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Cosmological parameter estimation and the inflationary cosmology
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We consider approaches to cosmological parameter estimation in the inflationary cosmology, focusing on the
required accuracy of the initial power spectra. Parametrizing the spectra, for example by power laws, is well
suited to testing the inflationary paradigm but will only correctly estimate cosmological parameters if the
parametrization is sufficiently accurate, and we investigate conditions under which this is achieved both for
present data and for upcoming satellite data. If inflation is favored, reliable estimation of its physical param-
eters requires an alternative approach adopting its detailed predictions. For slow-roll inflation, we investigate
the accuracy of the predicted spectra at first and second order in the slow-roll expgmeisenting the
complete second-order corrections for the tensors for the firs).tWie find that, within the presently allowed
parameter space, there are regions where it will be necessary to include second-order corrections to reach the
accuracy requirements of MAP and Planck satellite data. We end by proposing a data analysis pipeline
appropriate for testing inflation and for a cosmological parameter estimation from high-precision data.

DOI: 10.1103/PhysRevD.66.023515 PACS nunider98.80.Cq, 98.70.Vc

[. INTRODUCTION driven by a single scalar field, is viable; this creates a frame-
work within which the necessary calculations are reasonably
Recent cosmic microwave backgrou(@\VB) anisotropy  simple, with the initial perturbations computed either ap-
results[1], showing a multiple peak structure in the anisot- proximately analytically or exactly numerically. As yet, there
ropy power spectrum, lend powerful support to the inflation-is no indication from observations that we might need to go
ary cosmology as the origin of structure in the Universe. It isbeyond this paradigm.
now widely expected that cumulative improvements in the The main goal of this article is to investigate different
CMB data will lead to a progressively more accurate estimastrategies that an observer can use to estimate the cosmologi-
tion of cosmological parameters, with projects funded so facal parameters, and to examine the extent to which it is nec-
culminating in the Planck satellite mission expected to reporessary to adopt detailed inflationary predictions. The spec-
results around 2010. trum of the fluctuations is assumed to be produced by an
Given a set of data on structures in the Universe, such asnderlying inflationary model and is calculated exactly by
the CMB power spectrum, it is necessary to simultaneouslyneans of numerical computations. Given this situation, we
fit both for the parameters describing the global cosmologystudy how the data analysis can be performed in two differ-
(such as the matter budget and expansion) ratel those ent scenarios. The first scenario applies if one wants only to
describing the so-called “initial perturbations”; they cannot estimate cosmological parameters, such as the baryon den-
be considered separately. If the model for the initial pertursity and reionization optical depth, and does not care about
bations is insufficiently accurate, or even worse completelythe underlying inflation model beyond being confident that
wrong, the full power of the experiment to constrain cosmo-the description of the initial perturbations used is adequate.
logical parameters cannot be exploited. In this case, observers typically use a power-law fit, see e.g.
The inflationary cosmology is an attractive paradigm forRef. [1], and the first question is to test how accurate a
the generation of the initial perturbations, but even there th@ower-law fit is to typical inflationary cosmologies. In par-
situation can be very complicated in general. In particular, ifticular, we wish to know if this kind of fit is accurate enough
there are multiple scalar fields the perturbations can be for present data, and whether it will also be accurate enough
mixture of isocurvature and adiabatic, and may be nonio analyze high-precision data like that to be provided by the
Gaussian. Such initial conditions may prove difficult or evenPlanck satellite. The second scenario, which makes more
impossible to parametrize, and if such an inflation model isstringent requirements on theoretical accuracy, is if one in-
correct it will be a major obstacle to successful parametetends to estimate properties of the inflationary model. In this
estimation. However it remains a powerful working hypoth-case, the slow-roll method can be used to calculate an ap-
esis that the simplest class of models, where inflation igproximate spectrum and we will study its accuracy. We also
consider to which order in the slow-roll parameters the spec-
trum should be calculated in order to reach the Planck pre-

*Electronic address: s.m.leach@sussex.ac.uk cision. We propose an analysis pipeline for testing the con-
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*Electronic address: jmartin@iap.fr physical parameters of inflation, e.g. the energy scale of in-
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Il. INFLATIONARY BASICS The spectral indices and their “running” are defined by
A single-field inflation model generates Gaussian SpeCtI’Ztihe following expressions:
of purely adiabatic density perturbatioriscalar perturba- dinPgr dinp,
tions) and gravitational wavegensor perturbationsWe de- ng(k)—1= Nk’ n(k)= dink (5)

note the dimensionless power spectraiy(k), whereR is
the intrinsic curvature perturbation on comoving hypersur-

faces (identical with Bardeen's¢ [2] up to a sign, and ag(k)=
Pn(k), h being the amplitude of gravitational waves. Scalar
and tensor perturbations obey the equation of a parametric
oscillator[3]

K (6)

For purposes of illustration, in this paper we use three
qualitatively different inflationary models to mimic idealized
measurements of the power spectra. The first is a chaotic

us=0, (1)  inflation model with a quartic potentigl 1]

. . e V(¢)=ro*, )
where a prime denotes differentiation with respect to confor-
mal time  andk is the comoving wavenumber. This equa- the second a false vacuum inflation potential
tion only requires the assumption of linear perturbation )
theory. The quantities ugt(7n) are defined by _ E 2 i

= — ' — N V(d))_VO 1+ M ’
us(m)=2zsR and u(n)=zh whereze=a—aa’/a’ and 27 \mpy
Avith w?=1, which is inspired by the scenario of hybrid in-

zr=a. The initial conditions for the mode functionss 1 are
flation [12], and the third a potential introduced in REE3]:

®

fixed by the assumption that the quantum fields are in th
vacuum state when the mo@tds subhorizon,

KO 2 ¢
_ _4m e ko m V(p)=V, 1——arctar§ 5—) . 9
k/;|mmﬂs,'r( ﬂ)—_mpl —EZk ) 2 ™ Mp)

For each potential we need to know the scalar field vaiye
where7; is an arbitrary initial time at the beginning of infla- when observable perturbations were generdted when a
tion. The power spectra are calculated according to given scalek, was equal to the Hubble radius during infla-
tion), corresponding roughly to 5&foldings from the end of
3 inflation. The last two potentials provide no natural end to
) inflation, and we make an arbitrary choice oy to be equal
0.3y2mp, and —0.3mp, respectively. The chaotic inflation
Both power spectra can be derived from the inflaton potentiamodel ends by violation of slow roll and so we take
V(¢) and the initial conditions for the inflaton field, and ¢, =4.2mp,.
hence are not independent. They can be obtained numerically Figure 1 shows the scalar and tensor power spectra
by solving the appropriate mode equations wave number b, (k) for these three models, obtained numerically by the
wave number(see e.g. Refl4]). In the following, they are method of Ref[4]. The corresponding microwave anisotro-

2 2k3 2

Ms
C Pk=—
T

Zs

MT
Z7

k3
Pr(k)= a2

denoted byP, (k). pies, obtained using a modified version @mB [14], are
The tensor-to-scalar ratio also showr. We present the characteristic quantities of these
spectra, evaluated &t , in Table I. We have chosen these
_ Pn three models because the chaotic model is an example in
R= Pr’ (4) which tensor perturbations are relevant and it shows moder-

ate negative tilt, the false vacuum model has a moderate
is of interest for testing the consistency of a given model ofpositive tilt and the arctan model has both large tilt and run-
inflation. It has often been defined in terms of the microwavening.
background quadrupole moments. This definition has the dis-
advantage that it depends on the cosmological parameters, . PARAMETER ESTIMATION IGNORING
especially the density of the cosmological consfant[5,6]. INELATIONARY PREDICTIONS
In Ref. [7] the ratio betweerP; (where ® is the gauge-
invariant Bardeen metric potentig8]) and P, was used,
which removes the dependence 6n, . However® does To estimate the cosmological parameters we need an ad-
still depend on the dynamics of the Universe at the photorequate parametrization of scalar perturbations, and more so-
decoupling epoch and thus is not completely model indepenphisticated analyses informed by inflation also include
dent (it depends mainly on the physical matter density
wn=0,h?). The advantage oR is that it is conserved on
super-horizon scales once the decaying mode is negligible’A module to directly input the predictions of slow-roll inflation
and provided only adiabatic perturbations are considere¢b the came program is available to download at
[2,9,10. www.astronomy.susx.ac.ukkleach/inflation/

A. Parametrizing the spectra
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10-8L T T T o 7] TABLE |. Numerical values of spectral indices, their running
False &hc"u‘f},'ﬁ ............ and the tensor-to-scalar ratio for the three models considered. All

quantities are evaluated laf =0.01h Mpc™1.

Exact values R ng—1 nr ag a

Chaotic 0.285 —0.055 —0.037 —0.0009 —0.0006
False vacuum 0.051 0.054—-0.006 0.0018 0.0005
Arctan model 0.089 —0.216 —0.015 —0.0298 —0.0036

#(k)

10-10L

the absence of any physical model for the generation of fluc-
tuations, one assumes that there is no distinguished physical

0.0001 0.0010 0.0100 0.1000 scale in the primordial power spectra. In order to allow for
k / (h Mpc™") mildly scale-dependent power spectra, a running of the spec-
tral indices can be included. This leads to the following
6000 shape:

5000

gt + (L2)agiIn(k/k, )
| R

k
Prir(K) = Prie(K, )(k_

»
(=]
=)
=

whereny; is eitherng—1 or ny.2 The pivot scalek, is the
scale at which all the quantities are evaluated. A useful way
of viewing Eq. (10) is that it is the first terms of a Taylor
expansion of IP(k) in Ink about the pivot scale, which
draws one’s attention to the possibility of using other expan-

10+1)Cy/ 2R (uK?)
8
3

1000 e sions.
IR The simplest assumption would be to take both spectra as
°2 10 40 100 200 200 300 12'00 1;00 constant (scale-invariant Models with ng—1=0 and
Multipole 1 nt=0 do in fact provide acceptable fits to recent CMB data

(for sufficiently low or zero tensor amplitugethus, if we
FIG. 1. The top panel shows the power spectra of sdalgper  decide to ignore inflation for the moment, there is no reason
lines) and tensor(lower lineg perturbations for our three models. from CMB observations alone to include a tilt. Refereficke

. _ —9 .
The scalar spectra are normalized B =2X10"" at the scale quotesng— 1= —0.07°97% at 95% confidence level, and the

¢ ore et ; . 0.16
K, =0.01h Mpc™*, which approximately matches the Cosmic gyqiiion of large-scale structure data greatly tightens the con-
Background ExplorefCOBE) normalization. The bottom panel

shows the corresponding, curves for a flat cosmological model straint without altering the conclusion thag=1 is allowed.

) = P — o - logiee Current observational constraints on the running of the spec-
with w,=0.0200, ®,=0.1268 and w,=0.2958 (implying h tral index are far weaker than the maanitud redicted in
=0.65), and reionization optical deptts 0.05, with the upper lines a ex aré far weake a € magnhitude predicte

again the scalar contribution and the tensors considerably subdon{?-OpUIar inflationary models. Thus far, only upper limits on

nant. Only the sum of the two can be detected, though they contribt-he contribution of gravitgtipnal waves have been derived
ute differently to polarization anisotropies. [7,15,16. Some of these limits suffer from the problems de-

scribed below Eq(4), and use strong priors on some of the

tensors If one is only interested in a measurement of thoseother cosmological parameters. Translating the result of Fig.
cosmological parameters that do not describe the initial pe® of Ref.[7] (r<0.5 at 95% confidence leveto our nota-
turbations, one would like to know whether robust resultstion gives R=9r/25<0.2, while Ref.[16] gives a weaker
can be obtained using simple forms for the initial powerconstraint also consistent wiR=0. Let us also remark that
spectra rather than detailed inflationary predictions. Therethe majority of recent papers estimating parameters from the
fore, in the context envisaged in this section, the observeficrowave background have done so under the assumption
does not use the assumption that inflation is the correct urihat the scalar spectrum has a power-law shape and that there
derlying theory, other than to motivate the restriction of theiS no contribution from tensor perturbation@< 0).
scalar perturbations to be adiabatic. The question of how far power spectra expansions should

It is common practice to assume a power-law shape fobe taken, and how accurately their coefficients need to be
the spectrum specified by an amplitude and a spectral indexomputed, obviously depends on the accuracy and dynamic

The reasoning for this parametrization is its simplicity. Inrange of observations. For present observations an accuracy
level of ten percent or better is certainly required. Ultimately,

2A general analysis would also have to consider vector modes and
the various possible isocurvature modes, but at present there is ndNote from the definition of the spectral index thag(k)—1
evidence that they are required. # Nge + %amln(k/k*) away from the pivot scale.
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Planck will measure multipole momen@; from | of 2 to  trum was within our 1% accuracy everywhere. Our criterion

about 2000, corresponding toln k/k, =3.5 on either side of 1S & sufficient and conservative condition for establishing a
a central pivotk, . It is rather unclear how accurately the Safé procedure: as long as the power spectrum accuracy is
multipole moments need to be represented at the extrem&§low 1% everywhere, we are confident that the systematic
(cosmic variance intervening on large scales and the dam&/T0rs coming from an inaccurate parametrization of the ini-
ing tail removing the signal on short scalelsut in the center tial co'ndltlon's will not play a role in the data analysis of an
an accuracy of better than one percent is certainly desire@*Periment like Planck.

(see e.g., Ref17]).% If one then further assumes that Planck

data will be combined with high-accuracy galaxy correlation B. Accuracy of the parametrized spectra

data, thek range might extend to arourtdlin kfk, =6 (corre- We now investigate the systematic errors which might

sponding to Kye=30h Mpc™ 1), though the nonlinearly . : >
evolved galaxy power spectrum on short scales is unlikely t§rnse from assuming that the spectra haye perfect power-law
hapes or, in a more sophisticated version, a constant value

be amenable to extremely accurate multiparameter estim or the running of the spectral index. The first step is to fix
tion. The choice of pivot scalk, is important as the differ- the numericalg\]/alues of ?he coefficie . (K.), Ny an% _
ence between the fitted and the true power spectrum prq; MKy ), Nri it -

duces an error that runs as we move away from the pivoliZ TRV T8 BEETE B B R B RIS O et
scale. While a careful tracking of error covariances shoul cients by carr 'in gut a fit ,to the data. Here. we carry out a
lead to results independent of the choice of pivot, those COfeast-s ugres f>i/t o(:):t]? K) to P (K) to obtain t;est-fit sgale-
variances should be minimized to a good approximation by -S4 fit(K) num( K) .

Invariant, power-law and power-law plus running spectra.

ligningk, with |, , th Itipole wh t th - e
aligningk, with |, the multipole where we expect the ob is means that the coefficienf8;(k,), ng and ag; are

[ngra/atlonal errors to be least. One can use the approxmaﬂcﬂ'ose for which the quantity

Mo O, 25 [Pi(ki) = Prunf ki) 17 (13)
*=73 11008ainq,, * Gmta=1 1Y
_ 1 . is minimized. We took thék; to be equally spaced id Ink
Wherel_—|0—h/30QO Mpc to_carry out th|s allgnme_nt. and given equal weight. This idealized fitting approach will
Having described the typical errors in the multipole mo-(aqtg sacrifice accuracy in the center of desired range in
ments, ErrorC,), we now ne_ed to link th|s_quant|_ty_to the tavor of accuracy at the extremes. Here the idea is to test
error in the power spectrum itself, Err@), since thisis the \\hether in principle the shape &, can reproduce the true

guantity calculated i_n practice. We assume throughout thi?uower spectrum over a reasonable rangf. ifihis obviously
paper that an error in our determination of the power specyacomes important if, for example, we try to use a power-

trum propagates directly to an error in our determination ofj5,, shape to fit to a model with significant running of the

the Cy's since spectral index. The result of the minimization procedure for
the three models introduced above is summarized in Table II.
C|=47-rf dInkP(K)[A(K) T2, (12) gglzel values should be compared with the exact ones of
For the first two examples we conclude that the sequence
where A, (k) is thel-th momentum of the temperature fluc- of fitting a constant amplitude, a power-law, and finally a
tuations. In other words, we assume Er@)= Error(P). power-law with running provides best-fit values which repro-
Another question is how an error in the power spectrumduce the numerical values with sufficient accuracy. From the
propagates to an error in the estimation of the cosmologicapbservational point of view this is reflected in the fact that
parameters. In general the Fisher matrix formulation isthe best-fit value oRis the same in the second and third row
needed to estimate how well a given experiment can measugnd that the fit values of the spectral indices are almost the
the parameters; the error in the cosmological parameters Bame as well. Such a behavior is the experimental evidence
not simply related to the error in the power spectrum as therghat the input does make sense. The situation is different for
are many parameters and lots of degeneracies amongst the@wr third example, the arctan model. Although there is slow
The requirement ErroR)=1% for Planck is a very strin- convergence in the best-fit values Rf no sign of conver-
gent condition. In particular, it does not imply that parametergence can be detected by inspection of Table Il in the spec-
estimates would go astray if we drifted outside our powertral indices. This is confirmed by a comparison with the nu-
spectrum accuracy criterion; we would expect parameter egnerical values of Table I, e.g., the fitted spectral index of the
timates to stabilize some way before the fitted power spectensors is less precise in the third row than in the second, the
scalar spectral index is underestimated by 0.036 by the
power-law fit and overestimated by 0.022 including running.
“We note that current implementationsmfisrast [18] andcave  From the point of view of inflationary parameters, see below,
[14] have a target accuracy of one percent, so there is presentiiese are large fluctuations. Thus an observer in possession
nothing to gain by demanding power spectrum accuracy muctof sufficiently accurate data sometime in the future should
higher than this. conclude for our third example that more parameters have to
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TABLE Il. The ratio of the fitted amplitude to the numerical amplitude of the scalg,m, and the
best-fit values of the tensor-to-scalar ratio, the spectral indices and their running for the three models con-
sidered ak, =0.0lh Mpc™!. For each model, we present the results for a scale-invariant, power-law and
power-law with running spectral shape in three rows respectively.

Fitted values Afiynum R ng—1 Ny as aT
Chaotic 1.05 0.279

1.00 0.285 —0.054 —0.036

1.00 0.285 —0.055 —0.037 —0.0010 —0.0007
False vacuum 0.98 0.053

1.01 0.051 0.054 —0.006

1.00 0.051 0.054 —0.006 0.0017 0.0004
Arctan model 1.23 0.072

0.95 0.092 -0.178 —-0.016

0.99 0.090 -0.238 —0.020 —0.0303 —0.0044

be introduced in the fit, before any physical meaning can be Given a set of observations, the importance of running is
extracted from the best-fit values of the spectral indices. tested by including it in the fit and examining whether the fit
A large error in the fitted values of the amplitude and ofimproves significantly. In the absence of any theoretical
the spectral index, even if we are not interested in the physicgrejudice, one might well hope to detect significant running
of inflation for the moment, is undesirable for two reasons.at high significance. However, some of the simplest inflation
First the overall amplitude of scalar perturbations is a quanmodels predict running of at least an order of magnitude
tity that we hope to measure from Microwave Anisotropy below what even Planck can achid\&]. In that case there
Probe(MAP) and Planck at the percent level. Thus we wouldwill be no significant detection of running, and marginalizing
prefer to relate it to a physical quantity, namely the ampli-over the running permitted by the observations may lead to a
tude of superhorizon density fluctuations. The second reasaignificant inflating of errors on other parameters. While
comes from considerations of large-scale structure datajombining short-scale observations with the microwave
where it is customary to include a linear bias paramételg ~ background may give a stronger lever-arm in constraining
account for the overall normalization of the matter powerrunning, this may well turn out to be a parameter for which it
spectrum. If we simultaneously fit to the CMB, then we canis desirable to investigate imposing a strict theoretically-
only assign any physical meaning baf we are certain that motivated prior to compare with a free fit. Further, even if
the amplitude of scalar perturbations is correct. In additionyunning is detected at high significance this problem then
an inaccurate estimate of the amplitude and the tilt couldesurfaces concerning the running of running.
spoil a consistency check of structure formation based on As we have already concluded from the discussion of the
measurements afg. best-fit values in Table I, there exist models for which a
Having determined the coefficients, the second step ipower-law fit to the spectrum does not provide a good de-
now to compute the error. We define this by

Pfit 10 : Scale—invariont
Erron P)= Pnum_l X 100%. (14 [ ---- gg::::gx + rdoning
In the following, we give three examples. !
In Fig. 2 we plot the error in the scalar power spectrum in
the case of the false vacuum model. The best-fit scale-$ .
invariant spectrum is a poor fit for this particular model, :\: o:'_";"—":"—"“'"' """"""""""""""""

while the best-fit power-law spectrum improves things
greatly, keeping the errors below 2% which is more than
adequate for present CMB data and marginally adequate fo -5
Planck. The large effect of the tilt is due to a long lever arm
in wavenumbers[20]; the error being of the order [
(ns—1)Ink/k, , even a small tilt can have a significant effect ~ -10 L L L L

if the data span several decades in wavenumbers. We ca 0.0001 0.0010 0.0100 0.1000
further see that with the inclusion of runnin@s, now repro- k / (h Mpc™)

duces the power spectrum in great detail. This is because the Fig. 2. Error curves for various fits to the scalar power spec-
correction to the spectrum is of ordesln/k, which, for  tum for the false vacuum model. While the power-law fit is accept-
the running of this example afs=0.002, gives a significant able for fitting to present data, neglecting running affects the esti-
effect though the correction is much smaller than that frommate of the power spectrum amplitude at the pivot point at the
the tilt. percent level.
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[ Scale—invariant
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cation as the scalar spectrum. For future CMB measure-
ments, the inclusion of a tilt is sufficient in this example.
To answer the main question of this section, we can ex-

; pect to obtain robust estimates for the cosmological param-
’ eters for a restricted class of inflationary models using the
3 fitting procedure described above. However, there exist mod-
els where this is no longer true. In the following sections, we
specify the criteria which define this class of models.

% error
o
T
Cd
4

g - IV. PREDICTIONS OF SLOW-ROLL INFLATION

In this section, we restrict our considerations to the class
of slow-roll models of inflation. The advantage is that we can
now predict the shape of the power spectra and link the pa-
rameters characterizing these spectra to the physics of infla-
tion. There has recently been renewed progress in the accu-

FIG. 3. As Fig. 2 but for the arctan model. For fitting to data of rate calculation of inflationary perturbations by analytical
the present quality, the inclusion of the running is required. techniques, including a computation of the power spectra to
arbitrary order in the slow-roll expansion for single-field in-

scription in contrast to the above example. In Fig. 3 the erroflation by Stewart and Gon§22], and a computation at
in the scalar power spectrum for the arctan model is dishigher order for models that may violate one of the slow-roll
played. Including the running is necessary for the presengonditions[23,24. We utilize the Stewart-Gong results here
accuracy of CMB experiments. Now the effect of running isas they have the most general applicability, extending them
comparable to that of the tilt. We see that more parameter@ith an explicit evaluation of higher-order terms for the ten-
(e.g. running of the runningwould be necessary to repro- SOr spectrum.
duce the power spectrum with 1% accuracy. We actually The background evolution can be described in terms of
have to add more and more parameters until the spectruifieé horizon-flow parameterge,} [24]. Starting from
starts to convergésee also the discussion of Tablg, lbr  €=H(N;))/H(N), where 1H is the Hubble distance and
consider using a different spectral shape. N= In(a/g) the number ok-folds since some initial timg,
For the tensors in the case of the chaotic model, we see ithe set{e,} is defined by
Fig. 4 that the spectrum is poorly fitted by the scale-invariant
spectrum. However, the accuracy requirements on the tensor
spectrum are less stringent—the tensor amplitude is gener-
ally less than the scalar amplitude and so the required abso-
gfﬁ};ggﬂ;@';ﬁf&I:;Z;rsrﬁ Igr\?vre(ﬁ%)gs;ﬂ)%z éelvtgr?l-by These parameters can be easily related to various definitions
scale-invariant spectrum for present-day experiments, thoug f the slow-roll pqram_eters. _Settmgn:l we find
there is no reason not to describe it with the same syophistflz —dinH/dina, which is nothing but the slow-roll pa-
rametere of Refs.[25,26]. The parameter; of Refs.[25,26,
which is usually defined to measure the deceleration of the

0.0001 0.0010 0.0100

k / (h Mpc™)

0.1000

din|e,|

€Entr1= d—N, n=0.

(15

10[

% error

Scole—invariont
Power—low
Power—law + running

inflaton field, enters as,=2e—2%. The third slow-roll pa-
rameter, &, is contained ine,ez3=4€>—6en+2£2. In this
notation, all thee, are typically of the same order of magni-
tude. Inflation takes place provided<1. Slow-roll infla-
tion is defined by the conditiofe,|<1, for all n>0.

A measurement of the horizon-flow parameters, at a spe-
cific moment during inflation, would immediately provide us
with a value for the inflaton potentidl and its derivatives
with respect to the inflaton fielgp (denoted by a prime in
what followsg for any single-field inflation model. For ex-
ample, fromH and ¢,,€,, and e3 we can calculate the po-
tential and its first two derivatives exactly,

0.0001 0.0010 0.0100 0.1000 3m3H? €1
k / (h Mpc™) V=—g_ (1— §>, (16)
FIG. 4. As Fig. 2 but for the chaotic inflation model tensor
spectrum. Although the percentage error is large for the scale- 3meH?2 € €
invariant fit, the absolute error is small compared to the scalar spec- V/i=-— Pl 1/2( _ 1 + _2) (17)
trum, and so the scale-invariant fit is still acceptable. (41-r)1’2 ! 3 6)’
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4 €, 265 See, €5 €req 16H?2

W:261_5 ?'F 6 12 6 ° (18 /Pho(k*):mélv (29

If €3 cannot be determined and the horizon-flow parametersshereH ande; are evaluated whemH=k, during inflation.
are small compared to unity, we can still estimaté by  The scalar amplitude has been calculated up to first order in
keeping the leading terms only. the slow-roll parameters by Stewart and Ly2v], and re-

For slow-roll models we can invert this procedure andcently up to second order by Stewart and G¢28]. These
estimate the horizon-flow parameters. At leading order ircalculations are sufficient to allow calculation of an infinite,
these parameters we find though incomplete, set of expansion coefficients of which the

first few are given by

H?=—V, (19 U )
3mg, asy=1—2(C+1)e;— Cep+ 2cz+2c+7—5 €
2 ’\ 2
mg, [V 7 1 w?
= — 2_ _ T2, T )2
1 mw(v). (20 +| Cc?-Cc+ 45 7eﬁﬁ«2C4—8 1%2
2 2 " 1 772
M) (V v +| —=C*+ e
~— || —] = — 2€3, (26)
€ 4w[<v) v}’ (21) 2 24
mé’l VAV \VZAVZ 2 \V& 4 a51:_261_62+2(2C+1)6§+(2C_1)6162+CE§
626323277'2 V2 _37 V) +2(v) ' @2 —Cezeg, (27
To give an example, for chaotic inflation with the potential ~ aso=4€5+2€1€,+ €5— €s€3, (28

Vo p? we find €;=y/4AN and e;=e3=1/AN, where AN
denotes the number @ffolds before inflation ends. Chaotic WhereC= yg+In2-2~-0.7296. For the tensors, the corre-
inflation is a simple model where the higher horizon-flow SPonding set is as follows:

parameters are of the same order of magnitude as lower ones. 2

In the case of power-law inflatiora¢<tP) where the potential aro=1-2(C+1)e+ ( 2C242C+ T 5) €2

is given byVo exf —(167/p) Y24/ mp], we recover the ex- 2

act resulte;=1/p ande, = e3=0.

2
The power spectra of scalar and tensor perturbations can +| —c?2-2Cc+ 1—2 €165, (29
be obtained approximately using analytic techniques. One 12
expands the power spectra about some particular wave num- 2
berk, , and then computes the coefficients using the slow- ar =26, +2(2C+1)e1-2(CH1)e e,
roll expansion or some other scheme of approximation. This (30
amounts to a double approximation. Given that we need to aT2:4E§_26162' (31)

cover several orders of magnitudeknthe most appropriate
expansion variable is Ik giving

az , k
+?In (E

We have presented for the first time t@{eﬁ) terms in the
tensor amplitude which we obtained along the lines of Ref.
+.... (23 [22]
The coefficients,, for n>0 can also be obtained by suc-
t(,‘sessive differentiation of the first term of the expansion

P(k)

————=ap+ayn
PO(k*) 0 !

Ky

The next step is to establish an expression for the coefficien
a,, which can be obtained either with help of the slow-roll 4T POk Pk
expansion6,20,22,25,27,2Bor the methods of approxima- a = [PCk)/Po *)]’ (32)

n

tion developed in Refd.23,24. Since the former covers a dIn"k ‘k=k
more general class of inflation models than the latter, we *
focus on slow-roll inflation in the following. We will use the n
. . . 1 1 d
term first order to refer to results including all terms up to =— |— —| P (k Kk 33
j R R Pa(K 1— dN 0( *)aO( *)v ( )
ordere,, andsecond ordeif one goes to terms mcludlngzﬂ. o(Ky) €

The normalization of the power spectra is set by the ex- I - e
ansion rate during inflationH, and the parametek;: where we uged the honzpn crossing” conditidk, =k
b ’ 1 =aH to obtain the second line. From Ed45) and(32) we

namely, see that the leading contribution &g is of ordere;, (where
2 €/ means any terms containimgpf the €, not necessarily all

Pro(ky)=——, (24  the samg If ag has been written to first order, differentiation

e Mp yields a; to second order, to third order and so on. Note
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that the coefficients of the Taylor series, E&3), always TABLE llI. Slow-roll values of spectral indices, their running
feature an increasing number of powers of the slow-roll paand the tensor-to-scalar ratio for the three models considered. All
rameters, so in practice convergence of the Taylor series @uantities are evaluated kt=0.01h Mpc™*.
governed by the size of,In k/k, , which in principle needs
to be small for all values ah=1. Thus the series can still be Slow-roll values R
strongly convergent even if kik, exceeds one, as it will for  ~p4otic
typical upcoming experiments. o _ _ False vacuum
Let us now calculate the spectral indices and their running,
. . . . Arctan model
in the slow-roll approximation up to second order. For this
purpose, it is useful to calculate the logarithm of the power

nsfl nT ag aT

0.285 —0.055 —0.037 —0.0010 —0.0007
0.051  0.054-0.006  0.0017  0.0004
0.089 —0.221 —0.014 —0.0291 -0.0041

spectrum This becomes the well-known “consistency condition of in-
P(K) b K flation” R=—8nt at leading order, which holds for single-
In~———=hy+byIn| —| + _2|n2(_ +.--. (39 inflaton-field slow-roll models. The values of the raRpthe
PO( k*) k* 2 k*

spectral indices and their running, computed in the slow-roll

. ) . approximation for the three models envisaged in this article,
Exponentiation of Eq(34) automatically enforces the posi- ,re symmarized in Table IIl. The values of the horizon-flow

tive definiteness of>(k) and allows us to directly link the  h3rameters were obtained numerically, though an actual re-
first coefficientsb, to the spectral indices and the runnings, -qnstruction may also feature a slow-roll approximation in

because relating those to the inflationary potential.

bsi=ns—1,br=nr, bs,=as, brp=ar. (39
V. DOES THE SHAPE OF THE FITTED SPECTRA
The equivalent expressions to E@86)—(31) are MATTER?
2 In the preceding section, we have shown that the shape of
bgg=—2(C+1)e;—Ceyp+| —2C+ >~ 7) si the slow-roll spectra does not coincide with the shape of the
fit of Sec. Ill. From a theoretical point of view, it is clear that
772 T2 ) the former should be used not only to predict the spectra but
+< —C?-3C+ 6—7)616# g—l)fg also to fit real data. For many choices of parameters the
difference between the shapes is not significant, but there are
1 ) 2 also models where this difference can be important.
| = 3CT 5] €263, (36) An example is given in Fig. 5, where we plot
_ . o 2 o . fit
bs1=—2€1—€,—2€1—(2C+3)€e16,—Ceres, (37 Error(Pgﬁ)E( Py —1]%100%, 43)
Pnum
bso= —2€162~ €263, 38 for the arctan model of Sec. . In this equatio! is found
for the scalars, and by considering
2 ]o T T T T
7T 2 [ Scale—invariant
bro=—2(C+1)e;+ _ZC+7_7 €1 - - —— 1st Order slow—roll
------------ 2nd Order slow—roll R ]
772 sk . \\ .
+ _C2_2C+E_2 €16, (39 [ .
’ A}
5 | SRS B - o
le:_261_265_2(0+1)6162, (40) : O .,.,..’. ............................. \‘ -
’ 3
/, 1
bry=—2e;€, (41) [, |
_5 ﬁ’ “ -
for the tensors. [ \
Finally, the ratio of amplitudes of scalars and tensors at [ \
the pivot point is -10 . . . !
0.0001 0.0010 0.0100 0.1000
2 1 - k / (h Mpc™")
R=16¢;|1+Ce,+|C— = +5|e1e,+| 5C2— —+1| € »
2 2 8 FIG. 5. Fitting the slow-roll shape to the arctan model. The
5 errors should be compared with the errors in Fig. 3. For this model,
+ ECZ— 77_) €€ (42) the second-order slow-roll shape provides a better fit than the
2 247253 power-law plus running shape.
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TABLE IV. As in Table Il, but for the spectral shape that is predicted by slow-roll inflation.
Slow-roll fit Afitinum R ns—1 Ny ag aT
Chaotic 1.05 0.279
1.01 0.283 —0.056 —0.037
1.00 0.285 —0.055 —0.037 —0.0010 —0.007
False vacuum 0.98 0.053
1.01 0.051 0.051 —0.006
1.00 0.051 0.055 —0.006 0.0017 0.0004
Arctan model 1.23 0.072
1.07 0.082 —0.210 —0.016
1.00 0.089 —0.213 —0.019 —0.0289 —0.0044
k c Lk Fitting the coefficientg, allows us to test the consistency
Psi=CotCaln| =]+ 5 In% i~/ (44 relation of inflation, and thereafter constrainiog; and c,t
* *

according to Eqs(30) and (31) allows us to measure the
inflationary parameters.

Having shown that there exist situations where the shape
matters, we wish to find the region of the parameter space in
which the difference between a power-law shape with run-
ning and the shape predicted by slow-roll inflation is signifi-
cant. For this purpose, we define the estimator

and calculating the three coefficierdg, c; andc, by mini-
mizing the quantity

2 [PS(k) = Prun{ k)% (49

Comparing the slow-roll fit of Fig. 5 with the power-law fit Par— Pt

of Fig. 3, we can see that the slow-roll shape does indeed UEWXMO% (49

provide a better fit in this case, keeping the error below 1%

for most of the range. Thus the power spectrum shape can n n2 k

make a difference, and there exist models where fitting with = 5( a+ E) In3(k— X 100%, (50)
*

the power-law instead of the slow-roll shape can lead to sig-
nificant errors(defined by the criterion of Sec. Il1)A
However, one cannot conclude that the slow-roll shap
necessarily gives a better fit in general. An example wher
the slow-roll fit converges slower than the power-law fit isd
the chaotic model, although the difference is not signiﬁcante
in that case. For power-law inflation the slow-roll shape will

actually fare less w ell . far away from the pivot.
A second step is to go from the coefficients ¢, andc, In Fig. 6 we plot the contours of the maximum [af(k)|

to the characteristic parameters of the primordial spectr : N < - -
This can be done by means of the relations i the interval ~ 1.5<logi(k/k,) <15 in the s~ Lag

wheren stands in fomg—1 or ny. Note that this estimator
resumes that the two fits generate the same values for the
mplitude, spectral index and running, whereas in practice a
ifferent choice of shape will lead to different values. This
stimator therefore underestimates the differences between
the two fits close to the pivot point and overestimates them

. Cq [ i

(Ng— 1)2}=C—0 +0(€), (46) 0.04p .
2 0.02- -

. C, Cf [ ]
(agg=o — 5 +0(e), (47) [ _

0 Co s 0.00 -

and analogous equations for the tensors. The coeffident

can be obtained as -0.02r

-0.04

Rfit— C_OT

o (49)

The results are summarized in Table IV. This table should be

compared with Tables | and Il. Fitting a different shape has FIG. 6. The region of fitted spectral indices and runnings in
now the effect that the parameters of the arctan model conwhich the difference between the power-law shape and the slow-roll
verge, in contrast to the power-law fit. shape, estimated Hyr|, is within 1% and within 10%.
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plane. Its shape can be understood most easily from the ar 10 ' T T
proximation Eq.(50). We conclude that within the ranges ToT o gt Grder & 200180
ns—1e[—0.05,0.03 and age[—0.015,0.01%, shape [ € = 0.0189
should not matter even at the accuracy level of Planck. For 5F =
present CMB experiments this plot suggests that as long a [ |
[ng—1| is within the range shown in Fig. 6 shape is not an
issue if the running is at most of order 0.01, which is the case
for a wide class of inflationary modelsimilar constraints
should be assumed to hold true for higher corrections as [ .-~
well).
A significant difference between the two fits at a given )
observational accuracy is a clear indicator that higher-ordel
terms may be important, as it is those which give the differ- [ Scalar
ence between the two expansions. To be certain of robus —10 L L L L
results, an attempt should be made to estimate these highe 0.0001 0.0010 0.0100 0.1000
order terms, either by extending one or both expansions tc k / (h Mpc™)
seek convergence between them or by resorting to fully nu-

merical analysis techniques. 10 T T T

= === 1st Order €,
2st Order

0.0180

error

—————
______
-
-
-

%

0.0180
€, = 0.0180
€5 = 0.0189

VI. ACCURACY OF SLOW-ROLL ANALYTIC SPECTRA

In the previous section we showed that spectral shape ca
matter and therefore that it is important to take the predic-
tions of slow-roll inflation into account if we are interested in
the physics of inflation itself. Before discussing how to ex- ye I
tract the inflationary parameters we study the accuracy of the
slow-roll approximation at second order. First studies of the
accuracy of the slow-roll expansion can be found for the
amplitudes in Ref[4] by comparing to numerical results,
while in Ref.[20] the first-order expressions for the ampli- [ Tensor
tudes and the spectral indices has been tested by comparisc  ~'9 . . : .
to analytical results for power-law inflation. Here we extend 0-0001 O'OOLO / (h 3’013? 0.1000
these studies to the full power spectrum at second order. We pe
define the error of the slow-roll power spectrum as FIG. 7. Scalar and tensor error curves for the chaotic inflation

potential. The pivot scale crosses the Hubble horizone%6lds
before the end of inflation. We see an improvement in accuracy

error

Py from the first to the second-order expressions. The tensors have
Error(P)= D 1]X100%, (51)  petter overall accuracy than the scalars.
num
where Py, is given by Eqs(23) and (26)—(31). In these ex- Next we turn to the false vacuum inflation model. Note
pressions the values ¢f, €;, €, and e; are computed nu- immediately from Fig. 8 that the second-order expression
merically for the three models of Sec. Il. improves both the shape of the power spectrum and the ac-

Looking at the chaotic inflation model first, we can seecuracy of the amplitude at the pivot point itself. The first-
from Fig. 7 that the error curves resulting from slow-roll order expression is good enough for present experiments in
predictions generally have the property that they are moghis example, but not for MAP and Planck.
accurate close to the pivot poifin terms of amplitude and Finally, for the arctan model we see in Fig. 9 that although
spectral indexand that the error increases as we move away; is small ande, and e3 are still in agreement with the
from the pivot point. We can also see that the second-ordeslow-roll conditions, the effect of the second-order correction
expressions can improve the accuracy of both the scalar arigl very important. The first-order expression is not sufficient
tensor power spectra to within Planck requirements, whereder MAP. In this example, the first-order expression also pro-
the accuracy of the corresponding first-order expressionluces a significant error in the amplitude at the pivot point.
would be at best marginal. This improvement is mostlyFor Planck the plot suggests that the third order is necessary.
brought about by the inclusion of the running. It is of course impossible to study the accuracy of all

The tensor spectrum of Fig. 7 is determined more accupossible models of inflation in this way. We therefore need a
rately than the scalars. We have observed that this is typicallgnore general estimator for the accuracy of the slow-roll ex-
the case. Since the accuracy requirement upon the tensorspansion in the parameter spagg. The difference between
less than on the scalars, it is the scalars upon which attentidhe slow-roll expansions oP(k) and InP(k) is such an es-
should be focused. timator. We define the error at a given ordeto be
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10 T T T T T T T T T
[ - - -~ 13t Order € = 0.0031 ] ny —-0.1 < e5< 0.1 ]
[ 2st Order '. -0.0612 1 0.20F % €3 1
I = 0.0202 1
5 -1 L
[ ] 0.15
H or —_— == = g L
* 7T e, ] 0.10
»" T |
-Sr .~ ] 0.05
’ 3
.
'l :_._ Tensor 1% . B
L L A
-10 R 1 1 L 1 1N\ Ladn L
0.0001 0.0010 0.0100 0.1000 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20
k / (h Mpc™) e

FIG. 8. Scalar error curve for the false vacuum inflation model.

Again, we see an improvement in accuracy from the first to second-
order expressions which helps to correct the amplitude at the pivol

point.

3 Bl -eof

fe
o 3 |

On=

k
K,
a k
F

2

M

where the coefficients; andb; are taken at ordegy,. The
interpretation of this expression is that it gives the smallest [
fractional amount by which the worse of the two expansions 0.0

100%, (52  «

TERSOr 10%  mmmmmen]

0.5

departs from the true power spectrum, namely half the dis- -0.2 -0.1 0.0 0.1 0.2

tance between the two estimates. This interpretation justifies
the absence of a factor 1/2 at the denominator in(Bg).
This expression is of ordes"* and therefore is an indi-

FIG. 10. These panels show the error estimatdor the slow-
roll expansions at first ordefthin lineg and o, at second order

cator of the importance of orders that have not been intthick lines. The upper panel is a function of horizon-flow param-
cluded. Moreover it has the same typical behavior of theeters, while the lower panel transforms this into the{1)—R
errors as one goes away from the pivot point, and we als@lane.

find that it estimates the orders of the errors for the examples

of Sec. Il correctly. We expect that this estimate typmallyWOka well although there exists the possibility of fine-tuning

models such that, is not a good estimator. In the following

10 T T T T
[ == == 1st Order €, = 0.0067
[ 2st Order €, = 0,.2298 1
L €; = 0.1493 1
5 -

% error

—10. L s [ [ 11

we study the maximum of the error in a suitable interval of
wavenumbers, because a large error in a small range may
spoil an otherwise accurate fit. We therefore maximize
] o1(K,e1,€5) and o,(k,€eq,€,,€3) over —1.5<log,o(k/k,)

1 <1.5. This is certainly conservative but is a good indicator
of when robust results are expected.

The upper panel of Fig. 10 shows the error in the
€,— €, plane, maximizing over-0.1<e3<0.1 (the arctan
model actually lies outside this rang&he scalar error con-
tours are elongated along the directiep= — €,/2, which
corresponds tmg=1 at first order. In the top left corner;
becomes independent of the dominant contribution propor-
tional to Ink for ng=1. Foro, there is a similar cancellation

0.0001 0.0010 0.0100 0.1000
k / (h Mpc™)

of the Ik contribution for models close tag=1, which
explains the shape of the contours. These elongated shapes
are therefore a feature of our estimatgy; they do not re-

FIG. 9. Scalar error curve for the arctan potential. We see arlect a proper estimate of the error in the top left corner as
improvement from the first to second order as well as a significanother higher-order terms not considered would spoil these

correction to the overall amplitude at the pivot scale.

cancellations. With the exception of that top region, we see
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[ \0‘1 / T \J T T ] up to Opl
0.04 /
convergence
CMB data of pl+r fit? ®

no

0.02
L yes up to Os:

¥ 0.00

convergence
of sr fit? no @

-0.02 1 yes
- /_ consistency
-0.04 [ “ & __ of fits? no @
1 1 ./ 1
-0.20 -0.10 0.00 0.10 0.20 yes
n,—1
. . . =17 |
FIG. 11. The error estimate, in the (ng—1)— ag plane, with ::I no @
€,<<0.001. The dashed line i&s=(ns—1)/C, in the vicinity of yes

which the error estimate can be misleading.

©)
that, as expected, the second-order expressions extend the
area of parameter space meeting a specified accuracy re- @‘——{__t_@—no ’@
quirement.

. X . yes
It is useful to examine these results in thest 1)—R

plane via the transformation consistency
check no @
ns_1:_261_62, (53)
yes
R=16¢; (54) (1) physics beyond | :-) measure
slow-roll H, e1,€2,€3
shown in the lower panel of Fig. 10. We use the first-order @ set © = 1, test sr inflation

relations also for the second-order error contours here; the
error made by this can be neglected for the present purpose.
The -rest.riction that we put om; gives rise o V?"“es for FIG. 12. Suggested pipeline to test slow-roll inflation and esti-
running in the rangexse[—o.023,_0.14 for the dlsplayed_ mate its parameters.

region of parameter space. The first-order expression gives
errors within 10% in the region given approximately by is nonlinear and singular =0 for anyes. All correspond-
—0.15<.ns— 1<O.1 andR<1.5. The second—ord_er slow-roll ing models haveis— 1= as= 0. Moreover, in the vicinity of
expression gives an accuracy better than 1% in a somewhai{s |ine as=(ns—1)/C the value ofe, becomes arbitrarily
smaller range of parameter space-Q.1<ns—1<0.05,  gmgaj|, and thus, can be huge. Therefore, in the vicinity of

R<1.0). the dashed line the estimator, is misleading, because it

Itis important to stress that these regions are very COnsefjies a small error even for models which violate the slow-
vative as we maximize the error over bathand wave num- 4| condition e;<1. Nevertheless, the conclusion is that

ber. The conclusions of small errors in parameter space rgajry weak running<0.02 can be accuratelt%) described
gions is therefore very robust, and indeed the errors arBy a slow-roll expansion with tiny; .

likely to be within acceptable levels even for many models
lying outside our contours.

An important limit is whene, is very small, since a broad
class of inflation models belong to this category, e.g. false We end with a proposal of how to proceed with testing
vacuum dominated inflation gives rise to tirgj. When  slow-roll single-field inflation using future high-accuracy
€,;=0.001, then the tensor spectrum will have no effect ondata. The corresponding data analysis pipeline is sketched in
the lowd portion of theC, curves at the 1% level, see Eq. Fig. 12. The inputs are the CMB data and a cosmological
(42). At this point the tensoC,’s drop out of reach and we model (e.g., ACDM). The first step should be to determine
can no longer measuté during inflation ande; separately, the cosmological parameters under the assumption that the
see EQ.(24). The scalar power spectrum, Eq26)—(298), power spectra of scalar and tensor perturbations are given by
now reduces to a function 0Pro(k,), €, ande,e3, where  a power-law with running of the spectral index, see @d).
the last two parameters determing—1=—e€,— Ce,ez and  One should check the convergence of the values of all cos-
as= — €,€3. In Fig. 11 we plot the error of the second-order mological parameters as one fits scale-invariant, power-law,
power spectrumg,, in the (hg—1)— ag plane. The transfor- and power-law with running spectra, as discussed in Sec. Ill.
mation between theng— 1) — a5 plane and the,— €3 plane  One should continue to refine the power spectrum shape

@ assume sr; upper bound on €¢; and H

VII. TESTING SLOW-ROLL INFLATION

023515-12



COSMOLOGICAL PARAMETER ESTIMATION AND THE . .. PHYSICAL REVIEW D 66, 023515 (2002

(adding in running of running, etcuntil the new power We can now test the consistency relation and then esti-
spectrum parameter is found to be consistent with zero. Amate the inflationary parameters. In principle one could use
this point one has the choice to neglect this final parameteeither expansiohEq. (10) or Eq.(44)] if it has been success-
and this seems a sensible option. We call the order of thiful, and even ifOp# Os, the inflationary information con-
truncated power spectrur®,. In a similar manner one tained within them should be equivalent. However presum-
should also check the convergence of the cosmological pdng it is available it makes best theoretical sense to use the
rameter estimates while fitting to the data using scaleslow-roll fit. The approach is sketched in the lower tree of
invariant, first-order and then second-order slow-roll shapeghe pipeline in Fig. 12. o
up to orderQy,. The first step is to ch(_ack whether a tensor contribution can
One should find0p|—osr|<1, with O = Oy, being the be detected at a significant level. If not, then there are no

most likely case. If we also find consistent estimates of thneans to fully check_ the specific predictions of slow-roll
cosmological parameters then clearly the choice of powe\nﬂat'on' However,_th_ls means that an upper bound on the
spectrum shape does not matter(lf# O, but the cosmo- ftensolr-to—s?;'sll'a;lra;.tla is provided by ttr?e cMmB dtata. Asslurp—
logical parameter estimates are convergent and consistefd 54()2w-ro n ?'On v(\;e can use Ee 50an|3 erkl)cy. relation
with each other, then we have some evidence thataparticulgrq' (42) [or its first-order version Eq(54)] to o t_am an
power spectrum shape may be preferred. Figure 6 might b pper bound one,. Then we neglect alk, terms in Egs.

used to check whether the extracted spectral indices and ru -6)_(f3i])’ aIIO\;vmg an estimate :22/ €3 agd Epe nor:mallgﬁ-
nings are expected to give rise to a significant differencd!On O the scalar power Spectrurr/are; mp, . Together wit

between the two fits. the upper bound oa; this gives an upper bound on the scale

If there is no convergence using one or both of the powePf inflation H. _Figure 11 might be used to estimate the_ the-
spectrum shapes, or if the different power spectrum shape¥etical error in the measurement of and €. If the esti-
lead to significantly different estimates of the cosmologicalMates for|e;| and|es| turn out to be larger than the upper
parameters, then there is either a significant problem in thB0Und one; we can take these estimates seriously. However,
assumed cosmological model or the shape of the spectrum iiit turns out that one of the higher-order parameters is of the
completely different from a power law, e.g. a pronouncedS@Mme order as the upper bound &rwe cannot consistently
bump or a step at a privileged scdl29]. Presuming the neglecte;. In this case only a banana-shaped region in pa-
latter, within the context of single-field inflation, the optimal fameter space of the second-order slow-roll expansion can be
strategy is a direct estimation of the inflationary potentialidentified. But a warning is required at that point; without a
from the data itself, without using intermediate approxima-detection of tensors it might be impossible to distinguish
tions such as the slow-roll expansion, as described by Griveffetween single-field slow-roll inflation and other models.
and Liddle[30].° Such a calculation must simultaneously fit If there is a significant detection of tensors, the next step
all parameters, and so will also test whether the results ar§ 0 test the consistency equation of slow-roll inflation Eg.
consistent with a flat universe; the simplest models of infla{42)- If this test is not passed, we have ruled out single-field
tion predict Q=1+ 1075, though realistic experiments slow-roll inflation. If we find consistency, the final step is to
will be orders of magnitude larger in uncertainty. If so the Measure the scale of inflatid and the inflationary param-
data are consistent with inflation, but single-field slow-roll €t€rse1, €, andes. By fitting directly for these parameters,
inflation would be ruled out. rather than the coefficients of expansion as above, we are

If satisfactory convergence of the cosmological paramOW automatically imposing the consistency relations be-
eters is achieved then the next step is to check whedagy ~ tWeen the scalar and tensor spectra. This is also important for
is consistent with one. If this test is failed then slow-roll M&asurement of the cosmological parameters, as it ensures

inflation is excluded and we need alternative physics. If théhat the uncertainties are not overestimatedder the pre-

Universe is consistent with flatness, slow-roll inflation canSUmption that slow-roll inflation is correctThe slow-roll

now be taken very seriously. In the previous section we hav&h@pe is the preferred option for carrying out this final pa-
shown that the power of fluctuations can be predicted at thédmeter determination, and this is also the determination
required level of accuracy in a large region of parameter"Vh!Ch yields the definitive measures of the various cosmo-
space favored by present CMB observations. Once slow-rolPdical parameters. These might differ from the parameters
inflation has been adopted as a working hypothe®ig,, estimated from the power-law plus running fit once the con-

should be fixed at unity and not varied in any parameter fitsSiStency conditions are imposed. In particular the uncertain-
ties should tighten as the inflationary predictions are more

specific than fitting free power-laws plus running. The sys-
tematic uncertainty from theory in the measurement of infla-

5The inflationary potential is parametrized, for example by a Tay-.. : ith the helo of
lor series, and the scalar and tensor power spectra are obtained H nary parameters can now be estimated with the help o

solving the mode equations and fed into a Boltzmann code such ds'9- 10- _ o

cMmBFAST [18] or camB [14]. The only approximation is the validity ~ Having analytically reconstructed an inflationary poten-

of linear perturbation theory. The result is an unbiased estimation ofidl, its validity can be checked by evaluating the perturba-
the inflationary potential with automatic generation of the error co-tions generated by the potential numerically, which will pro-

variances of the potential parameters amongst themselves and witide a further estimate of the magnitude of higher-order
the cosmological parametef30]. Other considerations of single- corrections. If these prove significant, the numerical results
field inflation beyond slow roll are given in Refi4,31]. could be used to “tune” the reconstructed potential with the
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aim of removing any biases in the estimation of other paramit is these which may allow us to probe the highest energy
eters. Ultimately, analytic results obtained the way we descales for the first time.

scribe can be compared with a direct numerical reconstruc-
tion as described in Ref[30], with the two methods
providing invaluable cross-checks on each other.

We have presented a strategy to measure the most impor- We thank Lloyd Knox, Max Tegmark and €ar Terrero-
tant quantity in the context of inflationary models, the scaleEscalante for useful discussions. S.M.L. was supported by
of inflation H. It probes the time scale and thus the energyPPARC and A.R.L. in part by the Leverhulme Trust. D.J.S.
scale of new physics, which requires the detection of tensaaicknowledges a visit to the Sussex Astronomy Centre funded
contributions. Sensitivity to gravitational waves is mainly by the Austrian Academy of Sciences, the Royal Society and
provided via high-sensitivity polarization measurements, andPPARC.
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