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Cosmological parameter estimation and the inflationary cosmology

Samuel M. Leach,1,* Andrew R. Liddle,1,† Jérôme Martin,2,‡ and Dominik J. Schwarz3,§
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We consider approaches to cosmological parameter estimation in the inflationary cosmology, focusing on the
required accuracy of the initial power spectra. Parametrizing the spectra, for example by power laws, is well
suited to testing the inflationary paradigm but will only correctly estimate cosmological parameters if the
parametrization is sufficiently accurate, and we investigate conditions under which this is achieved both for
present data and for upcoming satellite data. If inflation is favored, reliable estimation of its physical param-
eters requires an alternative approach adopting its detailed predictions. For slow-roll inflation, we investigate
the accuracy of the predicted spectra at first and second order in the slow-roll expansion~presenting the
complete second-order corrections for the tensors for the first time!. We find that, within the presently allowed
parameter space, there are regions where it will be necessary to include second-order corrections to reach the
accuracy requirements of MAP and Planck satellite data. We end by proposing a data analysis pipeline
appropriate for testing inflation and for a cosmological parameter estimation from high-precision data.

DOI: 10.1103/PhysRevD.66.023515 PACS number~s!: 98.80.Cq, 98.70.Vc
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I. INTRODUCTION

Recent cosmic microwave background~CMB! anisotropy
results@1#, showing a multiple peak structure in the aniso
ropy power spectrum, lend powerful support to the inflatio
ary cosmology as the origin of structure in the Universe. I
now widely expected that cumulative improvements in
CMB data will lead to a progressively more accurate estim
tion of cosmological parameters, with projects funded so
culminating in the Planck satellite mission expected to rep
results around 2010.

Given a set of data on structures in the Universe, suc
the CMB power spectrum, it is necessary to simultaneou
fit both for the parameters describing the global cosmolo
~such as the matter budget and expansion rate! and those
describing the so-called ‘‘initial perturbations’’; they cann
be considered separately. If the model for the initial pert
bations is insufficiently accurate, or even worse complet
wrong, the full power of the experiment to constrain cosm
logical parameters cannot be exploited.

The inflationary cosmology is an attractive paradigm
the generation of the initial perturbations, but even there
situation can be very complicated in general. In particular
there are multiple scalar fields the perturbations can b
mixture of isocurvature and adiabatic, and may be n
Gaussian. Such initial conditions may prove difficult or ev
impossible to parametrize, and if such an inflation mode
correct it will be a major obstacle to successful parame
estimation. However it remains a powerful working hypot
esis that the simplest class of models, where inflation
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driven by a single scalar field, is viable; this creates a fram
work within which the necessary calculations are reasona
simple, with the initial perturbations computed either a
proximately analytically or exactly numerically. As yet, the
is no indication from observations that we might need to
beyond this paradigm.

The main goal of this article is to investigate differe
strategies that an observer can use to estimate the cosmo
cal parameters, and to examine the extent to which it is n
essary to adopt detailed inflationary predictions. The sp
trum of the fluctuations is assumed to be produced by
underlying inflationary model and is calculated exactly
means of numerical computations. Given this situation,
study how the data analysis can be performed in two diff
ent scenarios. The first scenario applies if one wants onl
estimate cosmological parameters, such as the baryon
sity and reionization optical depth, and does not care ab
the underlying inflation model beyond being confident th
the description of the initial perturbations used is adequ
In this case, observers typically use a power-law fit, see
Ref. @1#, and the first question is to test how accurate
power-law fit is to typical inflationary cosmologies. In pa
ticular, we wish to know if this kind of fit is accurate enoug
for present data, and whether it will also be accurate eno
to analyze high-precision data like that to be provided by
Planck satellite. The second scenario, which makes m
stringent requirements on theoretical accuracy, is if one
tends to estimate properties of the inflationary model. In t
case, the slow-roll method can be used to calculate an
proximate spectrum and we will study its accuracy. We a
consider to which order in the slow-roll parameters the sp
trum should be calculated in order to reach the Planck p
cision. We propose an analysis pipeline for testing the c
sistency of single-field slow-roll inflation and estimatin
physical parameters of inflation, e.g. the energy scale of
flation.
©2002 The American Physical Society15-1
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LEACH, LIDDLE, MARTIN, AND SCHWARZ PHYSICAL REVIEW D 66, 023515 ~2002!
II. INFLATIONARY BASICS

A single-field inflation model generates Gaussian spe
of purely adiabatic density perturbations~scalar perturba-
tions! and gravitational waves~tensor perturbations!. We de-
note the dimensionless power spectra byPR(k), whereR is
the intrinsic curvature perturbation on comoving hypers
faces ~identical with Bardeen’sz @2# up to a sign!, and
Ph(k), h being the amplitude of gravitational waves. Sca
and tensor perturbations obey the equation of a param
oscillator @3#

mS,T9 1S k22
zS,T9

zS,T
DmS,T50, ~1!

where a prime denotes differentiation with respect to con
mal timeh andk is the comoving wavenumber. This equ
tion only requires the assumption of linear perturbat
theory. The quantities mS,T(h) are defined by
mS(h)[2zSR andmT(h)[zTh wherezS[aA2aa9/a8 and
zT5a. The initial conditions for the mode functionsmS,T are
fixed by the assumption that the quantum fields are in
vacuum state when the modek is subhorizon,

lim
k/aH→`

mS,T~h!5
4Ap

mPl

e2 ik(h2h i)

A2k
, ~2!

whereh i is an arbitrary initial time at the beginning of infla
tion. The power spectra are calculated according to

PR~k!5
k3

8p2 UmS

zS
U2

, Ph~k!5
2k3

p2 UmT

zT
U2

. ~3!

Both power spectra can be derived from the inflaton poten
V(f) and the initial conditions for the inflaton fieldf, and
hence are not independent. They can be obtained numeri
by solving the appropriate mode equations wave numbe
wave number~see e.g. Ref.@4#!. In the following, they are
denoted byPnum(k).

The tensor-to-scalar ratio

R[
Ph

PR
, ~4!

is of interest for testing the consistency of a given mode
inflation. It has often been defined in terms of the microwa
background quadrupole moments. This definition has the
advantage that it depends on the cosmological parame
especially the density of the cosmological constantVL @5,6#.
In Ref. @7# the ratio betweenPF ~where F is the gauge-
invariant Bardeen metric potential@8#! and Ph was used,
which removes the dependence onVL . HoweverF does
still depend on the dynamics of the Universe at the pho
decoupling epoch and thus is not completely model indep
dent ~it depends mainly on the physical matter dens
vm[Vmh2). The advantage ofR is that it is conserved on
super-horizon scales once the decaying mode is neglig
and provided only adiabatic perturbations are conside
@2,9,10#.
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The spectral indices and their ‘‘running’’ are defined b
the following expressions:

nS~k!21[
d ln PR
d ln k

, nT~k![
d ln Ph

d ln k
, ~5!

aS~k![
dnS

d ln k
, aT~k![

dnT

d ln k
. ~6!

For purposes of illustration, in this paper we use thr
qualitatively different inflationary models to mimic idealize
measurements of the power spectra. The first is a cha
inflation model with a quartic potential@11#

V~f!5lf4, ~7!

the second a false vacuum inflation potential

V~f!5V0F11
1

2
m2S f

mPl
D 2G , ~8!

with m251, which is inspired by the scenario of hybrid in
flation @12#, and the third a potential introduced in Ref.@13#:

V~f!5V0F12
2

p
arctanS 5

f

mPl
D G . ~9!

For each potential we need to know the scalar field valuef*
when observable perturbations were generated~i.e. when a
given scalek* was equal to the Hubble radius during infl
tion!, corresponding roughly to 55e-foldings from the end of
inflation. The last two potentials provide no natural end
inflation, and we make an arbitrary choice forf* to be equal
0.3A2mPl and 20.3mPl respectively. The chaotic inflation
model ends by violation of slow roll and so we tak
f* .4.2mPl .

Figure 1 shows the scalar and tensor power spe
Pnum(k) for these three models, obtained numerically by t
method of Ref.@4#. The corresponding microwave anisotr
pies, obtained using a modified version ofCAMB @14#, are
also shown.1 We present the characteristic quantities of the
spectra, evaluated atk* , in Table I. We have chosen thes
three models because the chaotic model is an exampl
which tensor perturbations are relevant and it shows mo
ate negative tilt, the false vacuum model has a mode
positive tilt and the arctan model has both large tilt and ru
ning.

III. PARAMETER ESTIMATION IGNORING
INFLATIONARY PREDICTIONS

A. Parametrizing the spectra

To estimate the cosmological parameters we need an
equate parametrization of scalar perturbations, and more
phisticated analyses informed by inflation also inclu

1A module to directly input the predictions of slow-roll inflatio
to the CAMB program is available to download a
www.astronomy.susx.ac.uk/;sleach/inflation/
5-2
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COSMOLOGICAL PARAMETER ESTIMATION AND THE . . . PHYSICAL REVIEW D 66, 023515 ~2002!
tensors.2 If one is only interested in a measurement of tho
cosmological parameters that do not describe the initial p
turbations, one would like to know whether robust resu
can be obtained using simple forms for the initial pow
spectra rather than detailed inflationary predictions. The
fore, in the context envisaged in this section, the obse
does not use the assumption that inflation is the correct
derlying theory, other than to motivate the restriction of t
scalar perturbations to be adiabatic.

It is common practice to assume a power-law shape
the spectrum specified by an amplitude and a spectral in
The reasoning for this parametrization is its simplicity.

2A general analysis would also have to consider vector modes
the various possible isocurvature modes, but at present there
evidence that they are required.

FIG. 1. The top panel shows the power spectra of scalar~upper
lines! and tensor~lower lines! perturbations for our three models
The scalar spectra are normalized toPR5231029 at the scale
k* 50.01h Mpc21, which approximately matches the Cosm
Background Explorer~COBE! normalization. The bottom pane
shows the correspondingCl curves for a flat cosmological mode
with vb50.0200, vm50.1268 and vL50.2958 ~implying h
50.65), and reionization optical deptht50.05, with the upper lines
again the scalar contribution and the tensors considerably subd
nant. Only the sum of the two can be detected, though they con
ute differently to polarization anisotropies.
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the absence of any physical model for the generation of fl
tuations, one assumes that there is no distinguished phy
scale in the primordial power spectra. In order to allow f
mildly scale-dependent power spectra, a running of the sp
tral indices can be included. This leads to the followi
shape:

Pfit~k!5Pfit~k* !S k

k*
D nfit1(1/2)afitln(k/k

*
)

, ~10!

wherenfit is eithernS21 or nT .3 The pivot scalek* is the
scale at which all the quantities are evaluated. A useful w
of viewing Eq. ~10! is that it is the first terms of a Taylo
expansion of lnP(k) in ln k about the pivot scale, which
draws one’s attention to the possibility of using other exp
sions.

The simplest assumption would be to take both spectra
constant ~scale-invariant!. Models with nS2150 and
nT50 do in fact provide acceptable fits to recent CMB da
~for sufficiently low or zero tensor amplitude!; thus, if we
decide to ignore inflation for the moment, there is no reas
from CMB observations alone to include a tilt. Reference@7#
quotesnS21520.0720.16

10.75 at 95% confidence level, and th
addition of large-scale structure data greatly tightens the c
straint without altering the conclusion thatnS51 is allowed.
Current observational constraints on the running of the sp
tral index are far weaker than the magnitude predicted
popular inflationary models. Thus far, only upper limits o
the contribution of gravitational waves have been deriv
@7,15,16#. Some of these limits suffer from the problems d
scribed below Eq.~4!, and use strong priors on some of th
other cosmological parameters. Translating the result of
5 of Ref. @7# (r ,0.5 at 95% confidence level! to our nota-
tion gives R59r /25,0.2, while Ref.@16# gives a weaker
constraint also consistent withR50. Let us also remark tha
the majority of recent papers estimating parameters from
microwave background have done so under the assump
that the scalar spectrum has a power-law shape and that
is no contribution from tensor perturbations (R50).

The question of how far power spectra expansions sho
be taken, and how accurately their coefficients need to
computed, obviously depends on the accuracy and dyna
range of observations. For present observations an accu
level of ten percent or better is certainly required. Ultimate

nd
no3Note from the definition of the spectral index thatnS(k)21
Þnfit1

1
2 afitln(k/k* ) away from the pivot scale.

TABLE I. Numerical values of spectral indices, their runnin
and the tensor-to-scalar ratio for the three models considered
quantities are evaluated atk* 50.01h Mpc21.

Exact values R nS21 nT aS aT

Chaotic 0.285 20.055 20.037 20.0009 20.0006
False vacuum 0.051 0.05420.006 0.0018 0.0005
Arctan model 0.089 20.216 20.015 20.0298 20.0036

i-
b-
5-3



e
m
m

ire
ck
on

y t
im

pr
iv
ul
c
b
-
ti

o
e

th
e
o

c-

um
ic
i

su
rs
e
h

te
e
e
e

on
a

cy is
atic
ini-
n

ht
-law
alue
fix

the
oef-
t a

ra.

ill
e in
test

er-
e

for
e II.
s of

nce
a
o-
the
at
w
the
nce
for

ow

ec-
u-

the
the
the
g.
w,
sion

uld
e to

n
uc

LEACH, LIDDLE, MARTIN, AND SCHWARZ PHYSICAL REVIEW D 66, 023515 ~2002!
Planck will measure multipole momentsCl from l of 2 to
about 2000, corresponding toD ln k/k*.3.5 on either side of
a central pivotk* . It is rather unclear how accurately th
multipole moments need to be represented at the extre
~cosmic variance intervening on large scales and the da
ing tail removing the signal on short scales!, but in the center
an accuracy of better than one percent is certainly des
~see e.g., Ref.@17#!.4 If one then further assumes that Plan
data will be combined with high-accuracy galaxy correlati
data, thek range might extend to aroundD ln k/k*.6 ~corre-
sponding to kmax.30h Mpc21), though the nonlinearly
evolved galaxy power spectrum on short scales is unlikel
be amenable to extremely accurate multiparameter est
tion. The choice of pivot scalek* is important as the differ-
ence between the fitted and the true power spectrum
duces an error that runs as we move away from the p
scale. While a careful tracking of error covariances sho
lead to results independent of the choice of pivot, those
variances should be minimized to a good approximation
aligning k* with l * , the multipole where we expect the ob
servational errors to be least. One can use the approxima
@19#

k* 5
H0

2

AVm

110.084 lnVm
l * , Vm1VL51, ~11!

whereH05h/3000 Mpc21 to carry out this alignment.
Having described the typical errors in the multipole m

ments, Error(Cl), we now need to link this quantity to th
error in the power spectrum itself, Error(P), since this is the
quantity calculated in practice. We assume throughout
paper that an error in our determination of the power sp
trum propagates directly to an error in our determination
the Cl ’s since

Cl54pE d ln kP~k!@D l~k!#2, ~12!

whereD l(k) is the l-th momentum of the temperature flu
tuations. In other words, we assume Error(Cl). Error(P).

Another question is how an error in the power spectr
propagates to an error in the estimation of the cosmolog
parameters. In general the Fisher matrix formulation
needed to estimate how well a given experiment can mea
the parameters; the error in the cosmological paramete
not simply related to the error in the power spectrum as th
are many parameters and lots of degeneracies amongst t
The requirement Error(P).1% for Planck is a very strin-
gent condition. In particular, it does not imply that parame
estimates would go astray if we drifted outside our pow
spectrum accuracy criterion; we would expect parameter
timates to stabilize some way before the fitted power sp

4We note that current implementations ofCMBFAST @18# andCAMB

@14# have a target accuracy of one percent, so there is prese
nothing to gain by demanding power spectrum accuracy m
higher than this.
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trum was within our 1% accuracy everywhere. Our criteri
is a sufficient and conservative condition for establishing
safe procedure: as long as the power spectrum accura
below 1% everywhere, we are confident that the system
errors coming from an inaccurate parametrization of the
tial conditions will not play a role in the data analysis of a
experiment like Planck.

B. Accuracy of the parametrized spectra

We now investigate the systematic errors which mig
arise from assuming that the spectra have perfect power
shapes or, in a more sophisticated version, a constant v
for the running of the spectral index. The first step is to
the numerical values of the coefficientsPfit(k* ), nfit andafit .
We have no means to calculate them theoretically in
present context. In practice, observers determine these c
ficients by carrying out a fit to the data. Here, we carry ou
least-squares fit ofPfit(k) to Pnum(k) to obtain best-fit scale-
invariant, power-law and power-law plus running spect
This means that the coefficientsPfit(k* ), nfit and afit are
those for which the quantity

(
i

@Pfit~ki !2Pnum~ki !#
2 ~13!

is minimized. We took theki to be equally spaced ind ln k
and given equal weight. This idealized fitting approach w
tend to sacrifice accuracy in the center of desired rang
favor of accuracy at the extremes. Here the idea is to
whether in principle the shape ofPfit can reproduce the true
power spectrum over a reasonable range ink. This obviously
becomes important if, for example, we try to use a pow
law shape to fit to a model with significant running of th
spectral index. The result of the minimization procedure
the three models introduced above is summarized in Tabl
These values should be compared with the exact one
Table I.

For the first two examples we conclude that the seque
of fitting a constant amplitude, a power-law, and finally
power-law with running provides best-fit values which repr
duce the numerical values with sufficient accuracy. From
observational point of view this is reflected in the fact th
the best-fit value ofR is the same in the second and third ro
and that the fit values of the spectral indices are almost
same as well. Such a behavior is the experimental evide
that the input does make sense. The situation is different
our third example, the arctan model. Although there is sl
convergence in the best-fit values ofR, no sign of conver-
gence can be detected by inspection of Table II in the sp
tral indices. This is confirmed by a comparison with the n
merical values of Table I, e.g., the fitted spectral index of
tensors is less precise in the third row than in the second,
scalar spectral index is underestimated by 0.036 by
power-law fit and overestimated by 0.022 including runnin
From the point of view of inflationary parameters, see belo
these are large fluctuations. Thus an observer in posses
of sufficiently accurate data sometime in the future sho
conclude for our third example that more parameters hav

tly
h

5-4
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TABLE II. The ratio of the fitted amplitude to the numerical amplitude of the scalars,Afit/num, and the
best-fit values of the tensor-to-scalar ratio, the spectral indices and their running for the three mode
sidered atk* 50.01h Mpc21. For each model, we present the results for a scale-invariant, power-law
power-law with running spectral shape in three rows respectively.

Fitted values Afit/num R nS21 nT aS aT

Chaotic 1.05 0.279
1.00 0.285 20.054 20.036
1.00 0.285 20.055 20.037 20.0010 20.0007

False vacuum 0.98 0.053
1.01 0.051 0.054 20.006
1.00 0.051 0.054 20.006 0.0017 0.0004

Arctan model 1.23 0.072
0.95 0.092 20.178 20.016
0.99 0.090 20.238 20.020 20.0303 20.0044
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be introduced in the fit, before any physical meaning can
extracted from the best-fit values of the spectral indices.

A large error in the fitted values of the amplitude and
the spectral index, even if we are not interested in the phy
of inflation for the moment, is undesirable for two reaso
First the overall amplitude of scalar perturbations is a qu
tity that we hope to measure from Microwave Anisotro
Probe~MAP! and Planck at the percent level. Thus we wou
prefer to relate it to a physical quantity, namely the amp
tude of superhorizon density fluctuations. The second rea
comes from considerations of large-scale structure d
where it is customary to include a linear bias parameter,b, to
account for the overall normalization of the matter pow
spectrum. If we simultaneously fit to the CMB, then we c
only assign any physical meaning tob if we are certain that
the amplitude of scalar perturbations is correct. In additi
an inaccurate estimate of the amplitude and the tilt co
spoil a consistency check of structure formation based
measurements ofs8.

Having determined the coefficients, the second step
now to compute the error. We define this by

Error~P![S Pfit

Pnum
21D3100%. ~14!

In the following, we give three examples.
In Fig. 2 we plot the error in the scalar power spectrum

the case of the false vacuum model. The best-fit sc
invariant spectrum is a poor fit for this particular mod
while the best-fit power-law spectrum improves thin
greatly, keeping the errors below 2% which is more th
adequate for present CMB data and marginally adequate
Planck. The large effect of the tilt is due to a long lever a
in wavenumbers @20#; the error being of the orde
(nS21)lnk/k* , even a small tilt can have a significant effe
if the data span several decades in wavenumbers. We
further see that with the inclusion of running,Pfit now repro-
duces the power spectrum in great detail. This is because
correction to the spectrum is of orderaSln

2k/k* which, for
the running of this example ofaS.0.002, gives a significan
effect though the correction is much smaller than that fr
the tilt.
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Given a set of observations, the importance of running
tested by including it in the fit and examining whether the
improves significantly. In the absence of any theoreti
prejudice, one might well hope to detect significant runni
at high significance. However, some of the simplest inflat
models predict running of at least an order of magnitu
below what even Planck can achieve@21#. In that case there
will be no significant detection of running, and marginalizin
over the running permitted by the observations may lead
significant inflating of errors on other parameters. Wh
combining short-scale observations with the microwa
background may give a stronger lever-arm in constrain
running, this may well turn out to be a parameter for which
is desirable to investigate imposing a strict theoretica
motivated prior to compare with a free fit. Further, even
running is detected at high significance this problem th
resurfaces concerning the running of running.

As we have already concluded from the discussion of
best-fit values in Table II, there exist models for which
power-law fit to the spectrum does not provide a good

FIG. 2. Error curves for various fits to the scalar power sp
trum for the false vacuum model. While the power-law fit is acce
able for fitting to present data, neglecting running affects the e
mate of the power spectrum amplitude at the pivot point at
percent level.
5-5
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LEACH, LIDDLE, MARTIN, AND SCHWARZ PHYSICAL REVIEW D 66, 023515 ~2002!
scription in contrast to the above example. In Fig. 3 the e
in the scalar power spectrum for the arctan model is d
played. Including the running is necessary for the pres
accuracy of CMB experiments. Now the effect of running
comparable to that of the tilt. We see that more parame
~e.g. running of the running! would be necessary to repro
duce the power spectrum with 1% accuracy. We actu
have to add more and more parameters until the spec
starts to converge~see also the discussion of Table II!, or
consider using a different spectral shape.

For the tensors in the case of the chaotic model, we se
Fig. 4 that the spectrum is poorly fitted by the scale-invari
spectrum. However, the accuracy requirements on the te
spectrum are less stringent—the tensor amplitude is ge
ally less than the scalar amplitude and so the required a
lute error inPh is also less@.R3Error(PR)#. Thus, a typi-
cal inflationary tensor spectrum is well described even b
scale-invariant spectrum for present-day experiments, tho
there is no reason not to describe it with the same soph

FIG. 3. As Fig. 2 but for the arctan model. For fitting to data
the present quality, the inclusion of the running is required.

FIG. 4. As Fig. 2 but for the chaotic inflation model tens
spectrum. Although the percentage error is large for the sc
invariant fit, the absolute error is small compared to the scalar s
trum, and so the scale-invariant fit is still acceptable.
02351
r
-

nt

rs

ly
m

in
t
or

er-
o-

a
gh
ti-

cation as the scalar spectrum. For future CMB measu
ments, the inclusion of a tilt is sufficient in this example.

To answer the main question of this section, we can
pect to obtain robust estimates for the cosmological par
eters for a restricted class of inflationary models using
fitting procedure described above. However, there exist m
els where this is no longer true. In the following sections,
specify the criteria which define this class of models.

IV. PREDICTIONS OF SLOW-ROLL INFLATION

In this section, we restrict our considerations to the cl
of slow-roll models of inflation. The advantage is that we c
now predict the shape of the power spectra and link the
rameters characterizing these spectra to the physics of i
tion. There has recently been renewed progress in the a
rate calculation of inflationary perturbations by analytic
techniques, including a computation of the power spectra
arbitrary order in the slow-roll expansion for single-field i
flation by Stewart and Gong@22#, and a computation a
higher order for models that may violate one of the slow-r
conditions@23,24#. We utilize the Stewart-Gong results he
as they have the most general applicability, extending th
with an explicit evaluation of higher-order terms for the te
sor spectrum.

The background evolution can be described in terms
the horizon-flow parameters$en% @24#. Starting from
e0[H(Ni) /H(N), where 1/H is the Hubble distance an
N[ ln(a/ai) the number ofe-folds since some initial timet i ,
the set$en% is defined by

en11[
d lnuenu

dN
, n>0. ~15!

These parameters can be easily related to various definit
of the slow-roll parameters. Settingn51 we find
e152d ln H/d ln a, which is nothing but the slow-roll pa
rametere of Refs.@25,26#. The parameterh of Refs.@25,26#,
which is usually defined to measure the deceleration of
inflaton field, enters ase252e22h. The third slow-roll pa-
rameter,j, is contained ine2e354e226eh12j2. In this
notation, all theen are typically of the same order of magn
tude. Inflation takes place providede1,1. Slow-roll infla-
tion is defined by the conditionuenu!1, for all n.0.

A measurement of the horizon-flow parameters, at a s
cific moment during inflation, would immediately provide u
with a value for the inflaton potentialV and its derivatives
with respect to the inflaton fieldf ~denoted by a prime in
what follows! for any single-field inflation model. For ex
ample, fromH and e1 ,e2, ande3 we can calculate the po
tential and its first two derivatives exactly,

V5
3mPl

2 H2

8p S 12
e1

3 D , ~16!

V852
3mPlH

2

~4p!1/2
e1

1/2S 12
e1

3
1

e2

6 D , ~17!
e-
c-
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V9

3H2
52e12

e2

2
2

2e1
2

3
1

5e1e2

6
2

e2
2

12
2

e2e3

6
. ~18!

If e3 cannot be determined and the horizon-flow parame
are small compared to unity, we can still estimateV9 by
keeping the leading terms only.

For slow-roll models we can invert this procedure a
estimate the horizon-flow parameters. At leading order
these parameters we find

H2.
8p

3mPl
2

V, ~19!

e1.
mPl

2

16p S V8

V D 2

, ~20!

e2.
mPl

2

4p F S V8

V D 2

2
V9

V G , ~21!

e2e3.
mPl

4

32p2 FV-V8

V2
23

V9

V S V8

V D 2

12S V8

V D 4G . ~22!

To give an example, for chaotic inflation with the potent
V}fg we find e1.g/4DN and e2.e3.1/DN, whereDN
denotes the number ofe-folds before inflation ends. Chaoti
inflation is a simple model where the higher horizon-flo
parameters are of the same order of magnitude as lower o
In the case of power-law inflation (a}tp) where the potentia
is given byV} exp@2(16p/p)1/2f/mPl#, we recover the ex-
act resulte151/p ande25e350.

The power spectra of scalar and tensor perturbations
be obtained approximately using analytic techniques. O
expands the power spectra about some particular wave n
ber k* , and then computes the coefficients using the slo
roll expansion or some other scheme of approximation. T
amounts to a double approximation. Given that we need
cover several orders of magnitude ink, the most appropriate
expansion variable is lnk, giving

P~k!

P0~k* !
5a01a1lnS k

k*
D1

a2

2
ln2S k

k*
D1•••. ~23!

The next step is to establish an expression for the coeffici
an , which can be obtained either with help of the slow-r
expansion@6,20,22,25,27,28# or the methods of approxima
tion developed in Refs.@23,24#. Since the former covers
more general class of inflation models than the latter,
focus on slow-roll inflation in the following. We will use th
term first order to refer to results including all terms up t
orderem andsecond orderif one goes to terms includingem

2 .
The normalization of the power spectra is set by the

pansion rate during inflation,H, and the parametere1:
namely,

PR0~k* !5
H2

pe1mPl
2

, ~24!
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Ph0~k* !5
16H2

pmPl
2

, ~25!

whereH ande1 are evaluated whenaH5k* during inflation.
The scalar amplitude has been calculated up to first orde
the slow-roll parameters by Stewart and Lyth@27#, and re-
cently up to second order by Stewart and Gong@22#. These
calculations are sufficient to allow calculation of an infinit
though incomplete, set of expansion coefficients of which
first few are given by

aS05122~C11!e12Ce21S 2C212C1
p2

2
25D e1

2

1S C22C1
7p2

12
27D e1e21S 1

2
C21

p2

8
21D e2

2

1S 2
1

2
C21

p2

24D e2e3 , ~26!

aS1522e12e212~2C11!e1
21~2C21!e1e21Ce2

2

2Ce2e3 , ~27!

aS254e1
212e1e21e2

22e2e3 , ~28!

whereC[gE1 ln 222'20.7296. For the tensors, the corr
sponding set is as follows:

aT05122~C11!e11S 2C212C1
p2

2
25D e1

2

1S 2C222C1
p2

12
22D e1e2 , ~29!

aT1522e112~2C11!e1
222~C11!e1e2 ,

~30!

aT254e1
222e1e2 . ~31!

We have presented for the first time theO(en
2) terms in the

tensor amplitude which we obtained along the lines of R
@22#.

The coefficientsan for n.0 can also be obtained by suc
cessive differentiation of the first term of the expansion

an[
dn@P~k!/P0~k* !#

d lnnk
U

k5k
*

~32!

5
1

P0~k* ! S 1

12e1

d

dND n

P0~k* !a0~k* !, ~33!

where we used the ‘‘horizon crossing’’ conditionk* 5k
5aH to obtain the second line. From Eqs.~15! and~32! we
see that the leading contribution toan is of orderem

n ~where
em

n means any terms containingn of thee, not necessarily all
the same!. If a0 has been written to first order, differentiatio
yields a1 to second order,a2 to third order and so on. Note
5-7
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that the coefficients of the Taylor series, Eq.~23!, always
feature an increasing number of powers of the slow-roll
rameters, so in practice convergence of the Taylor serie
governed by the size ofemln k/k* , which in principle needs
to be small for all values ofm>1. Thus the series can still b
strongly convergent even if lnk/k* exceeds one, as it will for
typical upcoming experiments.

Let us now calculate the spectral indices and their runn
in the slow-roll approximation up to second order. For th
purpose, it is useful to calculate the logarithm of the pow
spectrum

ln
P~k!

P0~k* !
5b01b1lnS k

k*
D1

b2

2
ln2S k

k*
D1•••. ~34!

Exponentiation of Eq.~34! automatically enforces the pos
tive definiteness ofP(k) and allows us to directly link the
first coefficientsbn to the spectral indices and the running
because

bS15nS21, bT15nT , bS25aS, bT25aT . ~35!

The equivalent expressions to Eqs.~26!–~31! are

bS0522~C11!e12Ce21S 22C1
p2

2
27D e1

2

1S 2C223C1
7p2

12
27D e1e21S p2

8
21D e2

2

1S 2
1

2
C21

p2

24D e2e3 , ~36!

bS1522e12e222e1
22~2C13!e1e22Ce2e3 , ~37!

bS2522e1e22e2e3 , ~38!

for the scalars, and

bT0522~C11!e11S 22C1
p2

2
27D e1

2

1S 2C222C1
p2

12
22D e1e2 , ~39!

bT1522e122e1
222~C11!e1e2 , ~40!

bT2522e1e2 , ~41!

for the tensors.
Finally, the ratio of amplitudes of scalars and tensors

the pivot point is

R516e1F11Ce21S C2
p2

2
15D e1e21S 1

2
C22

p2

8
11D e2

2

1S 1

2
C22

p2

24D e2e3G . ~42!
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This becomes the well-known ‘‘consistency condition of i
flation’’ R528nT at leading order, which holds for single
inflaton-field slow-roll models. The values of the ratioR, the
spectral indices and their running, computed in the slow-
approximation for the three models envisaged in this artic
are summarized in Table III. The values of the horizon-flo
parameters were obtained numerically, though an actua
construction may also feature a slow-roll approximation
relating those to the inflationary potential.

V. DOES THE SHAPE OF THE FITTED SPECTRA
MATTER?

In the preceding section, we have shown that the shap
the slow-roll spectra does not coincide with the shape of
fit of Sec. III. From a theoretical point of view, it is clear tha
the former should be used not only to predict the spectra
also to fit real data. For many choices of parameters
difference between the shapes is not significant, but there
also models where this difference can be important.

An example is given in Fig. 5, where we plot

Error~P sr
fit![S Psr

fit

Pnum
21D 3100%, ~43!

for the arctan model of Sec. II. In this equation,P sr
fit is found

by considering

TABLE III. Slow-roll values of spectral indices, their runnin
and the tensor-to-scalar ratio for the three models considered
quantities are evaluated atk50.01h Mpc21.

Slow-roll values R nS21 nT aS aT

Chaotic 0.285 20.055 20.037 20.0010 20.0007
False vacuum 0.051 0.05420.006 0.0017 0.0004
Arctan model 0.089 20.221 20.014 20.0291 20.0041

FIG. 5. Fitting the slow-roll shape to the arctan model. T
errors should be compared with the errors in Fig. 3. For this mo
the second-order slow-roll shape provides a better fit than
power-law plus running shape.
5-8
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TABLE IV. As in Table II, but for the spectral shape that is predicted by slow-roll inflation.

Slow-roll fit Afit/num R nS21 nT aS aT

Chaotic 1.05 0.279
1.01 0.283 20.056 20.037
1.00 0.285 20.055 20.037 20.0010 20.007

False vacuum 0.98 0.053
1.01 0.051 0.051 20.006
1.00 0.051 0.055 20.006 0.0017 0.0004

Arctan model 1.23 0.072
1.07 0.082 20.210 20.016
1.00 0.089 20.213 20.019 20.0289 20.0044
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Psr5c01c1lnS k

k*
D1

c2

2
ln2S k

k*
D , ~44!

and calculating the three coefficientsc0 , c1 andc2 by mini-
mizing the quantity

(
i

@P sr
fit~ki !2Pnum~ki !#

2. ~45!

Comparing the slow-roll fit of Fig. 5 with the power-law fi
of Fig. 3, we can see that the slow-roll shape does ind
provide a better fit in this case, keeping the error below 1
for most of the range. Thus the power spectrum shape
make a difference, and there exist models where fitting w
the power-law instead of the slow-roll shape can lead to
nificant errors~defined by the criterion of Sec. III A!.

However, one cannot conclude that the slow-roll sha
necessarily gives a better fit in general. An example wh
the slow-roll fit converges slower than the power-law fit
the chaotic model, although the difference is not signific
in that case. For power-law inflation the slow-roll shape w
actually fare less well.

A second step is to go from the coefficientsc0 , c1 andc2
to the characteristic parameters of the primordial spec
This can be done by means of the relations

~nS21!sr
fit5

c1

c0
1O~en

3!, ~46!

~aS!sr
fit5

c2

c0
2

c1
2

c0
2

1O~en
3!, ~47!

and analogous equations for the tensors. The coefficieR
can be obtained as

Rsr
fit5

c0T

c0S
. ~48!

The results are summarized in Table IV. This table should
compared with Tables I and II. Fitting a different shape h
now the effect that the parameters of the arctan model c
verge, in contrast to the power-law fit.
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Fitting the coefficientscn allows us to test the consistenc
relation of inflation, and thereafter constrainingc1T andc2T
according to Eqs.~30! and ~31! allows us to measure th
inflationary parameters.

Having shown that there exist situations where the sh
matters, we wish to find the region of the parameter spac
which the difference between a power-law shape with r
ning and the shape predicted by slow-roll inflation is sign
cant. For this purpose, we define the estimator

s[
Psr2Pfit

~Psr1Pfit!/2
3100% ~49!

.2
n

2 S a1
n2

3 D ln3S k

k*
D3100%, ~50!

wheren stands in fornS21 or nT . Note that this estimator
presumes that the two fits generate the same values fo
amplitude, spectral index and running, whereas in practic
different choice of shape will lead to different values. Th
estimator therefore underestimates the differences betw
the two fits close to the pivot point and overestimates th
far away from the pivot.

In Fig. 6 we plot the contours of the maximum ofus(k)u
in the interval 21.5, log10(k/k* ),1.5 in the (nS21,aS)

FIG. 6. The region of fitted spectral indices and runnings
which the difference between the power-law shape and the slow
shape, estimated byusu, is within 1% and within 10%.
5-9
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plane. Its shape can be understood most easily from the
proximation Eq.~50!. We conclude that within the range
nS21P@20.05,0.05# and aSP@20.015,0.015#, shape
should not matter even at the accuracy level of Planck.
present CMB experiments this plot suggests that as lon
unS21u is within the range shown in Fig. 6 shape is not
issue if the running is at most of order 0.01, which is the c
for a wide class of inflationary models~similar constraints
should be assumed to hold true for higher corrections
well!.

A significant difference between the two fits at a giv
observational accuracy is a clear indicator that higher-or
terms may be important, as it is those which give the diff
ence between the two expansions. To be certain of ro
results, an attempt should be made to estimate these hig
order terms, either by extending one or both expansion
seek convergence between them or by resorting to fully
merical analysis techniques.

VI. ACCURACY OF SLOW-ROLL ANALYTIC SPECTRA

In the previous section we showed that spectral shape
matter and therefore that it is important to take the pred
tions of slow-roll inflation into account if we are interested
the physics of inflation itself. Before discussing how to e
tract the inflationary parameters we study the accuracy of
slow-roll approximation at second order. First studies of
accuracy of the slow-roll expansion can be found for
amplitudes in Ref.@4# by comparing to numerical results
while in Ref. @20# the first-order expressions for the amp
tudes and the spectral indices has been tested by compa
to analytical results for power-law inflation. Here we exte
these studies to the full power spectrum at second order.
define the error of the slow-roll power spectrum as

Error~P![S Psr

Pnum
21D3100%, ~51!

wherePsr is given by Eqs.~23! and ~26!–~31!. In these ex-
pressions the values ofH, e1 , e2 and e3 are computed nu-
merically for the three models of Sec. II.

Looking at the chaotic inflation model first, we can s
from Fig. 7 that the error curves resulting from slow-ro
predictions generally have the property that they are m
accurate close to the pivot point~in terms of amplitude and
spectral index! and that the error increases as we move aw
from the pivot point. We can also see that the second-o
expressions can improve the accuracy of both the scalar
tensor power spectra to within Planck requirements, whe
the accuracy of the corresponding first-order express
would be at best marginal. This improvement is mos
brought about by the inclusion of the running.

The tensor spectrum of Fig. 7 is determined more ac
rately than the scalars. We have observed that this is typic
the case. Since the accuracy requirement upon the tenso
less than on the scalars, it is the scalars upon which atten
should be focused.
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Next we turn to the false vacuum inflation model. No
immediately from Fig. 8 that the second-order express
improves both the shape of the power spectrum and the
curacy of the amplitude at the pivot point itself. The firs
order expression is good enough for present experiment
this example, but not for MAP and Planck.

Finally, for the arctan model we see in Fig. 9 that althou
e1 is small ande2 and e3 are still in agreement with the
slow-roll conditions, the effect of the second-order correct
is very important. The first-order expression is not sufficie
for MAP. In this example, the first-order expression also p
duces a significant error in the amplitude at the pivot po
For Planck the plot suggests that the third order is necess

It is of course impossible to study the accuracy of
possible models of inflation in this way. We therefore nee
more general estimator for the accuracy of the slow-roll
pansion in the parameter spaceen . The difference between
the slow-roll expansions ofP(k) and lnP(k) is such an es-
timator. We define the error at a given ordern to be

FIG. 7. Scalar and tensor error curves for the chaotic inflat
potential. The pivot scale crosses the Hubble horizon 55e-folds
before the end of inflation. We see an improvement in accur
from the first to the second-order expressions. The tensors h
better overall accuracy than the scalars.
5-10
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sn5

U(
i 50

n
ai

i !
lni S k

k*
D2expF(

i 50

n
bi

i !
lni S k

k*
D GU

(
i 50

n
ai

i !
lni S k

k*
D1expF(

i 50

n
bi

i !
lni S k

k*
D G 100%, ~52!

where the coefficientsai andbi are taken at orderem
n . The

interpretation of this expression is that it gives the smal
fractional amount by which the worse of the two expansio
departs from the true power spectrum, namely half the
tance between the two estimates. This interpretation just
the absence of a factor 1/2 at the denominator in Eq.~52!.

This expression is of orderem
n11 and therefore is an indi

cator of the importance of orders that have not been
cluded. Moreover it has the same typical behavior of
errors as one goes away from the pivot point, and we a
find that it estimates the orders of the errors for the exam
of Sec. II correctly. We expect that this estimate typica

FIG. 8. Scalar error curve for the false vacuum inflation mod
Again, we see an improvement in accuracy from the first to seco
order expressions which helps to correct the amplitude at the p
point.

FIG. 9. Scalar error curve for the arctan potential. We see
improvement from the first to second order as well as a signific
correction to the overall amplitude at the pivot scale.
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works well although there exists the possibility of fine-tuni
models such thatsn is not a good estimator. In the following
we study the maximum of the error in a suitable interval
wavenumbers, because a large error in a small range
spoil an otherwise accurate fit. We therefore maxim
s1(k,e1 ,e2) and s2(k,e1 ,e2 ,e3) over 21.5, log10(k/k* )
,1.5. This is certainly conservative but is a good indica
of when robust results are expected.

The upper panel of Fig. 10 shows the error in t
e12e2 plane, maximizing over20.1,e3,0.1 ~the arctan
model actually lies outside this range!. The scalar error con-
tours are elongated along the directione152e2/2, which
corresponds tonS51 at first order. In the top left corners1
becomes independent of the dominant contribution prop
tional to lnk for nS51. Fors2 there is a similar cancellation
of the ln2k contribution for models close tonS51, which
explains the shape of the contours. These elongated sh
are therefore a feature of our estimatorsn ; they do not re-
flect a proper estimate of the error in the top left corner
other higher-order terms not considered would spoil th
cancellations. With the exception of that top region, we s

l.
d-
ot

n
nt

FIG. 10. These panels show the error estimates1 for the slow-
roll expansions at first order~thin lines! and s2 at second order
~thick lines!. The upper panel is a function of horizon-flow param
eters, while the lower panel transforms this into the (nS21)2R
plane.
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that, as expected, the second-order expressions exten
area of parameter space meeting a specified accurac
quirement.

It is useful to examine these results in the (nS21)2R
plane via the transformation

nS21522e12e2 , ~53!

R516e1 ~54!

shown in the lower panel of Fig. 10. We use the first-ord
relations also for the second-order error contours here;
error made by this can be neglected for the present purp
The restriction that we put one3 gives rise to values for
running in the rangeaSP@20.023,0.14# for the displayed
region of parameter space. The first-order expression g
errors within 10% in the region given approximately b
20.15,nS21,0.1 andR,1.5. The second-order slow-ro
expression gives an accuracy better than 1% in a some
smaller range of parameter space (20.1,nS21,0.05,
R,1.0).

It is important to stress that these regions are very con
vative as we maximize the error over bothe3 and wave num-
ber. The conclusions of small errors in parameter space
gions is therefore very robust, and indeed the errors
likely to be within acceptable levels even for many mod
lying outside our contours.

An important limit is whene1 is very small, since a broad
class of inflation models belong to this category, e.g. fa
vacuum dominated inflation gives rise to tinye1. When
e1&0.001, then the tensor spectrum will have no effect
the low-l portion of theCl curves at the 1% level, see E
~42!. At this point the tensorCl ’s drop out of reach and we
can no longer measureH during inflation ande1 separately,
see Eq.~24!. The scalar power spectrum, Eqs.~26!–~28!,
now reduces to a function ofPR0(k* ), e2 ande2e3, where
the last two parameters determinenS2152e22Ce2e3 and
aS52e2e3. In Fig. 11 we plot the error of the second-ord
power spectrum,s2, in the (nS21)2aS plane. The transfor-
mation between the (nS21)2aS plane and thee22e3 plane

FIG. 11. The error estimates2 in the (nS21)2aS plane, with
e1!0.001. The dashed line isaS5(nS21)/C, in the vicinity of
which the error estimate can be misleading.
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is nonlinear and singular ate250 for anye3. All correspond-
ing models havenS215aS50. Moreover, in the vicinity of
the lineaS5(nS21)/C the value ofe2 becomes arbitrarily
small, and thuse3 can be huge. Therefore, in the vicinity o
the dashed line the estimators2 is misleading, because i
gives a small error even for models which violate the slo
roll condition e3!1. Nevertheless, the conclusion is th
fairly weak running,0.02 can be accurately~1%! described
by a slow-roll expansion with tinye1.

VII. TESTING SLOW-ROLL INFLATION

We end with a proposal of how to proceed with testi
slow-roll single-field inflation using future high-accurac
data. The corresponding data analysis pipeline is sketche
Fig. 12. The inputs are the CMB data and a cosmolog
model ~e.g.,LCDM). The first step should be to determin
the cosmological parameters under the assumption that
power spectra of scalar and tensor perturbations are give
a power-law with running of the spectral index, see Eq.~10!.
One should check the convergence of the values of all c
mological parameters as one fits scale-invariant, power-
and power-law with running spectra, as discussed in Sec.
One should continue to refine the power spectrum sh

FIG. 12. Suggested pipeline to test slow-roll inflation and e
mate its parameters.
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~adding in running of running, etc.! until the new power
spectrum parameter is found to be consistent with zero
this point one has the choice to neglect this final parame
and this seems a sensible option. We call the order of
truncated power spectrumOpl . In a similar manner one
should also check the convergence of the cosmological
rameter estimates while fitting to the data using sca
invariant, first-order and then second-order slow-roll shap
up to orderOsr.

One should finduOpl2Osru<1, with Opl5Osr being the
most likely case. If we also find consistent estimates of
cosmological parameters then clearly the choice of po
spectrum shape does not matter. IfOplÞOsr but the cosmo-
logical parameter estimates are convergent and consi
with each other, then we have some evidence that a partic
power spectrum shape may be preferred. Figure 6 migh
used to check whether the extracted spectral indices and
nings are expected to give rise to a significant differen
between the two fits.

If there is no convergence using one or both of the pow
spectrum shapes, or if the different power spectrum sha
lead to significantly different estimates of the cosmologi
parameters, then there is either a significant problem in
assumed cosmological model or the shape of the spectru
completely different from a power law, e.g. a pronounc
bump or a step at a privileged scale@29#. Presuming the
latter, within the context of single-field inflation, the optim
strategy is a direct estimation of the inflationary poten
from the data itself, without using intermediate approxim
tions such as the slow-roll expansion, as described by Gri
and Liddle@30#.5 Such a calculation must simultaneously
all parameters, and so will also test whether the results
consistent with a flat universe; the simplest models of in
tion predict V total5161025, though realistic experiment
will be orders of magnitude larger in uncertainty. If so t
data are consistent with inflation, but single-field slow-r
inflation would be ruled out.

If satisfactory convergence of the cosmological para
eters is achieved then the next step is to check whetherV total
is consistent with one. If this test is failed then slow-ro
inflation is excluded and we need alternative physics. If
Universe is consistent with flatness, slow-roll inflation c
now be taken very seriously. In the previous section we h
shown that the power of fluctuations can be predicted at
required level of accuracy in a large region of parame
space favored by present CMB observations. Once slow
inflation has been adopted as a working hypothesis,V total
should be fixed at unity and not varied in any parameter

5The inflationary potential is parametrized, for example by a T
lor series, and the scalar and tensor power spectra are obtaine
solving the mode equations and fed into a Boltzmann code suc
CMBFAST @18# or CAMB @14#. The only approximation is the validity
of linear perturbation theory. The result is an unbiased estimatio
the inflationary potential with automatic generation of the error
variances of the potential parameters amongst themselves and
the cosmological parameters@30#. Other considerations of single
field inflation beyond slow roll are given in Refs.@24,31#.
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We can now test the consistency relation and then e
mate the inflationary parameters. In principle one could
either expansion@Eq. ~10! or Eq.~44!# if it has been success
ful, and even ifOplÞOsr the inflationary information con-
tained within them should be equivalent. However presu
ing it is available it makes best theoretical sense to use
slow-roll fit. The approach is sketched in the lower tree
the pipeline in Fig. 12.

The first step is to check whether a tensor contribution
be detected at a significant level. If not, then there are
means to fully check the specific predictions of slow-r
inflation. However, this means that an upper bound on
tensor-to-scalar ratioR is provided by the CMB data. Assum
ing slow-roll inflation we can use the consistency relati
Eq. ~42! @or its first-order version Eq.~54!# to obtain an
upper bound one1. Then we neglect alle1 terms in Eqs.
~26!–~31!, allowing an estimate ofe2 , e3 and the normaliza-
tion of the scalar power spectrumH2/pe1mPl

2 . Together with
the upper bound one1 this gives an upper bound on the sca
of inflation H. Figure 11 might be used to estimate the th
oretical error in the measurement ofe2 and e3. If the esti-
mates forue2u and ue3u turn out to be larger than the uppe
bound one1 we can take these estimates seriously. Howev
if it turns out that one of the higher-order parameters is of
same order as the upper bound fore1 we cannot consistently
neglecte1. In this case only a banana-shaped region in
rameter space of the second-order slow-roll expansion ca
identified. But a warning is required at that point; without
detection of tensors it might be impossible to distingu
between single-field slow-roll inflation and other models.

If there is a significant detection of tensors, the next s
is to test the consistency equation of slow-roll inflation E
~42!. If this test is not passed, we have ruled out single-fi
slow-roll inflation. If we find consistency, the final step is
measure the scale of inflationH and the inflationary param
eterse1 , e2 ande3. By fitting directly for these parameters
rather than the coefficients of expansion as above, we
now automatically imposing the consistency relations
tween the scalar and tensor spectra. This is also importan
measurement of the cosmological parameters, as it ens
that the uncertainties are not overestimated~under the pre-
sumption that slow-roll inflation is correct!. The slow-roll
shape is the preferred option for carrying out this final p
rameter determination, and this is also the determina
which yields the definitive measures of the various cosm
logical parameters. These might differ from the paramet
estimated from the power-law plus running fit once the co
sistency conditions are imposed. In particular the uncerta
ties should tighten as the inflationary predictions are m
specific than fitting free power-laws plus running. The sy
tematic uncertainty from theory in the measurement of in
tionary parameters can now be estimated with the help
Fig. 10.

Having analytically reconstructed an inflationary pote
tial, its validity can be checked by evaluating the perturb
tions generated by the potential numerically, which will pr
vide a further estimate of the magnitude of higher-ord
corrections. If these prove significant, the numerical res
could be used to ‘‘tune’’ the reconstructed potential with t
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aim of removing any biases in the estimation of other para
eters. Ultimately, analytic results obtained the way we
scribe can be compared with a direct numerical reconst
tion as described in Ref.@30#, with the two methods
providing invaluable cross-checks on each other.

We have presented a strategy to measure the most im
tant quantity in the context of inflationary models, the sc
of inflation H. It probes the time scale and thus the ene
scale of new physics, which requires the detection of ten
contributions. Sensitivity to gravitational waves is main
provided via high-sensitivity polarization measurements, a
ys

.

ett

.

. B

ton
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it is these which may allow us to probe the highest ene
scales for the first time.
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