. In the overlap the functional relationships

given by

a'
X

and the inverse relationships

a _ a (0' l' 2' 3')
X - X X ,X , X , X

are both injective and differentiable. For further details on manifolds the reader is

referred to Choquet-Bruhat et al (1977), Hawking and Ellis (1973), Misner et al

(1973), Straumann (1984) and Wald (1984).

Let Tp represent the set of vectors tangent to a curve at a point P in M.

It is easy to show that the set of tangent vectors Tp generates a vector space at P.
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We generate the dual tangent space Tp at P by defining the real-valued function

Tp : T» -----t ?R. The dual space Tp satisfies the vector space axioms. We can then

construct spaces (T;)p of type (r, s) tensors at P by taking repeated tensor products

. of T» and Tp (Bishop and Goldberg 1968, Misner et al 1973 and Schutz 1980).

The space T; is the set of multilinear functions mapped into ?R at P. It is easily

established that the space (T;) p is also a vector space at P. A type (r, s) tensor field

on M is an assignment to each point P E M a member of (T;)p. We represent the

set of all type (r, s) tensor fields on M by T;. The quantity Tal a2...ar b
l
b2...bs represents

the components of a (r, s) tensor field T in T;, and under a change of coordinates

transforms according to the rule

(1.1)

where the Jacobians of the matrices

x a'
b

and the inverse matrix

are nonzero in the overlapping coordinate neighbourhoods of the manifold.

In order to discuss metrical properties we need to introduce a differentiable

metric tensor field g on the manifold. We require that the manifold M is endowed

with an indefinite, symmetric metric tensor field g of rank two with signature (- +

+ +). A manifold with an indefinite metric tensor field, as in general relativity, is

called a pseudo-Riemannian manifold. A manifold with a positive definite metric

tensor field is sometimes called a Riemannian manifold. The covariant components

gab of the symmetric (0,2) metric tensor field g must satisfy (1.1) and are used to
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define invariantly the length of a curve in M. This length is defined by the following

integral

where we have set i a == dx" / duo This definition reduces to the classical expression

for arc length in Euclidean space for a positive definite metric tensor. Equivalently

we obtain the line element or fundamental metric form

(1.2)

where we have omitted the modulus signs. The invariant relativistic quantity (1.2) is

a measure of the infinitesimal interval between neighbouring points with coordinates

given by x a and z" +dx", Spacetime M has the local property that at every point

there exists inertial coordinate systems in which the metric tensor field takes the

Lorentzian form

-1 0 0 0

[gab] ==
0 1 0 0

0 0 1 0

0 0 0 1

In special relativity there exist global coordinate systems in which the metric tensor

takes the above form. In the spacetime of general relativity we have only local

Cartesian coordinate systems where gab takes the above form approximately. This

is a reflection of the presence of curvature and the departure from flatness in the

spacetime of general relativity.
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1.3 Connections and Curvature

In Euclidean space it is easy to see that the inner product of vectors is constant

if the vectors are parallel transported along a curve. It is possible to establish an

analogue of this result in a Riemannian manifold. The fundamental theorem of

Riemannian geometry states that there exists a unique symmetric connection which

preserves inner products under parallel transport. As a consequence of this theorem

the metric connection T may be expressed in terms of the metric tensor g and its

derivatives:

(1.3)

where commas denote partial differentiation. The connection coefficients r a
bc are

sometimes called the Christoffel symbols of the second kind. The associated metric

connection given by

= ~(ga c ,b +gba,c - gbc,a)

is called the Christoffel symbols of the first kind.

The covariant derivative is the generalisation of the partial derivative in

the manifold. It is a tensorial quantity and when applied to a type (r, s) tensor

field Tala2 ...arblb2 ... bs it produces a type (r, s + 1) tensor field Tala2 ...arblb2 ... bs ;c where

semicolons denote covariant differentiation. For example, the covariant derivative of

a covariant vector field Va is given by

Unlike partial differentiation, the covariant derivative is not commutative in general.
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As a result of this noncommutation a second covariant differentiation yields the Ricci

identity

which is nonvanishing for a curved manifold. Here the quantity

(1.4)

is called the Riemann tensor or curvature tensor which is defined in terms of the

connection coefficients (1.3) and its derivatives.

We may establish the identity

Rabcd +Racdb +R adbc = 0

directly from the definition of the curvature tensor (1.4). The curvature tensor may

also be expressed in terms of the second derivatives of the metric tensor and the

Christoffel symbols of the first kind:

= !(gbc,ad - gac,bd +gad,bc - gbd,ac) - gef (feacf fbd - f ead f fbc)

Using this form for R abcd it can be easily established that the curvature tensor (1.4)

satisfies the following properties:

R abcd - R bacd

R abcd - R abdc

R abcd R cdab
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About any point P E M we can construct a coordinate system with rabcl p = 0 so

that (1.4) yields

R"bcd;eIP = I"bd,ce Ip - I" bc,de Ip

Cyclically permuting c, d and e and adding the resulting equations generates the

Bianchi identity

Rabcd;e +Rabde;c +Rabec;d = 0

at the point P. As P is an arbitrary point in the manifold this result holds every

where in the manifold M. As a consequence of the above properties we find that

the curvature tensor has a maximum of twenty independent components. In gen

eral the curvature tensor has n2(n2
- 1)/12 independent components in a general

n-dimensional manifold.

We can generate only one nonvanishing contraction of the curvature tensor,

namely the symmetric Ricci tensor. The components of the Ricci tensor are defined

by the contraction

(1.5)

A contraction of the Ricci tensor (1.5) yields the scalar quantity

(1.6)

called the Ricci scalar or curvature scalar. The symmetric Einstein tensor G IS
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defined, in terms of th~ Ricci tensor (1.5) and the Ricci scalar (1.6), by

(1.7)

The vanishing of the divergence of the Einstein tensor (1.7) necessarily follows by

construction of G. This result is called the Bianchi identity

c-; = 0

and generates the conservation laws through the Einstein field equations.

1.4 Field Equations

The matter content of the universe may be described by a relativistic fluid which is

uniquely represented in general for uncharged matter by the following decomposition

of the symmetric energy-momentum tensor

(1.8)

where ua is a 4-velocity and uaua = -1. The quantity I-" is the proper density, p is the

isotropic pressure, qa is the heat flow vector and 7rab is the anisotropic stress tensor.

In general relativity the energy-momentum tensor (1.8) is taken as the source of the

gravitational field. For many applications in cosmology the heat flow and shear are

negligible. In this case the energy-momentum tensor takes the perfect fluid form

and is given by the simple form

Tab = (I-" +p)UaUb +pgab (1.9)

From the viewpoint of thermodynamics, the coefficients of thermal conductivity and

shear viscosity vanish for the perfect fluid (1.9).
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The geometry of spacetime (represented by the Einstein tensor (1.7)) is

related to the matter distribution (represented by the energy-momentum tensor

(1.9)) via the Einstein field equations which take the form

(1.10)

where 81rG is the coupling constant (note that previously we set c = 1). All known

physical equations describing classical fields of fundamental significance, including

the Einstein field equations (1.10), can be derived from a variational principle. To

establish this we suppose that the matter distribution Tab , derivable from a covariant

Lagrangian LM , is given by

Tab = 1 8(R L M )

R 8gab

where g = Igab I and 8 indicates variational differentiation. The Lagrangian density

is then given by

c = (R+ 161rGLM )R

which incorporates the pure gravitational field via the Ricci scalar R. Then it is

possible to show that the Einstein field equations follow from the action integral

given by

The variational argument to obtain the Einstein field equations was first provided

by Hilbert (1915).

The field equations (1.10) generate a system of ten coupled nonlinear partial

differential equations that determine the behaviour of the gravitational field through
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the metric tensor field g. As a consequence of the Bianchi identity Gab jb = 0 the

ten field equations are not all independent. Also the Bianchi identity implies the

conservation equations

A region of spacetime in which

o (1.11)

Tab = 0

is called empty; such a region is devoid not only of matter but of radiative energy and

momentum. In the classical Newtonian limit, when the gravitational field is weak

and varying slowly with time, the Einstein field equations (1.10) reduce to Poisson's

equation

where V is the Newtonian potential and I-l is the matter density.

The Einstein field equations (1.10) do not admit a stable solution describ

ing a static closed universe. To overcome this "problem" Einstein introduced the

cosmological constant A by adding the term Agab to the Einstein tensor (1.7). The

constant A has to be small at present times so as not to interfere with the general rel

ativity predictions for the solar system. With the addition of a cosmological constant

A the Einstein field equations become

For a cosmological term A the above equations are implied by adapting the action

integral as follows

fJJ(R - 2A +161rGLM hFg d4
x = 0

It was only later that Einstein realised that this addition was not necessary when

Hubble discovered the expansion of the universe.

17



For certain applications we need to modify the Einstein field equations

(1.10) for the more general case where the cosmological constant A and the gravi

tational constant G are dependent on the spacetime coordinates z". The modified

field equations in this relativistic theory of gravitation are then given by

(1.12)

where in general

and

In fact for our applications in later chapters it is sufficient to suppose that the cosmo

logical constant A and the gravitational constant G depend only on the timelike coor

dinate t. We may interpret the quantity -Agab as that part of the energy-momentum

tensor associated with the vacuum. It is speculated that A has a significant role in

the early universe. Observations suggest that the present-day value of A is small

(Misner et al1973). Models in which the cosmological constant is variable include

the scalar-tensor theories of Lau (1985), Lau and Prokhovnik (1986) and Maharaj

and Beesham (1988). The first theory of gravity in which G decreases with time was

suggested by Dirac (1937). Abdel-Rahman (1990), amongst others, suggests that

the gravitational constant G may be increasing in time, at least in certain regions

of spacetime. Other theories incorporating a variable gravitational constant G in

clude the Hoyle-Narlikar theory (1971, 1972) and the Brans-Dicke theory (1961).

However, the reader should note that, in addition to experimental limits from radar

ranging of planets and lunar occultation studies, the helium synthesis analysis of

Barrow (1978) strongly constrains the temporal evolution of the gravitational con

stant G. We obtain the analogue of the conservation equation (1.11) for the modified

field equations (1.12)

(1.13)
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by utilising the Bianchi identity. For more information on the Einstein field equations

the reader is referred to Misner et al (1973), Stephani (1990) and Wald (1984).
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2 Robertson-Walker Models

2.1 Introduction

In this chapter the standard cosmology based on the Robertson-Walker models is

reviewed. We present the observational information provided by astronomers and

astrophysicists and relate these to the theory. The basic feature of the geometry

of the standard model is that it is isotropic and spatially homogeneous. Thus all

physical laws and geometrical properties are identical at all points of the spacetime

manifold. The Robertson- Walker models accurately describe the dynamics of a

homogeneous and isotropic universe. The dynamics of a Robertson- Walker universe

are studied by applying Einstein's field equations to a matter content in the form of a

homogeneous ideal fluid. The spacetime geometry is described and the various forms

of the line element are given in §2.2 for the Robertson- Walker metric. We calculate

the nonvanishing components of the connection coefficients, the Ricci tensor, the

Ricci scalar and the Einstein tensor. In §2.3 we present the field equations for the

classical Einstein field equations with A = O. We also present the generalised Einstein

field equations for variable gravitational constant G and cosmological constant A. In

particular the general features of the Friedmann models are derived and discussed

in §2.4. Also in this section we define the mass density of the present universe,

the critical density, the Hubble constant and the deceleration parameter. We relate

20



theoretical predictions for these quantities with observation. We also briefly discuss

the implications of the microwave background radiation and the gravitational redshift

for the study of modern cosmology. The age of the universe is analysed from the

viewpoint of radioactive dating of meteorites. Some modern developments in research

are briefly introduced.

2.2 Spacetime Geometry

The Robertson-Walker models are often used as a realistic description of the evolu-

tion of the universe in cosmology. In these models the matter distribution is spatially

homogeneous and isotropic and has the perfect fluid form (1.9). In standard coordi-

nates (xa
) = (t, r, f), 4» the Robertson-Walker line element has the form

(2.1)

where S(t) is the cosmic scale factor. Without loss of generality, the constant k

takes on only three values: 0, 1 or -1. The constant k is related to the spatial

geometry of a 3-dimensional manifold generated by t = constant. For k = °the

spatial geometry is flat, but for k = 1 or -1 it is curved. For constant positive

curvature k = 1 the space is closed (it has finite volume). For constant negative

curvature k = -1 the space is open (it has infinite volume). The scale factor S(t)

operates on the spatial part of (2.1) and determines the expansion or contraction of

the universe. Note that k = °and k = -1 give spaces which continually expand,

while k = 1 gives a space which expands to a maximum value, and then contracts.

The Robertson-Walker spacetimes are the standard cosmological models and are

consistent with observational results.
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Sometimes other equivalent forms of the Robertson-Walker metric are used

which we briefly describe here. As a consequence of the cosmological principle the

3-dimensional manifold generated by t == constant is a space of maximal symmetry.

This implies that in isotropic coordinates we may transform the line element (2.1)

to the expression

Another possibility arises by introduction of a coordinate system that picks out a

point in the universe as the origin of the coordinate system. Then the Robertson-

Walker line element is given by

with the three possibilities

X for k==O

f(x) Slnx for k == 1

sinh v for k == -1

for the function f(x). Here the coordinate X is related to the radial displacement of

the preferred point.

For the line element (2.1) the nonvanishing connection coefficients (1.3) are

given by

SIS
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1/r

S/3

r 3
23 = cot ()

1/r

(2.2)

In the above dots denote differentiation with respect to the time coordinate t. With

the connection coefficients (2.2) we determine that the components of the Ricci tensor

(1.5) for the metric (2.1) are

Roo = -35/3

.. • 2

(33+23 +2k)r2

R33 sin2
() R22

Rab = 0, a =I b

(2.3)

From the components (2.3) of the Ricci tensor Rab we directly obtain the curvature

scalar

R

23

(2.4)



We calculate the following components of the Einstein tensor (1.7) for the Robertson-

Walker line element (2.1):

.. • 2

_ -(288 + 8 +k)r 2

Gab = 0, a =1= b

(2.5)

by utilising (2.3) and (2.4). Thus we completely describe the spacetime curvature by

equations (2.2)-(2.5).

2.3 Field Equations

We first consider the classical Einstein field equations with cosmological constant

A = 0 and a constant gravitational constant G, in which case the equations (1.10)

are applicable. Consider the comoving fluid 4-velocity

and a perfect fluid energy-momentum tensor. Then from the matter tensor (1.9)

and the Einstein tensor components (2.5), we find that the Einstein field equations
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(1.10) reduce to the system

-81rGp

(2.6)

(2.7)

The field equations (2.6)-(2.7) are a system of two equations with the three unknowns

5, Jl and p. Equation (2.6) is called the Friedmann equation which does not contain

the pressure p. Differentiating the Friedmann equation (2.6) with respect to the time

coordinate t we obtain

Elimination of S from this result and equation (2.7) yields the continuity equation

(2.8)

which is a first order equation containing the pressure. We consider solutions to the

classical Einstein field equations in §3.2 and §4.2 by assuming a form for the Hubble

parameter.

Now we consider the more general case of variable cosmological constant A

and gravitational constant G. As the Robertson- Walker spacetimes are homogeneous

and isotropic we take

A = A(t) and G = G(t)

In this case the Einstein field equations (1.12) become

3 . 2

52 (5 +k)
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-87rGp +A (2.10)

The system (2.9)-(2.10) is a system of two equations with five variables S, /-l, p, A

and G. This system of equations permits a wider class of solutions as both A and

G are variable unlike the above case of the classical Einstein field equations. We

present solutions to this class of equations with variable A and G in §3.3 and §3.4.

In addition a Bianchi I spacetime and a scalar-tensor theory with variable A and G

is analysed in chapter 4. Equation (2.9) is called the generalised Friedmann equation

and reduces to (2.6) when A = 0 and G is constant. Differentiating the generalised

Friedmann equation (2.9) with respect to the time coordinate t we obtain

. .. . .

SS S S
6- - 167rG-1I - 2A-

S2 Sr S

Elimination of S from this result and equation (2.10) gives the generalised continuity

equation

(2.11)

This reduces to the conventional continuity equation (2.8) when A = 0 and G is

constant. In an attempt to obtain solutions to the field equations we assume (as is

often done) that the conservation law (1.11), Tab jb = 0, also holds. Then we have

that equation (2.11) implies the two relationships

o

o

(2.12)

(2.13)

which facilitate the solution of the field equations. The result (2.12) is just the con

ventional continuity equation (2.8) and holds whenever (1.11) is applicable. Equation

(2.13) simply relates G and A and does not explicitly contain the scale factor S.
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2.4 Cosmology

There exist many solutions to the equations (2.6)-(2.7) in the literature for various

equations of state. In this section we will analyse only the dust solutions with

11 =I 0, p = 0

For many applications in cosmology the pressure p is negligible. In this case the

Einstein field equations may be completely integrated and the resulting solutions are

called the Friedmann models. The continuity equation (2.8) with p = 0 is integrated

to yield

where 50 = 5(to) and 110 = l1(to) denote present day values of Sand 11, and to is the

present time. It is convenient to introduce the positive constant A given by

A2 __ 87rG S 3
--110 0

3

in terms of 110 and So. We list the three cases of the Friedmann models that arise.

(a) k = 0: In this simple case the Friedmann equation (2.6) gives the

power-law solution

(b) k = 1: Here we set S = A2 sin2 "p in equation (2.6) to obtain the

parametric solution

S

t

1 22A (1 - cos 2"p)
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(c) k = -1: The Friedmann equation (2.6) is integrated by the substitution

S = A2 sinh21/J to yield

S

t

1
_A2(cosh 21/J - 1)
2

~A2(sinh 2,p - 2,p)

We now briefly describe the behaviour of S for each of the above cases. For k = 0 we

see that S ex: t 2
/
3 and the universe continually expands at a decreasing rate because

S -+ 0 as t -+ 00. This spacetime is also called the Einstein-de Sitter model.

For k = 1 the behaviour of S is determined parametrically. In this case the universe

expands until a maximum value of S is attained and then the universe contracts. The

graph of S is a cycloid so that this spacetime is both spatially and temporally closed.

For k = -1 we observe that the behaviour of S is also parametrically determined.

The universe continually expands and in the limit S -+ 1 as t -+ 00. The question

that continues to attract attention is whether the real universe is in fact open or

closed.

The Hubble constant H(t) is defined by

H(i) = Sri)
S(t)

(2.14)

and we denote its present day value by Ho == H(to). We have previously set the

present day value of the density parameter to be /-la - /-l( to). Then we establish the

following relationship

relating k to /-la and Ho. The critical density /-le defined by

3 2

/-le - 81rCHo
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depends on the present day value of H. Thus the present day density J.lo and the

critical density /-le determine the value of k:

k>O

k=O

k<O

if

/-lo > {le

J.lo = {le

J.lo < J.le

The deceleration parameter q(t) is given by the formula

q(t) =
S(t)S(t)

8
2

(t)
(2.15)

and its present day value is denoted by qo == q(to). From the above we can establish

that

~ (/-lo)
2 J.le

relating the deceleration parameter qo, the critical density J.le and the present day

density J.lo. We are now in a position to discuss the dynamics of the models using the

observable parameters /-lo, {le and qo for the Friedmann models. For the flat model

k = 0 we have the simplest universe with

{lo = {le

For the closed k = 1 model we obtain

/-lo > /-le
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For the open k == -1 model we have that

/-lo < Jic
1

o< qo < "2

When k == 0, -1 the universe is continually expanding and for k == 1 the universe

contracts after an initial expansion. In all three cases there is an initial singularity

where the spacetime curvature diverges. This physically corresponds to a highly

compact and hot phase of the universe. A full description of the physics at this

stage of development requires a consistent theory of quantum gravity which would

require major modifications in current theories of gravity and quantum mechanics.

The formulation of such a quantum theory of gravity is a major unsolved problem.

To determine which of the above models is an accurate description of the physical

universe depends on the observed values of the cosmological parameters /-la, /-le and

Astronomical observations for Ho, qo and /-la have been given by Misner et

al (1973), Stephani (1990), Weinberg (1972) and Will (1971). Recent estimates of

Ho give the approximate value

with possibly a wide margin of observational uncertainty. Substituting this value in

/-le == 3Ho
2/87rG

gives the following value of the critical density

Estimates for qo suggest that qo ~ 1 so that the universe is closed. The value of

qo ~ 1 and the formula qo == /-lo/ (2/-l e) implies that

/-la ~ 2.6 x 10-25 kg m-3
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This value is larger than the observed density of the universe which is based on the

assumption that the matter content is mainly galactic. This leads to the problem

of missing matter which is speculated to exist in the form of dark matter. On the

other hand if we accepted the value of /-la based on masses of galaxies and their

distribution we have qo ~ 0.014 and the universe is open. This conflicts with the

above argument that qo ~ 1 and the closed universe. This does not mean that

the Friedmann models are unacceptable: what is needed is more observational data

and better interpretation techniques for analysing these results. It is hoped that

recent advances in technology applied to experimental and observational aspects of

cosmology will lead to an improvement of the estimates.

Two recent observational results that have had a major impact on mod

ern cosmology are the gravitational redshift and the cosmic microwave background.

The gravitational redshift was discovered by Hubble (1929). The spectral lines emit

ted from distant clusters of stars are systematically shifted towards the red of the

spectrum. This effect is due to the expansion of the universe on a cosmological

scale. The redshift is consistent with the cosmology of general relativity and in

particular the concept of an expanding universe. Another fundamental discovery is

the existence of the cosmic microwave background radiation made by Penzias and

Wilson (1965). The universe is bathed in a microwave background radiation, not

originating from stars of galaxies, with a temperature of approximately 3 degrees

Kelvin. The existence of this radiation is consistent with the conclusion from the

Robertson-Walker models that the universe has expanded from a much denser and

hotter phase. The microwave background radiation exhibits a very high degree of

isotropy which is consistent with the homogeneous and isotropic Robertson-Walker

models. These observations suggest that any deviation from isotropy in the early
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universe was very small. The Rubble expansion of the universe and the microwave

background radiation have been used to discard alternate models that do not exhibit

this behaviour.

Observations on the age of the universe are consistent with the Robertson

Walker models. For the ages of meteorites we have that radioactive dating gives an

age of approximately 4.5 X 109 years, and for terrestrial matter we obtain an age of

4.5 X 109 years. Other measurements of the lifetime of galactic material have been

made using the observed relative abundances of pairs of related radioactive species.

The measured current relative abundance implies a galactic lifetime of around 15 X 10
9

years. This sets a lower limit on the age of the universe. Models of stellar evolution

used to make estimates of the lifetime of globular clusters in the galaxy also give an

age about 15 X 109 years (Silk 1980).

As mentioned previously the Robertson-Walker models are based on the

assumption that the universe is homogeneous and isotropic. This is consistent with

the cosmological principle (Stephani 1990). On the largest scale this assumption cer

tainly seems to be the case. Possible mechanisms for the evolution of large structures

to yield the present observed distribution of matter are given by Silk (1980). Perhaps

we should mention that with the improvement of observational techniques there has

been a renewed interest in observational cosmology. Recent results provide a firmer

basis for the comparision of observational results with theoretical predictions. We

will not discuss the various arguments here except to mention briefly two debates. A

problem with the standard Robertson-Walker models is the possibility that the uni

verse may be inhomogeneous on a large scale (Ellis 1984) arising from the observed

clustering of galaxies. The inflationary model proposed by Guth (1981) attempts to

overcome other shortcomings in the standard model by postulating a period of rapid
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expansion in the early universe. Finally we should add that much of the present re

search is involved with bringing together general relativity and quantum mechanics

to find a consistent theory of quantum gravity.
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3 Robertson-Walker Cosmologies

3.1 Introduction

In this chapter we present various types of Robertson-Walker cosmological models

by solving the Einstein field equations for both the cases of vanishing cosmological

constant and variable cosmological constant. The scale factor is determined by the

law of variation for Rubble's parameter proposed by Berman (1983). The variation

of Hubble's law presented is not inconsistent with observations and helps in provid

ing simple functional forms for the scale factor. It is interesting to note that this

law yields a constant value for the deceleration parameter. Other forms for the de

celeration parameter are being investigated by Beesham (1992). In §3.2 we obtain

the general solution for the classical Einstein field equations with vanishing cosmo

logical constant for the specified Hubble law. We briefly discuss some properties

of the solutions presented. In earlier literature cosmological models with constant

deceleration parameter have been presented by Berman (1983), Berman and Gomide

(1988) and others. In §3.3 we consider the Einstein field equations with a perfect

fluid and variable gravitational and cosmological constants for the Robertson-Walker

metric. With the requirement that the normal conservation of energy momentum

holds we find a solution to the field equations for k = O. In this simple case we have

the equation of state for a perfect gas. The solutions are characterised by the be-
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haviour A ex r ? for the cosmological constant which is consistent with observations

which suggest that the cosmological constant has small values in the present universe.

Berman (1991) has studied variable cosmological and gravitational theories with our

form of the Rubble law. It is claimed that these solutions solve the monopole and

horizon problems. In §3.4 we present a number of classes of new solutions for the

variable gravitational and cosmological constants. These solutions allow for a wide

range of behaviour for the gravitational constant. The ansatz utilised immediately

leads to a form for the cosmological constant. Explicit forms for the gravitational

constant, cosmological constant , scale factor, energy density and pressure are ob

tained in each case. The properties of these solutions are briefly discussed. Other

forms of solution are possible. However we do not pursue these as they involve solu

tions in terms of special functions. In the most general case we would need to resort

to numerical techniques.

3.2 Classical Einstein Field Equations

In this section we consider the classical Einstein field equations with cosmological

constant A = 0 and gravitational constant G constant for the Robertson-Walker

metric (2.1). As the two field equations (2.6)-(2.7) involve the three unknowns /1, p

and S we need an additional assumption to find a solution. In this section we assume

a form for the Rubble constant H, defined by equation (2.14), which is equivalent to

supposing that the deceleration parameter q is a constant. This enables us to present

the general solution to the field equations (2.6)-(2.7) for the Robertson- Walker line

element (2.1). Berman (1983) proposed the following law of variation for Rubble's
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parameter

H = DS-m (3.1)

where D and m are constants. This law for H was also utilised by Berman and

Gomide (1988). We explicitly provide the details of the arguments as it illustrates

the technique utilised in later sections. In this simple case it is easy to interpret the

results physically. The above form of H is the simplest possible form that facilitates

the solution of the field equations. Also this form of the Rubble constant is not

inconsistent with present day observations. From equations (2.14) and (3.1) we

obtain the derivative for the scale factor S which takes the form

S Ds-m+l

Differentiating the above equation with respect to the time coordinate t we obtain

the second derivative

On substituting Sand Sinto equation (2.15) we find that the deceleration parameter

has the simple form

q = m-I (3.2)

which is a constant . We note that the case m = 1 is extremely restrictive as then

S is a constant. As the functional form of the deceleration parameter is specified in

equation (3.2) we can explicitly integrate the differential equation

q

m-I
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to obtain the scale factor

5 = J [C +mDtj1/m

1EeDt

for m -# 0

for om == 0

(3.3)

where C and E are constants. Thus our Hubble variation law (3.1) leads to an

explicit form for the scale factor. Substituting (3.3) in the Einstein field equation

(2.6) we get the energy density

and from equation (2.7) the pressure

== _1_ [(2m - 3)D
2

_ ~]
p 87rG 52m 52

(3.4)

(3.5)

Equations (3.3)-(3.5) comprise the general solution to the classical Einstein field

equations (2.6)-(2.7) for our Hubble law (3.1).

We do not pursue the physical properties of the above solutions in any

detail except to make a few observations. It is possible to invert equation (3.3) to

write the time coordinate t as a function of 5. Then the present age to of the universe

is given by the result

to = JHo-1/m - C/(mD)

1In[50/Ej1/D

for m i- 0

for m == 0

Also from (3.1) and (3.3) we have the following explicit functional form for Hubble's

constant for the Robertson-Walker spacetimes:

H = 1:/(c+mDt)
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The case m =I 0 is consistent with a decreasing Hubble constant H with increasing

time t. From equations (3.4) and (3.5) we have the following relationship

relating the energy density and the pressure. If k = 0 then we have the equation of

state for an ideal gas

p erJ-l

where

1
er = - (2m - 3)

3

is a constant. For a physical equation of state we require

o < er < 1

which restricts m. This ensures that properties of this model are physically reason-

able, for example the speed of sound is less than the speed of light. Restrictions are

imposed on the parameters in the above solutions if the energy conditions are to be

satisfied. In fact under the restrictions imposed by Berman (1983) on his solutions

the open Robertson-Walker models are excluded under the law (3.1). It is possible

to perform a similar analysis presented above in alternate theories of gravity. For an

application to the Pryce-Hoyle theory and the Brans-Dicke theory see Berman and

Gomide (1988). A variety of models with interesting behaviour, for the scale factor

specified above, is admitted for various values of the parameters. In addition to the

scale factor note that the scalar fields in these alternate theories may be completely

specified.

38



3.3 Variable Gravitational and Cosmological Constants

In this section we consider the generalised Einstein field equations (2.9)-(2.10) with

variable gravitational constant G(t) and variable cosmological constant A(t) for the

Robertson-Walker metric (2.1). An elementary solution found by Berman (1991) for

the k = 0 Robertson-Walker spacetime is discussed in this section. Even though this

solution is simple it displays interesting features that should characterise the class

of solutions with variable cosmological constant and gravitational constant. A class

of new solutions for variable A(t) and G(t) is presented in §3.4. We again assume

that the variation of the Hubble parameter is given by equation (3.1). The Hubble

parameter of the form

H = Ds-m

was assumed by Berman (1991). We consider only the case m # 0; consequently we

have that

s = (0 +mDt)l/m (3.6)

is the only form of the scale factor that need be considered. For k = 0 we see that

the Einstein field equation (2.9) becomes

• 2

s
382" 87rGI-l +A

or equivalently we have

by using the Rubble law (3.1). By inspection of the above equation we observe that

the following class of solutions is admitted
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A (3.7)

where A and B are constants. The constants A, Band D are subject to the following

condition

3D2 = 87rA +B

This simple class of solutions is possible because k = O. If k '# 0 then the Einstein

field equation (2.9) becomes

and the above class of solutions (3.7) has to be modified. This is done in the next

section. On substituting

into equation (2.13) we obtain the gravitational constant

G = /3smB/(47rA) (3.8)

where /3 is a positive constant of integration. Substitution of the value of G from

equation (3.8) into Gp = AS-2
m yields the energy density

A s-2m-mB/(47rA)

/3
(3.9)

Then substituting the values of p and S into the continuity equation (2.12) we obtain

the pressure

p = ~ [m (2 + ~) - 3] s-2m-mB/(47rA)

3/3 47rA
(3.10)

We note that the equation (16) given by Berman (1991) corresponding to our equa-

tion (3.10) has an incorrect coefficient on the right hand side. Equations (3.6)-(3.10)

comprise the general solution to the generalised Einstein field equations (2.9)-(2.10)

with variable cosmological and gravitational constants for the Rubble law (3.1).
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It is interesting to observe that from equations (3.9) and (3.10) we obtain

the equation of state for an ideal gas given by

p == erp,

where we have set the constant er to be

This is similar to the situation in §3.2 for the classical Einstein field equations. If we

suppose that D > 0 then we have the value

Furthermore if we impose the positive energy condition I-l ~ 0 then we have A .> O.

It is possible to avoid the horizon and monopole problem with the above variable

G(t) and A(t) solutions as suggested by Berman (1991). Other models considered

which also have the relationship

1
Ao::.

t 2

include Berman (1990a), Berman and Som (1990), Berman et al (1989) and Bertolami

(1986a,b) . This form of A is physically reasonable as observations suggest that A

is very small in the present universe. A decreasing functional form permits A to

be large in the early universe. A partial list of cosmological models in which the

gravitational constant G is a decreasing function of time are contained in Gron

(1986) , Hellings et al (1983), Rowan-Robinson (1981), Shapiro et al (1971) and Van

Flandern (1981). The possibility of the G increasing with time, at least in some

stages of the development of the universe, has been investigated by Abdel-Rahman

(1990), Chow (1981), Levitt (1980) and Milne (1935).
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3.4 New Variable Solutions

In §3.3 we analysed the details of the solution by Berman (1991) for k == o. A different

form of solution is required for k =I 0 as the generalised Einstein field equations are

more complicated. In this section we present a number of classes of new solutions for

all cases of k : 0, 1, -1 for variable cosmological constant A and variable gravitational

constant G. As far as we are aware the various classes of solutions presented in this

section for the Hubble law (3.1) have not appeared in the literature. These solutions

cover both the cases of m == 0 and m =I 0 for the scale factor 5:

5 == ( [C +mDtp/m

EeDt

for m =I 0

for m == 0

Our new classes of solutions, extending those of Berman (1991), are found by as-

suming an ansatz that immediately leads to a solution of the Einstein field equation

(2.9). The details of each class of solutions found are given together with the form

of the scale factor 5, the variable cosmological constant A, the variable gravitational

constant G, the energy density fl and the pressure p.

We write the Einstein field equation (2.9) in the form

3k
81rGu + A - -

r 52

or equivalently

3k
3H

2
== 87rGfl +A - 52

(3.11)

for k == 0,1, -1. Again we utilise the variation of the Hubble parameter given by

equation (3.1):

H DS-m
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which is equivalent to assuming that the deceleration parameter

q = m-I

is a constant. As the two field equations (2.9)-(2.10) involve five variables we need

to adopt an ansatz to find a solution. The ansatz that we adopt essentially solves

equation (3.11) and immediately provides a form for the cosmological constant A

(the scale factor S is given by equation (3.3)). In an attempt to solve the Einstein

. field equations (2.9)-(2.10) we adopt the ansatz

3k
87rGH -

r S2

!{

!{

(3.12)

(3.13)

where K is a constant. This ansatz has the advantage of providing many more classes

of solutions than the elementary example given in §3.3. With the equations (3.12)

(3.13) we observe that the Einstein field equation (3.11) is identically satisfied. From

equation (3.12) we have that the cosmological constant takes the following form for

all classes of solution:

A = 3D
2

-]{
S2m

(3.14)

From equation (3.13) we can express the energy density J.l in terms of the gravitational

constant G and the scale factor S:

1 [3k ]
u = 87rG S2 +K

To obtain the pressure p we utilise the continuity equation
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with the above forms of the scale factor 5 and the energy density Jl. On substituting

(3.15) and the derivative of equation (3.14) with respect to the time coordinate t

into equation (2.13) we obtain the differential equation

G

G

2 5 1

6mD 5 2m+1 3k/52 +]{ (3.16)

relating G to 5. Thus as the scale factor 5 is specified by our assumed form for the

Hubble parameter, the gravitational constant G is known in principle. The ansatz

(3.12)-(3.13) enables us to integrate all the Einstein field equations for a number of

values of m, k and K,

In the remainder of this section we present the various classes of solutions

to the Einstein field equations for each of the cases considered. We consider seven

cases in the sequence outlined below:

(a) m = 0

(b) m =1= 0, tc = 0, k =1= 0

(c) m =1= O,!{ =1= 0, k =°

(d) m = 2,!{ =1= 0, k =1= °

(e) m = -2,!( =1= 0, k =1= °

(f) m = ~,!{ =1= 0, k =1= °
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(g) m = ~,I< # 0, k # 0

There are further classes of solution possible for other values of m. However the

integration process becomes extremely complicated and here we present only the

simple cases that follow easily from the integration process.

(a) m=O:

For m = 0 equation (3.3) gives the following form for the scale factor

S = Ee
Dt

The cosmological constant becomes

(3.17)

A (3.18)

by equation (3.14). With m = 0 we immediately note that equation (3.16) yields the

gravitational constant

G=A (3.19)

where A is a constant. With the help of equation (3.19) we find that equation (3.15)

gives the density

1 [3k ]
fl = 87r A 8 2 +1< (3.20)

Substituting (3.17) and (3.20) into the continuity equation (2.12) we obtain the

pressure

(3.21)

The solutions of the Einstein field equations (2.9)-(2.10) for m = 0 are given by the

set of equations (3.17)-(3.21).
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The essential characteristic of these solutions is that A and G are strictly

constants because of the restriction m = O. The cosmological constant A vanishes

when

and is positive for

The other cases considered in this section have A and G variable. The scale factor

S is exponential in t, so that if D > 0 then the universe is exponentially expanding

always. Such a model is not a physical description of our present universe but could

be applicable in the early universe in the inflationary scenario. On substituting

m = 0 into equation (3.2) we get the deceleration parameter q = -1 for this class

of solutions. By comparing equations (3.20) and (3.21) we find that the equation of

state is given by

1 ]{
p = - -/-l---

3 127rA

so that the pressure may be negative for appropriate values of the parameters. For

the k = 0 Robertson-Walker model we have

p
](

---
87rA

so that both J.l and p are constants and have opposite signs to each other.

(b) m ¥ O,!{ = 0, k ¥ 0 :

For m i- 0 equation (3.3) gives the scale factor

S == [C +mDtp/m
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With 1< == 0 the cosmological constant given by equation (3.14) is modified to the

form

(3.23)

Equation (3.16) together with 1< == 0 gives the differential equation

G 2mD 2 5

G k 52m - 1

which upon integration yields

{
mD2 2-2m}

G == a exp k(1 _ m) 5
(3.24)

where a is a positive constant of integration. From equation (3.15) the density is

given by

3k 5-2 {mD
2

52-2m}J.L == -- exp
87ra k(m - 1)

(3.25)

where we have utilised equation (3.24). Substituting (3.22) and (3.25) into the con-

tinuity equation (2.12) yields the pressure

1 [4mD
3

3k] {mD
2

2-2m}
p == - 87ra 53m + 52 exp k(m _ 1)5 (3.26)

The solutions of the Einstein field equations (2.9)-(2.10) for m i- 0,1< == 0, k i- 0

are given by the class of equations (3.22)-(3.26).

Both A and G depend on the time coordinate t unlike the previous case (a).

In contrast to case (a) the scale factor is of the power law type and not exponential.

If m == 1 then /1, G and p are not defined. Thus we require m # 1. This case shares

the common feature with the remaining cases that G may be increasing in time

in certain regions of spacetime. This is similar to the model proposed by Abdel-

Rahman (1990). Note that if m == 1 then q == 0 and this severely restricts the form
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of the scale factor. The energy density fJ is negative if k == -1. The relationship

between the energy density and the pressure is given by

[
4mD

3
]

p == - 1 + 3kS3m - 2 fJ

With m == ~ this relationship becomes

which is the equation of state of an ideal gas. The positivity of the pressure is

dependent on the values of D and k.

(c) m i 0,1< i 0, k == °:
As for case (b) the condition for m i °implies that the scale factor is given by

S == [C +mDtp/m

The cosmological constant is of the form

A == 3D
2

_ 1<
S2m

(3.27)

(3.28)

given by (3.14). With k == 0, equation (3.16) with 1< i °becomes the ordinary

differential equation

which gives upon integration

G
G

6mD 2 S
--

1< S2m+l

{
3D2 }

G == Q exp 1< S2m (3.29)

where Q is a positive constant of integration. On substituting (3.29) into equation

(3.15) gives the density

1< {3D
2

}

87r Q exp - 1<S2m
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On substituting (3.27) and (3.30) into the continuity equation (2.12) we obtain the

pressure

1 [2mD
2

] { 3D
2}

P == - 87ra S2m +!< exp -!<S2m (3.31)

The solutions of the Einstein field equations (2.9)-(2.10) for m i- O,!( i- 0, k == 0

are given by the class of equations (3.27)-(3.31).

This case differs from the previous case in that the constant 1< in A is

nonvanishing. For appropriate values of the parameters the gravitational constant

may be an increasing function with time. The relationship between fl and p is given

by

[
2mD2 ]

p == - I{ S2m - 1 fl

In this case it is not possible to have an equation of state for an ideal gas as m i- 0 by

assumption. However if m == ~ we obtain a simple relationship relating the energy

density to the pressure

from the above. This has the asymptotic behaviour that as t increases

so that the pressure becomes negative.

(d) m == 2, 1< i- 0, k i- 0 :

For m == 2 the scale factor given by equation (3.3) takes the form

S == [e +2Dt]1/2

49

(3.32)



With m = 2 the cosmological constant in equation (3.14) is given by

A = 3D
2

_ 1<
S4

For m = 2 the differential equation (3.16) takes the form

(3.33)

G

G
=

12D2S/S5

3k/S2+ 1<

To integrate this equation we make the substitution

u = C +2Dt

so that we get

dG

G

This is integrated to yield

6D2

----du
3ku2+1<u3

2 [1 1< 1<2]
6D 3ku2 - 3k2u + 3k2(3k + 1<u) du

[

(3kU- 1 +1<)K/k] 2D2/k
InG ex In {I}exp ur

or equivalently we have for the gravitational constant

[

(3kS-2 +1<)K/k] 2D
2
/k

G = 0:
exp {S-2}

(3.34)

where 0: is a positive constant of integration. Then from equation (3.15) the density

is given by the formula

[

{
_ 2 } ] 2D2 /k

= _1_ 3kS-2+ 1< exp S
p 8m [ ] (3kS- 2 +Kt/ k
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where we have used equation (3.34). Substitution of (3.32) and (3.35) into the

continuity equation (2.12) yields the pressure

p
1 [S-2] 2D2/k

__ 3kS-2+ 1< exp{} X

87rD: [ ] (3kS- 2 +I<t/k

[

4D2S- 4 (2I< - 3kS-2) ] kS- 2 [ exp {S-2} ] 2D2/k

k(3kS-2+1<) +1 + 47rCY (3kS- 2+ I<)K/k

(3.36)

The solutions of the Einstein field equations (2.9)-(2.10) for m = 2,1< -=I 0, k -=I 0

are given by the class of equations (3.32)-(3.36).

Unlike the cases considered thus far we have a specific value for m. This

gives a value q = 1 for the deceleration parameter. The form of the solutions pre-

sented are more complicated than the previous cases. Depending on the parameters

in equations (3.35) and (3.36) we may have both J-l ~ 0 and p ~ O. A wide range

of behaviour is possible for the gravitational constant. The relationship between the

energy density and the pressure is given by

which differs substantially from the equation of state for an ideal gas.

(e) m = - 2, 1< =I 0, k =I 0 :

For m = -2 equation (3.3) gives the scale factor

S
1

vC - 2Dt
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With m = -2 the cosmological constant which is given by equation (3.14) assumes

the form

A = 3D
2

-]{
S-4

For m = -2 the differential equation (3.16) takes the form

G 12D2S/S-3

G 3k/S2+]{

To integrate this equation we make the substitution

u = C - 2Dt

so that we get

(3.38)

dG

G

6D2
----du
3ku4+ ]{u3

2 [1 3k 9k
2 27k

3
]

6D ]{u3 - ]{2u2 - ]{3U+ ]{3 (3ku +]() du

This equation is integrated to yield

I G I [exp {3k/(]{2 U) - 1/(2]{U
2)}]

n ex n [u (3ku + ]{)tk2/K3

or equivalently we have for the gravitational constant

G
exp {(3k/ ](2)S2 - (1/2]{)S4}

a [S-2 (3kS-2+ ]{)]9k2 /K3
(3.39)

where a is a positive constant of integration. From equation (3.15) we find that the

energy density is given by the expression

I-l = _1_ [3kS-2+]{] [S-2(3kS-2+]()] 9k
2/K3

ex {_1S4 _ ~S2}
87rCY P 2]{ ]{2
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where we have used equation (3.39). On substituting (3.37) and (3.40) into the

continuity equation (2.12) we obtain the pressure

p

S- 18k2 / K 3 {_I_S4 _ 3k S2}
exp 21< 1<2

(3.41)

The solutions of the Einstein field equations (2.9)-(2.10) for m = -2,1< #- 0, k #- 0

are given by the class of equations (3.37)-(3.41).

The value of m is chosen so that the integration process is simplified. The

value of q = -3 for the deceleration parameter differs from that in case (d). As for (e)

the form of the solutions are complicated. Depending on the parameters in equations

(3.40) and (3.41) we may have both J1 2:: 0 and p 2:: o. It is possible to investigate the

behaviour of the gravitational constant and the cosmological constant for appropriate

choices of the parameters in certain intervals of spacetime. The relationship between

the energy density and the pressure is given by

As for case (d) we do not obtain the equation of state for an ideal gas.

1
(f) m = 2,1< :f 0, k :f 0 :

For m = ! equation (3.3) gives the scale factor

(3.42)

With m = ! equation (3.14) gives the cosmological constant

(3.43)
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For m = ! the differential equation (3.16) becomes
2

G 3D2S/S-2

G 3k/S2 + 1<

To integrate this equation we use the substitution

1
u C + 2Dt

which gives the differential equation

dG

G

This equation is integrated to yield

6D2u
----du
3k + I<u4

We restrict our attention only to the case

kI< > 0

for simplicity. It is also possible to perform the integration process for kK < 0; the

form of the solution is similar to that presented here. Equivalently we may write for

the gravitational constant

(3.44)

where Q is a positive constant of integration. From equation (3.15) we find that the

energy density is given by

Jl = 8~a [3kS-
2 +K] exp { - Jk~{ D

2
arctan ( fK s) }
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where we have used equation (3.44). On substituting equations (3.42) and (3.45)

into the continuity equation (2.12) we obtain the pressure

p = - 8~a [(k - D2S) S-2 +K] exp {- Jk~(D2 aretan ([KS) } (3.46)

The solutions of the Einstein field equations (2.9)-(2.10) for m = !']{ =I- 0, k =I- 0

are given by the set of equations (3.42)-(3.46).

The value of m is chosen to show that the integration process may yield

solutions that are more complicated than those given previously. For this class of

solutions the deceleration parameter has the value q = - ! as m = !. Depending

on the parameters in equations (3.45) and (3.46) we may have both I-l ~ 0 and

p ~ o. The gravitational constant has a more complicated behaviour than the cases

studied previously. Note that we need to impose the restriction that kK > 0 for

these solutions to be applicable. The relationship between the energy density and

the pressure is given by

[
2k +D

25
]

p = 3k +](52 - 1 I-l

In this case it is not possible to have an equation of state for an ideal gas. As in case

(c) as t increases we have the asymptotic relationship

so that the pressures may be again negative.

2
(g) m = 3']{ =I- 0, k =I- 0 :

For m = ~ equation (3.3) gives the scale factor

(3.47)
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With m = ~ equation (3.14) gives the cosmological constant

3D2

A == S4/3 -](

For m == ~ the differential equation (3.16) becomes
3

G 4D2S/S-7
/
3

G 3k/S2 -.«

To integrate this equation we make the substitution

2
u == C +3Dt

From this we obtain the differential equation

(3.48)

dG

G

6D2

----du
3k + ](u3

6D
2 [1 u - 2a ] du

K 3a2(a +u) 3a2(u2 - au +a2)

where for simplicity we set

3k

](

On integration we obtain

InG ex In [ (u +a)
2

u2 - au + a2

or equivalently we have for the gravitational constant

[
(S2/3+a)2 { (2S

2/3_a)}]D
2

/ K a

2

G == a S4/3 _ aS2/3+a2 exp 6 arctan V3a (3.49)

where a is a positive constant of integration. From equation (3.15) we find that the

energy density is given by
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{ (
S2/3 )}] D

2/K

a

2

exp -6 arctan 2 ,J3: a (3.50)

where we have used equation (3.49). On substituting equations (3.47) and (3.50)

into the continuity equation (2.12) we obtain the pressure

p
1 [S4/3 _ aS2/3+a

2
{ (2S

2/3
_ a)}] D

2/Ka2

- -- 2 exp -6 arctan Fi X
87rQ (S2/3 +a) V 3a

[

-2 2D2
-2 [(S2/3 +a)2 ]]

kS +K + 3]{a [3kS +]{] S4/3 _ aS2/3+a2 X

[

S2/3 _ a 4V3 (S4/3 - aS2/3+a2) ]

(S2/3 +a)3 - (S2/3 +a)2 (3a2+ (2S2/3 _ a)2)
(3.51)

The solutions of the Einstein field equations (2.9)-(2.10) for m = ~ ,]( =1= 0, k =1= 0

are given by the set of equations (3.47)-(3.51).

The value of m chosen shows that the integration process becomes even

more complicated than the previous cases. It is clear that other choices of m will

lead to complicated integrals which will have solutions in terms of special functions.

The value of the deceleration parameter is q = - ~ with m = ~. The form of the

solutions are the most complicated in this case. To plot explicity the behaviour of

the gravitational constant against time will be extremely complicated for m = ~.

Note that the value of a chosen for the integration process is nonzero since K =1= 0

and k =1= o. Depending on the values of the parameters in equations (3.50) and (3.51)

we may have both f1 ~ 0 and p ~ 0 at least for some regions of spacetime. The
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relationship between the energy density and the pressure is given by

[

kS-2 + !{ 2D2 (S2/3 +a) 2

p - 3kS-2+K + 3!{a (S4/3 _ aS 2/3+a2) X

Clearly in this case we cannot obtain the equation of state for an ideal gas from the

above equation.

In §3.3 we have presented a number of new solutions to the Einstein field

equations with variable cosmological constant and gravitational constant which sat-

isfy the Rubble variation law given by equation (3.1). It is remarkable that this

simple law leads to a wide class of solutions. A generalisation of this Rubble law is

presently being considered by Beesham (1992). We have obtained explicit solutions

for the scale factor S in the following cases:

m = 0;

m i= 0; S [C+mDt]l/m

m

m

m

2',

-2;

1

2'

S

S

S
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m
2
-'

3'

We have also explicitly obtained the functional forms for the energy density {l, pres-

sure p, the cosmological constant A and the gravitational constant G in each case.

We have not pursued the physical properties of these solutions in any detail. This

is the subject of further investigation. It is interesting to observe that solutions

are admitted in which the gravitational constant may be increasing with time (see

Abdel-Rahman (1990) and also §3.3). The ansatz utilised to solve the Einstein field

equation (2.9) is very simple. It might be worthwhile to investigate other possibilities

that lead to solutions to the Einstein field equations with interesting behaviour for

the gravitational constant and cosmological constant.

59



4 Other Cosmologies

4.1 Introduction

As observed in §3.2 the Berman law (3.1) for the Hubble parameter has also been

analysed in the Pryce-Hoyle and Brans-Dicke theories by Berman and Gomide

(1988). More recently Berman (1990b,c,d) and Berman and Som (1990) have ex

haustively investigated this Hubble law in the Brans-Dicke theory with the objec

tive of analysing density perturbations in cosmological models. In the previous two

chapters we have studied spacetimes with the Robertson-Walker line element for a

homogeneous and isotropic universe with a perfect fluid energy momentum tensor.

Our intention in this chapter is to show that the Hubble law used previously may

be extended to other spacetimes and even alternate theories of gravity. In §4.2 we

consider a gravitational field with less symmetry than the Robertson-Walker models,

namely the Bianchi I spacetime with three Killing vectors, which is used to describe

a homogeneous and anisotropic universe. The metric used is a generalisation of

the k = 0 Robertson-Walker spacetime. We list the components of the Einstein

tensor and the Einstein field equations for variable cosmological and gravitational

constants. The solution to the vacuum classical Einstein field equations is presented

and showed to be consistent with the Hubble law used in chapter 3. A simple solu

tion corresponding to variable cosmological and gravitational constants is also found.
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This suggests the possibility of seeking more solutions in Bianchi I and other Bianchi

models. In §4.3 we consider the scalar-tensor theory of Lau and Prokhovnik (1986)

which is consistent with the Dirac Large Numbers Hypothesis (Dirac 1938, 1979).

We investigate the solution of Maharaj and Beesham (1988) to the field equations

of Lau and Prokhovnik (1986) for the k = 0 Robertson-Walker spacetime. We find

that the theory of Lau and Prokhovnik (1986) is consistent with the Hubble's varia

tion law of chapter 3. This illustrates that the Hubble variation law also extends to

alternate theories of gravity involving scalar fields.

4.2 Anisotropic Bianchi I model

The nine Bianchi cosmologies, each characterised by three Killing vector symmetries,

may be used to describe anisotropies in the universe. The simplest Bianchi space-

time is of type 1. We consider the spatially homogeneous and anisotropic spacetime

described by the line element

(4.1)

This spacetime is a generalisation of the k = 0 Robertson-Walker spacetime and is

often utilised in the study of anisotropic models . It differs from the k = 0 Robertson-

Walker spacetime in that it is not isotropic. The line element (4.1) is a Bianchi I

spacetime with an Abelian 3-dimensional Lie algebra of motions (Kramer et al1980).

The Killing vectors of the Bianchi I spacetime is given by

8

8x

a
ay
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8

8z

A detailed analysis of the group structure and classification scheme of all the Bianchi

cosmologies is provided in the treatments by Ellis and MacCallum (1969) and Ryan

and Shepley (1975).

The components of the Einstein tensor (1. 7) for the line element (4.1) are

given by the following system

Goo
AB AC BC

AB + AC + BC
(4.2)

Gll
2 [11 136 C] (4.3)-A B + BC + C

G22 t4 Ji6 C] (4.4)-B A + AC + C

G33
2 [A AB 11]

(4.5)-C A + AB + B

Gab = 0, (4.6)

With the help of the perfect fluid energy momentum tensor (1.9) and the Einstein

tensor components (4.2)-(4.6) we have that the Einstein field equations (1.12) with

variable cosmological constant and gravitational constant can be written as the cou-

pled system of differential equations

(4.7)
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iJ BC C
-+-+--A
B BC C

A AG C
-+-+--A
A AC C

-87rGp (4.8)

(4.9)

A AB iJ- +- +- - A == -87rGp
A AB B

(4.10)

With A == 0 and G a constant we regain the classical Einstein field equations from

the above equations. In the case t" == 0 == p and A == 0 we obtain the vacuum classical

Einstein field equations given by

AB BC AG
AB + BC + AC

from equations (4.7)-(4.10).

o

o

o

o

(4.11)

(4.12)

(4.13)

(4.14)

The Bianchi I spacetime has received much attention as it is simple but

does cater for anisotropy. The solution of the vacuum field equations (4.11)-(4.14)

is well known. This solution is called the Kasner solution. We express the Kasner

solution in a form which is more appropriate for our purposes:

A [a + I1t]Pl
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B [a + j3t]P2

C [a + j3t]P3

where a and j3 are constants and

PI +P2 +P3 1

must be satisfied for a consistent solution. The constants a and j3 are not essential

to the solution and may be eliminated using the transformation

i ---+ a + j3t

We note that the general Bianchi I solution for dust

J-l =I 0, P = 0

is also known and is listed by Stephani (1990). The form of solution for dust is

similar to the Kasner solution given above. Other special cases of solution are listed

by Kramer et al (1980).

We will show that the Hubble variation (3.1)

H = DS-m

used previously is consistent with the Bianchi I spacetime (4.1) for the vacuum field

equations (4.11)-(4.14). We note that it is possible in principle to perform a similar

analysis for the Einstein field equations (4.7)-(4.10) with variable cosmological con

stant and gravitational constant. To perform an analogous discussion to the previous
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chapter we need to define the function

s = (ABC)1/3

as an "average" of the anisotropy. Clearly this definition for the Bianchi I spacetime

reduces to the scale factor of the flat k = 0 Robertson-Walker spacetime when we

have A = B = C. Then the above definition gives the following form for Hubble's

constant

H
s
s

~ (In ABC)'
3

This form of the Hubble parameter was utilised by Misner et al (1973) in studying

adiabatic cooling of anisotropy in the early universe. For the vacuum Kasner solution

the Hubble law is of the form

(4.15)

from definition. Is this form of solution consistent with the Berman variation law?

To answer this question we must compare this result with the Rubble law obtained

from (3.1). Using the scale factor S defined above for the anisotropic Bianchi I

spacetime we obtain the following form

H DS-m

D

(a + /3t)m/3
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On comparing equations (4.15) and (4.16) we have

m

D

3

Thus we have verified that the vacuum Kasner solution is consistent with the Rubble

variation law

D
H==

C+mDt

with m == 3. In fact the vacuum Kasner solution remains unchanged with this

variation of the Rubble law as the only modification involves a rescaling of the

arbitrary constant (3.

The above solution for the Bianchi I spacetime is interesting as it suggests

that the class of solutions presented in chapter 3 for Robertson-Walker spacetimes

may be extended to other spacetimes with less symmetry. It is possible that this

approach may lead to new solutions of the Einstein field equations. We may extend

the arguments given above in the Bianchi I spacetime to include the case of variable

cosmological constant and gravitational constant. We illustrate this possibility with

an elementary solution of the Einstein field equations (4.7)-(4.10). It is interesting

to note that the vacuum Kasner solution is given by

A [a + (3t]Pl

B [a+ (3t]P2

C == [a + (3t]P3
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with the conditions

Pl +P2 +P3 == 1

consistent with the Berman law

H DS-m

extends to the case of variable cosmological constant and gravitational constant. It

is clear by simple inspection that this solution is admitted by the field equations

(4.7)-(4.10) if the cosmological constant

A == 87rGp

and the pressure

p == - J-l

Thus the pressures are negative for a Kasner-type solution with variable cosmological

constant and gravitational constant. We note that there is freedom in the solution

as we can arbitrarily specify the behaviour of the cosmological constant or the grav

itational constant. Even though this solution is very simple it illustrates that there

are solutions to the Einstein field equations with variable cosmological constant A

and gravitational constant G consistent with the Berman law (3.1). This is an area

for future research. The simplest starting point would be to choose the form of A

and G so that the metric functions generate a behaviour which is similar to that of

the Kasner solution.
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4.3 Theory of Lau and Prokhovnik

The law for the variation of Hubble's parameter (3.1) is also consistent with scalar-

tensor theories of gravity that reduce to Einstein 's general relativity. We illustrate

this with the scalar-tensor theory of Lau and Prokhovnik (1986). This is a theory

with variable cosmological constant and gravitational constant but , in addition, it

has a scalar field 'ljJ. The theory was structured so that it is consistent with the Dirac

Large Numbers Hypothesis (Dirac 1938, 1979). This theory was also investigated

by Maharaj and Beesham (1988) who presented solutions to the field equations of

Lau and Prokhovnik (1986) for the flat k = 0 Robertson-Walker spacetime. The

generalised field equations in the scalar-tensor theory of Lau and Prokhovnik (1986)

are given by

where

87rGTab+ 'ljJ ,a'ljJ,b

o

(4.17)

(4.18)

Here Lm is the matter Lagrangian density including all non-gravitational fields. The

quantity

is a generalisation of the normal cosmological constant but is equivalent to the cos

mological constant used before in Robertson- Walker spacetimes. The field equation

(4.17) is a generalisation of the classical Einstein field equation (1.10) to incorporate

variable cosmological constant A, gravitational constant G and scalar fields 'ljJ. The
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other field equation (4.18) governs the behaviour of the scalar field '0 . For details of

the derivation of (4.17)-(4.18) see Lau and Prokhovnik (1986).

In this section we follow the notation of Lau and Prokhovnik (1986). This

enables us easily to compare our results with those of Maharaj and Beesham (1988).

The k = 0 Robertson-Walker spacetimes with flat spatial sections are characterised

by the metric

(4.19)

which was given previously in polar coordinates by equation (2.1) in §2.2. We use

the energy-momentum tensor

which is a special case of equation (1.9) in chapter 1 with the pressure p = O. Thus

in this case the matter Lagrangian density is given by

for a dust energy-momentum tensor. For compatibility with the Dirac Large Num

bers Hypothesis we must have (Dirac 1938, 1979; Lau 1985)

G(t)

(31 (a +(3t)2/3 (4.20)

(4.21)

(4.22)

where (31, (32, (33 are constants in the above. To integrate completely the field equa

tions (4.17)-(4.18) it remains to obtain forms for the cosmological constant A and

the scalar field '0.
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Using the metric (4.19) it is easy to show that the field equation

(4.18) reduces to

Substituting equations (4.20)-(4.22) in equation (4.23) we obtain

(4.23)

The (0, 0) component of equation (4.17) is given by

Substituting equations (4.20)-(4.22) in equation (4.25) we obtain

On differentiating equation (4.26) with respect to time we have

2 f.l3 ( a )- 3 . (' 2). (-3- 3fJ a + fJt - A - 1jJ = -167rf3f32f33 a + f3t)

Adding equations (4.24) and (4.27) we obtain

Equation (4.28) has the general solution for the scalar field

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

where A is constant. Substitution of equation (4.28) in equation (4.26) yields

A 1 f.l2 ( )-2= - -fJ a + f3t
3

for the cosmological constant.
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The solution to the field equations in the theory of Lau and Prokhovnik

(1986) is given by equations (4.20)-(4.22) , (4.29) and (4.30). The solutions presented

are analogous to those of Maharaj and Beesham (1988). It is interesting to observe

that the cosmological constant has the behaviour

1
Acx:

t2

This is the same form as the solutions presented in chapter 3 for variable cosmolog-

ical constant and gravitational constant without a scalar field 'ljJ. This form of the

cosmological constant is consistent with observations of present day values for the

cosmological constant which are small.

Using equation (4.20) we have that

H
s
s

~{3

0: +{3t

However from chapter 3 for m#-O we have that

H = D
C+mDt

which follows from the Berman hypothesis that the deceleration parameter is con

stant. Thus we have established that if

m 3

C 30:

D {3
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then the dust solutions, for the k == 0 Robertson- Walker spacetime, in the theory of

Lau and Prokhovnik (1986) are consistent with the Hubble variation law

H == DS-m

Thus the above Hubble variation may be useful in studying solutions of the field

equations in scalar-tensor theories. It has the advantage of immediately specifying

the scale factor. This is helpful in alternate theories of gravity as the normal variables

are supplemented with the cosmological constant, gravitational constant and scalar

fields. The Berman (1983) ansatz provides a mechanism to reduce the number of

variables in an undetermined system of differential equations.
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5 Conclusion

Our main objective was to consider the relevance of a Rubble law proposed by

Berman (1983) to the study of cosmological models. In this thesis we consider

a number of exact solutions of Einstein's field equations to the Robertson-Walker

spacetimes , the Bianchi I spacetime and scalar-tensor theories. The Einstein field

equations are simplified by assuming the variation law for Rubble's parameter used

by Berman (1983). Explicit solutions are presented in the Robertson-Walker space

times, the Bianchi I spacetime and the scalar-tensor theory of Lau and Prokhovnik

(1986). This illustrates that the Rubble variation used is consistent and is relevant

in the study of cosmological models.

In chapter 1 of this thesis we provide only those aspects of general relativity

and differential geometry necessary for later chapters. The curvature tensor and

associated quantities are defined. The Einstein field equations are motivated and the

matter distribution is described by the energy-momentum tensor. We also introduce

the Einstein field equations with variable cosmological constant and gravitational

constant.

In chapter 2 we consider the Robertson-Walker spacetimes satisfying the

cosmological principle. The energy-momentum tensor is a perfect fluid . We derive

the classical Einstein field equations and the field equations with variable cosmologi

cal constant and gravitational constant. The properties of the Friedmann model are
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reviewed in general. The Hubble constant, critical density and the deceleration pa

rameter are important cosmological parameters. The age of the universe, the Hubble

expansion and the microwave background radiation are investigated and related to

observation. Some recent developments in modern cosmology are pointed out.

In chapter 3 we comprehensively investigate solutions to the Robertson

Walker spacetimes. We utilise the Berman (1983) Hubble law to find solutions to

the classical Einstein field equations. The solution of Berman (1991) for variable

cosmological constant and gravitational constant are discussed. We also present a

large class of new solutions to the Einstein field equations with variable cosmological

constant and gravitational constant. In each case we list the functional forms for

the scale factor, cosmological constant, gravitational constant, energy density and

pressure. The properties of the solutions are briefly investigated. In many cases

the equation of state of an ideal gas is possible. Many of the solutions have the

gravitational constant increasing in certain regions of spacetime. This is similar to

the behaviour of the model of Abdel-Rahman (1990).

In chapter 4 we consider the Bianchi I spacetime and scalar-tensor theory

of Lau and Prokhovnik (1986). For the Bianchi I spacetime we show that the Berman

(1983) law is consistent with the vacuum Kasner solution. It is possible to extend

this result in Bianchi I spacetime to variable cosmological constant and gravitational

constant. We also show that the k = 0 Robertson-Walker solution of Maharaj

and Beesham (1988) for the scalar-tensor theory of Lau and Prokhovnik (1986) is

consistent with our assumed form for the Hubble parameter.

We should point out that the idea of cosmological dependence on s-m

has been discussed in another context by Bishop (1976) and Landsberg and Bishop
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(1975). These papers are essentially concerned with seeking a cosmological explaina

tion for the decrease in the gravitational constant G with time. The scalar field is

assumed to vary as a power of the cosmological expansion factor (i .e. 'ljJ ex s-m)

in the scalar- tensor theory of Nordtvedt (1970). A set of models may be obtained

which is compatible with observation. The models found by Bishop (1976) is similar

to those of Newtonian cosmology obtained from an impotence principle.

We have demonstrated that the Rubble law used in this thesis provides

consistent cosmological models. It is applicable both to general relativity and alter

nate theories of gravity. It is clear that our ansatz should lead to other solutions to

the Einstein field equations with interesting behaviour. It might be interesting to

investigate the form of the solutions permitted in other cosmological models.
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