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ABSTRACT
We derive constraints on cosmological parameters using the power spectrum of galaxy cluster-

ing measured from the final 2dF Galaxy Redshift Survey (2dFGRS) and a compilation of mea-

surements of the temperature power spectrum and temperature–polarization cross-correlation

of the cosmic microwave background radiation. We analyse a range of parameter sets and

priors, allowing for massive neutrinos, curvature, tensors and general dark energy models. In

all cases, the combination of data sets tightens the constraints, with the most dramatic im-

provements found for the density of dark matter and the energy density of dark energy. If we

assume a flat universe, we find a matter density parameter of �m = 0.237 ± 0.020, a baryon

density parameter of �b = 0.041 ± 0.002, a Hubble constant of H 0 = 74 ± 2 kms−1 Mpc−1,

a linear theory matter fluctuation amplitude of σ 8 = 0.77 ± 0.05 and a scalar spectral index

of n s = 0.954 ± 0.023 (all errors show the 68 per cent interval). Our estimate of ns is only

marginally consistent with the scale-invariant value n s = 1; this spectrum is formally excluded

at the 95 per cent confidence level. However, the detection of a tilt in the spectrum is sensitive

to the choice of parameter space. If we allow the equation of state of the dark energy to float,

we find wDE = −0.85+0.18
−0.17, consistent with a cosmological constant. We also place new limits

on the mass fraction of massive neutrinos: f ν < 0.105 at the 95 per cent level, corresponding

to �m ν < 1.2 eV.

Key words: cosmic microwave background – cosmological parameters – large-scale structure

of Universe.

1 I N T RO D U C T I O N

Since the turn of the millennium, we have witnessed a dramatic

improvement in the resolution and accuracy of measurements of

fluctuations in the temperature of the cosmic microwave back-

ground (CMB) radiation. The discovery of features in the power

spectrum of the CMB temperature, the acoustic peaks, marked

the start of a new data-rich era in cosmology (de Bernardis et al.

2000; Hanany et al. 2000). The relative positions and heights of

the acoustic peaks encode information about the values of the fun-

damental cosmological parameters, such as the curvature of the

universe or the physical density in cold dark matter (CDM) and

baryons. Perhaps the most striking example of the progress achieved

�E-mail: arielsan@oac.uncor.edu

is the first year data from the Wilkinson Microwave Anisotropy
Probe (WMAP) satellite (Bennett et al. 2003; Hinshaw et al.

2003).

The CMB data alone, however, do not constrain all of the fun-

damental cosmological parameters to high precision. Degeneracies

exist between certain combinations of parameters which lead to in-

distinguishable temperature fluctuation spectra (Efstathiou & Bond

1999). Some of these degeneracies can be broken by comparing

theoretical models to a combination of the CMB data and other

data sets, such as the power spectrum of galaxy clustering. At

the same time, as the new measurements of the CMB were ob-

tained, two groundbreaking surveys of galaxies in the local Universe

were being conducted. The 2dF Galaxy Redshift Survey (2dFGRS;

Colless et al. 2001, 2003) and the Sloan Digital Sky Survey (SDSS;

York et al. 2000; Abazajian et al. 2005) are substantially larger than

previous redshift surveys and allow the clustering of galaxies to be

C© 2005 The Authors. Journal compilation C© 2005 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/366/1/189/1060187 by guest on 21 August 2022



190 A. G. Sánchez et al.

measured accurately on all scales. On large scales, the connection

to theoretical models is most straightforward.

Percival et al. (2001) used the power spectrum of galaxy cluster-

ing measured from the 2dFGRS to constrain the ratio of the baryon

to matter density, �b/�m, and the matter density, �mh. Efstathiou

et al. (2002) used a compilation of pre-WMAP CMB data and the

Percival et al. measurement of the galaxy power spectrum to find

conclusive evidence for a non-zero cosmological constant, indepen-

dent of the Hubble diagram of distant Type Ia supernovae. Percival

et al. (2002) again used pre-WMAP CMB data and the early 2dFGRS

power-spectrum measurement to place constraints on cosmological

parameters in flat models. The WMAP team also used the Percival

et al. galaxy power spectrum in their estimation of cosmological

parameters (Spergel et al. 2003). Other papers have also analysed

the information encoded in the 2dFGRS and SDSS power spectra

(Tegmark, Zaldarriaga & Hamilton 2001; Pope et al. 2004; Tegmark

et al. 2004b; Seljak et al. 2005). In view of the impact of this work,

the recent completion by Cole et al. (2005) of the power-spectrum

analysis of the final 2dFGRS data set is an important development.

The Cole et al. results are nearly twice as accurate as those obtained

from the partly completed 2dFGRS in 2001, and a key aim of the

current paper is to see how this affects the outcome of joint analyses

including CMB data.

In view of these rapid improvements in our knowledge of the cos-

mological parameters, it is also important to take stock of precisely

which parts of the model are actually being tested. Quite often,

restrictive assumptions have been adopted for the background cos-

mology when claims are made about the constraints on a particular

parameter. It is important to establish how robust the constraints re-

ally are when the data are compared with more general cosmological

models.

Our goal is thus to establish firmly how well the latest CMB and

large-scale structure (LSS) data determine a broad set of cosmo-

logical parameters, paying attention to how the choice of priors for

parameter values and the combination of different parameters can

influence the results. The outline of the paper is as follows. In Sec-

tion 2, we describe the data used in our parameter estimation and set

out the various parameter spaces studied. In Section 3, we present

our main results for the parameter constraints obtained by comparing

theoretical models to the CMB data and the galaxy power spectrum

of the final 2dFGRS measured by Cole et al. (2005). We assess the

impact of different choices for priors and parameter sets in Sec-

tion 4. We explore the justification for using models with different

numbers of free parameters in Section 5. In Section 6, we examine

how the parameter constraints change when the SDSS galaxy power

spectrum measured by Tegmark et al. (2004b) is used instead of the

2dFGRS power spectrum. Finally, we summarize our conclusions

in Section 7.

2 T H E M E T H O D

We now set out the approach we will take to constrain the values of

the basic cosmological parameters. In Section 2.1, we list the CMB

and LSS data sets that we compare against the theoretical models

and explain how these data sets are modelled. The parameter sets

that we will consider are defined in Section 2.2. The methodology

for searching parameter space and placing constraints on parameters

is set out in Section 2.3.

2.1 The data sets

In order to constrain the parameters in our cosmological model,

we use a compilation of recent measurements of the CMB

and the power spectrum of galaxy clustering in the local

Universe.

(i) The WMAP first year temperature power spectrum for spher-

ical harmonics 2 � � � 900 (Hinshaw et al. 2003).

(ii) Observations of the temperature spectrum over the spherical

harmonic range 900 < � < 1800 made up to 2002 July using the

Arcminute Cosmology Bolometer Array Receiver (ACBAR; Kuo

et al. 2004).

(iii) The temperature spectrum for 600 < � < 1500 measured

using the Very Small Array (VSA; Dickinson et al. 2004).

(iv) Two years of temperature correlation data with 600 < � <

1600 from the Cosmic Background Imager (CBI; Readhead et al.

2004).

(v) The WMAP first year temperature–polarization power spec-

trum for spherical harmonics 2 � � � 450 (Kogut et al. 2003).

(vi) The power spectrum of galaxy clustering measured from the

final 2dFGRS catalogue (Cole et al. 2005).

The four measurements (i)–(iv) of the power spectrum of temper-

ature fluctuations in the CMB extend over the spherical harmonic

range 2 < � < 1800. Some of the available data sets extend to higher

multipoles. However, we do not include these scales in our analy-

sis, as the temperature fluctuations on such scales can be strongly

affected by secondary sources. The WMAP team adopted a similar

approach, augmenting the first year WMAP data with other exper-

iments which have better angular resolution (Spergel et al. 2003).

However, the VSA data were not available to the WMAP team at

the time that the paper by Spergel et al. was written. Theoretical

temperature–temperature and temperature–polarization spectra are

computed for each model using CAMB (Lewis, Challinor & Lasenby

2000).

Cole et al. (2005) measured the power spectrum of galaxy cluster-

ing from the final 2dFGRS catalogue. The power spectrum measured

for galaxies differs in a number of ways from the power spectrum

for the mass predicted in the linear perturbation theory. (i) Non-

linear evolution of density perturbations leads to coupling between

Fourier modes, changing the shape of the power spectrum. (ii) The

galaxy power spectrum is distorted by the gravitationally induced

peculiar motions of galaxies when a redshift is used to infer the

distance to each galaxy. (iii) The power spectrum of the galaxies

could be a modified version of the power spectrum of the mass.

This phenomenon is known as galaxy bias. The ratio between the

galaxy and matter spectra could also change with scale. (However,

we assume a constant bias over the scales considered in this pa-

per.) (iv) The power spectrum measured by Cole et al. from the

2dFGRS is the direct transform of the data, and is thus what CMB

researchers would term a pseudo-spectrum. As such, it yields a con-

volution of the underlying galaxy power spectrum with the modu-

lus squared of the Fourier transform of the window function of the

survey.

In order to constrain cosmological parameters, these effects need

to be modelled. The accuracy of the modelling requires that the

comparison between theory and observation should be restricted to

a limited range of scales. We use the 2dFGRS power-spectrum data

for k < 0.15 h Mpc−1 and discard measurements with k < 0.02 h
Mpc−1 which could be affected by uncertainties in the mean density

of galaxies within the survey. We follow the scheme used by Cole

et al. who applied a correction for non-linearity and scale-dependent

bias to the shape of P(k) of the form

Pgal(k) = b2 1 + Qk2

1 + Ak
Plin(k), (1)
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where A = 1.4 and Q = 4.6 are the preferred values and b is a

constant bias factor. This formula is deduced by comparison with

detailed numerical galaxy formation models; these show that the

value of A is robust, but the exact value of Q depends on galaxy type

and also has some uncertainty depending on how the modelling

is done. These results were used to determine a range of allowed

values for Q, from which the value Q = 4.6 is preferred; with this

choice, robust parameter constraints are obtained if one considers

maximum k values beyond our limit of 0.15 h Mpc−1. For this limit,

neglecting the correction entirely and simply fitting linear theory

yields almost identical results to those presented here. In particular,

it has no impact on the marginal indication of a deviation from

n s = 1.

2.2 The parameter space

In this paper, we make the basic assumption that the primordial

density fluctuations were adiabatic, Gaussian and had a power-law

spectrum of Fourier amplitudes. As pointed out by Leach & Liddle

(2003a), the CMB data prior to WMAP were of insufficient quality to

justify the rejection of this simple hypothesis. Following the release

of the WMAP first year results, which do have the precision required

to test this model, our assumptions remain well motivated. Komatsu

et al. (2003) found that the WMAP sky maps are consistent with

Gaussian primordial fluctuations to a much higher precision than

was attainable with COBE. Peiris et al. (2003) found that models

with a spectral index varying slowly with wavenumber give slightly

better fits to the WMAP data, particularly when combined with es-

timates of the power spectrum of the Lyman α forest. However, the

evidence for a running spectral index is weak and has been disputed

by other groups (e.g. Bridle et al. 2003b; Slosar, Seljak & Makarov

2003; Seljak et al. 2005). Bennett et al. (2003) and Spergel et al.

(2003) point out that, on large scales, a few modes of the CMB

temperature power spectrum measured by WMAP lie below the

predictions of the standard 	CDM model. One interpretation of

this apparent discrepancy is that new physics may be needed (e.g.

Bridle et al. 2003a; Efstathiou 2003). However, several studies have

argued that the disagreement is actually less significant than was

first claimed (Gaztañaga et al. 2003; de Oliveira-Costa et al. 2004;

Efstathiou 2004).

From the above starting point, the cosmological model we con-

sider is defined by 11 parameters:

P ≡ (�k, ωdm, ωb, fν, wDE, τ, ns, As, r , b, �). (2)

There are eight further basic quantities whose values can be derived

from the above set:

Pderived ≡
(

�DE, h, �m, σ8, zre, t0,
∑

mν, nt

)
. (3)

We now go through the parameters in these lists, defining each

one and explaining how the values of the derived parameters are

obtained.

There are five quantities that describe the homogeneous back-

ground cosmology through various contributions to the mass–

energy density. These are in units of the critical density: �k , which

describes the curvature of the universe; �DE, the energy density of

the dark energy; ωdm ≡�dm h2, the density of the dark matter (where

�dm = �cdm + �ν is the sum of the cold and hot dark matter com-

ponents and h is the Hubble constant in units of 100 km s−1 Mpc−1);

ωb ≡ �b h2, the baryon density and f ν = �ν/�dm, the fraction of

the dark matter in the form of massive neutrinos. The sum of neu-

trino masses is given by �mν . The matter density parameter is given

Table 1. The parameter space probed in our

analysis. We assume a flat prior in each case.

We do not vary the values of all parameters at

the same time; the parameter spaces that we

consider are set out in Section 2.2.

Parameter Allowed range

�k −0.3–0.3

ωdm 0.01–0.99

ωb 0.005–0.1

f ν 0–0.5

wDE −2–0

τ 0–0.8

ns 0.5–1.5

log 10 (1010 As) 2.7–4.0

r 0–1

� 0.5–10

by �m = �dm + �b. The value of the Hubble constant is derived

from h = √
(ωdm + ωb)/�m. The energy density of the dark energy

is set by �DE = 1 − �m − �k . The dark energy component is as-

sumed to have an equation of state that is independent of redshift,

with the ratio of pressure to density given by wDE.

There are four quantities that describe the form of the initial fluc-

tuations: the spectral indices, ns and nt, and the primordial ampli-

tudes, As and rAs, of scalar and tensor fluctuations, respectively.

These parameter values are quoted at the ‘pivot’ scale wavenumber

of k = 0.05 Mpc−1. We can translate the results obtained for As

into a constraint on the more familiar parameter σ 8, the rms linear

perturbation theory variance in spheres of radius 8 h−1 Mpc, using

the matter fluctuation transfer function. Note that when we consider

tensor modes, we make the slow-roll assumption that n t = −r/8.

The bias factor, b ≡ √
Pgal(k)/PDM(k), describes the difference

in amplitude between the galaxy power spectrum and that of the

underlying dark matter. The value of b is marginalized over, us-

ing the analytic expression given in appendix F of Lewis & Bridle

(2002). We assume that the re-ionization of the neutral intergalactic

medium occurred instantaneously, with an optical depth given by

τ ; the redshift of re-ionization, zre, depends upon a combination of

parameters (see table 1 of Tegmark et al. 2004b). The age of the

universe is t0.

Finally, � gives the ratio of the sound horizon scale at the epoch

of decoupling to the angular diameter distance to the correspond-

ing redshift and replaces the Hubble constant as a base parame-

ter (Kosowsky, Milosavljevic & Jimenez 2002). We have chosen

to use this parameter, rather than, for example, the energy density

in dark energy since it has a posterior distribution that is close to

Gaussian. This reduces degeneracies between parameters and re-

sults in a faster convergence of our search of parameter space (see

Section 2.3), compared with studies in which parameters such as

�DE, which does not have a Gaussian posterior distribution, are al-

lowed to vary. This approach is a standard practice even though,

usually, the final results are expressed in terms of more familiar

parameters such as �DE or h. However, care must be taken when

comparing our results with those from studies which have assumed

flat priors on different parameters in their Bayesian analysis. Such

choices may affect the final results in a way that is difficult to

quantify.

We do not attempt to vary all 11 parameters of the model at once.

Such an approach would lead to a mixture of poor estimates of the

values of individual parameters and constraints on various combi-

nations of parameters. As we are primarily interested in deriving
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the best possible constraints on individual parameters, we instead

consider subsets of parameter space, varying five, six or seven pa-

rameters at a time. Of the remaining parameters, some are held at

fixed values and the others are referred to as derived parameters. The

values of the derived parameters follow from the values of other pa-

rameters, once the assumptions made in each parameter space have

been taken into account. We will now set out each of our parameter

spaces in turn, stating which parameters are varied and which are

held fixed. In all cases, the bias parameter, b, is marginalized over,

so we do not include this in the list of parameters whose values are

constrained.

In the simplest case, we vary five parameters which we refer to

as the ‘basic-five’ (b5) parameter set. The following parameters are

allowed to float:

P5
varied ≡ (ωdm, ωb, τ, As, �). (4)

The values of the fixed parameters in the b5 model are

P5
fixed ≡ (�k = 0, fν = 0, wDE = −1, ns = 1, r = 0). (5)

The results of this model are discussed in Section 3.2.

The b5 set is expanded to allow the value of the scalar spectral

index to float, giving the basic-six (b6) model (see Section 3.3) as

follows:

P6
varied ≡ (ωdm, ωb, τ, ns, As, �). (6)

The fixed parameters in the b6 model are

P6
fixed ≡ (�k = 0, fν = 0, wDE = −1, r = 0). (7)

We also consider four parameter spaces in which one additional

parameter is constrained along with the b6 set. In Section 3.3, the

additional parameter is the mass fraction of massive neutrinos, f ν ,

P6+ fν
varied ≡ (ωdm, ωb, fν, τ, ns, As, �). (8)

The fixed parameters in this case are

P6+ fν
fixed ≡ (�k = 0, wDE = −1, r = 0). (9)

In Section 3.4, the curvature of the universe, �k , is allowed to float,

and the fraction of massive neutrinos is once again held fixed:

P6+�k
varied ≡ (�k, ωdm, ωb, τ, ns, As, �), (10)

P6+�k
fixed ≡ ( fν = 0, wDE = −1, r = 0). (11)

In Section 3.5, the equation of state of the dark energy is varied:

P6+wDE
varied ≡ (ωdm, ωb, wDE, τ, ns, As, �). (12)

In this case, the fixed parameters are

P6+wDE
fixed ≡ (�k = 0, fν = 0, r = 0). (13)

Finally, in Section 3.6, the constraints on tensor modes are investi-

gated:

P6+r
varied ≡ (ωdm, ωb, τ, ns, As, r , �), (14)

with the fixed parameters given by

P6+r
fixed ≡ (�k = 0, fν = 0, wDE = −1). (15)

Table 1 summarizes the ranges considered for different cosmological

parameters when their values are allowed to vary.

2.3 Constraining parameters

The prohibitive computational cost of generating CMB power spec-

tra and matter transfer functions for all the grid points in a multidi-

mensional parameter space has driven the development of codes that

sample the space selectively, guided by the shape of the likelihood

surface. We use a Markov Chain Monte Carlo (MCMC) approach to

search the parameter space of the cosmological model (for a recent

example of the application of the MCMC algorithm to cosmolog-

ical applications, see Percival et al. 2004). In brief, this algorithm

involves conducting a series of searches of parameter space called

chains. The chains are started at widely separated locations within

the space. The next link in a chain is made in a randomly chosen

direction in the parameter space. The new link becomes part of the

chain if it passes a test devised by Metropolis et al. (1953); in sum-

mary, links for which the likelihood increases are always retained,

otherwise acceptance occurs with a probability that is the ratio of

likelihoods between the new and old links. If a link is rejected, a

new randomly generated step is taken in the parameter space. This

rate of hopping between pairs of points in parameter space satisfies

the principle of detailed balance, so that the chains should asymp-

totically take up a stationary probability distribution that follows the

likelihood surface. The advantage of this method is that marginaliza-

tion (i.e. integration of the posterior distribution over uninteresting

parameters) is extremely easy: one simply adds up the number of

links that fall within binned intervals of the interesting parameter

values (see the appendices in Lewis & Bridle 2002).

The results presented in this paper were generated with the pub-

licly available CosmoMC code of Lewis & Bridle (2002). We have

compared the parameter constraints obtained with this code with

those from an independent code written by one of us (WJP), and

find excellent agreement between the two sets of results. CosmoMC

uses the CAMB package to compute power spectra for the CMB and

matter fluctuations (Lewis et al. 2000). Our analysis was carried out

in parallel on the Cosmology Machine at Durham University. For

each parameter set considered, we ran 20 separate chains using the

Message Passing Interface (MPI) convergence criterion to stop the

chains when the Gelman & Rubin (1992) statistic R < 1.02, which

is a significantly more stringent criterion than is usually adopted

(Verde et al. 2003; Seljak et al. 2005). The length of chain gener-

ated before the above convergence criterion is achieved depending

upon the data sets used. For CMB data alone, the chains typically

have of the order of 10 000 links; in the case of CMB plus the 2dF-

GRS P(k), convergence can be reached more quickly. In total, our

calculations have accounted for the equivalent of more than 30 CPU

years on a single processor.

3 R E S U LT S

In this section, we carry out a systematic study of the constraints

placed on the values of cosmological parameters by the CMB and

LSS data sets listed in Section 2.1. We vary three aspects of the

comparison. (i) The data sets used. We compare constraints ob-

tained from the CMB data alone (Table 2) with those obtained from

the CMB data in combination with the 2dFGRS power spectrum

(Table 3). This allows us to see which parameters are constrained

more strongly when the CMB data are combined with a measure-

ment of the galaxy power spectrum. (ii) The number of parameters

varied. We consider models in which five, six or seven parameters

are allowed to float, whilst the other parameters are held at fixed val-

ues (see Section 2.2, for the definition of our parameter spaces). (iii)

The combination of parameters. In our seven-parameter models, we
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Table 2. Marginalized 68 per cent interval constraints (unless stated otherwise) on cosmological parameters obtained using CMB information only for the

different hypothesis and parameter sets analysed. The models are defined in Section 2.2.

b5 b6 b6 + fν b6 + �k b6 + wDE b6 + r

�k 0 0 0 −0.074+0.049
−0.052 0 0

� 1.0449+0.0041
−0.0042 1.0420+0.0052

−0.0052 1.0428+0.0059
−0.0058 1.0427+0.0063

−0.0062 1.0426+0.0052
−0.0052 1.0433+0.0051

−0.0051

ωdm 0.101+0.011
−0.011 0.105+0.013

−0.013 0.113+0.014
−0.015 0.095+0.019

−0.026 0.105+0.013
−0.013 0.099+0.010

−0.011

ωb 0.0239+0.0007
−0.0007 0.0229+0.0012

−0.0013 0.0226+0.0015
−0.0016 0.0238+0.0032

−0.0022 0.0231+0.0013
−0.0013 0.0236+0.0013

−0.0013

fν 0 0 <0.182 (95 per cent) 0 0 0

τ 0.217+0.037
−0.036 0.150+0.084

−0.078 0.161+0.101
−0.091 0.24+0.24

−0.16 0.142+0.074
−0.073 0.126+0.062

−0.062

wDE −1 −1 −1 −1 −0.93+0.49
−0.47 −1

ns 1 0.970+0.033
−0.033 0.957+0.045

−0.047 1.00+0.11
−0.07 0.974+0.038

−0.037 0.994+0.033
−0.033

log10 (1010 As) 3.270+0.059
−0.058 3.14+0.16

−0.15 3.14+0.19
−0.18 3.29+0.42

−0.28 3.12+0.14
−0.14 3.07+0.13

−0.13

r 0 0 0 0 0 <0.52 (95 per cent)

�DE 0.793+0.039
−0.038 0.762+0.056

−0.055 0.68+0.10
−0.10 0.63+0.18

−0.17 0.71+0.12
−0.14 0.798+0.041

−0.042

t 0/Gyr 13.38+0.12
−0.12 13.58+0.26

−0.25 14.03+0.47
−0.44 16.3+1.4

−1.5 13.79+0.50
−0.45 13.43+0.25

−0.26

�m 0.207+0.038
−0.039 0.237+0.055

−0.056 0.32+0.10
−0.10 0.44+0.21

−0.20 0.28+0.14
−0.12 0.202+0.041

−0.042

σ 8 0.840+0.069
−0.069 0.800+0.073

−0.072 0.63+0.12
−0.12 0.776+0.076

−0.072 0.75+0.18
−0.18 0.706+0.093

−0.097

zre 19.6+2.1
−2.1 15.0+5.6

−5.1 15.9+6.8
−5.9 18.6+9.7

−7.7 14.5+5.1
−5.0 15.4+5.3

−5.3

h 0.783+0.040
−0.040 0.747+0.055

−0.056 0.674+0.078
−0.082 0.54+0.11

−0.11 0.72+0.18
−0.17 0.786+0.053

−0.052∑
mν/eV 0 0 <2.09 0 0 0

Table 3. Marginalized 68 per cent interval constraints (unless stated otherwise) on cosmological parameters obtained using information from CMB and the

2dFGRS power spectrum for the different hypothesis and parameter sets analysed. The models are defined in Section 2.2.

b5 b6 b6 + fν b6 + �k b6 + wDE b6 + r

�k 0 0 0 −0.029+0.018
−0.018 0 0

� 1.0453+0.0038
−0.0037 1.0403+0.0046

−0.0045 1.0411+0.0050
−0.0046 1.0458+0.0079

−0.0076 1.0422+0.0055
−0.0055 1.0425+0.0049

−0.0049

ωdm 0.1046+0.0055
−0.0053 0.1051+0.0046

−0.0047 0.1100+0.0062
−0.0067 0.083+0.015

−0.015 0.097+0.011
−0.011 0.1037+0.0050

−0.0050

ωb 0.0240+0.0006
−0.0006 0.0225+0.0010

−0.0010 0.0224+0.0012
−0.0011 0.0252+0.0033

−0.0030 0.0233+0.0016
−0.0016 0.0233+0.0011

−0.0011

fν 0 0 <0.105 (95 per cent) 0 0 0

τ 0.208+0.034
−0.034 0.118+0.057

−0.056 0.143+0.076
−0.071 0.33+0.18

−0.19 0.174+0.107
−0.095 0.109+0.053

−0.053

wDE −1 −1 −1 −1 −0.85+0.18
−0.17 −1

ns 1 0.954+0.023
−0.023 0.957+0.031

−0.029 1.05+0.10
−0.10 0.985+0.053

−0.046 0.979+0.028
−0.028

log10 (1010 As) 3.268+0.060
−0.060 3.06+0.12

−0.12 3.11+0.15
−0.14 3.44+0.35

−0.37 3.16+0.20
−0.18 3.05+0.11

−0.11

r 0 0 0 0 0 <0.41 (95 per cent)

�DE 0.781+0.019
−0.020 0.763+0.020

−0.020 0.718+0.042
−0.037 0.796+0.040

−0.040 0.759+0.024
−0.024 0.778+0.021

−0.022

t0/Gyr 13.39+0.11
−0.11 13.69+0.19

−0.20 13.94+0.26
−0.26 14.97+0.77

−0.79 13.70+0.26
−0.26 13.54+0.23

−0.23

�m 0.219+0.020
−0.019 0.237+0.020

−0.020 0.282+0.037
−0.042 0.234+0.028

−0.027 0.241+0.024
−0.024 0.224+0.022

−0.022

σ 8 0.863+0.037
−0.037 0.773+0.054

−0.053 0.678+0.073
−0.072 0.817+0.077

−0.079 0.711+0.098
−0.099 0.769+0.053

−0.062

zre 19.2+2.1
−2.1 13.1+4.3

−4.3 15.1+5.2
−5.1 22.6+6.2

−7.9 16.1+6.2
−5.8 12.1+4.1

−4.2

h 0.776+0.020
−0.019 0.735+0.022

−0.023 0.691+0.038
−0.038 0.684+0.035

−0.035 0.708+0.062
−0.058 0.755+0.028

−0.029∑
mν/eV 0 0 <1.16 (95 per cent) 0 0 0

add one additional parameter to our b6 set (equation 6) and explore

how different choices for this additional parameter can affect the

parameter constraints.

Our results are summarized in Tables 2 and 3. In the top half of

each table, we show the values of the fundamental parameters. These

are either the range of values derived by comparison with a particular

data set or the value that a parameter is fixed at in the analysis, as

explained in Section 2.2. In the lower part of the tables, we quote

the values of other useful parameters (as listed in equation 3). These

parameters are not varied directly in our analysis. However, their
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values can be derived from the results in the upper half of the table,

as explained in Section 2.2.

In Section 3.1, we present the results for a minimal cosmological

model with five parameters, the b5 set. In Section 3.2, we consider

six parameters, the b6 set, allowing the spectral index of scalar fluc-

tuations to float. Sections 3.3–3.6 are devoted to seven-parameter

models, with different choices for the ‘final’ parameter that

augments the b6 set as follows: Section 3.3, the mass fraction of

massive neutrinos, f ν ; Section 3.4, non-flat models; Section 3.5, the

dark energy equation of state, wDE and Section 3.6, the addition of

tensor perturbations.

In the results tables, unless otherwise stated, we quote errors that

enclose 68 per cent of the probability around the mean value of

each parameter. In the subsequent figures showing the marginalized

posterior likelihood surface for two parameters, the contours mark

the locus where −2 ln(L/Lmax) = 2.30 and 6.17, corresponding to

the 68 and 95 per cent limits, respectively; for the case of a Gaussian

likelihood, these contours correspond to the ‘1σ ’ and ‘2σ ’ limits for

2 degrees of freedom.

3.1 The simplest case – five parameters

We first concentrate on the simplest possible model that gives an

accurate description of the data sets, the b5 parameter space defined
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Figure 1. Marginalized posterior likelihoods for the cosmological parameters in the b5 model determined from CMB information only (dashed lines) and

CMB plus 2dFGRS P(k) (solid lines). The diagonal shows the likelihood for individual parameters; the other panels show the likelihood contours for pairs of

parameters, marginalizing over the other parameters. The contours show −2ln(L/L max) = 2.3 and 6.17.

by equations (4) and (5). This model does a remarkably good job

of reproducing the CMB data, with tight constraints obtained on

the values of the subset of five cosmological parameters varied,

as shown by the dashed lines in Fig. 1 and Column 2 of Table 2.

It is clear from Fig. 1 and Table 3 that when the 2dFGRS P(k)

is included, the results show an impressive consistency with those

obtained from the CMB data alone. For example, in the case of

the physical density of dark matter, wdm, the central values derived

when comparing to CMB data alone and to CMB plus 2dFGRS agree

well within the uncertainties. However, in a number of cases, there

is a significant improvement in the parameter constraints obtained

when the 2dFGRS P(k) data are included. For example, the range of

wdm values derived is narrower by a factor of 2 when the 2dFGRS

P(k) is included in the fit, as the LSS data breaks the horizon-angle

degeneracy arising from CMB models with the same position of the

first peak in the angular power spectrum (e.g. Percival et al. 2002).

A similar reduction in uncertainty occurs for the derived parameters

σ 8 and h. The CMB power spectrum is sensitive to the parameter

ωdm = �dmh2, whereas the matter P(k) depends on the parameter

combination �dmh. The incorporation of P(k) into the analysis helps

to break the degeneracy between �dm and h present in the theoretical

predictions for the CMB, thus tightening the constraints on these

parameters, as well as on ωdm. Cole et al. (2005) used the 2dFGRS
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Figure 2. Marginalized posterior likelihoods for the cosmological parameters in the b6 model determined from CMB information only (dashed lines) and

CMB plus 2dFGRS P(k) (solid lines).

P(k) to place constraints on the parameter combinations �mh and

�b/�m, and, in conjunction with the WMAP temperature power

spectrum, on �m. The model that Cole et al. considered is a restricted

version of our b5 model (they assumed h = 0.72). It is reassuring to

note that our results are in excellent agreement with those obtained

by Cole et al.; in particular, we confirm their finding of a matter

density significantly below the canonical 	CDM value of �M =
0.3. The success of this simple model in describing the current

CMB and LSS data is remarkable. This ‘minimalist model’ does

a perfectly good job of accounting for the form of the most precise

probes of the cosmological world model that are available to us

today.

3.2 Six parameters – including the scalar spectral index

We now expand our model to allow variations in the scalar spectral

index, ns, which we call the ‘b6’ parameter space (defined by equa-

tions 6 and 7). Fig. 2 shows the marginalized likelihoods for this pa-

rameter set (along the diagonal), together with the two-dimensional

likelihood contours for different combinations of parameters. The

results are shown using the CMB data alone (dashed lines) and

for CMB plus 2dFGRS P(k) (solid lines). The additional degree of

freedom gives rise to a well-known degeneracy that involves all six

parameters and which is seen most clearly in the optical depth to

last scattering, τ , and the spectral index and amplitude of scalar

fluctuations, ns and As, respectively. This degeneracy leads to the

production of similar power spectra as the parameter values, with

the exception of ωdm, are increased (see Tegmark et al. 2004b, for a

full description of how the degeneracy works in practice). Table 2

shows that, in the case of the CMB data alone, the results for the best-

fitting parameters in the b6 case are, for the most part, very similar

to those obtained for the b5 parameter set. The two exceptions are τ

and As, for which slightly lower values are obtained in the b6 case.

This is also a consequence of the above degeneracy since, as the

data prefer n s < 1, the best-fitting values for τ and As also decrease.

Another consequence of the degeneracy is to broaden the allowed

regions compared with those obtained for the b5 parameter set. The

2dFGRS power spectrum helps to break this degeneracy, particularly

by tightening the constraints on wdm. The results listed in column

3 of Table 3 show that the marginalized constraints obtained in this

case are in complete agreement with those in the CMB only case,

but with tighter allowed ranges. This reinforces the consistency of

the results obtained from CMB alone and CMB plus 2dFGRS P(k)

that we found in the b5 case.
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One particularly remarkable result is the recovered value of the

spectral index of scalar perturbations, ns. In the case of CMB data

alone, we obtain n s = 0.970
+0.033(0.110)
−0.033(0.052), where the errors correspond

to 68 per cent (95 per cent), fully consistent with n s = 1. How-

ever, with the smaller errors afforded by combining the CMB data

with the 2dFGRS P(k) data, we obtain n s = 0.954
+0.023(0.054)
−0.023(0.040). This

measurement of the scalar perturbation spectral index is consis-

tent with scale-invariant value n s = 1 at the 95 per cent level. Any

detection of a deviation from scale invariance would have strong im-

plications for the inflationary paradigm, and we discuss this result

in more detail in Section 5.2.

3.3 Six parameters plus the mass fraction of massive neutrinos

Massive neutrinos were ruled out a generation ago as the sole con-

stituent of the dark matter, on the basis of N-body simulations of

the formation of LSS in hot dark matter universes (Frenk, White &

Davis 1983). However, interest in massive neutrinos has been res-

urrected recently with the resolution of the solar neutrino problem

and the advent of precision measurements of the galaxy power spec-

trum. The detection of other flavours of neutrino in addition to the

electron neutrino in the flux of neutrinos from the Sun suggests that

neutrinos can oscillate between flavours (Ahmad, Allen & Ander-

sen 2001). This in turn implies that the three known types of neu-

trino have a non-zero mass, although measurements of the degree of

flavour mixing set limits on the mass-squared differences between

the neutrino flavours rather than on their absolute masses. The most

extreme (and perhaps most plausible) case is where the lightest mass

eigenvalue is negligibly small, in which case the sum of neutrino

masses is dominated by the heaviest eigenvalue:
∑

mν � m3 �
0.045 eV (for a recent review, see Barger, Marfatia & Whisnant

2003). The only way in which
∑

mν can greatly exceed this figure

is if the mass hierarchy is almost degenerate; we therefore assume

three species of equal mass in what follows. Absolute measurements

of neutrino mass can be obtained from tritium beta decay experi-

ments. At present, such experiments provide a limit on the sum of

the neutrino masses of
∑

mν < 6.6 eV at the 2σ level (Weinheimer

2003).

Currently, the most competitive limits on neutrino masses are

obtained through the comparison of CMB and LSS data with theo-

retical models (Hu, Eisenstein & Tegmark 1998; Elgaroy et al. 2002;

Hannestad 2002). In the early universe, when neutrinos were still

relativistic, they free-streamed out of density perturbations, damp-

ing overdensities in the baryons and CDM. This smearing effect

stops once neutrinos become non-relativistic; in this case, the free-

streaming only suppresses power on scales smaller than the horizon

at this epoch, which depends on neutrino mass.

The CMB temperature power spectrum is only weakly depen-

dent on the neutrino mass fraction, f ν , since at the epoch of last

scattering neutrinos with eV masses behave in a similar fashion

to CDM. Therefore, CMB data alone do a poor job of constrain-

ing the neutrino mass fraction. Moreover, the response of the CMB

power spectrum to variations in f ν is limited to the higher multipoles

(� � 700), and so the first year WMAP data alone cannot give good

constraints on this quantity (see the results of Tegmark et al. 2004b).

Our constraints in the CMB only case arise mainly due to data other

than WMAP which probe smaller angular scales and therefore higher

multipoles. On the other hand, the impact of massive neutrinos on

the shape of the matter power spectrum is much more pronounced.

The combination of CMB data with a measurement of the mass

power spectrum can therefore give a much tighter constraint on the

mass fraction of neutrinos; the shape of P(k) constrains the value

of f ν , while the CMB data set the values of the parameters that are

degenerate with f ν .

Using CMB data only, we find f ν < 0.182 at 95 per cent. When

the 2dFGRS P(k) is included, this becomes f ν < 0.105 at 95 per

cent. Our results can be converted into constraints on the sum of

the three neutrino masses using �m ν = ωdm f ν 94.4 eV (assuming

standard freeze out and that neutrinos are Majorana particles) to

obtain the following limits: �m ν < 2.09 eV at 95 per cent in the

CMB only case, �m ν < 1.16 eV at 95 per cent for CMB data plus

the 2dFGRS P(k).

Elgaroy et al. (2002) used the Percival et al. (2001) measure-

ment of the 2dFGRS power spectrum to constrain the neutrino mass

and found
∑

mν < 2.2 eV (95 per cent), assuming n s = 1 and

a restrictive prior on �m. Our results also represent a substantial

improvement over those reported by Tegmark et al. (2004b), who

combined the first year WMAP data with the SDSS power spec-

trum to constrain a similar set of parameters to those we consider

and found a 95 per cent limit of �m ν � 1.7 eV. Our results for

f ν provide an important illustration of the need to augment the

WMAP data, which are the most accurate available for � � 600,

with measurements conducted at higher angular resolution, allow-

ing significant improvements in the constraints attainable on certain

parameters.

It is possible to obtain a stronger limit from CMB plus LSS studies

if amplitude information is also used: a neutrino fraction reduces the

overall growth rate as well as changing the shape of the matter power

spectrum. This constraint was used in the first year WMAP analysis,

and was important in reaching the tight constraint of �m ν < 0.7 eV

(Spergel et al. 2003; Verde et al. 2003). This analysis required the use

of the 2dFGRS bispectrum in addition to P(k) (Verde et al. 2002; for a

determination with the final 2dFGRS, see Gaztañaga et al. 2005); we

have preferred not to use this information at the present time since

it has not been subject to the same degree of detailed simulation

as P(k). The limit on the neutrino mass can also be tightened if a

measurement of the linear theory matter power spectrum is available

at higher wavenumbers than can be probed with the galaxy power

spectrum. Seljak et al. (2005) used the power spectrum of the Lyα

forest and the SDSS P(k), with a prior on the optical depth to last

scattering of τ < 0.3 (see later), to obtain
∑

mν < 0.42 eV. The

extraction of the linear theory power spectrum of matter fluctuations

from the Lyman α forest remains controversial, so we do not address

the use of this data set here (Croft et al. 2002; Gnedin & Hamilton

2002; McDonald et al. 2005).

The only work to have reported a measurement of a non-zero

neutrino mass rather than an upper limit is Allen, Schmidt & Bridle

(2003). These authors combined galaxy cluster data with CMB data

and an earlier version of the 2dFGRS P(k) measured by Percival

et al. (2001). The cluster data used by these authors were the gas

fraction and the X-ray luminosity function; both quantities are much

more difficult to model than the CMB and LSS data that we con-

sider here. Although their results show a stronger signal upon the

inclusion of the galaxy cluster data, there is still the suggestion of a

non-zero neutrino mass fraction even with the CMB and 2dFGRS

P(k) data alone, showing that this conclusion is not due exclusively

to the use of the X-ray data. The parameter space explored by Allen

et al. differs from the one considered in this section since it includes

tensor modes. The tensor modes contribute to the low-multipole part

of the CMB spectrum, and their inclusion can drive down the ampli-

tude of the scalar perturbations on these scales. This in turn can lead

to an increase in the recovered value of the scalar spectral index, ns,

with the consequence that f ν increases to compensate, thus main-

taining the power in the mass distribution at high k. This degeneracy
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Figure 3. The marginalized posterior likelihood in the fν–ωdm plane

for the b6 plus fν parameter set. The dashed lines show the 68 and

95 per cent contours obtained in the CMB only case. The solid contours

show the corresponding results obtained in the CMB plus 2dFGRS P(k)

case.
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Figure 4. The marginalized posterior likelihood in the fν–�DE plane

for the b6 plus fν parameter set. The dashed lines show the 68 and

95 per cent contours obtained in the CMB only case. The solid contours

show the parameter constraints obtained for combined CMB and 2dFGRS

P(k) data sets.

in the f ν–r plane produces a higher one-dimensional marginalized

constraint on the neutrino mass fraction.

Figs 3 and 4 show the impact of including the 2dFGRS P(k) data

on the f ν −ωdm and f ν −�DE constraints. In the CMB only case, the

incorporation of f ν into the parameter space causes the uncertainty

in all the parameters to grow. This is particularly noticeable for

�DE, for which the errors are twice as big as they were for the

b6 parameter set with f ν = 0. When the 2dFGRS power spectrum

is added to the analysis, the allowed ranges of these parameters are

dramatically reduced, with particularly tight constraints resulting on

ωdm and �DE; this clearly demonstrates the importance of including

LSS data to obtain precise constraints on these parameters.

Figure 5. The one-dimensional marginalized posterior likelihood for �k

for CMB data only (dashed line), CMB plus 2dFGRS P(k) (solid line) and

CMB plus 2dFGRS P(k), with a prior on the optical depth of τ < 0.3 (dot–

dashed line). Closed models have �k < 0.

3.4 Six parameters plus the curvature of the universe:
non-flat models

There is a strong theoretical prejudice that we live in a flat universe

with �k = 0. The first detections of the acoustic peaks in the CMB

temperature power spectrum, the location of which is a measure of

the geometry of the Universe, showed that the Universe is close to

being flat (de Bernardis et al. 2000). These results served to reinforce

the prejudice that the curvature of the Universe must be exactly zero

– and it is true that, to date, no work has found any strong indication

of a significant deviation from �k = 0. However, as the flatness of

the Universe is one of the most important predictions of inflationary

models, this assumption must be properly tested against new data

sets. We must bear in mind, when comparing values reported for

cosmological parameters, that many works simply assume �k = 0.

Other parameters, for example the scalar spectral index, are sensitive

to the prior assumed for �k .

We plot the marginalized likelihood function for �k in Fig. 5, for

different data sets. The dashed curve shows the results for the CMB

data alone, reminding us the well-known (but frequently forgotten)

result that the CMB data alone do not require a flat universe. Even

though values of �k > 0 (open models) are practically ruled out, a

wide range of closed models is allowed, with the best-fitting value

given by �k = −0.074
+0.049(0.076)
−0.052(0.084) at 68 per cent (95 per cent) confi-

dence. The solid line in Fig. 5 shows how incorporating the 2dFGRS

power spectrum helps to tighten the constraints on �k . The addition

of power-spectrum information helps to break the geometrical de-

generacy between �m and �DE (see Fig. 7 and the final paragraph

of this subsection). This is one of the most important effects of the

incorporation of LSS information into the analysis. In the CMB plus

2dFGRS P(k) case, we get �k = −0.029
+0.018(0.032)
−0.018(0.028).

It is particularly important to note the effect that the prior on

the optical depth to the last scattering surface, τ , has on the in-

ferred value of the curvature of the universe. Fig. 6 shows the con-

straints in the �k–τ plane. The addition of the 2dFGRS power spec-

trum shrinks the allowed region by tightening up the constraints on

�k , but the resulting likelihood contours show a clear degeneracy
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Figure 6. The marginalized posterior likelihood in the �k–τ plane for the

b6 plus �k parameter set. The dashed lines show the 68 and 95 per cent

contours obtained in the CMB only case. The solid contours correspond to

the constraints obtained in the CMB plus 2dFGRS P(k) case.
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Figure 7. The marginalized posterior likelihood in the �m–�DE plane for

the b6 plus �k parameter set. The dashed lines show the 68 and 95 per cent

contours obtained in the CMB only case. The solid contours correspond to

constraints in the CMB plus 2dFGRS P(k) case.

between the two parameters, with the high values of τ preferring

more negative values of �k . This degeneracy is responsible for the

broad error bars on these parameters. If one adopts a restrictive prior

on the optical depth of τ < 0.3, as recommended by the WMAP team

based on the lack of a large signal in polarization autocorrelation,

then the results for �k are more in line with those in the literature,

as shown by the dot–dashed line in Fig. 5. In this case, we find �k =
−0.015

+0.011(0.023)
−0.011(0.020) for the combined CMB plus 2dFGRS data sets.

We shall return to the issue of the choice of prior for the optical

depth in Section 4.4.

Finally, we highlight the constraints on the densities of dark matter

and dark energy obtained, when the assumption of a flat universe is

dropped. Fig. 7 shows the results for the case of CMB data alone

(dashed lines) and for CMB data plus the 2dFGRS P(k) (solid lines).

As we have seen in several previous examples, there is a dramatic

improvement in the quality of the constraints on these parameters

once the galaxy clustering data are incorporated into the analysis.

There is compelling evidence for a dark energy component in the

universe.

3.5 Six parameters plus the dark energy equation of state

Over the past decade, mounting evidence has been presented for the

accelerating expansion of the Universe, based on the interpretation

of the Hubble diagram of Type Ia supernovae (Perlmutter et al. 1999;

Riess et al. 2004). Independent support for the presence of a dynami-

cally dominant, negative pressure component in the energy–density

budget of the Universe has also come from fitting cosmological

models to CMB and LSS data sets (see Section 3.4 and Efstathiou

et al. 2002). Although we can infer the presence of this component,

dubbed dark energy, we know practically nothing about its nature.

A plethora of theoretical models has been proposed for the dark en-

ergy (e.g. see the review by Sahni 2005). One of the key properties

of the dark energy which can be used to pare down the market of

possible models is the equation of state of the dark energy, that is

the ratio of its pressure to density, wDE.

Until now we have assumed that the dark energy component cor-

responds to the cosmological constant, with a fixed equation of

state specified by wDE = −1. However, this is only one manifes-

tation of the many possible forms that the dark energy could take.

Any component with an equation of state wDE < −1/3 will result in

an accelerating rate of expansion today. In this section, we explore

dark energy models with a constant equation of state, allowing for

variations in the redshift-independent value of wDE. We also con-

sider models with wDE < −1, sometimes referred to as ‘phantom

energy’.

Fig. 8 shows the marginalized constraints in the wDE–�m plane.

In the CMB only case, we find wDE = −0.93+0.49
−0.47, consistent with

0.1 0.2 0.3 0.4 0.5 0.6 0.7

m
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CMB only
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Figure 8. The marginalized posterior likelihood in the �m–wDE plane

for the b6 plus wDE parameter set. The dashed lines show the 68 and

95 per cent contours obtained in the CMB only case. The solid contours

show the corresponding constraints obtained in the CMB plus 2dFGRS P(k)

case.
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a cosmological constant. When the 2dFGRS power spectrum is

included in the analysis, the preferred value increases somewhat

to wDE = −0.85+0.18
−0.17. If we also include the supernova Type Ia

data from Riess et al. (2004), our result scarcely changes, with

wDE = −0.87+0.12
−0.12. Phantom energy models are permitted in the

case of CMB data only, with the 95 per cent limit on the equation

of state of wDE > −1.66. However, once the 2dFGRS P(k) and

supernovae Type Ia data are included, the allowed region shrinks

to a smaller zone with wDE > −1.19 at 95 per cent, showing that

phantom energy models are disfavoured by the currently available

data. These results show that the data prefers lower values of wDE

than suggested by previous work using the SDSS power spectrum

(MacTavish et al. 2005). Our results are consistent with the dark

energy taking the form of a cosmological constant. We will discuss

this point further in Section 6.

3.6 Six parameters plus non-zero tensor modes

We now add the ratio of the amplitude tensor to scalar perturbations,

r, to the b6 parameter set. This case is an important one to consider

as tensor modes are predicted to be present in many inflationary

models. Moreover, as we will see several cosmological parameters

are degenerate with r and in the literature tensor modes have often

been ignored when presenting constraints on these parameters.

The constraints imposed on r by CMB information alone are

r < 0.52 at 95 per cent. Including the 2dFGRS P(k) data reduces the

importance of tensors slightly, yielding r < 0.41 at 95 per cent. Fig. 9

shows the two-dimensional marginalized likelihood contours in the

n s–r plane for the cases of CMB data only (dashed lines) and CMB

plus the 2dFGRS P(k) (solid lines). Tensor modes contribute to the

CMB temperature power spectrum only on large angular scales,

leading to a reduction in the scalar perturbations on these scales to

match the observations. In order to maintain the amplitude of scalar

perturbations on smaller angular scales, an increase in the scalar

spectral index, ns, is required. This degeneracy results in a broader

allowed range for ns than in the case where only scalar modes are

considered.
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Figure 9. The marginalized posterior likelihood in the n s–r plane for the b6

plus r parameter set. The dashed lines show the 68 and 95 per cent contours

obtained in the CMB only case. The solid contours show the corresponding

results in the CMB plus 2dFGRS P(k) case.
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Figure 10. The marginalized posterior likelihood in the ε1–ε2 plane for

the b6 plus r parameter set. The dashed lines show the 68 per cent and 95 per

cent contours obtained in the CMB only case. The solid contours correspond

to the results obtained in the CMB plus 2dFGRS P(k) case.

The constraints on r and ns can be translated into the horizon

flow parameters, ε1 and ε2, using the relations given by Mukhanov,

Feldman & Brandenberger (1992):

1 − ns = 2ε1 + ε2, (16)

r = 16ε1. (17)

The horizon flow parameters are related to derivatives of the Hubble

parameter during inflation (Schwarz, Terrero-Escalante & Garcia

2001). Leach & Liddle (2003a) give equations relating the horizon

flow parameters to the derivatives of the inflation potential and dis-

cuss the motivation for the truncation of the slow-roll expansion

after ε2. The constraints on the horizon flow parameters are shown

in Fig. 10. The degeneracy between r and ns translates into a degen-

eracy in ε1 and ε2.

If we restrict our attention to monomial inflation, i.e. potential of

the form V ∝ φα , then the horizon flow parameters can be related

to the power-law index, α, and the number of e-folds of inflation

for the scale considered, N, by the simple relations (Leach & Liddle

2003b)

ε2 = 4ε1

α
, (18)

N = α

4

(
1

ε1

− 1

)
. (19)

To obtain constraints on these new parameters, we have translated

our results for ε1 and ε2 into the α–N plane. In doing so, we have

restricted our attention to the region where ε2 > 0, following Lid-

dle & Leach (2003b), who argue that this part of the horizon flow

parameter space contains the most likely models in which infla-

tion will end naturally with a violation of the slow-roll approxima-

tion. Our results are plotted in Fig. 11. We find that α < 2.33 at

95 per cent for CMB data alone and α < 2.27 (95 per cent) for CMB

plus the 2dFGRS P(k). To obtain this result, we have followed Sel-

jak et al. (2005) and take into account the maximum number of

e-folds, N max = 60, of slow-roll inflation experienced at the pivot
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Figure 11. The marginalized posterior likelihood in the α–N plane for

the b6 plus r parameter set. The dashed lines show the 68 and 95 per cent

contours obtained in the CMB only case. The solid contours show the results

in the CMB plus 2dFGRS P(k) case.

scale k = 0.05 Mpc−1, thus further restricting the second horizon

flow parameter, ε2 > 0.0167. (Note that Leach & Liddle 2003b use

a different pivot scale to ours.) Our constraint on α implies that the

λφ4 inflation model is ruled out. This is the first time that the CMB

data alone have been of sufficient quality to completely reject this

model. Seljak et al. (2005) reached a similar conclusion using dif-

ferent data sets: the WMAP data, the SDSS galaxy power spectrum

and either the power spectrum of the Lyα forest or the amplitude

of the matter power spectrum, as inferred from the bias of SDSS

galaxies.

We now turn our attention to power-law inflationary models, in

which the scalefactor of the universe grows with time as a ∝ tp with

p > 1. In such models, the horizon flow parameters are simply given

by

ε1 = 1

p
, (20)

εi = 0 i � 2. (21)

Substitution of these relations into equation (17) gives a relation

between ns and r:

r = 8(1 − ns). (22)

To analyse this kind of model, we ran a new set of chains fixing

the tensor to scalar ratio using equation (22). In this case, we get

n s = 0.978+0.010
−0.010 for the CMB data alone and n s = 0.9762+0.0094

−0.0092 in

the CMB plus 2dFGRS case. The constraints on r are also tighter,

with r < 0.31 at 95 per cent. We note that the best-fitting values for

the horizon flow parameters of ε 1 = 0.0123+0.0080
−0.0082 (corresponding to

p = 81+163
−32 ) and ε2 = −0.004+0.040

−0.040 are in complete agreement with

the power-law inflation picture.

4 T H E RO L E O F P R I O R S

It is often claimed that we have entered an era of precision cosmol-

ogy, in which the values of the cosmological parameters are known

with high accuracy. The CMB measurements alone go a long way

towards realizing this ideal, but ultimately fall short due to the pres-

ence of well-known degeneracies between the cosmological param-

eters (Efstathiou & Bond 1999). Some of these degeneracies can be

broken with the incorporation of other information into the analysis

[such as, for example, LSS, supernova (SN) Ia or the power spectrum

of the Lyα forest]. However, many degeneracies remain even after

the addition of these data sets. Another way to break degeneracies

is by imposing priors on parameters, which can have implications

for the derived parameter constraints (see e.g. Bridle et al. 2003a).

In this section, we revisit the constraints obtained for the different

parameter sets and priors and assess which of our results are the

most robust.

4.1 The baryon density

One of the most important achievements of modern cosmology is

the agreement between the value of the physical density of baryons

determined from CMB data and that inferred from big bang nucle-

osynthesis (BBN) arguments and distant quasar absorption spectra.

In the present analysis, we obtain a value for the baryon density

of ωb = 0.0229+0.0012
−0.0013 from the CMB data alone that is consistent

with the latest constraint from BBN: ωb = 0.022 ± 0.002 (Cuoco

et al. 2004). This agreement is reinforced when the 2dFGRS P(k) is

added to the analysis, with ωb = 0.0225+0.0010
−0.0010. The variation in the

value of ωb obtained between the different parameter sets and pri-

ors that we have analysed is smaller than the 1σ error bars, showing

the robustness of this result. This level of agreement is all the more

remarkable when one considers the quite different epochs to which

the various data sets relate: BBN is a theory that describes processes

occurring in the very early universe, just a few minutes after the big

bang, while the CMB maps the universe as it was a few hundred

thousand years after the big bang, and the galaxy power spectrum

refers to the present day universe, over 13 billion years later. The

fact that we can tell a coherent story over such a huge baseline in

time, and physical conditions provide an impressive verification of

our cosmological model.

4.2 The dark matter density

A scan across the third rows of Tables 2 and 3 shows that the value

of ωdm is largely insensitive to the priors applied to the other pa-

rameters. The one exception is when the flatness prior, �k = 0, is

relaxed, in which case we obtain a smaller value for ωdm with larger

errors. The constraints obtained on ωdm in the CMB only and CMB

plus 2dFGRS P(k) cases are fully consistent.

The implications of the value of ωdm for the matter density �m

do, however, depend on the priors implemented. In the b6 plus f
ν parameter set, for the CMB plus 2dFGRS case, we find �m =
0.282 ± 0.040, but it can be as low as �m = 0.224 ± 0.022 for

the b6 plus r parameter set. With the exception of the case of non-

zero neutrino mass, all our estimates of �m lie significantly below

the standard choice of 0.3. Fig. 12 illustrates how the choice of

parameter space affects the results obtained. The constraints in the

�m–σ 8 plane in the b6 parameter set are tighter than those obtained

when the neutrino fraction, f ν , is incorporated into the analysis; for

the latter case, a bigger region with lower values of σ 8 is allowed

by the data. A similar situation can be seen in Fig. 13 for the �m–h
plane. The values of h preferred by the data are lower when non-

flat models are considered in the analysis. These discrepancies cause

differences in the marginalized results obtained for these parameters.

This situation occurs in many other cases and in general the influence

of the parameter set is non-negligible. For this reason, constraints
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Figure 12. The marginalized posterior likelihood in the �m–σ 8 plane ob-

tained using CMB plus 2dFGRS information for different parameter sets.

The solid lines correspond to the 68 and 95 per cent contours obtained for the

b6 parameter set. The dashed lines correspond to the results obtained when

the neutrino fraction fν is also allowed to vary. The dot–dashed lines show

constraints from weak lensing measurements from Hoekstra et al. (2002).
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Figure 13. The marginalized posterior likelihood in the �m–h plane ob-

tained using CMB plus 2dFGRS information for different parameter sets.

The solid lines correspond to the 68 and 95 per cent contours obtained for

the b6 parameter set. The dashed lines show the results obtained when non-

flat models are considered (b6 plus �k ). The dot–dashed lines show the 1σ

constraint on h from the HST key project (Freedman et al. 2001).

on a given parameter should always be quoted together with the

parameter space explored in the analysis. Fig. 13 shows the 1σ

limits on the Hubble constant derived by the Hubble Space Telescope
(HST) key project (Freedman et al. 2001). These constraints on h
are substantially broader than those obtained from the CMB plus

2dFGRS power spectrum, showing that including the key project

measurement as a prior would have little impact on our results.

4.3 The amplitude of fluctuations

When constraining the values of the cosmological parameters, we

only use information from the shape of the galaxy power spectrum

and not from its amplitude. Therefore, the constraints on the ampli-

tude of density fluctuations come principally from the CMB data,

with the LSS data playing an indirect role by tightening the con-

straints on parameters which yield degenerate predictions for the

CMB. The recovered values of σ 8 range from σ 8 = 0.678+0.073
−0.072

for the b6 plus f ν parameter space to σ 8 = 0.817+0.077
−0.079 for non-

flat models (b6 plus �k). Adding more data sets, such as the X-

ray cluster luminosity function, or other measurements of the am-

plitude of fluctuations may help to improve the constraint on σ 8,

but the theoretical modelling of these observational data sets is

less straightforward. In Fig. 12, we compare our results with con-

straints from measurements of weak lensing from Hoekstra, Yee &

Gladders (2002). Henry (2004) used the temperature function of

X-ray clusters to find σ 8 = 0.66 ± 0.16, in good agreement with

the b6 plus neutrino mass fraction model. Similar constraints have

been obtained by other groups (Bacon et al. 2003; Heymans et al.

2005).

4.4 The optical depth

The optical depth to the last scattering surface has an important

effect on nearly all other cosmological parameters. The signal for

τ > 0 comes from the temperature–polarization cross-correlation on

large angular scales. Intriguingly, Hansen et al. (2004) performed a

temperature–polarization analysis of the first year WMAP data for

the Northern and Southern hemispheres separately and found that,

whereas the Northern hemisphere points to τ = 0, the Southern

hemisphere prefers a value of τ = 0.24+0.06
−0.07, inconsistent with τ =

0 at the 2σ level, with the suggestion that the signal for τ > 0 may

be due to foreground structures in the Southern hemisphere.

In their analysis of the first year WMAP data, Spergel et al. (2003)

imposed a prior of τ < 0.3, justifying this by the need to avoid

‘unphysical’ regions of parameter space. In Section 3.4, we demon-

strated, as previously pointed out by Tegmark et al. (2004b), the

strong effect this prior has on our results. In particular, the τ < 0.3

prior is required to reconcile the constraints on �k with the flat-

ness prediction from inflation in the b6 plus �k parameter set, and

to produce tight constraints on neutrino masses in the b6 plus f ν

case. The situation should improve with the release of the second

and subsequent years of data from WMAP, which will be able to

produce improved polarization maps. In the meantime, the effect of

this important prior must be borne in mind when interpreting the

results from multiparameter analyses.

4.5 The flatness prior

The prior of �k = 0 is widely used when constraining cosmological

parameters. It is important to remember that, if the assumption of

flatness is relaxed, the preferred value is actually �k < 0 and only

marginally consistent with �k = 0. The assumption of flatness has

a major impact in the values of many cosmological parameters.

The value obtained for the age of the Universe, t0, shows an impor-

tant change when �k is allowed to float, and is only marginally con-

sistent with the values found for �k = 0. Fig. 14 shows the marginal-

ized two-dimensional likelihood contours in the �k–t 0 plane. There

is a clear degeneracy between these two parameters, with lower val-

ues of �k preferring higher values of t0; the incorporation of the

2dFGRS P(k) data does not break this degeneracy completely. The
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Figure 14. The marginalized posterior likelihood in the �k–t 0 plane for

the b6 plus �k parameter set. The dashed lines show the 68 and 95 per cent

contours obtained in the CMB only case. The solid contours correspond to

the constraints obtained in the CMB plus 2dFGRS case.
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Figure 15. The marginalized posterior likelihood in the �k–n s plane for

the b6 plus �k parameter set. The dashed lines show the 68 and 95 per cent

contours obtained in the CMB only case. The solid contours correspond to

the constraints obtained in the CMB plus 2dFGRS case.

same degeneracy can be seen in the �k–h plane, which implies that

a prior on the Hubble constant from the HST key project (Freedman

et al. 2001) may improve the situation, but even then the constraints

on these parameters are less robust than in the flat case.

The scalar spectral index, ns, also merits special attention. In Sec-

tion 3.2, we pointed out that the constraint on ns in the b6 model

is only marginally consistent with n s = 1; this spectrum is for-

mally excluded at the 95 per cent confidence level. Fig. 15 shows

the marginalized two-dimensional likelihood contours in the �k–n s

plane. When CMB information alone is used, there is a wide allowed

region that shrinks considerably when the 2dFGRS power spectrum

is included. In the latter case, there is a correlation between the pa-

rameters which makes the constraints on ns much broader than those

obtained for the special case of �k = 0. Taking into account that the

evidence for n s < 1 is weaker once more general parameter sets are

considered (such as, for example, the b6 plus f ν set) and that the

current data have a slight preference for closed models (even when

the prior of τ < 0.3 is applied), we advocate caution before claiming

a detection of a significant deviation from scale invariance.

4.6 Tensor modes

Another commonly applied prior is the assumption that tensor

modes can be neglected. It is important to include the amplitude of

tensor modes as a free parameter, not only because this has strong

implications for inflationary models, but also because many other

parameters are degenerate with the amplitude of tensors, resulting

in the growth of the allowed regions for these parameters. The pa-

rameters that are most strongly influenced by the assumption about

tensor modes are n s, �m and h.

5 B E YO N D T H E S I M P L E S T M O D E L

5.1 How many parameters should float?

We have shown that a model in which five parameters are allowed

to vary gives a good description of the CMB and LSS data sets. We

then went on to explore six and seven parameter sets, finding that,

in some cases, the results obtained for certain parameters depended

upon the choice of parameters varied. However, are we justified in

adding extra free parameters to our b5 set?

The simplest way to make an objective assessment of different

models is to establish whether or not they afford a better description

of the data, which is usually done by computing likelihood ratios.

However, it is important to compensate for the fact that adding extra

parameters should necessarily improve the fit to the data. Liddle

(2004) has advocated the use of two simple statistics that quantify

the level of improvement in the description of cosmological data

sets as new free parameters are added to the theoretical models.

These statistics allow us to ascertain whether the addition of a new

parameter is justified, i.e. does it produce a better than expected

enhancement in the accuracy with which the data are reproduced?

The statistics, the Akaike information criterion (AIC; Akaike 1974)

and the Bayesian information criterion (BIC; Schwarz 1978), have

a long track record of application in other branches of physics, but

have largely been ignored in cosmology. The definitions of the two

statistics are straightforward

AIC = −2 ln(L) + 2Npar, (23)

BIC = −2 ln(L) + Npar ln(Ndata), (24)

where L is the maximum likelihood, N par is the number of param-

eters varied in the model and N data is the number of data points

included in the analysis. The model that best describes the data

with the most economical use of parameters is the one that mini-

mizes these quantities. In both expressions, the first term favours

models which provide better fits to the data, while the second pe-

nalizes large numbers of parameters. We note that, as the value of

ln(N data) > 2 in our analysis, the BIC actually gives a higher penalty

to the number of free parameters than in the case for the AIC.

Table 4 provides a summary of the number of parameters, the

likelihood and the values of the AIC and BIC statistics for the models

considered in this paper. The addition of extra free parameters does

of course lead to an increase in the likelihood of the description of

the data by the model. The message conveyed by the value of the AIC
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Table 4. The number of parameters, the likelihood and the values of the

AIC and BIC statistics for the various models analysed in this paper. In all

cases, N data = 1403.

Model N par −2 ln(L) AIC BIC

b5 5 1495.8 1505.8 1532.1

b6 6 1492.1 1504.1 1535.6

b6 + fν 7 1491.3 1505.3 1542.0

b6 + �k 7 1490.4 1504.4 1541.1

b6 + wDE 7 1491.5 1505.5 1542.2

b6 + r 7 1491.7 1505.7 1542.4

statistic is less clear. All models show a slight decrease in the value

of the AIC statistic compared with the b5 set, but the BIC statistic

paints a quite different picture. Liddle reports that a difference in

the BIC of 2 should be regarded as ‘positive evidence’ and that of 6

as ‘strong evidence’ in favour of the model with the smaller value

of BIC. Therefore, there is apparently ‘positive evidence’ that we

should not expand the b5 model to allow the scalar spectral index to

float and ‘strong evidence’ that we really should not have burdened

the reader with the b6 plus one more free parameter models.

This conclusion, and indeed the basic BIC formula itself, appears

to disagree with the approach of this paper. For data with Gaussian

errors, the addition of a further parameter would be expected to re-

duce −2 lnL by one via the usual ‘degree of freedom’ rule (although

note that this strictly applies only to parameters linearly related to

the data, such as polynomial expansion coefficients). Furthermore,

the reduction in −2 lnL should be distributed as χ2 with 1 degree

of freedom if the new parameter is not a part of the true model,

independent of the number of data points. A reduction in −2 lnL
of 4 therefore amounts to rejection at 95 per cent confidence of the

hypothesis that a new parameter is not required. Thus, the fact that

allowing deviations from scale invariance reduces −2 lnL by 3.7

amounts to marginal evidence for the reality of tilt. This reasoning

matches the AIC approach quite well, as long as the coefficient 2

in the 2N par term is regarded as being adjustable according to the

significance level of interest.

The BIC statistic is an approximate form of the ‘Bayesian evi-

dence’ (Hobson, Bridle & Lahav 2002; Liddle 2004; Trotta 2005).

One of the conditions that must be satisfied in order for the BIC

to be a good approximation to the Bayesian evidence is the inde-

pendence of the data points under consideration. By setting N data =
1403 in the definition of the BIC in equation (24), we are effectively

treating all of the data points used in our analysis as independent.

Our calculation of the BIC therefore gives an overly pessimistic im-

pression of the impact of adding of new parameters. If, for example,

an eigenmode analysis or ‘radical’ data compression technique was

applied to the full set of CMB data points used in our analysis, this

would produce a much smaller set of genuinely independent data

points which fully describe the CMB measurements (Bond, Jaffe &

Knox 2000). The values of the AIC and BIC statistics would become

closer if recomputed for this ‘reduced’ set of data points. One might

argue that one should compute the Bayesian evidence rather than

approximations such as the BIC. There are two reasons why we have

not done this. First, the Bayesian evidence is hard to compute accu-

rately using MCMC techniques, although fast algorithms are under

development (Mukherjee, Parkinson & Liddle 2005). Secondly, the

definition of the prior on a parameter is part of the model tested in

the Bayesian evidence approach, and we believe that this is a weak

point in the method for the following reason. Since the choice of

prior is arbitrary to some extent, it is possible in principle to select

a prior such that the Bayesian evidence increases upon the addition

of new parameters. We prefer the effectively frequentist argument

of simply requiring a reduction in −2 lnL of order unity in order to

claim the detection of another degree of freedom.

5.2 Details of the evidence for tilt

Putting aside the caveat raised by the BIC statistic, it is important

to look at the b5 and b6 model results for the scalar spectral index

in more detail, as they have important implications for inflationary

models. To recap in Section 3.2, we set n s = 1, i.e. the scale-invariant

value of the spectral index for primordial scalar fluctuations. In

Section 3.3, we treated the spectral index as a free parameter and

found that n s = 1 was on the 95 per cent limit. Fig. 16 shows the

best-fitting models to the CMB temperature power-spectrum data

(upper panels) and the 2dFGRS P(k) (lower panels) for the b5 (solid

lines) and b6 (dashed lines) models. The difference between the two

models is small and comes mostly from scales beyond those probed

by WMAP; this is quantified in the right-hand panels in which the

models and data points have been divided by the n s = 1 model.

Fig. 17 shows the likelihood quotients between the b5 and b6 models

for each data set separately. It is clear that the data sets primarily

responsible for driving the scalar spectral index away from the scale-

invariant value are the CBI measurements and the 2dFGRS P(k): the

b6 model represents only a modest improvement over the b5 model

in its description of the WMAP and VSA data sets, while the addition

of an extra parameter makes very little difference to how well the

ACBAR results are reproduced. Nevertheless, there is an impressive

consistency between the various data sets: a systematic error in

a single one of these might have resulted in an improved overall

likelihood on the introduction of tilt, but at the price of a poorer fit

to some of the correct data sets. This is not what we see: addition of

the 2dFGRS strengthens a weak trend already present in the CMB

data. Even so, the overall result remains tantalizingly placed in terms

of its statistical significance: 95 per cent confidence is not sufficient

to claim firm detection of an effect of this importance. The best

that can be said is that even a modest amount of extra data could

easily move things into the territory of firm detection. The largest

predicted deviations from n s = 1 occur around the third CMB peak,

at � � 800, and the data here may be expected to improve rapidly.

6 C O M PA R I S O N W I T H C O N S T R A I N T S
O B TA I N E D U S I N G T H E C M B DATA
A N D T H E S D S S P OW E R S P E C T RU M

In this section, we replace the 2dFGRS P(k) measured by Cole et al.

(2005) with the power spectrum of SDSS galaxies estimated by

Tegmark et al. (2004a) and examine the impact that this change has

upon the values of the recovered cosmological parameters. There are

a number of differences between the two measurements of the galaxy

power spectrum. First, the SDSS is a red-selected survey, while the

2dFGRS is blue selected. Secondly, Tegmark et al. used a sophis-

ticated eigenmode deconvolution apparatus to attempt to remove

the effects of the survey window and redshift-space distortions; in

contrast, Cole et al. used a simpler Fourier approach that compares

to window-convolved models and quantifies redshift-space effects

directly by comparison with realistic simulations.

Tegmark et al. (2004b) used the WMAP first year data and the

SDSS galaxy power spectrum to constrain cosmological parame-

ters. These authors modelled the galaxy power spectrum with a

non-linear model for the matter fluctuations multiplied by a scale-

independent bias factor. The power-spectrum data were used on

C© 2005 The Authors. Journal compilation C© 2005 RAS, MNRAS 366, 189–207

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/366/1/189/1060187 by guest on 21 August 2022



204 A. G. Sánchez et al.

Figure 16. Model fits to the CMB data sets (top panels) and 2dFGRS P(k) (bottom panels) in the cases of the b5 (solid line) and b6 (dashed line) models, with

the best-fitting parameter values listed in Table 3. The model P(k) has been convolved with the window function of the 2dFGRS from Cole et al. (2005). In the

right-hand panels, the model curves and data points have been divided by the best-fitting b5 model to expand the y-axis.

Figure 17. The likelihood ratios of the b5 model to the b6 model plotted

in Fig. 16 for the individual data sets used in our analysis.

scales larger than k < 0.20 h Mpc−1. It is not clear that a constant

bias is a good approximation on scales for which the density fluc-

tuations have become non-linear. We adopt a simpler approach and

assume that the galaxy power spectrum can be related to the linear

perturbation theory power spectrum of the mass through a constant

shift in amplitude. As discussed earlier, the simulations used by Cole

et al. indicate that redshift-space effects and other non-linearities

are unimportant for the 2dFGRS to our imposed limit of kmax =
0.15 h Mpc−1.

We repeat the study of parameter space previously carried out

using the CMB data plus the 2dFGRS P(k) and present our results

using the SDSS P(k) instead in Table 5. For the most part, the results

obtained with the SDSS P(k) are compatible with those found using

the 2dFGRS P(k). There are, however, some cases in which the

results are quite different. This point is illustrated using the results

of the b6 model in Fig. 18. In this plot, we compare the parameter

constraints obtained using CMB data alone (dashed line) with the

results for CMB data plus the 2dFGRS P(k) (solid line) and for

CMB data plus the SDSS P(k) (dot–dashed line). For three out

of the six parameters presented, ωb, τ and ns, there is impressive
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Table 5. The marginalized 68 per cent interval constraints (unless otherwise stated) on cosmological parameters obtained using CMB data and the SDSS

galaxy power spectrum for different parameter sets.

b5 b6 b6 + fν b6 + �k b6 + wDE b6 + r

�k 0 0 0 −0.070+0.037
−0.039 0 0

� 1.0493+0.0036
−0.0036 1.0436+0.0048

−0.0047 1.0436+0.0047
−0.0048 1.0408+0.0051

−0.0052 1.0440+0.0048
−0.0049 1.0452+0.0047

−0.0047

ωdm 0.1227+0.0074
−0.0073 0.1234+0.0070

−0.0071 0.1304+0.0094
−0.0094 0.106+0.010

−0.010 0.104+0.012
−0.012 0.1203+0.0069

−0.0069

ωb 0.0242+0.0006
−0.0006 0.0228+0.0009

−0.0009 0.0225+0.0009
−0.0009 0.0224+0.0011

−0.0012 0.0235+0.0013
−0.0013 0.0234+0.0010

−0.0010

fν 0 0 <0.104 (95 per cent) 0 0 0

τ 0.173+0.034
−0.036 0.097+0.046

−0.045 0.098+0.043
−0.044 0.147+0.071

−0.077 0.124+0.065
−0.064 0.099+0.046

−0.046

wDE −1 −1 −1 −1 −0.45+0.23
−0.23 −1

ns 1 0.956+0.020
−0.020 0.947+0.022

−0.022 0.958+0.026
−0.032 0.988+0.040

−0.039 0.974+0.024
−0.025

log10 (1010 As) 3.273+0.057
−0.061 3.100+0.098

−0.098 3.097+0.094
−0.095 3.12+0.14

−0.15 3.10+0.13
−0.13 3.100+0.097

−0.098

r 0 0 0 0 0 <0.31 (95 per cent)

�DE 0.710+0.030
−0.030 0.682+0.035

−0.035 0.603+0.070
−0.073 0.577+0.083

−0.088 0.557+0.085
−0.085 0.706+0.034

−0.034

t 0/Gyr 13.35+0.12
−0.12 13.65+0.20

−0.20 13.97+0.26
−0.27 16.2+1.2

−1.1 14.35+0.56
−0.50 13.54+0.21

−0.21

�m 0.289+0.030
−0.030 0.317+0.035

−0.035 0.397+0.073
−0.070 0.49+0.12

−0.11 0.443+0.084
−0.085 0.294+0.034

−0.034

σ 8 0.947+0.039
−0.040 0.858+0.054

−0.054 0.732+0.084
−0.083 0.773+0.071

−0.071 0.57+0.15
−0.16 0.853+0.055

−0.055

zre 17.5+2.3
−2.4 11.9+3.9

−3.9 12.2+3.8
−3.9 14.8+7.1

−7.1 13.4+4.7
−4.9 11.8+3.8

−3.9

h 0.714+0.021
−0.021 0.681+0.026

−0.026 0.626+0.040
−0.042 0.519+0.064

−0.067 0.544+0.047
−0.047 0.701+0.028

−0.029∑
mν/eV 0 0 <1.27 (95 per cent) 0 0 0

Figure 18. The marginalized one-dimensional posterior likelihood in the b6 parameter space obtained for CMB information only (dashed lines), CMB plus

the 2dFGRS P(k) (solid lines) and CMB plus the SDSS (dot–dashed lines).
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agreement between the sets of results; the peaks in the likelihood

distributions coincide in the CMB only and CMB plus P(k) cases,

and the results are consistent to better than the 68 per cent confidence

intervals. The agreement between the sets of results for the scalar

spectral index in particular is excellent. However, for the other three

parameters plotted, ωdm, h and σ 8, the agreement is less impressive;

the differences in the recovered values of h and σ 8 are driven by the

change in ωdm. The peaks in the likelihood distributions for the CMB

only and CMB plus 2dFGRS P(k) cases are in good agreement, as

remarked upon in Section 3. There is a clear discrepancy, however,

with the preferred parameter values when using CMB data plus

the SDSS P(k). This is most marked for the physical density of

dark matter, ωdm. Cole et al. (2005) noted that the SDSS P(k) has

a slightly bluer slope than that of the 2dFGRS, favouring higher

values of �m.

There are two other notable discrepancies between the results ob-

tained with the SDSS and 2dFGRS P(k) in our b6 plus one additional

free parameter models. When the assumption of a flat universe is

relaxed, we find that the constraints on �k are weaker in the SDSS

case, �k = −0.070
+0.037(0.058)
−0.039(0.079); the allowed range is nearly twice as

broad as in the case of the 2dFGRS P(k). This is because on the

scales used in our analysis, the SDSS power spectrum does a poorer

job of constraining �m compared with the 2dFGRS P(k), and hence

is not as effective at breaking the geometrical degeneracy. In the b6

plus dark energy equation of state parameter set, we find wDE =
−0.45+0.23

−0.23 using the SDSS P(k), much higher than we found in the

case of the 2dFGRS P(k) and inconsistent with a cosmological con-

stant. If we also include the SN Ia data from Riess et al. (2004), then

we obtain a value for the equation of state that is consistent with our

previous results: wDE = −0.89+0.19
−0.18. Again, the discrepancy in the

result for the equation of state can be traced back to the preferred

values of ωdm. We note that MacTavish et al. (2005) find similar

results to ours for the equation of state of the dark energy using

the SDSS galaxy power spectrum. Fig. 8 shows the degeneracy in

the �m–wDE plane for CMB data alone. Adding information from

the galaxy power spectrum breaks this degeneracy. If the galaxy

P(k) data prefer a high value of �m, as in the case for the SDSS

data, then a high value of wDE will result.

It may be that these differences between 2dFGRS and SDSS

amount to no more than an unlucky amount of cosmic variance,

but clearly it would be more reassuring if the results showed greater

consistency. It will therefore be important to see each data set sub-

jected to analysis by a variety of algorithms and codes, as happened

following the Percival et al. (2001) 2dFGRS power-spectrum anal-

ysis (Tegmark et al. 2001). This older comparison found consistent

results, but the comparison will now be more demanding, given the

smaller errors arising from current data sets.

7 S U M M A RY

We have placed new constraints on the values of the basic cosmolog-

ical parameters, using an up-to-date compilation of CMB data and

the galaxy power spectrum measured from the final 2dFGRS by Cole

et al. (2005). We have carried out a comprehensive exploration of

parameter space, considering five-, six- and seven-parameter mod-

els, making different assumptions about the priors used for certain

parameters.

Our main results can be summarized as follows.

(i) A model in which five parameters are allowed to vary does a

remarkably good job of describing the currently available CMB and

LSS data.

(ii) There is an impressive level of agreement between the results

obtained for CMB data alone and for CMB data plus the 2dFGRS

power-spectrum data. If the 2dFGRS P(k) is replaced by the SDSS

P(k), there is some tension between the parameter values preferred

by the CMB and SDSS data sets.

(iii) For some parameters, for example the physical density of

dark matter, Hubble constant and the amplitude of density fluc-

tuations, there is a significant tightening of the allowed range

of parameter space when the 2dFGRS P(k) is included in the

analysis. In particular, we infer a density significantly below

�m = 0.3.

(iv) We find some evidence for a departure from a scale-invariant

primordial spectrum of scalar fluctuations. Our results for the scalar

perturbation spectral index are only marginally consistent with the

scale-invariant value n s = 1; this spectrum is formally excluded

at the 95 per cent confidence level. However, this conclusion is

weakened if we drop the assumption that the universe is flat or

allow neutrinos to have a mass.

(v) We place new limits on the mass fraction of massive neutrinos:

f ν < 0.105 and
∑

mν < 1.2 eV at the 95 per cent level.

(vi) Several parameters are sensitive to the choice of prior for the

optical depth to the last scattering surface, τ .

(vii) We find that a wide range of closed universes is consistent

with the CMB data. This range is restricted if we also consider the

2dFGRS P(k) data. If we further assume a prior of τ < 0.3, then the

preferred spatial curvature is close to flat.

(viii) We confirm the evidence previously reported by Efstathiou

et al. (2002) for a non-zero dark energy contribution to the energy

density of the universe.

(ix) We find a redshift-independent equation of state for the dark

energy of wDE = −0.85+0.18
−0.17, consistent with a cosmological con-

stant.

(x) Inflationary models with a scalar field potential with a V (φ)

∝ φ4 term are ruled out by our analysis.

The final message of this analysis is that meaningful comparison

of the parameter constraints from different studies requires a clear

listing of the free parameters and their prior distributions. Although

current data sets measure many parameter combinations extremely

well, important degeneracies remain. As we have discussed, there

is a good chance that current measurements may be poised on the

brink of rejecting the simplest five-parameter model in favour of

something more complicated. However, even if this step is taken, it

will require much work before any such deviation from the standard

model could have a unique interpretation.
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