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Scale-independent EMSG is a particular model of energy-momentum squared gravity (EMSG)
in which the new terms in the Einstein field equations arising from the EMSG theory enter with
the same power as the usual terms from Einstein-Hilbert part of the action. However, the model
violates the local energy-momentum conservation and matter-current conservation in general and
hence, permits a process of matter creation/annihilation in an expanding universe. Consequently, the
scale factor dependencies of the energy densities are modified by the dimensionless model parameter
α. We revisit some nostalgias such as static universes and de Sitter/steady state universes. We
reproduce the original ones, moreover, present some novelties, e.g., a spatially flat static universe,
de Sitter expansion by negative vacuum energy, steady state universes in the presence of arbitrary
fluids with constant equation of state (EoS) parameter other than dust, etc. We also investigate
the possible dynamics of dust dominated and radiation dominated universes. Depending on the
value of α, dust/radiation dominated universe exhibits power-law accelerated/decelerated expansion,
corresponds to a steady state model or may end in a big rip. In the framework of anisotropic
cosmology, we reproduce Barrow’s quiescent universe in the presence of stiff fluid and extend it
to fluids with arbitrary constant EoS parameter. We also relax the condition for isotropic initial
singularity (big bang) owing to that EMSG effectively allows ultra-stiff EoS parameters.

I. INTRODUCTION

Subsequent to the establishment of general relativity
(GR) in 1915, the first relativistic cosmological model
was also put forward by Einstein himself in 1917 [1]. It
was a static model having positively curved spatial sec-
tions with a uniform distribution of motionless matter on
large scales. To achieve such a spatially finite but tem-
porally infinite model, Einstein modified his theory by
adding a cosmological constant that is positive (Λ > 0)
to the original field equations. His insistence on a static
model was due to the fact that the prevailing opinion of
his period was the Universe is unchanging in both space
and time. Unfortunately, Einstein’s static universe was
proved to be unstable and eventually abandoned after the
discovery of the expansion of Universe. The second cos-
mological model was de Sitter (dS) universe that is not
static but stationary, devoid of any material source and
contains only a positive cosmological constant [a nega-
tive cosmological constant produces anti-de Sitter (AdS)
universe] [2, 3]. It corresponds to a spatially flat universe
expanding exponentially. This universe has no beginning
or end, hence expands forever. However, such an expo-
nentially expanding universe can be realized in the pres-
ence of matter with a constant energy density as well.
This model proposed by Bondi, Gold, and Hoyle in 1948
was the steady state universe which requires continuous
creation of matter in order to compensate for the diluting
effect of the expansion on the matter energy density of
the universe [4, 5]. To construct the steady state model,
Hoyle modified the Einstein field equations (EFE) of GR
by introducing a creation field tensor, Cµν , which plays
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a role similar to that of the cosmological constant in the
de Sitter model, and naturally, the matter creation pro-
cess rendered the violation of the local/covariant energy-
momentum conservation necessary. Although these three
models of modern cosmology seem to possess different dy-
namics/ingredients, they were all inspired by the perfect

cosmological principle, which asserts that the Universe
is homogeneous and isotropic (maximally symmetric) in
space as well as homogeneous in time [4].

During the late 1940s and 1950s, the hot big bang along
with the steady state model mentioned above were two
major paradigms in cosmology. In contrast to the eter-
nal universe of the steady state model, the hot big bang
model suggests that the Universe should have once been
started from an extremely hot and dense state, namely,
an initial singularity [6]. Thus, the hot big bang vio-
lates the perfect cosmological principle, however, is in ac-
cordance with the so-called cosmological principle, which
states that the Universe is homogeneous and isotropic in
space, but changes with time. After years of rivalry, the
detection of the cosmic microwave background (CMB) –
expected relic radiation of an earlier hotter and denser
phase of cosmic evolution – in 1965 by Penzias and Wil-
son [7] favored hot big bang over steady state model.
However, the CMB temperature at a value of about 2.7
K distributed isotropically over a wide range of angu-
lar scales gave rise to another question: How had the
Universe from a generic initial singularity evolved to the
isotropy we observe today? The first prominent attempt
to explain the present isotropy was Misner’s chaotic cos-
mology [8] which asserts that the Universe evolved from
a generic, irregular and disordered state to today’s large-
scale order and regularity. According to the chaotic sce-
nario, isotropy was generated by dissipative effects, such
as particle creation or collisions and the present struc-
ture of the Universe is independent of the exact initial
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conditions at the big bang. Yet, it was shown that
such a smoothing process may occur for limited type of
anisotropies but not for generic ones [9]. An alternative
explanation, on the other hand, was Barrow’s quiescent
cosmology [10] which suggests that the Universe indeed
originated in a highly smooth and regular state in which
a stiff fluid whose pressure equals to its energy density
prevent the anisotropy from domination, and evolved to-
wards irregularity through gravitational attraction. The
quiescent universe scenario is also supported by Penrose’s
ideas on gravitational entropy [11].

Gravity theories violating the local/covariant energy-
momentum conservation can naturally result from mod-
ifying the form of the matter Lagrangian, Lm, in the
Einstein-Hilbert action in a nonlinear way, for instance,
by introducing some analytic function of the Lorentz
scalar TµνT

µν constructed from the energy-momentum
tensor (EMT), Tµν , of the material stresses [12–14],
rather than generalizing the gravitational Lagrangian
away from the linear function of scalar curvature, R,
responsible for the Einstein tensor, Gµν . Such gener-
alizations of GR result in new contributions by the usual
material stresses to the right-hand side of the usual EFE
without invoking any new type of sources and lead in
general to nonconservation of the material stresses (see
e.g. [15, 16] for other similar type of theories). Of course,
one may search for a curvature-type modification on
the left-hand side of the usual EFE corresponding to a
matter-type modification arising on the right-hand side
of the usual EFE, but this might not be trivial or even
possible and thereby such matter-type of modified grav-
ity theories are quite rich and promising in establishing
novel astrophysical and cosmological models.

A particular example of this type of generalization
dubbed energy-momentum squared gravity (EMSG) has
recently been proposed by the inclusion of the term
f(TµνT

µν) in the usual Einstein-Hilbert action [12–14].
Some specific EMSG models studied in various con-
texts are quadratic EMSG represented by f(TµνT

µν) ∝
TµνT

µν [17], energy-momentum powered gravity (EMPG)
represented by f(TµνT

µν) ∝ (TµνT
µν)η [13, 14] and

energy-momentum log gravity (EMLG) represented by
f(TµνT

µν) ∝ ln (TµνT
µν) [18]. These theories have been

investigated in the literature from different motivations
and perspectives [12–14, 17–38]. Some interesting fea-
tures of the EMSG theory studied in the framework of
these models are the allowing an EMT having a nonva-
nishing divergence [13, 14]; the replacing of the initial
singularity with an initial bounce through the higher or-
der contributions of the energy density of dust [17, 19];
the possibility of driving late time accelerated expan-
sion from the usual material sources without invoking
a cosmological constant Λ [13]; the screening of the cos-
mological constant in the past by the altered scale fac-
tor dependency of dust due to the nonconservation of
EMT [18]; the effective source that yields constant in-
ertial mass density arising in [18]; the screening of the
expansion anisotropy via the quadratic contribution of

dust in the Friedmann equation and leading to mathe-
matically exactly the same Friedmann equation with GR
even in the presence of anisotropic expansion [28]; the
altered past or far future of the Universe [17, 19, 32]; etc.
In this paper, we investigate a particular model, ini-

tially proposed in Ref. [35], called scale-independent

EMSG described by f(TµνT
µν) ∝

√

TµνT µν (corre-
sponding to the particular case η = 1/2 of EMPG [13,
14]). It is particular in the sense that the new contri-
butions to the EFE of GR due to the EMSG modifica-
tion enter with the same power that of the usual terms
from Einstein-Hilbert part of the action, and thereby
this EMSG modification affects the field equations in-
dependently of the energy density scale considered. On
the other hand, the local energy-momentum conservation
and the matter-current conservation are violated in gen-
eral, hence the scale factor dependency of the standard
energy density is altered. The violation of the matter-
current conservation means that this model permits mat-
ter creation process and provides us with the opportu-
nity to construct a steady state universe. The scale-
independent EMSG has been studied so far as an ex-
tension of the Lambda cold dark matter (ΛCDM) model
– the current standard model of cosmology – in which
sources with different equations of state couple to the
spacetime differently [35]. In what follows, we investi-
gate the cosmological models in scale-independent EMSG
on theoretical ground. We revisit some nostalgias such
as static and steady state universe models. We discuss
the possible dynamics of dust/radiation dominated uni-
verses. Moreover, we present some novel scenarios that
cannot be achieved in GR under same conditions regard-
ing big rip and isotropic initial singularity. It is known
that nowadays ΛCDM suffers from persistent tensions
of various degrees of significance among some existing
datasets [39–45], thereby, we think that on the road to
resolving the current issues and problems of cosmology,
such historical considerations might enable us to develop
new approaches that are hard to come to mind when we
stay within the framework of the standard cosmological
model.

II. SCALE-INDEPENDENT EMSG

The action of EMSG is constructed by the addition of
the term f(TµνT

µν) to the Einstein-Hilbert action [12–
14];

S =

∫
[

1

2κ
R+ f(TµνT

µν) + Lm

]√−g d4x, (1)

where κ = 8πG is Newton’s constant (scaled by 8π),
R = gµνRµν is the Ricci scalar calculated from the Ricci
tensor Rµν , g is the determinant of the metric tensor
gµν , Lm is the Lagrangian density corresponding to the
matter source described by the energy-momentum tensor
(EMT) Tµν , and units are used such that c = 1.
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We vary the action above with respect to the inverse
metric gµν as

δS =

∫

d4x

[

1

2κ

δ(
√−gR)

δgµν
+

δ(
√−gLm)

δgµν

+ f(TσǫT
σǫ)

δ(
√−g)

δgµν

+
∂f

∂(TλξT λξ)

δ(TσǫT
σǫ)

δgµν
√
−g

]

δgµν ,

(2)

and, as usual, define the EMT in terms of the matter
Lagrangian Lm as

Tµν = − 2√−g

δ(
√−gLm)

δgµν
= gµνLm − 2

∂Lm

∂gµν
, (3)

for which we assume Lm depends only on the metric ten-
sor components, and not on its derivatives since this is
the case for the Maxwell field and gauge fields in general,
as well as for scalar fields. Consequently, the modified
Einstein field equations read

Gµν = κ

[

Tµν + fgµν − 2
∂f

∂(TσǫT σǫ)
θµν

]

, (4)

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor; θµν is

a new tensor defined as

θµν =
δ(TσǫT

σǫ)

δgµν
= −2Lm

(

Tµν − 1

2
gµνT

)

− TTµν

+ 2T λ
µTνλ − 4T σǫ ∂2Lm

∂gµν∂gσǫ
,

(5)

where T is the trace of the EMT, Tµν . In the present
study, following the literature to date on EMSG and on
similar theories (see [16, 46, 47]), we consider Lm = p
which gives rise to the perfect fluid EMT given in Eq. (11)
through the definition (3). Accordingly, we take the ad-
vantage of setting the last term of the tensor θµν given in
Eq. (5) to zero, namely, ∂2Lm/(∂g

µν∂gσǫ) = 0. In this
way, we are able to calculate θµν independently of the
function f [14].
We proceed with the scale-independent EMSG [35] de-

scribed by

f(TµνT
µν) = α

√

TµνT µν , (6)

and accordingly, the action in (1) becomes

S =

∫
[

1

2κ
R+ α

√

TµνT µν + Lm

]√−g d4x, (7)

where α is a dimensionless constant that determines the
gravitational coupling strength of the scale-independent
EMSG modification to GR. Accordingly, the modified
Einstein field equations (4) for the action (7) now read,

Gµν = κTµν + κT̃µν , (8)

where

T̃µν = α
√

TσǫT σǫ

(

gµν − θµν
TλξT λξ

)

, (9)

describes the effective source due to the EMSG modifica-
tion stated in Eq. (6). From (8), the covariant divergence

of the EMT reads ∇µTµν = −∇µT̃µν which can be ex-
plicitly written as

∇µTµν = −αgµν∇µ
√

TσǫT σǫ + α∇µ

[

θµν√
TσǫT σǫ

]

. (10)

We note that, unless α = 0 (which guarantees T̃µν = 0),
the right-hand side of this equation does not vanish in
general, and thus the EMT is not necessarily conserved,
i.e., ∇µTµν = 0 is not necessarily satisfied.
We consider the perfect fluid form of the EMT;

Tµν = (ρ+ p)uµuν + pgµν , (11)

where ρ > 0 (unless otherwise stated) is the energy den-
sity and p is the thermodynamic pressure of the fluid; uµ

is the four-velocity satisfying the conditions uµu
µ = −1

and ∇νu
µuµ = 0. For the perfect fluid above, the self-

contraction of EMT and the tensor θµν read

TσǫT
σǫ = ρ2 + 3p2, (12)

θµν = −(ρ+ p)(ρ+ 3p)uµuν . (13)

Substituting (11) along with (12) and (13) into the effec-
tive EMT defined in (9), we obtain

T̃µν =α

(

√

ρ2 + 3p2 +
4ρp

√

ρ2 + 3p2

)

uµuν

+ α
√

ρ2 + 3p2 gµν ,

(14)

which, comparing with the EMT of the form that of per-
fect fluid, i.e., T̃µν = (ρ̃+ p̃)uµuν + p̃gµν , implies

ρ̃ =
4αρp

√

ρ2 + 3p2
and p̃ = α

√

ρ2 + 3p2, (15)

which are the energy density and pressure of the effec-
tive source, respectively. Thus, defining a total EMT as
T tot
µν = Tµν + T̃µν = (ρtot + ptot)uµuν + ptotgµν , the total

energy density and pressure can be identified as follows:

ρtot ≡ ρ+ ρ̃ and ptot ≡ p+ p̃. (16)

Considering barotropic fluid described by the equation of
state (EoS) of the form p = wρ, where w is the EoS pa-
rameter we assume to be constant (here, and henceforth),
we obtain

ρtot = ρ

(

1 +
4αw√
1 + 3w2

)

, (17)

ptot = ρ
(

w + α
√

1 + 3w2
)

. (18)
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We use Eqs. (17) and (18) in the total EMT, and from
the vanishing divergence of it, that is, ∇µT

µν
tot = 0, we

obtain the matter-current conservation as follows:

∇µ(ρu
µ) = −ρ

[

w +
α(1 − w2)

4αw +
√
1 + 3w2

]

∇µu
µ. (19)

This reduces to ∇µ(ρu
µ) = −αρ∇µu

µ for dust (w = 0),
implying that baryon number density is not necessarily
conserved. Here ∇µu

µ ≡ Θ is the volume expansion rate
of the fluid—in case of Robertson-Walker (RW) space-
time metric, we have Θ = 3H , where H = ȧ

a
is the Hub-

ble parameter with a being the scale factor and a dot
denotes d

dt (see Eq. (20)). Namely, the term with α 6= 0
on the right-hand side shows us that in an expanding
universe (Θ > 0) governed by EMSG, there is continu-
ous creation (for α < 0) and annihilation (for α > 0)
of matter on cosmological scales, namely, in the expand-
ing space between galaxies, but not within galaxies—the
galaxies (each is a gravitationally bound system) them-
selves are independent of the expansion of the Universe,
meaning they do not expand (i.e., Θ = 0 in the local
region of the Universe occupied by a galaxy). This prop-
erty of the model signals the possibility of constructing a
steady state model in the presence of a material source.
We proceed by considering the spatially maximally

symmetric spacetime metric, i.e., the RW spacetime met-
ric, with flat spacelike sections given as

ds2 = −dt2 + a2(dx2 + dy2 + dz2), (20)

where the scale factor a = a(t) is a function of cosmic
time t only. Therefore, the modified Friedmann equations
read

ȧ2

a2
=

κ

3
ρtot ,

ä

a
= −κ

6
(ρtot + 3ptot), (21)

or equivalently, in an explicit form as follows:

ȧ2

a2
=

κ

3
ρ

(

1 +
4αw√
1 + 3w2

)

, (22)

ä

a
= −κ

6
ρ

(

1 + 3w + α
3 + 4w + 9w2

√
1 + 3w2

)

. (23)

The corresponding continuity equation can be written as

ρ̇+ 3
ȧ

a
ρ(1 + w) = −3

ȧ

a
ρ

α(1− w2)

4αw +
√
1 + 3w2

. (24)

The expression on the right-hand side is the modification
arising from EMSG and is equal to zero in the case α = 0,
corresponding to GR. We realize that this term also drops
for w = −1 and w = 1, which then would give the same
scale factor dependencies for the vacuum energy (ρ =
const) and stiff fluid (ρ ∝ a−6) as in GR. On the other
hand, the model, in general, modifies the evolutions of
the energy densities, including those of the known sources
such as dust (w = 0) and radiation (w = 1

3 ), as

ρ ∝ a
−3(1+w)

[

1+ α(1−w)

4αw+
√

1+3w2

]

. (25)

In this paper, we restrict our study to positive-definite
values of the total energy density. Therefore, from
Eq. (17), we deduce that, if ρ > 0 is imposed and w 6= 0,
then the positivity of total energy density, ρtot > 0, re-
quires

α < −
√
1 + 3w2

4w
for w < 0,

α > −
√
1 + 3w2

4w
for w > 0,

(26)

whereas α can take arbitrary values when w = 0, which
describes dust. In particular, ρtot > 0 implies α < 1

2 for

positive (α > 1
2 for negative) vacuum energy described by

w = −1, α > −
√
3
2 for the radiation described by w = 1

3 ,

and α > − 1
2 for the stiff fluid described by w = 1.

Next, we calculate the deceleration parameter, q ≡
− äa

ȧ2 , as follows:

q =
1

2
+

3

2

[

w +
α(1− w2)

4αw +
√
1 + 3w2

]

, (27)

which reduces to q = 1
2 + 3

2w in GR (α = 0). For ar-
bitrarily large values of α, i.e, α → ∞, the deceleration
parameter reads q → 1

2 +
9
8w+ 3

8w
−1. We display the de-

celeration parameter curves of different sources in Fig. 1.
We note that for two particular values of the parameter
α, the value of the deceleration parameter does not differ
between the radiation (r) and dust (d); qr = qd = 1.41
for α = 0.61 and qr = qd = −0.21 for α = −0.47. The
model exhibits de Sitter expansion (q = −1) at α = −1

for dust and at α = −
√
3
3 for radiation. In the case of

vacuum energy (positive or negative) and stiff fluid, the
values of q do not differ from the ones in GR; that is,
q = −1 for w = −1 and q = 2 for w = 1. Interestingly, in
the case of radiation, for arbitrarily large values of α the
value of the deceleration parameter approaches two, i.e.,
qr → 2 as α → ∞. We have super exponential expansion

(q < −1), viz., big rip, for −
√
3
2 < α < −

√
3
3 (where the

lower boundary corresponds to ρtot > 0) in the presence
of radiation and for α < −1 in the presence of dust.

III. STATIC UNIVERSES

The simplest relativistic cosmological model satisfying
the perfect cosmological principle, which states that the
Universe is homogeneous and isotropic in space as well
as homogeneous in time [4], in the presence of a material
source with a positive energy density is the static uni-
verse. For such a universe having a constant scale fac-
tor (a = const), it is required that ȧ = 0 and ä = 0,
which imply ρtot = 0 and ptot = 0 according to the
modified Friedmann equations (21) of EMSG. After us-
ing Eqs. (17) and (18) it turns out that there are two
cases satisfying these conditions: (i) In the presence of
positive vacuum energy (ρ > 0 with w = −1) provided
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FIG. 1. Deceleration parameter q versus α graph. Plotted
for stiff fluid (w = 1, black), radiation (w = 1

3
, brown), dust

(w = 0, blue), and positive vacuum energy (w = −1, red).

that α = 1
2 , whereas this source would lead to a de Sit-

ter universe in GR (α = 0). (ii) In the presence of stiff
fluid with a positive energy density (ρ > 0 with w = 1)
provided that α = − 1

2 , whereas this source would lead to

a ∝ t
1
3 in GR (α = 0).

Historically, on the other hand, the first such relativis-
tic cosmological model is the Einstein’s static universe
(aka the Einstein universe or the Einstein static eter-
nal universe) filled with dust and finite with a positive
(spherical) curvature [1]. To make a comparison, we now
include the spatial curvature in our model. Substituting
k
a2 term on the left-hand side of Eq. (22) and using along
with Eq. (23), a static universe having a positive spatial
curvature (k = 1) can be obtained with a w-dependent
coupling parameter

α = − (1 + 3w)
√
1 + 3w2

3 + 4w + 9w2
, (28)

and the constant positive energy density

ρ =

(

3 + 4w + 9w2
)

κa2 (1− w2)
, (29)

for −1 < w < 1. In the case of dust, we have α = − 1
3 and

a =
√

3
κρd

. Thus, we find that a dust-filled static universe

with a positive spatial curvature is possible without the
need of introducing a cosmological constant in contrast to
GR. It is also noteworthy that in the scale-independent
EMSG, any material source with a constant EoS param-
eter can generate a static universe that is spatially flat

in the presence of a fluid described by w = ±1 and posi-
tively curved in the presence of a fluid with −1 < w < 1.

IV. DE SITTER UNIVERSES

Another model that satisfies the perfect cosmological
principle is the standard de Sitter universe which is an ex-
panding model through a positive cosmological constant
devoid of any material source (a negative cosmological
constant induces anti-de Sitter universe) [2, 3]. Also, a
universe expanding in such a way can be realized in the
presence of a material source with constant energy den-
sity as well, and is named steady state universe [4, 5].
To obtain a de Sitter universe, viz., an exponentially

expanding universe, we choose

ρtot = const > 0, (30)

which, using in the modified Friedmann equations (21),
leads to

a ∝ e
√

κ

3 ρtot t and ptot = −ρtot, (31)

like in the standard de Sitter solution in GR provided
by the usual positive vacuum energy, which yields ρvac =
const > 0 with pvac = −ρvac (i.e., wvac = −1). We re-
mark that the standard de Sitter universe in GR is empty,
namely, it does not contain material sources (hence, there
is no observer in the universe). However, in the scale-
independent EMSG, the de Sitter universe can be real-
ized in the presence of any material source (hence, there
can be observer in the universe), provided that it has a
constant EoS parameter, w = const, for which two cases,
(i) w = −1, and (ii) w 6= −1, should be investigated
separately.

A. de Sitter Universe from dS/AdS vacua (w = −1)

In the presence of vacuum energy (w = −1), which
can yield either positive or negative constant energy den-
sity values, ρvac, the total EMT reads T tot

µν = −(1 −
2α)ρvacgµν ; resembling the usual vacuum energy with an
energy density scaled by (1− 2α) as follows;

ρtot = (1− 2α)ρvac. (32)

The condition ρtot > 0 implies (i) α < 1
2 for de Sitter

(dS) vacua (ρvac > 0), and (ii) α > 1
2 for anti-de Sit-

ter (AdS) vacua (ρvac < 0). The latter is of particular
interest as in this case, i.e., when α > 1

2 , de Sitter expan-
sion, which is by positive valued vacuum energy density
in GR, is driven by negative vacuum energy density in
the scale-independent EMSG. A negative vacuum energy
density is not only ubiquitous in the fundamental theoret-
ical physics without any complication, but also a theoret-
ical sweet spot; the negative vacuum energy density (pro-
duces an AdS background in GR and many other gravity
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theories, but a dS background in the scale-independent
EMSG) is welcome due to the celebrated AdS/CFT (con-
formal field theory) correspondence [48] and is preferred
by string theory and string-theory-motivated supergravi-
ties [49]. In contrast, the positive vacuum energy density
suffers from theoretical challenges: getting a vacuum so-
lution with a positive cosmological constant within string
theory or formulating QFT on the background of a dS
space (provided by ρvac > 0) has been a notoriously dif-
ficult task. [50, 51]

B. Steady State Universe: de Sitter universe in the
presence of any material source (w 6= −1)

In the presence of a source with a constant EoS param-
eter different than minus unity, if we impose ρ = const,
it turns out that the parameter α, the gravitational cou-
pling strength of the EMSG modification to GR, is not
arbitrary;

α = −
√
1 + 3w2

1 + 3w
, (33)

which can be seen from Eq. (24). The total energy den-
sity (17) is also constant in this case and reads,

ρtot = ρ

(

1− 4w

1 + 3w

)

, (34)

in which, due to the condition ρtot > 0, the EoS param-
eter must satisfy − 1

3 < w < 1. We have α = −1 and

ρtot = ρd for w = 0 (dust), and α = −
√
3
3 and ρtot =

ρr

3

for w = 1
3 (radiation). We note that the effective source

due to the scale-independent EMSG in this case resem-
bles the usual vacuum energy, whose density value is
constant and proportional to that of the physical source
(which also yields constant energy density ρ = const),
but is scaled by the EoS parameter of the source;

ρ̃ = − 4w

1 + 3w
ρ. (35)

Due to the fact that the energy density of the source
remains constant despite the expansion of the universe,
this is a steady state universe model extending the origi-
nal one [5], which assumes the only source in the universe
is dust, to sources with arbitrary constant EoS parame-
ter. In the presence of dust, we reproduce the original
steady state universe model. Indeed, assuming dust, we
find that ρd = const and pd = 0 while the effective source
(for which α = −1) reads ρ̃d = 0 and p̃d = −ρd. Substi-

tuting these into Eq. (14) gives T̃µν = −ρd(uµuν + gµν),

from which we have T̃00 = 0 and T̃ij = −ρdgij . We note

that T̃ dust
µν is indeed equivalent to the creation field tensor

Hoyle [5] used to modify the Einstein’s field equations of

GR, viz., Cµν = κT̃ dust
µν (when α = −1).

V. DUST DOMINATED UNIVERSE

In this section, we will consider a dust dominated uni-
verse in the framework of scale-independent EMSG. As-
suming ρd > 0 and pd = 0 (i.e., wd = 0) in Eq. (14) gives
rise to

T̃ dust
µν = αρd(uµuν + gµν), (36)

in which we have an effective source as

ρ̃d = 0 and p̃d = αρd, (37)

which has nonzero pressure but a vanishing energy den-
sity, and hence does not correspond to a physical source.
However, the dust itself behaves like a barotropic fluid
with constant EoS parameter equal to α.
The modified Friedmann equations (22) and (23) in

the case of dust read

ȧ2

a2
=

κ

3
ρd and

ä

a
= −κ

6
(1 + 3α)ρd, (38)

and the continuity equation (24) takes the following form

ρ̇d + 3
ȧ

a
ρd = −3α

ȧ

a
ρd. (39)

Let us now discuss the possible solutions of this model.
We recall that there is no restriction on α stemming from
the condition of ρtot > 0 and classify the solutions into
three categories as follows:

• The case α > −1: In this case, the scale factor and
energy density are

a ∝ t
2

3+3α and ρd ∝ a−3(1+α). (40)

From the acceleration equation given in (38), one
can see that we have decelerated expansion for
α > − 1

3 and accelerated expansion for −1 <

α < − 1
3 . When α = − 1

3 , there is no accelera-
tion/deceleration and the expansion is linear (i.e.,
a ∝ t).

• The case α = −1: This case implies ρ̇ = 0 and gives
rise to exponential expansion, therefore we obtain

a ∝ e
√

κρd
3 t and ρd = const. (41)

We note that this solution matches with the steady
state universe (in the case of w = 0) discussed in
Section IVB.

• The case α < −1: This case leads to a big rip,
which is driven by a phantom field in GR [52, 53].
We find

a ∝ (tc − t)
2

3+3α and ρd ∝ a−3(1+α), (42)

where t ≤ tc with tc being the critical time at which
a → ∞. It is notable that we obtain big rip without
introducing a phantom source (w < −1), but from
dust (wd = 0) itself.
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VI. RADIATION DOMINATED UNIVERSE

Let us consider a radiation dominated universe in the
same way. We assume ρr > 0 and pr =

ρr

3 (i.e., wr =
1
3 ).

Then, Eq. (14) leads to

T̃ rad
µν =

4√
3
αρruµuν +

2√
3
αρrgµν , (43)

in which we have an effective source as

ρ̃r = p̃r =
2√
3
αρr (44)

that is reminiscent of a barotropic fluid with a constant
EoS parameter equal to unity.
The modified Friedmann equations in the case of radi-

ation read

ȧ2

a2
=

κ

3

(

1 +
2√
3
α

)

ρr and
ä

a
= −κ

3

(

1 +
4√
3
α

)

ρr,

(45)

and the continuity equation (24) becomes

ρ̇r + 4
ȧ

a
ρr = − 4α

2α+
√
3

ȧ

a
ρr. (46)

We recall that the positivity of the total energy density,

ρtot > 0, implies α > −
√
3
2 . The Eq. (46) splits the

possible solutions into three categories as follows:

• The case α > −
√
3
3 : In this case, the scale factor

and energy density are

a ∝ t
2α+

√

3

6α+2
√

3 and ρr ∝ a
− 12α+4

√

3

2α+
√

3 . (47)

The acceleration equation given in (45) implies that

we have decelerated expansion for α > −
√
3
4 , and

in particular qr → 2 for α → ∞ (see Fig. 1). In

the range −
√
3
3 < α < −

√
3
4 , we have power-law

accelerated expansion. When α = −
√
3
4 , there is

no acceleration/deceleration and the expansion is
linear (i.e., a ∝ t).

• The case α = −
√
3
3 : This case requires ρ̇ = 0, and

hence, leads to

a ∝ e
√

κρr
3 t and ρr = const. (48)

We note that this exponentially expanding solution
matches with the steady state universe (in the case
of w = 1

3 ) discussed in Section IVB.

• The case −
√
3
2 < α < −

√
3
3 : In this case, the uni-

verse ends in a big rip. We see that

a ∝ (tc − t)
2α+

√

3

6α+2
√

3 and ρr ∝ a
− 12α+4

√

3

2α+
√

3 , (49)

where t ≤ tc with tc being the critical time at which
a → ∞. Note that we are able to obtain big rip
even from radiation (w = 1

3 ) without introducing a
phantom source (w < −1).

VII. QUIESCENT UNIVERSE

The quiescent universe which possesses an isotropic ini-
tial singularity instead of a chaotic initial state [8], was es-
tablished by Barrow in 1978 [10], and subsequently stud-
ied in detail by many researchers in the field (see [54, 55]
and references therein). The model postulates that the
early Universe originates from smoothness and regular-
ity and evolves to a state of disorder due to gravitational
attraction dominant on large scales. In what follows,
we will introduce anisotropy into the scale-independent
EMSG and investigate the model in the framework of
quiescent cosmology.
We consider the simplest anisotropic generalization of

the spatially flat RW spacetime metric, viz., the Bianchi
type-I spacetime metric;

ds2 = −dt2 +A2(t)dx2 +B2(t)dy2 + C2(t)dz2, (50)

where {A(t), B(t), C(t)} are the expansion scale factors
along the principal axes {x, y, z} [56–58]. The corre-

sponding average expansion scale factor is s = (ABC)
1
3 ,

and from which we have ṡ
s
= 1

3 (
Ȧ
A

+ Ḃ
B

+ Ċ
C
). In this

case, the modified field equations for the isotropic pres-
sure fluid given in (11) read

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
= κρtot, (51)

− ḂĊ

BC
− B̈

B
− C̈

C
= κptot, (52)

− ĊȦ

CA
− C̈

C
− Ä

A
= κptot, (53)

− ȦḂ

AB
− Ä

A
− B̈

B
= κptot, (54)

where ρtot (total energy density) and ptot (total pressure)
are already defined in Eqs. (17) and (18). Let us define
the following total EoS parameter;

wtot ≡
ptot
ρtot

= w +
α(1 − w2)

4αw +
√
1 + 3w2

. (55)

Here we certainly have wtot = w in the absence of EMSG
modification (α = 0). With the use of the definition
above, the continuity equation (24) in terms of the aver-
age scale factor s reads

ρ̇+ 3
ṡ

s
ρ(1 + wtot) = 0, (56)

and the behavior of the energy density becomes

ρ ∝ s−3(1+wtot). (57)

The expansion anisotropy could be quantified through
the shear scalar σ2 ≡ 1

2σαβ σ
αβ , where σαβ = 1

2 (uµ;ν +

uν;µ)h
µ
αh

ν
β − 1

3u
µ
;µ hαβ is the shear tensor. Here hµν =

gµν + uµuν is the so called projection tensor. Using
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the definitions above along with the modified field equa-
tions (51)- (54), for the Bianchi type-I spacetime metric
(50), the shear propagation equation reads

σ̇ + 3
ṡ

s
σ = 0, (58)

and hence, implies

σ2 ∝ s−6. (59)

Also, the modified Friedmann equation (51) takes the
following form

ṡ2

s2
− σ2

3
=

κ

3
ρtot. (60)

Comparing (57) and (59), we see that the condition for
Barrow’s quiescent universe reads wtot = 1. Note that
when wtot < 1, the dynamics will approach the vacuum
Kasner metric [59] as s → 0. The Kasner metric [59]
is the exact solution of GR in vacuum for the Bianchi
type-I spacetime metric (50) and represented by the line
element ds2 = −dt2+ t2p1 dx2+ t2p2 dy2+ t2p3 dz2 where
p1, p2 and p3 are constants that satisfy the conditions
p1 + p2 + p3 = p21 + p22 + p23 = 1. Since the shear scalar
dominates at early times for wtot < 1, the average scale
factor changes as s ∝ t

1
3 . In the anisotropic model under

consideration, the condition wtot = 1 in general implies

α =

√
1 + 3w2

1− 3w
, (61)

which leads to

ṡ2

s2
=

κ

3

(

1 +
4w

1− 3w

)

ρ+
σ2

3
, (62)

except for w = {−1, 13 , 1}. We note that in these limits
the material source positively contributes to the modified
Friedmann equation (i.e., ρtot > 0) when −1 < w < 1

3 .
Let us now discuss the three special cases: (i) In the case
of stiff fluid (w = 1), we recover the usual quiescent uni-
verse independently of the value of α, i.e., ρ ∝ s−6, yet
the total energy density reads ρtot = ρ(1 + 2α). For the
stiff fluid, we recall the condition α > − 1

2 if ρtot > 0. (ii)
When the vacuum energy (w = −1) is considered, the to-
tal energy density is constant, that is ρtot = (1−2α)ρvac,
as in GR. Note that for α = 1

2 , we obtain Kasner vacuum
solution of GR, in spite of that the universe is filled with
the vacuum energy. (iii) In the case of radiation, w = 1

3 ,
the total EoS parameter approaches to unity, wtot → 1,
as α → ∞.
We would like to point out that in GR, isotropic ini-

tial singularity can be achieved only in the presence of
stiff fluid described by w = 1 that corresponds to the
causality limit, and therefore the only possible scenario
is Barrow’s quiescent universe. However, in EMSG we
obtain the total EoS parameter, wtot, not by a physical
source but by the contribution of an effective source aris-
ing from EMSG modification. Thus, our theory permits

an ultra-stiff ekpyrotic EoS parameter (w > 1 in GR)
effectively and relaxes the condition for an isotropic ini-
tial singularity to wtot ≥ 1. In such a case, the total en-
ergy density dominates as the average scale factor goes to
small values (i.e., in the early Universe), hence isotropizes
the universe such that it becomes well approximated by

RW metric [60]. For instance, when α < −
√
3
2 , radiation

varies faster than the shear scalar (i.e. wtot > 1), yet con-
tributes to the modified Friedmann equation negatively
(see Eqs. (17) and (60)). If we consider the presence of
dust, we have wtot ≥ 1 for α ≥ 1.
The shear scalar that propagates as exactly as the

stiff-fluid does is specific to the Bianchi type-I metric
which does not induce any restoring forcelike term in
the shear propagation equation (see Eq. (58)). More
complicated spacetimes, however, brings in such terms
from the anisotropic spatial curvature of the metric itself
[57, 58, 61], and hence, renders the shear scalar grow
slower than s−6 with decreasing s. For instance, the
Bianchi VII0 metric – the most general spatially homo-
geneous and flat anisotropic spacetime metric – leads to,
in the general relativistic universes close to isotropy, the
shear scalar to scale as σ2 ∝ s−5 during the dust era [61].
Therefore, the discussion in this section can be extended
to more generic anisotropic spacetimes and the resulting
shear scalar propagation may further relax the condition
required for isotropizing the initial singularity.

VIII. CONCLUSION

We have considered the scale-independent energy–

momentum squared gravity (EMSG) [35] on theoreti-
cal ground in order to study some historical and novel
cosmological models that it gives rise to. This model
provided by f(TµνT

µν) = α
√

TµνT µν (where α is the
dimensionless constant parameter) distinguishes from
other EMSG models in the sense that the new terms
in the Einstein field equations arising from the scale-
independent EMSG theory enter with the same power
as the usual terms from Einstein-Hilbert part of the ac-
tion, thereby the scale-independent EMSG modification
affects the field equations independently of the energy
density scale considered. Nevertheless, the model vio-
lates the energy-momentum tensor (EMT) conservation
and matter-current conservation in general and hence,
permits a process of matter creation/annihilation in an
expanding universe on cosmological scales (in the space
between galaxies). Consequently, the continuity equation
comes with extra terms and the scale factor dependencies
of the energy densities are modified by the model param-
eter α. In this study, we have revisited some historical
cosmological models such as (Einstein) static universe
and de Sitter/steady state universes, all compatible with
the perfect cosmological principle. We have obtained a
static, but spatially flat universe when the source is pos-
itive vacuum energy (w = −1) or stiff fluid (w = 1).
On the other hand, in the presence of a fluid with an
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EoS parameter in the range −1 < w < 1, we have repro-
duced the Einstein’s original static eternal universe which
has a positive (spherical) spatial curvature and a finite
size, even without invoking a cosmological constant. In
the presence of positive vacuum energy, for α > 1

2 , the
scale-independent EMSG drives de Sitter (exponential)
expansion as in GR. While a negative vacuum energy
can produce only anti-de Sitter expansion in GR, inter-
estingly, in the scale-independent EMSG, de Sitter ex-
pansion can also be driven by negative vacuum energy
when α < 1

2 . This property of the model is of great im-
portance, since theoretical considerations from high en-
ergy physics is indeed in favor of AdS vacua rather than
dS vacua. The scale-independent EMSG reproduces the
original steady state universe in the presence of dust pro-
vided that α = −1, and in this case, the effective EMT
which comprises the new contributions coming from the
modification is equivalent to the creation field proposed
by Hoyle [5] when constructing the original steady state
universe model. Also, it provides us with the opportunity
to extend the steady state model from dust (w = 0) to
fluids with arbitrary constant EoS parameters. In order
to achieve exponential (de Sitter) expansion, the EoS pa-
rameter is required to be in the interval − 1

3 < w < 1 and
also controls the nonarbitrary parameter α. We have dis-
cussed viable solutions/scenarios for dust (w = 0) domi-
nated and radiation (w = 1

3 ) dominated universes. In the
scale-independent EMSG, dust behaves like a barotropic
perfect fluid with constant EoS parameter α. As we have
mentioned above, dust dominated universe corresponds
to a steady state model when α = −1. For larger val-
ues of α, the model leads to accelerated, decelerated and
linear (zero acceleration) expansions. As an interesting
feature of the scale-independent EMSG, for smaller val-
ues of α, dust dominated universe ends in a big rip that
can be realized solely by a phantom (w < −1) source in
GR. Similarly, radiation dominated universe corresponds

to a steady state model when α = −
√
3
3 . For smaller

values of α, radiation dominated universe ends in a big
rip whereas for larger values, exhibits power-law accel-
erated/decelerated and linear (zero acceleration) expan-
sions. We have also investigated the possible effects of the
simplest anisotropic generalization of the spatially flat
RW spacetime, viz., the Bianchi type-I spacetime, on the
theory. Considering the overall contributions of matter
terms to the generalized Friedmann equation as that of a
perfect fluid with total EoS parameter wtot (accordingly,

with total energy density ρtot ), we have found that the
condition for Barrow’s original quiescent universe model
is wtot = 1. We have recovered Barrow’s model in the
presence of stiff fluid provided that α > − 1

2 , addition-
ally, EMSG could also achieve this scenario for other flu-
ids, particularly for dust (when α = 1). Furthermore,
we have shown that the condition for an isotropic initial
singularity relaxes to wtot > 1 owing to that EMSG ef-
fectively allows ultra-stiff EoS parameters (w > 1) lead-
ing to the total energy density, ρtot, grow faster than
the expansion anisotropy as we go to the early universe.
Likewise, if we switch from Bianchi type-I metric to more
generic ones, it is possible to further relax the condition
for isotropic initial singularity due to the altered evolu-
tion of expansion anisotropy.
We see that both the historical and novel models pre-

sented in the current paper are promising enough to jus-
tify further investigation of the scale-independent EMSG.
Also, in order to address the current tensions such as H0

tension in cosmology, revisiting such historical models in
different contexts might enable us to develop new ap-
proaches that are hard to come to mind when we strictly
stay within the framework of the standard ΛCDM model
assuming GR. We would like to emphasize that we have
confined this study to only the cases in which the total
contribution of the material stresses to the Friedmann
equation, ρtot, is positive since in contrast to GR, other-
wise is also possible for EMSG in the presence of spatial
curvature or anisotropy. Therefore, with the inclusion
of curvature/anisotropy in EMSG, the total energy den-
sity can be allowed to take negative values leading to a
phantom-like (w < −1) behavior. In the light of discus-
sions conducted in this study, it is conceivable that such
generalizations of the model will pave the way for con-
structing some interesting cosmological models, regard-
ing especially the initial and final states of the Universe,
which cannot be realized in GR with the use of standard
sources. We reserve this analysis for our future works.
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Ö. Akarsu, Y. Akrami, G. Alestas, D. Aloni, L. Amendola
and L.A. Anchordoqui, et al., Cosmology intertwined:
A review of the particle physics, astrophysics, and cos-
mology associated with the cosmological tensions and
anomalies, JHEAp 34, 49 (2022). 2203.06142

[46] Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sep-
angi and S. Shahidi, Further matters in
space-time geometry: f(R, T, RµνT

µν) gravity,
Phys. Rev. D 88, 044023 (2013). 1304.5957

[47] S.D. Odintsov and D. Sáez-Gómez, f(R, T,RµνT
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