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Currently, it appears that the best method for non-Gaussianity detection in the cosmic microwave background (CMB) consists
in calculating the kurtosis of the wavelet coefficients. We know that wavelet-kurtosis outperforms other methods such as the bis-
pectrum, the genus, ridgelet-kurtosis, and curvelet-kurtosis on an empirical basis, but relatively few studies have compared other
transform-based statistics, such as extreme values, or more recent tools such as higher criticism (HC), or proposed “best possible”
choices for such statistics. In this paper, we consider two models for transform-domain coefficients: (a) a power-law model, which
seems suited to the wavelet coefficients of simulated cosmic strings, and (b) a sparse mixture model, which seems suitable for the
curvelet coefficients of filamentary structure. For model (a), if power-law behavior holds with finite 8th moment, excess kurtosis
is an asymptotically optimal detector, but if the 8th moment is not finite, a test based on extreme values is asymptotically optimal.
For model (b), if the transform coefficients are very sparse, a recent test, higher criticism, is an optimal detector, but if they are
dense, kurtosis is an optimal detector. Empirical wavelet coefficients of simulated cosmic strings have power-law character, infinite
8th moment, while curvelet coefficients of the simulated cosmic strings are not very sparse. In all cases, excess kurtosis seems to
be an effective test in moderate-resolution imagery.

Keywords and phrases: cosmology, cosmological microwave background, non-Gaussianity detection, multiscale method, wavelet,
curvelet.

1. INTRODUCTION

The cosmic microwave background (CMB), discovered in
1965 by Penzias and Wilson [1], is a relic of radiation emit-
ted some 13 billion years ago, when the universe was about
370 000 years old. This radiation exhibits characteristic of an
almost perfect blackbody at a temperature of 2.726 kelvins

as measured by the FIRAS experiment on board COBE satel-
lite [2]. The DMR experiment, again on board COBE, de-
tected and measured angular small fluctuations of this tem-
perature, at the level of a few tens of microkelvins, and at
angular scale of about 10 degrees [3]. These so-called tem-
perature anisotropies were predicted as the imprints of the
initial density perturbations which gave rise to present large
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Figure 1: Courtesy of the WMAP team (reference to the website).
All sky map of the CMB anisotropies measured by the WMAP satel-
lite.

scale structures as galaxies and clusters of galaxies. This rela-
tion between the present-day universe and its initial condi-
tions has made the CMB radiation one of the preferred tools
of cosmologists to understand the history of the universe,
the formation and evolution of the cosmic structures, and
physical processes responsible for them and for their cluster-
ing.

As a consequence, the last several years have been a par-
ticularly exciting period for observational cosmology focus-
ing on the CMB. With CMB balloon-borne and ground-
based experiments such as TOCO [4], BOOMERanG [5],
MAXIMA [6], DASI [7], and Archeops [8], a firm detection
of the so-called “first peak” in the CMB anisotropy angular
power spectrum at the degree scale was obtained. This detec-
tion has been very recently confirmed by the WMAP satel-
lite [9, 10] (see Figure 1), which detected also the second and
third peaks. WMAP satellite mapped the CMB temperature
fluctuations with a resolution better than 15 arcminutes and
a very good accuracy marking the starting point of a new
era of precision cosmology that enables us to use the CMB
anisotropy measurements to constrain the cosmological pa-
rameters and the underlying theoretical models.

In the framework of adiabatic cold dark matter models,
the position, amplitude, and width of the first peak indeed
provide strong evidence for the inflationary predictions of a
flat universe and a scale-invariant primordial spectrum for
the density perturbations. Furthermore, the presence of sec-
ond and third peaks confirms the theoretical prediction of
acoustic oscillations in the primeval plasma and sheds new
light on various cosmological and inflationary parameters,
in particular, the baryonic content of the universe. The accu-
rate measurements of both the temperature anisotropies and
polarised emission of the CMB will enable us in the very near
future to break some of the degeneracies that are still affect-
ing parameter estimation. It will also allow us to probe more
directly the inflationary paradigm favored by the present ob-
servations.

Testing the inflationary paradigm can also be achieved
through detailed study of the statistical nature of the CMB
anisotropy distribution. In the simplest inflation models,
the distribution of CMB temperature fluctuations should be
Gaussian, and this Gaussian field is completely determined
by its power spectrum. However, many models such as mul-
tifield inflation (e.g., [11] and the references therein), su-

per strings, or topological defects predict non-Gaussian con-
tributions to the initial fluctuations [12, 13, 14]. The sta-
tistical properties of the CMB should discriminate mod-
els of the early universe. Nevertheless, secondary effects like
the inverse Compton scattering, the Doppler effect, lensing,
and others add their own contributions to the total non-
Gaussianity.

All these sources of non-Gaussian signatures might have
different origins and thus different statistical and morpho-
logical characteristics. It is therefore not surprising that a
large number of studies have recently been devoted to the
subject of the detection of non-Gaussian signatures. Many
approaches have been investigated: Minkowski functionals
and the morphological statistics [15, 16], the bispectrum
(3-point estimator in the Fourier domain) [17, 18, 19],
the trispectrum (4-point estimator in the Fourier domain)
[20], wavelet transforms [21, 22, 23, 24, 25, 26, 27], and
the curvelet transform [27]. Different wavelet methods have
been studied, such as the isotropic à trous algorithm [28]
and the biorthogonal wavelet transform [29]. (The biorthog-
onal wavelet transform was found to be the most sensitive
to non-Gaussianity [27].) In [27, 30], it was shown that the
wavelet transform was a very powerful tool to detect the non-
Gaussian signatures. Indeed, the excess kurtosis (4th mo-
ment) of the wavelet coefficients outperformed all the other
methods (when the signal is characterised by a nonzero 4th
moment).

Nevertheless, a major issue of the non-Gaussian studies
in CMB remains our ability to disentangle all the sources of
non-Gaussianity from one another. Recent progress has been
made on the discrimination between different possible ori-
gins of non-Gaussianity. Namely, it was possible to separate
the non-Gaussian signatures associated with topological de-
fects (cosmic strings (CS)) from those due to Doppler effect
of moving clusters of galaxies (both dominated by a Gaussian
CMB field) by combining the excess kurtosis derived from
both the wavelet and the curvelet transforms [27].

This success argues for us to construct a “toolkit” of well-
understood and sensitive methods for probing different as-
pects of the non-Gaussian signatures.

In that spirit, the goal of the present study is to consider
the advantages and limitations of detectors which apply kur-
tosis to transform coefficients of image data. We will study
plausible models for transform coefficients of image data and
compare the performance of tests based on kurtosis of trans-
form coefficients to other types of statistical diagnostics.

At the center of our analysis are the following two facts:

(A) the wavelet/curvelet coefficients of CMB are Gaussian
(we implicitly assume the most simple inflationary
scenario);

(B) the wavelet/curvelet coefficients of topological defect
and Doppler effect simulations are non-Gaussian.

We develop tests for non-Gaussianity for two models of
statistical behavior of transform coefficients. The first, better
suited for wavelet analysis, models transform coefficients of
cosmic strings as following a power law. The second, theoret-
ically better suited for curvelet coefficients, assumes that the
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salient features of interest are actually filamentary (it can be
residual strips due to a nonperfect calibration), which gives
the curvelet coefficients a sparse structure.

We review some basic ideas from detection theory, such
as likelihood ratio detectors, and explain why we prefer non-
parametric detectors, valid across a broad range of assump-
tions.

In the power-law setting, we consider two kinds of non-
parametric detectors. The first, based on kurtosis, is asymp-
totically optimal in the class of weakly dependent symmetric
non-Gaussian contamination with finite 8th moments. The
second, the Max, is shown to be asymptotically optimal in the
class of weakly dependent symmetric non-Gaussian contam-
ination with infinite 8th moment. While the evidence seems
to be that wavelet coefficients of CS have about 6 existing
moments, indicating a decisive advantage for extreme-value
statistics, the performance of kurtosis-based tests and Max-
based tests on moderate sample sizes (e.g., 64 K transform
coefficients) does not follow the asymptotic theory; excess
kurtosis works better at these sample sizes.

In the sparse-coefficients setting, we consider kurtosis,
the Max, and a recent statistic called higher criticism (HC)
[31]. Theoretical analysis suggests that curvelet coefficients
of filamentary features should be sparse, with about n1/4 sub-
stantial nonzero coefficients out of n coefficients in a sub-
band; this level of sparsity would argue in favor of Max/HC.
However, empirically, the curvelet coefficients of actual CS
simulations are not very sparse. It turns out that kurtosis out-
performs Max/HC in simulation.

Summarizing, the work reported here seems to show
that for all transforms considered, the excess kurtosis out-
performs alternative methods despite their strong theoreti-
cal motivation. A reanalysis of the theory supporting those
methods shows that the case for kurtosis can also be justi-
fied theoretically based on observed statistical properties of
the transform coefficients not used in the original theoretic
analysis.

2. DETECTING FAINT NON-GAUSSIAN SIGNALS
SUPERPOSED ON A GAUSSIAN SIGNAL

The superposition of a non-Gaussian signal with a Gaussian
signal can be modeled as Y = N + G, where Y is the ob-
served image, N is the non-Gaussian component, and G is
the Gaussian component. We are interested in using trans-
form coefficients to test whether N ≡ 0 or not.

2.1. Hypothesis testing and likelihood ratio test

Transform coefficients of various kinds (Fourier, wavelet,
etc.) have been used for detecting non-Gaussian behavior in
numerous studies. Let X1,X2, . . . ,Xn be the transform coeffi-
cients of Y ; we model these as

Xi =
√

1− λ · zi +
√
λ ·wi, 0 < λ < 1, (1)

where λ > 0 is a parameter, zi
iid∼ N(0, 1) are the trans-

form coefficients of the Gaussian component G, wi
iid∼ W are

the transform coefficients of the non-Gaussian component
N , and W is some unknown symmetrical distribution. Here
without loss of generality, we assume the standard deviation
for both zi and wi is 1.

Phrased in statistical terms, the problem of detecting the
existence of a non-Gaussian component is equivalent to dis-
criminating between the hypotheses

H0 : Xi = zi, (2)

H1 : Xi =
√

1− λ · zi +
√
λ ·wi, 0 < λ < 1, (3)

and N ≡ 0 is equivalent to λ ≡ 0. We call H0 the null hypoth-
esis and H1 the alternative hypothesis.

When both W and λ are known, then the optimal test for
problem (2)-(3) is simply the Neyman-Pearson likelihood
ratio test (LRT) [32, page 74]. The size of λ = λn for which
reliable discrimination between H0 and H1 is possible can be
derived using asymptotics. If we assume that the tail proba-
bility of W decays algebraically,

lim
x→∞

xαP{|W| > x} = Cα, Cα is a constant (4)

(we say W has a power-law tail), and we calibrate λ to de-
cay with n, so that increasing amounts of data are offset by
increasingly hard challenges:

λ = λn = n−r , (5)

then there is a threshold effect for the detection problem (2)-
(3). In fact, define

ρ∗1 (α) =




2

α
, α ≤ 8,

1

4
, α > 8,

(6)

then, as n→∞, LRT is able to reliably detect for large n when
r < ρ∗1 (α), and is unable to detect when r > ρ∗1 (α); this is
proved in [33]. Since LRT is optimal, it is not possible for
any statistic to reliably detect when r > ρ∗1 (α). We call the
curve r = ρ∗1 (α) in the α-r plane the detection boundary; see
Figure 2.

In fact, when r < 1/4, asymptotically LRT is able to reli-
ably detect whenever W has a finite 8th moment, even with-
out the assumption that W has a power-law tail. Of course,
the case that W has an infinite 8th moment is more compli-
cated, but if W has a power-law tail, then LRT is also able to
reliably detect if r < 2/α.

Despite its optimality, LRT is not a practical procedure.
To apply LRT, one needs to specify the value of λ and the
distribution of W , which seems unlikely to be available. We
need nonparametric detectors, which can be implemented
without any knowledge of λ or W , and depend on Xi’s
only. In the section below, we are going to introduce two
nonparametric detectors: excess kurtosis and Max; later in
Section 4.3, we will introduce a third nonparametric detec-
tor: higher criticism (HC).
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Figure 2: Detectable regions in the α-r plane. With (α, r) in the
white region on the top or in the undetectable region, all methods
completely fail for detection. With (α, r) in the white region on the
bottom, both excess kurtosis and Max/HC are able to detect reliably.
In the shaded region to the left, Max/HC is able to detect reliably,
but excess kurtosis completely fails, and in the shaded region to the
right, excess kurtosis is able to detect reliably, but Max/HC com-
pletely fails.

2.2. Excess kurtosis and Max

We pause to review the concept of p-value briefly. For a
statistic Tn, the p-value is the probability of seeing equally
extreme results under the null hypothesis:

p = PH0

{
Tn ≥ tn

(
X1,X2, . . . ,Xn

)}
; (7)

here PH0 refers to probability under H0, and
tn(X1,X2, . . . ,Xn) is the observed value of statistic Tn.
Notice that the smaller the p-value, the stronger the evidence
against the null hypothesis. A natural decision rule based
on p-values rejects the null when p < α for some selected
level α, and a convenient choice is α = 5%. When the null
hypothesis is indeed true, the p-values for any statistic
are distributed as uniform U(0, 1). This implies that the
p-values provide a common scale for comparing different
statistics.

We now introduce two statistics for comparison.

Excess kurtosis (κn)

Excess kurtosis is a widely used statistic, based on the 4th mo-
ment. For any (symmetrical) random variable X , the kurtosis
is

κ(X) = EX4

(
EX2

)2 − 3. (8)

The kurtosis measures a kind of departure of X from Gaus-
sianity, as κ(z) = 0.

Empirically, given n realizations of X , the excess kurtosis
statistic is defined as

κn
(
X1,X2, . . . ,Xn

)
=
√

n

24

[
(1/n)

∑
i X

4
i(

(1/n)
∑

i X
2
i

)2 − 3

]
. (9)

When the null is true, the excess kurtosis statistic is asymp-
totically normal:

κn
(
X1,X2, . . . ,Xn

)
−→w N(0, 1), n −→ ∞, (10)

thus for large n, the p-value of the excess kurtosis is approxi-
mately

p̃ = Φ̄
−1
(
κn
(
X1,X2, . . . ,Xn

))
, (11)

where Φ̄(·) is the survival function (upper-tail probability)
of N(0, 1).

It is proved in [33] that the excess kurtosis is asymptoti-
cally optimal for the hypothesis testing of (2)-(3) if

E
[
W8
]
<∞. (12)

However, when E[W8] = ∞, even though kurtosis is well
defined (E[W4] < ∞), there are situations in which LRT is
able to reliably detect but excess kurtosis completely fails. In
fact, by assuming (4)-(5) with an α < 8, if (α, r) falls into
the shaded region to the left of Figure 2, then LRT is able to
reliably detect, however, excess kurtosis completely fails. This
shows that in such cases, excess kurtosis is not optimal; see
[33].

Max (Mn)

The largest (absolute) observation is a classical and fre-
quently used nonparametric statistic:

Mn = max
(∣∣X1

∣∣,
∣∣X2

∣∣, . . . ,
∣∣Xn

∣∣), (13)

under the null hypothesis,

Mn ≈
√

2 logn, (14)

and, moreover, by normalizing Mn with constants cn and dn,
the resulting statistic converges to the Gumbel distribution
Ev, whose cdf is e−e

−x
:

Mn − cn
dn

−→w Ev, (15)

where approximately

dn =
√

6Sn
π

, cn = X̄ − 0.5772dn; (16)

here X̄ and Sn are the sample mean and sample standard de-
viation of {Xi}ni=1, respectively. Thus a good approximation
of the p-value for Mn is

p̃ = exp

(
− exp

(
− Mn − cn

dn

))
. (17)

We have tried the above experiment for n = 2442, and found
that taking cn = 4.2627, dn = 0.2125 gives a good approxi-
mation.
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Assuming (4)-(5) and α < 8, or λ = n−r , and that W has
a power-law tail with α < 8, it is proved in [33] that Max
is optimal for hypothesis testing (2)-(3). Recall if we further
assume 1/4 < r < 2/α, then asymptotically excess kurtosis
completely fails; however, Max is able to reliably detect and is
competitive to LRT.

On the other hand, recall that excess kurtosis is optimal
for the case α > 8. In comparison, in this case, Max is not op-
timal. In fact, if we further assume 2/α < r < 1/4, then excess
kurtosis is able to reliably detect, but Max will completely fail.

In Figure 2, we compared the detectable regions of the
excess kurtosis and Max in the α-r plane.

To conclude this section, we mention an alternative way
to approximate the p-values for any statistic Tn. This alterna-
tive way is important in case that an asymptotic (theoretic)
approximation is poor for moderate large n, an example is
the statistic HC∗n we will introduce in Section 4.3; this alter-
native way is helpful even when the asymptotic approxima-
tion is accurate. Now the idea is that, under the null hypoth-
esis, we simulate a large number (N = 104 or more) of Tn:

T
(1)
n ,T

(2)
n , . . . ,T

(N)
n , we then tabulate them. For the observed

value tn(X1,X2, . . . ,Xn), the p-value will then be well approx-
imated by

1

N
· #
{
k : T(k)

n ≥ tn
(
X1,X2, . . . ,Xn

)}
, (18)

and the larger the N , the better the approximation.

2.3. Heuristic approach

We have exhibited a phase-change phenomenon, where the
asymptotically optimal test changes depending on power-law
index α. In this section, we develop a heuristic analysis of
detectability and phase change.

The detection property of Max follows from compar-
ing the ranges of data. Recall that Xi =

√
1− λn · zi +√

λn ·wi, the range of {zi}ni=1 is roughly (−
√

2 logn,
√

2 logn),

and the range of {
√
λn · wi}ni=1 is

√
λn · (−n1/α,n1/α) =

(−n1/α−r/2,n1/α−r/2); so, heuristically,

Mn ≈ max
{√

2 logn,n1/α−r/2
}

; (19)

for large n, notice that

n1/α−r/2 ≫
√

2 logn, if r <
2

α
,

n1/α−r/2 ≪
√

2 logn, if r >
2

α
,

(20)

thus if and only if r < 2/α, Mn for the alternative will differ
significantly from Mn for the null, and so the criterion for
detectability by Max is r < 2/α.

Now we study detection by excess kurtosis. Heuristically,

κn ≈
(

1√
24

)
· κ
(√

1− λn · zi +
√
λn ·wi

)

=
(

1√
24

)
·
√
n · λ2

n · κ(W) = O
(
n1/2−2r

)
,

(21)

thus if and only if r < 1/4, κn for the alternative will differ
significantly from κn under the null, and so the criterion for
detectability by excess kurtosis is r < 1/4.

This analysis shows the reason for the phase change. In
Figure 2, when the parameter (α, r) is in the shaded region to

the left, for sufficiently large n, n1/α−r/2 ≫
√

2 logn and the

strongest evidence against the null is in the tails of the data
set, which Mn is indeed using. However, when (α, r) moves
from the shaded region to the left to the shaded region to

the right, n1/α−r/2 ≪
√

2 logn, the tails no longer contain any

important evidence against the null, instead, the central part
of the data set contains the evidence. By symmetry, the 1st
and the 3rd moments vanish, and the 2nd moment is 1 by
the normalization; so the excess kurtosis is in fact the most
promising candidate of detectors based on moments.

The heuristic analysis is the essence for theoretic proof
as well as empirical experiment. Later in Section 3.4, we will
have more discussions for comparing the excess kurtosis with
Max down this vein.

3. WAVELET COEFFICIENTS OF COSMIC STRINGS

3.1. Simulated astrophysical signals

The temperature anisotropies of the CMB contain the con-
tributions of both the primary cosmological signal, directly
related to the initial density perturbations, and the secondary
anisotropies. The latter are generated after matter-radiation
decoupling [34]. They arise from the interaction of the CMB
photons with the neutral or ionised matter along their path
[35, 36, 37].

In the present study, we assume that the primary CMB
anisotropies are dominated by the fluctuations generated
in the simple single field inflationary cold-dark-matter
model with a nonzero cosmological constant. The CMB
anisotropies have therefore a Gaussian distribution. We al-
low for a contribution to the primary signal from topological
defects, namely, cosmic strings (CS), as suggested in [38, 39].
See Figures 3 and 4.

We use for our simulations the cosmological parame-
ters obtained from the WMAP satellite [10] and a normal-
ization parameter σ8 = 0.9. Finally, we obtain the so-called
“simulated observed map,” D, that contains the two pre-
vious astrophysical components. It is obtained from Dλ =√

1− λCMB +
√
λCS, where CMB and CS are, respectively,

the CMB and the cosmic string simulated maps. λ = 0.18
is an upper limit constant derived by [38]. All the simulated
maps have 500 × 500 pixels with a resolution of 1.5 arcmin-
utes per pixel.

3.2. Evidence for E[W8] = ∞
For the wavelet coefficients on the finest scale of the cosmic
string map in Figure 3b, by throwing away all the coefficients
related to pixels on the edge of the map, we have n = 2442

coefficients; we then normalize these coefficients so that the
empirical mean and standard deviation are 0 and 1, respec-
tively; we denote the resulting dataset by {wi}ni=1.
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(a) (b)

Figure 3: (a) Primary cosmic microwave background anisotropies
and (b) simulated cosmic string map.

Assuming {wi}ni=1 are independent samples from a distri-
bution W , we have seen in Section 2 that whether excess kur-
tosis is better than Max depends on the finiteness of E[W8].
We now analyze {wi}ni=1 to learn about E[W8].

Let

m̂
(n)
8 = 1

n

n∑

i=1

w8
i (22)

be the empirical 8th moment of W using n samples. In the-

ory, if E[W8] < ∞, then m̂
(n)
8 → E[W8] as n → ∞. So one

way to see if E[W8] is finite is to observe how m̂
(n)
8 changes

with n.
Technically, since we only have n = 2442 samples, we can

compare

m̂
(n/2k)
8 , k = 0, 1, 2, 3, 4; (23)

if these values are roughly the same, then there is strong evi-
dence for E[W8] < ∞; otherwise, if they increase with sam-

ple size, that is evidence for E[W8] = ∞. Here m
(n/2k)
8 is an

estimate of E[W8] using n/2k subsamples of {wi}ni=1.

For k = 1, 2, 3, 4, to obtain m̂
(n/2k)
8 , we randomly draw

subsamples of size n/2k from {wi}ni=1, and then take the aver-
age of the 8th power of this subsequence; we repeat this pro-

cess 50 000 times, and we let m̂
(n/2k)
8 be the median of these

50 000 average values. Of course when k = 0, m̂
(n/2k)
8 is ob-

tained from all n samples.
The results corresponding to the first wavelet band are

summarized in Table 1. From the table, we have seen that
m̂

(n)
8 is significantly larger than m̂

(n/8)
8 and m̂

(n/16)
8 ; this sup-

ports that E[W8] = ∞. Similar results were obtained from
the other bands. In comparison, in Table 1, we also list the
4th, 5th, 6th, and 7th moments. It seems that the 4th, 5th,
and 6th moments are finite, but the 7th and 8th moments
are infinite.

3.3. Power-law tail of W

Typical models for heavy-tailed data include exponential tails
and power-law tails. We now compare such models to the
data on wavelet coefficients forW ; the Gaussian model is also
included as comparison.

Figure 4: Simulated observation containing the CMB and the CS
(λ = 0.18).

We sort the |wi|’s in descending order, |w|(1) > |w|(2) >
· · · > |w|(n), and take the 50 largest samples |w|(1) > |w|(2) >
· · · > |w|(50). For a power-law tail with index α, we expect
that for some constant Cα,

log

(
i

n

)
≈ log

(
Cα

)
− α log

(
|w|(i)

)
, 1 ≤ i ≤ 50, (24)

so there is a strong linear relationship between log(i/n) and
log(|w|(i)). Similarly, for the exponential model, we expect a
strong linear relationship between log(i/n) and |w|(i), and for
the Gaussian model, we expect a strong linear relationship
between log(i/n) and |w|2(i).

For each model, to measure whether the “linearity” is
sufficient to explain the relationship between log(i/n) and
log(|w|(i)) (or |w|(i), or |w|2(i)), we introduce the following
z-score:

Zi =
√
n

[
p̂i − i/n

i/n(1− i/n)

]
, (25)

where p̂i is the linear fit using each of the three models. If
the resulting z-scores is random and have no specific trend,
the model is appropriate; otherwise, the model may need im-
provement.

The results are summarized in Figure 5. The power-law
tail model seems the most appropriate: the relationship be-
tween log(i/n) and log(|w|(i)) looks very close to linear, the
z-score looks very small, and the range of z-scores much nar-
rower than the other two. For the exponential model, the lin-
earity is fine at the first glance, however, the z-score is de-
creasing with i, which implies that the tail is heavier than
estimated. The Gaussian model fits much worse than expo-
nential. To summarize, there is strong evidence that the tail
follows a power law.

Now we estimate the index α for the power-law tail. A
widely used method for estimating α is the Hill estimator
[40]:

α̂
(l)
H = l + 1∑l

i=1 i log
(
|w|(i)/|w|(i+1)

) , (26)

where l is the number of (the largest) |w|(i) to include for
estimation. In our situation, l = 50 and

α̂ = α̂
(50)
H = 6.134; (27)
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Table 1: Empirical estimate 4th, 5th, 6th, 7th, and 8th moments calculated using a subsamples of size n/2k of {|wi|}ni=1, with k = 0, 1, 2, 3, 4.
The table suggests that the 4th, 5th, and 6th moments are finite, but the 7th and 8th moments are infinite.

Size of 4th 5th 6th 7th 8th

subsample moment moment moment moment moment

n 30.0826 262.6756 2.7390× 103 3.2494× 104 4.2430× 105

n/2 29.7100 256.3815 2.6219× 103 2.9697× 104 3.7376× 105

n/22 29.6708 250.0520 2.4333× 103 2.6237× 104 3.0239× 105

n/23 29.4082 246.3888 2.3158× 103 2.4013× 104 2.3956× 105

n/24 27.8039 221.9756 1.9615× 103 1.9239× 104 1.8785× 105
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Figure 5: Plots of log probability log(i/n) versus (a) log(|w|(i)), (c) |w|(i), and (e) |w|2(i) for 1 ≤ i ≤ 50, corresponding to the power-
law/exponential/Gaussian models we introduced in Section 3; w are the wavelet coefficients of the finest scale (i.e., highest frequencies).
Normalized z-score as defined in (25) for (b) the power-law, (d) exponential, and (c) Gaussian models again for 1 ≤ i ≤ 50.
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Table 2: Table of α values for which the different wavelet bands of
the CS map.

Multiscale method Alpha

Biorthogonal wavelet

Scale 1, horizontal 6.13

Scale 1, vertical 4.84

Scale 1, diagonal 4.27

Scale 2, horizontal 5.15

Scale 2, vertical 4.19

Scale 2, diagonal 3.83

Scale 3, horizontal 4.94

Scale 3, vertical 4.99

Scale 3, diagonal 4.51

Scale 4, horizontal 3.26

Scale 4, vertical 3.37

Scale 4, diagonal 3.76

we also found that the standard deviation of this estimate ≈
0.9. Table 2 gives estimates of α for each band of the wavelet
transform. This shows that α is likely to be only slightly less
than 8: this means the performance of excess kurtosis and
Max might be very close empirically.

3.4. Comparison of excess Kurtosis and
Max with simulation

To test the results in Section 3.3, we now perform a small
simulation experiment. A complete cycle includes the fol-
lowing steps (n = 2442 and {wi}ni=1 are the same as in
Section 3.3).

(1) Let λ range from 0 to 0.1 with increment 0.0025.

(2) Draw (z1, z2, . . . , zn) independently from N(0, 1) to
represent the transform coefficients for CMB.

(3) For each λ, let

Xi = X
(λ)
i =

√
1− λzi +

√
λwi, λ = 0, 0.0025, . . . , 0.1,

(28)

represent the transform coefficients for CMB + CS.

(4) Apply detectors κn, Mn to the X
(λ)
i ’s; and obtain the p-

values.

We repeated steps (3)-(4) independently 500 times.
Based on these simulations, first, we have estimated the

probability of detection under various λ, for each detector:

Fraction of detections

= number of cycles with a p-value ≤ 0.05

500
.

(29)

Results are summarized in Figure 6.
Second, we pick out those simulated values for λ = 0.05

alone, and plot the ROC curves for each detector. The ROC
curve is a standard way to evaluate detectors [41]; the x-axis
gives the fraction of false alarms (the fraction of detections

when the null is true (i.e., λ = 0)); the y-axis gives the cor-
responding fraction of true detections). Results are shown
in Figure 6. The figure suggests that the excess kurtosis is
slightly better than Mn. We also show an adaptive test, HCn

in two forms (HC∗n and HC+
n ); these will be described later.

We now interpret. As our analysis predicts that W has a
power-law tail with E[W8] = ∞, it is surprising that excess
kurtosis still performs better than Max.

In Section 2.3, we compared excess kurtosis and Max
in a heuristic way; here we will continue that discussion,
using now empirical results. Notice that for the data set
(w1,w2, . . . ,wn), the largest (absolute) observation is

M =Mn = 17.48, (30)

and the excess kurtosis is

κ = κn =
1

n

[∑

i

w4
i

]
− 3 = 27.08. (31)

In the asymptotic analysis of Section 2.3, we assumed κ(W)
is a constant. However, for n = 2442, we get a very large ex-
cess kurtosis 27.08 ≈ n0.3; this will make excess kurtosis very
favorable in the current situation.

Now, in order for Mn to work successfully, we have to take
λ to be large enough that

√
λM >

√
2 logn, (32)

so λ > 0.072. The p-value of Mn is then

exp

(
− exp

(
−
√
λM − 4.2627

0.2125

))
, (33)

moreover, the p-value for excess kurtosis is, heuristically,

Φ̄
−1
(√

nλ2κ
)
; (34)

setting them to be equal, we can solve κ in terms of M:

κ = κ0(M). (35)

The curve κ = κ0(M) separates the M-κ plane into 2 re-
gions: the region above the curve is favorable to the excess
kurtosis, and the region below the curve is favorable to Max;
see Figure 7. In the current situation, the point (M, κ) =
(17.48, 27.08) falls far above the curve; this explains why ex-
cess kurtosis is better than Max for the current data set.

3.5. Experiments on Wavelet coefficients

3.5.1. CMB + CS

We study the relative sensitivity of the different wavelet-based
statistical methods when the signals are added to a dominant
Gaussian noise, that is, the primary CMB.
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Figure 6: (a) The fraction of detection for the excess kurtosis, HC∗, and Max; the x-axis is the corresponding λ; (b) the fraction of detection
for kurtosis, HC+, and Max. (c) ROC curves for the excess kurtosis, HC∗, and Max; (d) ROC curves for the excess kurtosis, HC+, and Max.

We ran 5000 simulations by adding the 100 CMB re-
alisations to the CS (D(λ, i) =

√
1− λCMBi +

√
λCS, i =

1 · · · 100), using 50 different values for λ, ranging lin-
early between 0 and 0.18. Then we applied the biorthog-
onal wavelet transform, using the standard 7/9 filter [42]
to these 5000 maps. On each band b of the wavelet trans-
form, for each dataset D(λ, i), we calculate the kurtosis value
KD(b,λ,i). In order to calibrate and compare the departures
from a Gaussian distribution, we have simulated for each im-
age D(λ, i) a Gaussian random field G(λ, i) which has the
same power spectrum as D(λ, i), and we derive its kurto-
sis values KG(b,λ,i). For a given band b and a given λ, we
derive for each kurtosis KD(b,λ,i) its p-value pK (b, λ, i) un-
der the null hypothesis (i.e., no CS) using the distribution
of KG(b,λ,∗). The mean p-value p̄K (b, λ) is obtained by tak-
ing the mean of pK (b, λ,∗). For a given band b, the curve
p̄K (b, λ) versus λ shows the sensitivity of the method to de-
tect CS. Then we do the same operation, but replacing the
kurtosis by HC and Max. Figure 8 shows the mean p-value
versus λ for the nine finest scale subbands of the wavelet

transform. The first three subbands correspond to the finest
scale (high frequencies) in the three directions, respectively,
horizontal, vertical, and diagonal. Bands 4, 5, and 6 corre-
spond to the second resolution level and bands 7, 8, 9 to
the third. Results are clearly in favor of the excess kurto-
sis.

The same experiments have been repeated, but replac-
ing the biorthogonal wavelet transform by the undecimated
isotropic à trous wavelet transform. Results are similarly in
favor of the excess kurtosis. Table 3 gives the λ values (mul-
tiplied 100) for which the CS are detected at a 95% confi-
dence level. Only bands where this level is achieved are given.
The smaller the λ, the better the sensibility of the method to
the detect the CS. These results show that the excess kurtosis
outperforms clearly HC and Max, whatever the chosen mul-
tiscale transform and the analyzed scale.

No method is able to detect the CS at a 95% confidence
level after the second scale in these simulations. In practice,
the presence of noise makes the detection even more difficult,
especially in the finest scales.
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Figure 7: The M-κ plane and the curve κ = κ0(M), where M is the
largest (absolute) observation of wi’s, and κ is the empirical excess
kurtosis of wi’s, where wi’s are the wavelet coefficients of the sim-
ulated cosmic string. Heuristically, if (M, κ) falls above the curve,
excess kurtosis will perform better than Max. The red bullet repre-
sents the points of (M, κ) = (17.48, 27.08) for the current data set
wi’s, which is far above the curve.

3.5.2. CMB + SZ

We now consider a totally different contamination. Here, we
take into account the secondary anisotropies due to the ki-
netic Sunyaev-Zel’dovich (SZ) effect [35]. The SZ effect rep-
resents the Compton scattering of CMB photons by the free
electrons of the ionised and hot intracluster gas. When the
galaxy cluster moves with respect to the CMB rest frame, the
Doppler shift induces additional anisotropies; this is the so-
called kinetic SZ (KSZ) effect. The kinetic SZ maps are sim-
ulated following Aghanim et al. [43] and the simulated ob-
served map D is obtained from Dλ = CMB + λKSZ, where
CMB and KSZ are, respectively, the CMB and the kinetic
SZ simulated maps. We ran 5000 simulations by adding the
100 CMB realisations to the KSZ (D(λ, i) = CMBi + λKSZ,
i = 1 · · · 100), using 50 different values for λ, ranging lin-
early between 0 and 1. The p-values are calculated just as in
the previous section.

Table 4 gives the λ values for which SZ is detected at
a 95% confidence level for the three multiscale transforms.
Only bands where this level is achieved are given. Results are
again in favor of the Kurtosis.

4. CURVELET COEFFICIENTS OF FILAMENTS

Curvelet analysis was proposed by Candès and Donoho
(1999) [44] as a means to efficiently represent edges in im-
ages; Donoho and Flesia (2001) [45] showed that it could
also be used to describe non-Gaussian statistics in natural
images. It has also been used for a variety of image processing
tasks [46, 47, 48]. We now consider the use of curvelet anal-
ysis for detection of non-Gaussian cosmological structures
which are filamentary.

4.1. Curvelet coefficients of filaments

Suppose we have an image I which contains within it a single
filament, that is, a smooth curve of appreciable length L. We
analyse it using the curvelet frame. Applying analysis tech-
niques described carefully in [49], we can make precise the
following claim: at scale s = 2− j , there will be about O(L2 j/2)
significant coefficients caused by this filamentary feature, and
they will all be of roughly similar size. The remaining O(4 j)
coefficients at that scale will be much smaller, basically zero in
comparison.

The pattern continues in this way if there is a collection
of m filaments of individual lengths Li and total length L =
L1 + · · · + Lm. Then we expect roughly O(L2 j/2) substantial
coefficients at level j, out of 4 j total.

This suggests a rough model for the analysis of non-
Gaussian random images which contain apparent “edge-like”
phenomena. If we identify the edges with filaments, then
we expect to see, at a scale with n coefficients, about Ln1/4

nonzero coefficients. Assuming all the edges are equally “pro-
nounced,” this suggests that we view the curvelet coefficients
of I at a given scale as consisting of a fraction ǫ = L/n3/4

nonzeros and the remainder zero. Under this model, the
curvelet coefficients of a superposition of a Gaussian random
image should behave like

Xi = (1− ǫ)N(0, 1) +
ǫ

2
N(−µ, 1) +

ǫ

2
N(µ, 1), (36)

where ǫ is the fraction of large curvelet coefficients corre-
sponding to filaments, and µ is the amplitude of these coeffi-
cients of the non-Gaussian component N .

The problem of detecting the existence of such a non-
Gaussian mixture is equivalent to discriminating between the
hypotheses

H0 : Xi
iid∼ N(0, 1), (37)

H
(n)
1 : Xi =

(
1− ǫn

)
N(0, 1) +

ǫn

2
N
(
− µn, 1

)
+
ǫn

2
N
(
µn, 1

)
,

(38)

and N ≡ 0 is equivalent to ǫn ≡ 0.

4.2. Optimal detection of sparse mixtures

When both ǫ and µ are known, the optimal test for problem
(37)-(38) is simply the Neyman-Pearson likelihood ratio test
(LRT), [32, page 74]. Asymptotic analysis shows the follow-
ing [50, 51].

Suppose we let ǫn = n−β for some exponent β ∈ (1/2, 1),
and

µn =
√

2s log(n), 0 < s < 1. (39)

There is a threshold effect: setting

ρ∗2 (β) =




β − 1

2
,

1

2
< β ≤ 3

4
,

(
1−

√
1− β

)2
,

3

4
< β < 1,

(40)
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Figure 8: For the nine first bands of the wavelet transform, the mean p-value versus λ. The solid, dashed, and dotted lines correspond,
respectively, to the excess kurtosis, the HC, and Max ((a) band 1, (b) band 2, (c) band 3, (d) band 4, (e) band 5, (f) band 6, (g) band 7,
(h) band 8, and (i) band 9).

then, as n→∞, LRT is able to reliably detect for large n when
s > ρ∗2 (β), and is unable to detect when s < ρ∗2 (β) [31, 50,
51]. Since LRT is optimal, it is not possible for any statistic to
reliably detect when s < ρ∗2 (α). We call the curve s = ρ∗2 (β)
in the β-s plane the detection boundary; see Figure 9.

We also remark that if the sparsity parameter β < 1/2,
it is possible to discriminate merely using the value of the
empirical variance of the observations or some other simple
moments, and so there is no need for advanced theoretical
approaches.

4.3. Adaptive testing using higher criticism

The higher criticism statistic (HC), was proposed in [31],
where it was proved to be asymptotically optimal in detecting
(37)-(38).

To define HC, first we convert the individual Xi’s into p-
values for individual z-tests. Let pi = P{N(0, 1) > Xi} be the
ith p-value, and let p(i) denote the p-values sorted in increas-
ing order; the higher criticism statistic is defined as

HC∗n = max
i

∣∣∣∣∣∣

√
n
[
i/n− p(i)

]
√
p(i)

(
1− p(i)

)

∣∣∣∣∣∣ , (41)

or in a modified form:

HC+
n = max

{i:1/n≤p(i)≤1−1/n}

∣∣∣∣∣∣

√
n
[
i/n− p(i)

]
√
p(i)

(
1− p(i)

)

∣∣∣∣∣∣ ; (42)



Comparing Different Statistics in Non-Gaussian 2481

Table 3: Table of λ values (multiplied by 100) for CS detections at 95% confidence.

Multiscale method Excess kurtosis HC Max

Biorthogonal wavelet

Scale 1, horizontal 0.73 0.73 0.73

Scale 1, vertical 0.73 0.73 0.73

Scale 1, diagonal 0.38 0.38 0.38

Scale 2, horizontal 8.01 9.18 8.81

Scale 2, vertical 6.98 8.44 10.65

Scale 2, diagonal 2.20 2.94 2.57

À trous wavelet transform

Scale 1 1.47 1.47 1.47

Scale 2 9.91 12.85 16.53

Curvelet

Scale 1, band 1 1.47 2.20 3.30

Scale 1, band 2 13.59 16.90 —

Scale 2, band 1 11.38 14.32 —

Table 4: Table of λ values for which the SZ detections at 95% confidence.

Multiscale method Excess kurtosis HC Max

Biorthogonal wavelet

Scale 1, horizontal 0.30 0.32 —

Scale 1, vertical 0.32 0.32 —

Scale 1, diagonal 0.06 0.06 0.24

Scale 2, horizontal — — —

Scale 2, vertical — — —

Scale 2, diagonal 0.65 0.71 —

À trous wavelet transform

Scale 1 0.41 0.47 —

Curvelet

Scale 1, band 1 0.59 0.69 0.83
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Figure 9: The detection boundary separates the square in the β-s
plane into the detectable region and the undetectable region. When
(β, s) falls into the estimable region, it is possible not only to reliably
detect the presence of the signals, but also estimate them.

we let HCn refer either to HC∗n or HC+
n whenever there is

no confusion. The above definition is slightly different from
[31], but the ideas are essentially the same.

With an appropriate normalization sequence:

an =
√

2 log logn,

bn = 2 log logn + 0.5 log log logn− 0.5 log(4π),
(43)

the distribution of HCn converges to the Gumbel distribu-
tion E4

v , whose cdf is exp(−4 exp(−x)) [52]:

anHCn − bn −→w E4
v , (44)

so the p-values of HCn are approximately

exp
(
− 4 exp

(
−
[
anHCn − bn

]))
. (45)

For moderately large n, in general, the approximation in (45)
is accurate for the HC+

n , but not for HC∗n . For n = 2442,
taking an = 2.2536 and bn = 3.9407 in (45) gives a good
approximation for the p-value of HC+

n .
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Figure 10: (a) The image of the bar, (b) the log-histogram of the
curvelet coefficients of the bar, and (c) the qq-plot of the curvelet
coefficients versus normal distribution.

A brief remark comparing Max and HC. Max only takes
into account the few largest observations, HC takes into ac-
count those outliers, but also moderate large observations;
as a result, in general, HC is better than Max, especially
when we have unusually many moderately large observa-
tions. However, when the actual evidence lies in the middle
of the distribution, both HC and Max will be very weak.

4.4. Curvelet coefficients of cosmic strings

In Section 3, we studied wavelet coefficients of simulated cos-
mic strings. We now study the curvelet coefficients of the
same simulated maps.

We now discuss empirical properties of curvelet coeffi-
cients of (simulated) cosmic strings. This was first deployed
on a test image showing a simple “bar” extending vertically
across the image. The result, seen in Figure 10, shows the im-
age, the histogram of the curvelet coefficients at the next-to-
finest scale, and the qq-plot against the normal distribution.
The display matches in general terms the sparsity model of
Section 4. That display also shows the result of superposing
Gaussian noise on the image; the curvelet coefficients clearly
have the general appearance of a mixture of normals with
sparse fractions at nonzero mean, just as in the model.

We also applied the curvelet transform to the simulated
cosmic string data. Figure 11 shows the results, which sug-
gest that the coefficients do not match the simple sparsity
model. Extensive modelling efforts, not reported here, show
that the curvelet coefficients transformed by |v|0.815 have an
exponential distribution.
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Figure 11: For the curvelet coefficients vi’s of the simulated CS map
in Figure 3, (a) the log-histogram of vi’s, (b) the qq-plot of vi’s ver-
sus normal distribution, and (c) the qq-plot of sign(vi)|vi|0.815 ver-
sus double exponential.

This discrepancy from the sparsity model has two ex-
planations. First, cosmic string images contain (to the
naked eye) both point-like features and curve-like features.
Because curvelets are not specially adapted to sparsifying
point-like features, the coefficients contain extra informa-
tion not expressible by our geometric model. Second, cos-
mic string images might contain filamentary features at a
range of length scales and a range of density contrasts.
If those contrasts exhibit substantial amplitude variation,
the simple mixture model must be replaced by something
more complex. In any event, the curvelet coefficients of cos-
mic strings do not have the simple structure proposed in
Section 4.

When applying various detectors of non-Gaussian be-
havior to curvelet coefficients, as in the simulation of
Section 3.5, we find that, despite the theoretical ideas back-
ing the use of HC as an optimal test for sparse non-
Gaussian phenomena, the kurtosis consistently has better
performance. The results are included in Tables 3 and 4.

Note that, although the curvelet coefficients are not as
sensitive detectors as wavelets in this setting, that can be an
advantage, since they are relatively immune to point-like fea-
tures such as SZ contaimination. Hence, they are more spe-
cific to CS as opposed to SZ effects.

5. CONCLUSION

The kurtosis of the wavelet coefficients is very often used in
astronomy for the detection non-Gaussianities in the CMB.
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It has been shown [27] that it is also possible to separate the
non-Gaussian signatures associated with cosmic strings from
those due to SZ effect by combining the excess kurtosis de-
rived from these both the curvelet and the wavelet transform.
We have studied in this paper several other transform-based
statistics, the Max and the higher criticism, and we have com-
pared them theoretically and experimentally to the kurto-
sis. We have shown that kurtosis is asymptotically optimal
in the class of weakly dependent symmetric non-Gaussian
contamination with finite 8th moments, while HC and Max
are asymptotically optimal in the class of weakly depen-
dent symmetric non-Gaussian contamination with infinite
8th moment. Hence, depending on the nature of the non-
Gaussianity, a statistic is better than another one. This is a
motivation for using several statistics rather than a single
one, for analysing CMB data. Finally, we have studied in de-
tails the case of cosmic string contaminations on simulated
maps. Our experiment results show clearly that kurtosis out-
performs Max/HC.
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