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Abstract. We extend our previous analysis of cosmological supernova type Ia data (Padmanabhan & Choudhury 2003) to
include three recent compilation of data sets. Our analysis ignores the possible correlations and systematic effects present in
the data and concentrates mostly on some key theoretical issues. Among the three data sets, the first set consists of 194 points
obtained from various observations while the second discards some of the points from the first one because of large uncertainties
and thus consists of 142 points. The third data set is obtained from the second by adding the latest 14 points observed through
HST. A careful comparison of these different data sets help us to draw the following conclusions: (i) All the three data sets
strongly rule out non-accelerating models. Interestingly, the first and the second data sets favour a closed universe; if Ωtot ≡
Ωm + ΩΛ, then the probability of obtaining models with Ωtot > 1 is >∼0.97. Hence these data sets are in mild disagreement
with the “concordance” flat model. However, this disagreement is reduced (the probability of obtaining models with Ωtot > 1
being ≈0.9) for the third data set, which includes the most recent points observed by HST around 1 < z < 1.6. (ii) When the
first data set is divided into two separate subsets consisting of low (z < 0.34) and high (z > 0.34) redshift supernova, it turns
out that these two subsets, individually, admit non-accelerating models with zero dark energy because of different magnitude
zero-point values for the different subsets. This can also be seen when the data is analysed while allowing for possibly different
magnitude zero-points for the two redshift subsets. However, the non-accelerating models seem to be ruled out using only the
low redshift data for the other two data sets, which have less uncertainties. (iii) We have also found that it is quite difficult
to measure the evolution of the dark energy equation of state wX(z) though its present value can be constrained quite well.
The best-fit value seems to mildly favour a dark energy component with current equation of state wX < −1, thus opening the
possibility of existence of more exotic forms of matter. However, the data is still consistent with the the standard cosmological
constant at 99 per cent confidence level for Ωm >∼ 0.2.
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1. Introduction

Current cosmological observations, particularly those of su-
pernova type Ia, show a strong signature of the existence of
a dark energy component with negative pressure (Riess et al.
1998; Perlmutter et al. 1999; Riess 2000). The most obvious
candidate for this dark energy is the cosmological constant
(with the equation of state wX = p/ρ = −1), which, however,
raises several theoretical difficulties (for reviews, see Sahni
& Starobinsky 2000; Peebles & Ratra 2003; Padmanabhan
2003). This has led to models for dark energy component
which evolves with time (Ratra & Peebles 1988; Wetterich
1988; Ferreira & Joyce 1998; Frieman et al. 1995; Brax &
Martin 1999; Brax & Martin 2000; Urena-Lopez & Matos
2000; Barreiro et al. 2000; Zlatev et al. 1999; Albrecht &
Skordis 2000; Bilic et al. 2002).

Currently, there is a tremendous amount of activity going
on in trying to determine the equation of state wX(z) and other
cosmological parameters from observations of high redshift
type Ia supernova (Garnavich et al. 1998; Astier 2000; Saini
et al. 2000; Wang & Garnavich 2001; Weller & Albrecht 2001;
Goliath et al. 2001; Wang & Lovelace 2001; Leibundgut 2001;
Trentham 2001; Podariu et al. 2001; Corasaniti & Copeland
2002; Kujat et al. 2002; Minty et al. 2002; Maor et al.
2002; Weller & Albrecht 2002; Gerke & Efstathiou 2002;
Rowan-Robinson 2002; Linder & Jenkins 2003; Padmanabhan
& Choudhury 2003; Visser 2004; Caresia, Matarrese, &
Moscardini 2004; Alcaniz 2004; Wang & Mukherjee 2004;
Novello et al. 2003; Knop et al. 2003; Zhu & Fujimoto
2003; Dev et al. 2004; Gong et al. 2004; Gong & Chen
2004; Gong & Duan 2004; Gong 2004; Bertolami 2004;
Wang & Tegmark 2004; Chae et al. 2004; McInnes 2004;
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Szydlowski & Czaja 2004; Bertolami et al. 2004; Lima &
Alcaniz 2004; Nesseris & Perivolaropoulos 2004; Alam, Sahni,
& Starobinsky 2004; Zhu, Fujimoto, & He 2004; Alcaniz &
Pires 2004). While there has been a considerable activity in
this field, one should keep in mind that there are several theo-
retical degeneracies in the Friedmann model, which can limit
the determination of wX(z). To understand this, note that the
only non-trivial metric function in a Friedmann universe is the
Hubble parameter H(z) (besides the curvature of the spatial part
of the metric), which is related to the total energy density in
the universe. Hence, it is not possible to determine the energy
densities of individual components of energy densities in the
universe from any geometrical observation. For example, if we
assume a flat universe, and further assume that the only energy
densities present are those corresponding to the non-relativistic
dust-like matter and dark energy, then we need to know Ωm of
the dust-like matter and H(z) to a very high accuracy in order to
get a handle onΩX or wX of the dark energy. This can be a fairly
strong degeneracy for determining wX(z) from observations.

Recently, we discussed certain questions related to the
determination of the nature of dark energy component from
observations of high redshift supernova in Padmanabhan &
Choudhury (2003, hereafter Paper I). In the above work, we re-
analyzed the supernova data using very simple statistical tools
in order to focus attention on some key issues. The analysis
of the data were intentionally kept simple as we subscribe to
the point of view that any result which cannot be revealed by
a simple analysis of data, but arises through a more complex
statistical procedure, is inherently suspect and a conclusion as
important as the existence of dark energy with negative pres-
sure should pass such a test. The key results of our previous
analysis were:
• Even if the precise value of ΩX or the equation of

state wX(z) is known from observations, it is not possible
to determine the nature (or, say, the Lagrangian) of the un-
known dark energy source using only kinematical and ge-
ometrical measurements. For example, if one assumes that
the dark energy arises from a scalar field, then it is pos-
sible to come up with scalar field Lagrangians of differ-
ent forms leading to same wX(z). As an explicit example,
we considered two Lagrangians, one corresponding to quin-
tessence (Peebles & Ratra 1988; Ratra & Peebles 1988; Zlatev
et al. 1999) and the other corresponding to the tachyonic scalar
fields (Padmanabhan 2002; Padmanabhan & Choudhury 2002;
Frolov et al. 2002; Shiu & Wasserman 2002; Gibbons 2002;
Fairbairn & Tytgat 2002; Mukohyama 2002; Feinstein 2002;
Bagla et al. 2003). These two fields are quite different in terms
of their intrinsic properties; however, it is possible to make both
the Lagrangians produce a given wX(a) by choosing the po-
tential functions in the corresponding Lagrangians (for explicit
examples and forms of potential functions, see Padmanabhan
(2002); Paper I).
• Although the full data set of supernova observations

strongly rule out models without dark energy, the high and low
redshift data sets, individually, admit non-accelerating models
with zero dark energy. It is not surprising that the high redshift
data is consistent with non-accelerating models as the universe
is in its decelerating phase at those redshifts. On the other hand,

though the acceleration of the universe is a low redshift phe-
nomenon, the non-accelerating models could not be ruled out
using low redshift data alone because of large errors. Given the
small data set, any possible evolution in the absolute magnitude
of the supernovae, if detected, might have allowed the data to
be consistent with the non-accelerating models.
• We introduced two parameters, which can be obtained

entirely from theory, to study the sensitivity of the luminosity
distance on wX . Using these two parameters, we argued that
although one can determine the present value of wX accurately
from the data, one cannot constrain the evolution ofwX . The sit-
uation is worse if we add the uncertainties in determining Ωm.

All the above conclusions were obtained by analysing only
55 supernova data points from a very simple point of view. In
recent times, data points from various sets of observations have
been compiled taking into account the calibration errors and
other uncertainties. This enables us to repeat our analysis for
much larger data sets, and see how robust are the conclusions of
Paper I with respect to the choice of the data points. In this pa-
per, we will compare three such data sets, which differ in their
selection criteria for data points and redshift range covered.

The structure of the paper is as follows: in the next section,
we describe the three data sets used in this paper, and then anal-
yse them for models with non-relativistic dust-like matter and
cosmological constant. Some key points regarding the impor-
tance of low and high redshift data are discussed. In Sect. 3, we
briefly discuss the constraints on the dark energy equation of
state and its evolution. The results are summarized in Sect. 4.
Finally, the effect of our extinction-based selection criterion on
the determination of cosmological parameters is discussed in
the appendix.

2. Recent supernova data and their analysis

We begin with a brief outline of the method of our analy-
sis of the supernova data. The observations essentially mea-
sure the apparent magnitude m of a supernova at peak bright-
ness which, after correcting for galactic extinction and possible
K-correction, is related to the luminosity distance dL of the su-
pernova through

m(z) =M + 5 log10 Q(z), (1)

where

Q(z) ≡ H0

c
dL(z) (2)

and

M = M + 5 log10

(
c/H0

1 Mpc

)
+ 25 = M − 5 log10 h + 42.38. (3)

The parameter M is the absolute magnitude of the super-
novae after correcting for supernova light curve width – lumi-
nosity correlation (Riess et al. 1996; Perlmutter et al. 1997;
Phillips et al. 1999). After applying the above correction, M,
and henceM, is believed to be constant for all supernovae of
type Ia.
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For our analysis, we consider three sets of data available in
the literature at present. For completeness, we describe the data
sets in detail:

(i) TONRY: in this data set we start with the 230 data points
listed in Tonry et al. (2003) alongwith the 23 points from Barris
et al. (2004). These data points are compiled and calibrated
from a wide range of different observations. For obtaining the
best-fit cosmological model from the data, one should keep in
mind that the very low-redshift points might be affected by pe-
culiar motions, thus making the measurement of the cosmo-
logical redshift uncertain; hence we consider only those points
which have z > 0.01. Further, since one is not sure about the
host galaxy extinction AV, we do not consider points which
have AV > 0.5. The effect of this selection criterion based on
the extinction, is discussed in the appendix. Thus for our final
analysis, we are left with only 194 points (identical to what is
used in Barris et al. 2004), which is more than thrice compared
to what was used in Paper I.

The supernova data points in Tonry et al. (2003) and Barris
et al. (2004) are listed in terms of the luminosity distance

µ1(z) ≡ m(z) −Mobs(z) = 5 log10 Qobs(z), (4)

alongwith the corresponding errors σµ1 (z). Note that the quan-
tity µ1(z) is obtained from observations by assuming some
value of M. This assumed value of M (denoted by Mobs

in Eq. (4)) does not necessarily represent the “true” M, and
hence one has to keep it as a free parameter while fitting the
data.

Any model of cosmology will predict the theoretical
value Qth(z; cα) with some undetermined parameters cα (which
may be, for example, Ωm,ΩΛ). The best-fit model is obtained
by minimizing the quantity

χ2
1 =

M∑
i=1

[
µ1(zi) −M1 − 5 log10 Qth(zi; cα)

σµ1 (zi)

]2
(5)

where

M1 =M−Mobs (6)

is a free parameter representing the difference between the ac-
tual M and its assumed value Mobs in the data. To take into
account the uncertainties arising because of peculiar motions
at low redshifts, we add an uncertainty of ∆v = 500 km s−1 to
the distance error (Tonry et al. 2003), i.e.,

σ2
µ1

(z)→ σ2
µ1

(z) +

(
5

ln 10
10−0.2µ1

∆v

c

)2
· (7)

Note that this correction is most effective at low redshifts (i.e.,
for small values of µ1). The minimization of (5) is done with re-
spect to the parameterM1 and the cosmological parameters cα.

(ii) RIESS(w/o HST): recently, Riess et al. (2004) have
compiled a set of supernova data points from various sources
with reduced calibration errors arising from systematics.
In particular, they have discarded various points from the
TONRY data set where the classification of the supernova was
not certain or the photometry was incomplete – it is claimed
that this has increased the reliability of the sample. The most

reliable set of data, named as “gold”, contain 142 points from
previously published data, plus 14 points discovered recently
using HST (Riess et al. 2004). Our second data set consists
of 142 points from the above “gold” sample of (Riess et al.
2004), which does not include the latest HST data (hence the
name RIESS(w/o HST)). Essentially, this data set is similar to
the TONRY data set in terms of the covered redshift range, but
is supposed to be more “reliable” in terms of calibration and
other uncertainties.

We would like to mention here that the data points in (Riess
et al. 2004) are given in terms of the distance modulus

µ2(z) ≡ m(z) − Mobs(z), (8)

which differs from the previously defined quantity µ1(z) in
Eq. (4) by a constant factor. Consequently, the χ2 is calculated
from

χ2
2 =

M∑
i=1

[
µ2(zi) −M2 − 5 log10 Qth(zi; cα)

σµ2 (zi)

]2
(9)

where

M2 =M− Mobs. (10)

Note that the errorsσµ2 (zi) quoted in Riess et al. (2004) already
take into account the effects of peculiar motions.

(iii) RIESS: our third data set consists of all the 156 points
in the “gold” sample of (Riess et al. 2004), which includes the
latest points observed by HST. The main difference of this set
from the previous two is that this covers the previously unpop-
ulated redshift range 1 < z < 1.6.

Before starting our analysis, we would like to caution the
reader about two very important points. First, the errors σm(z)
used above do not contain uncertainties because of systematics.
Any rigorous statistical analysis of the supernova data for deter-
mining the cosmological parameters must take into account the
systematic errors. The errors might arise because of calibration
uncertainties, K-correction, Malmquist bias, gravitational lens-
ing or the evolutionary effects (Goobar et al. 2002a,b; Linder &
Huterer 2003; Perlmutter & Schmidt 2003; Caresia et al. 2004;
Huterer et al. 2004; Linder 2004; Wang 2004; Kim et al. 2004).
Including such errors into the analysis requires much involved
analysis. Once these systematic errors are included, the errors
on the cosmological parameter estimations might be higher
than what will be reported in this paper. In this respect, we
would also like to add that the data sets RIESS and RIESS(w/o
HST) are supposed to reduce some of the systematic and cali-
bration uncertainties in data.

Second, our simple frequentist analysis holds good only
when the errors σm(z) are Gaussian and uncorrelated. While
considerable amount of analysis exist in the literature work-
ing with these approximations, there are various systematics
because of which such approximations do not hold true. For
example, the uncertainties in calibrating the data would surely
introduce correlations in the errors (Kim et al. 2004). Similarly,
uncertainties in the host galaxy extinction would introduce
non-Gaussian asymmetric errors. Neglecting such effects might
result in lower errors on the estimated values of the cosmolog-
ical parameters. Note that the main thrust of our analysis is to



810 T. R. Choudhury and T. Padmanabhan: Cosmological parameters from supernova observations

Fig. 1. Comparison between various flat models and the observational
data. The observational data points, shown with error-bars, are ob-
tained from the “gold” sample of Riess et al. (2004). The most recent
points, obtained from HST, are shown in red. (This figure is available
in color in electronic form.)

study some of the theoretical degeneracies inherent in any ge-
ometrical observations, in particular the supernova data, which
are not adequately stressed elsewhere. Of course, this study can
be complemented by other analyses which actually deal with
quality and reliability of data, validity of error estimates, hid-
den correlations, nature of statistical analysis etc. All of these
are important, but in order to make some key points we have at-
tempted to restrict the domain of our exploration. Keeping this
in mind, we believe that the simple (non-rigorous) χ2 analysis
should be adequate.

Let us start our analysis with the flat models where Ωm +

ΩΛ = 1, which are currently favoured strongly by CMBR data
(for recent WMAP results, see Spergel et al. 2003). Our simple
analysis for the most recent RIESS data set, with two free pa-
rameters (Ωm,M2), gives a best-fit value ofΩm (after marginal-
izing overM2) to be 0.31 ± 0.04 (all the errors quoted in this
paper are 1σ). This matches with the value Ωm = 0.29+0.05

−0.03 ob-
tained by Riess et al. (2004). In comparison, the best-fit Ωm

for flat models was found to be 0.31 ± 0.08 in Paper I – thus
there is a clear improvement in the errors because of increase in
the number of data points although the best-fit value does not
change. The comparison between three flat models and the ob-
servational data from the RIESS data set is shown in in Fig. 1.

To see the accelerating phase of the universe more clearly,
let us display the data as the phase portrait of the universe in
the ȧ − a plane. Though the procedure for doing this is de-
scribed in Paper I (see also Daly & Djorgovski 2003), we would
like to discuss some aspects of the procedure in detail to em-
phasize a different approach we have used here in estimating
the errors.

Each of the three sets of observational data used in this pa-
per can be fitted by the function of simple form

mfit(z) = a1 + 5 log10

[
z(1 + a2z)

1 + a3z

]
, (11)

with a1, a2, a3 being obtained by minimizing the χ2. We can
then represent the luminosity distance obtained from the data
by the function

Qfit(z) = 100.2[mfit(z)−M]. (12)

Note that one needs to fix the value of M to obtain the func-
tion Qfit(z). It is obvious, from the form of the fitting func-
tion (11) at low redshifts, that the parameter a1 actually mea-
sures the quantityM. It is then straightforward to obtain

Qfit(z) =
z(1 + a2z)

1 + a3z
· (13)

For flat models, it the Hubble parameter is related to Q(z) by
a simple relation – in this work we are interested in a related
quantity

H−1
0 ȧ(z) =

[
(1 + z)

d
dz

{
Q(z)
1 + z

}]−1

(14)

which will enable us to plot the data points in the ȧ − a plane.
Using the form of the fitting function, we can obtain the “fit-
ted” ȧ as:

H−1
0 ȧfit(z) =

(1 + a3z)2 (1 + z)
1 + 2a2z + (a2 − a3 + a2a3)z2

· (15)

To plot the individual supernova data points in the ȧ − a plane,
we first write H−1

0 ȧfit as a function of mfit (which is trivially
done by eliminating z from Eqs. (11) and (15)). We then assume
that the same relation can be applied to obtain the ȧ correspond-
ing to a particular measurement of m. Note that the relation be-
tween ȧ and m will involve the fitting parameters a1, a2, a3, and
hence is dependent on the fitting function.

The determination of the corresponding error-bars is a non-
trivial exercise. In this paper, we obtain the error-bars using a
Monte-Carlo realization technique, along the following lines:
Given the observed values of m(z) and σm(z), we generate ran-
dom realizations of the data set. Basically we randomly vary
the magnitude of each supernova from a Gaussian distribu-
tion with dispersion σm – each such set corresponds to one
realization of the data set. Next, we fit each of the realiza-
tion of the data sets with the fitting function (11), and obtain
the set of three parameters a1, a2, a3. Given the set of parame-
ters a1, a2, a3, we can obtain ȧ for each a (or equivalently, z).
In this way we end up with different values of ȧ for each super-
nova, each corresponding to one realization. Finally, we plot
the distribution of ȧ’s for each supernova, fit it with a Gaussian,
and obtain the width of the Gaussian. This width is a possible
candidate for the error in ȧ for each supernova.

The data points, with error-bars, in the ȧ−a plane are shown
in Fig. 2 for all the three data sets. The solid curves plotted in
Fig. 2 correspond to theoretical flat models with different Ωm.
In order to do any serious statistics with Fig. 2, one should
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Fig. 2. The observed supernova data points in the ȧ − a plane for flat models. The error bars for the data points are correlated (see text for
detailed description). The solid curves, from bottom to top, are for flat cosmological models with Ωm = 0.00, 0.16, 0.32, 0.48, 0.64, 0.80, 1.00
respectively. The left, middle and right panels show data points for the data sets RIESS, RIESS(w/o HST) and TONRY respectively. The vertical
dashed line shows the redshift z = 0.34.

keep in mind that the errors for the data points in the figure are
correlated.

It is obvious that the high redshift data alone cannot be
used to establish the existence of a cosmological constant as
the points having, say a < 0.75, more or less, resemble a decel-
erating universe. In particular, one can use the freedom in the
value of M to shift the data points vertically, and make them
consistent with the non-accelerating SCDM model (Ωm = 1,
topmost curve). On the other hand, the low redshift data points
show a clear, visual, sign of an accelerating universe at low red-
shifts. But to convert this visual impression into quantitative
statistics is not easy since – as we said before – the errors at
neighbouring points are correlated. We shall see later on, with
correct statistical analysis, that it is, in general, quite difficult to
rule out non-accelerating models using low redshift data alone,
particularly when the uncertainties in the data are large.

Let us now make the above conclusions more quantitative
by studying the confidence ellipses in the Ωm − M1,2 plane,
shown in Fig. 3, which should be compared with Fig. 4 of
Paper I. For all the three rows, the left panels show the con-
fidence regions using the full data sets. The confidence con-
tours in the middle and right panels are obtained by repeating
the best-fit analysis for the low redshift data set (z < 0.34) and
high redshift data set (z > 0.34), respectively1. The three rows
are for the three data sets respectively, as indicated in the figure
itself.

When the supernova data is divided into low and high
redshift subsets, the points to be noted are: (i) the best-fit
value of M1,2 are substantially different for the two subsets

1 One might notice that, in Paper I, we divided the high and low-
redshift data points at z = 0.25, whereas in this paper we divide them
at z = 0.34. The results of Paper I remain unchanged irrespective of
whether the points are divided at z = 0.25 or at z = 0.34; this is
because there were very few points between these redshifts.

(as indicated in the middle and right-hand panels of
Fig. 3), irrespective of the data set used. The difference is
most for the TONRY data set, comparatively less for the
RIESS(w/o HST) data set and least for the RIESS data set.
(ii) Because of the difference in the value of M1 for the
TONRY data set, both the low and high redshift data sub-
sets, when treated separately, are quite consistent with the
SCDM model (Ωm = 1). This indirectly stresses the impor-
tance of any evolutionary effects. If, for example, supernova
at z >∼ 0.34 and supernova at z <∼ 0.34 have different absolute
luminosities because of some unknown effect, or if there is any
systematics involved in estimating the magnitudes of the super-
nova, then the entire TONRY data set can be made consistent
with the SCDM (Ωm = 1,ΩΛ = 0) model. Comparing the best-
fit values ofM1 in the middle and right-hand panels in the low-
est row of Fig. 3, one can see that a difference of about 0.5 mag
in the absolute luminosities of the low and high-redshift super-
nova is sufficient to make the entire TONRY data set consis-
tent with the SCDM model. This agrees with the point made
in Paper I. (iii) However, the situation is markedly different for
the other two data sets (RIESS(w/o HST) and RIESS), which
are supposed to be more reliable than the TONRY data set. It
turns out that because of less systematic errors, it is possible to
rule out the SCDM model using the low redshift data alone as
long as the absolute luminosities of supernovae do not evolve
within the redshift range z < 0.34. This is very important as it
establishes the presence of the accelerating phase of the uni-
verse at low redshifts irrespective of the evolutionary effects.
More reliable data sets at low redshifts will help in making this
conclusion more robust.

Let us now consider the non-flat cosmologies where we
have three free parameters, namely,Ωm,ΩΛ andM1,2. The con-
fidence region ellipses in the Ωm −ΩΛ plane (after marginaliz-
ing overM1,2) are shown in Fig. 4 for the three data sets.
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Fig. 3. Confidence region ellipses in the Ωm −M1,2 plane for flat models with non-relativistic matter and a cosmological constant. The ellipses
corresponding to the 68, 90 and 99 per cent confidence regions are shown. The top, middle and bottom rows show data points for the data
sets RIESS, RIESS(w/o HST) and TONRY respectively. In the left panels, all the data points in the data set are used. In the middle panel, data
points with z < 0.34 are used, while in the right panel, we have used data points with z > 0.34. We have indicated the best-fit values of Ωm

andM1,2 (with 1σ errors).

The left panels, for all the three rows, give the confidence
contours for the full data sets. One can compare the equiv-
alent panel (a) of Fig. 5 in Paper I with the left panels of
Fig. 4 and see that they are essentially similar. In the previ-
ous case the best-fit values for the full data set were given
by Ωm = 0.67 ± 0.25,ΩΛ = 1.24 ± 0.34, which agree, within
allowed errors, with the best-fit values (indicated in the figure
itself) for all the three data sets. The slanted shape of the prob-
ability ellipses in the left panels show that a particular linear
combination of Ωm and ΩΛ is selected out by these observa-
tions (which turns out to be 0.81Ωm − 0.58ΩΛ for the TONRY
and RIESS(w/o HST) data sets, while it is 0.85Ωm−0.53ΩΛ for
the RIESS data set). This feature, of course, has nothing to do
with supernova data and arises purely because the luminosity
distance Q depends strongly on a particular linear combina-
tion of Ωm and ΩΛ (Goobar & Perlmutter 1995). This point is
illustrated by plotting the contour of constant luminosity dis-
tance, Q(z) = constant in the left panels. The coincidence of
this line (which roughly corresponds to Q at a redshift in the
middle of the data) with the probability ellipses indicates that

it is the dependence of the luminosity distance on cosmologi-
cal parameters which essentially determines the nature of this
result. This aspect was discussed in detail in Paper I.

One disturbing aspect of all the three data sets (also noticed
in the data sets right from the early days) is that the best-fit
model favours a closed universe with Ωtot ≡ Ωm + ΩΛ > 1.
It is repeatedly argued that, due to the highly correlated nature
of the probability contours (indicated by the very elongated el-
lipses in the left panels of Fig. 4), the best-fit value does not
mean much. While this is true, one can certainly ask what is
the probability distribution for Ωtot if we marginalize over ev-
erything else. Interestingly we get Ωtot = 1.91 ± 0.41 for the
TONRY data set, Ωtot = 1.98 ± 0.36 for the RIESS(w/o HST)
data set and Ωtot = 1.44 ± 0.28 for the RIESS data set.
Alternatively, one can also compute the probabilityP(Ωtot > 1)
of obtaining Ωtot > 1, which is found to be P(Ωtot > 1) =
0.97 for the TONRY data set, P(Ωtot > 1) = 0.99 for the
RIESS(w/o HST) data set and P(Ωtot > 1) = 0.88 for the
RIESS data set. Although there is a general consensus that
the “concordance” cosmological model has Ωtot = 1, one
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Fig. 4. Confidence region ellipses in the Ωm − ΩΛ plane for models with non-relativistic matter and a cosmological constant. The ellipses
corresponding to the 68, 90 and 99 per cent confidence regions are shown. The confidence regions are obtained after marginalizing overM1,2.
The dashed line corresponds to the flat model (Ωm +ΩΛ = 1). The unbroken slanted line corresponds to the contour of constant luminosity dis-
tance, Q(z) = constant. The top, middle and bottom rows show data points for the data sets RIESS, RIESS(w/o HST) and TONRY respectively.
In the left panels, all the data points in the data set are used. In the middle panel, data points with z < 0.34 are used, while in the right panel, we
have used data points with z > 0.34. The values of the best-fit parameters, with 1σ errors are indicated in the respective panels.

should keep in mind that as far as supernova data alone is
concerned, it is highly probable that Ωtot > 1 – in particular,
the probability is quite high (>∼0.97) when the recent HST data
points are not included in the analysis. The presence of 14 new
HST points at redshifts around 1 to 1.6 makes sure that the
probability of obtaining Ωtot > 1 is somewhat lower (<0.9).

Finally, we comment on the interplay between high and low
redshift data for non-flat models. Just as in the case of the flat
models, we divide the full data set into low (z < 0.34) and high
(z > 0.34) redshift subsets, and repeat the best-fit analysis. The
resulting confidence contours are shown in the middle and right
panels of Fig. 4, which should be compared with panels (a)
and (e) of Fig. 7 in Paper I. One can see that it is not possi-
ble to rule out the SCDM model using only high redshift data
points when there are large uncertainties inM1,2, which agrees
with what we concluded in Paper I. It is also clear that, like in

Paper I, the low redshift data for the TONRY data set cannot be
used to discriminate between cosmological models effectively
because of large errors on the data. However, the situation is
quite different for the RIESS(w/o HST) and RIESS data sets.
As we discussed before, the reduced uncertainties in these data
sets have made it possible to rule out the SCDM model using
low redshift data only. It is thus very important to have more
data points at low redshifts (with less distance uncertainties) so
as to conclude about the existence of accelerating phase of the
universe, irrespective of evolutionary effects in absolute lumi-
nosities of supernovae.

We also note, as we did for flat models, that the best-fit
value ofM1,2 are substantially different for the two subsets (as
indicated in the middle and right-hand panels of Fig. 4) with
the difference being most for the TONRY data set and least
for the RIESS data set. We can thus take our analysis one step
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Fig. 5. Confidence region ellipses in the Ωm − ΩΛ plane for models with non-relativistic matter and a cosmological constant, allowing for
possibly different M1,2 for the different redshift subsamples. It is assumed that supernovae at z < 0.34 have Mlow

1,2 , while those at z > 0.34

haveMhigh
1,2 . The ellipses corresponding to the 68, 90 and 99 per cent confidence regions are shown. The confidence regions are obtained after

marginalizing overM1,2. The dashed line corresponds to the flat model (Ωm + ΩΛ = 1). The dot-dashed line denotes the models having zero
deceleration at the present epoch (i.e., q0 = 0), with the region below this line representing the non-accelerating models. The left, middle and
right panels show data points for the data sets RIESS, RIESS(w/o HST) and TONRY respectively. The values of the best-fit parameters, with
1σ errors are indicated in the respective panels.

further by fitting supernovae from all redshifts while allowing
for possibly different M1,2 for the different redshift samples.
To be precise, we assume that supernovae at lower redshifts
z < 0.34 haveMlow

1,2 , while those at higher redshifts haveMhigh
1,2 .

Given these, we can fit the data with four parameters and then
marginalize overMlow

1,2 andMhigh
1,2 . The resulting confidence re-

gions in the Ωm − ΩΛ plane are shown in Fig. 5 for the three
data sets.

As is clear from the figure, one has quite different val-
ues for Mlow

1 and Mhigh
1 for the TONRY data set, while the

difference is lower for the other two data sets. This proba-
bly indicates that the difference in the values of M1 for dif-
ferent subsets for the TONRY data set arises from system-
atic errors, which are claimed to be reduced for the other two
data sets. One requires more work, possibly a rigorous study
using Monte-Carlo simulations, to understand this in detail.
One should also note that the data is consistent with the non-
accelerating models at 68 and 99 percent confidence levels for
the TONRY and RIESS data sets respectively, while they are
ruled out for the RIESS(w/o HST) data set.

Before ending this section, let us explain a subtle point in
determiningΩm andΩΛ from geometrical observations. As has
been discussed in Paper I, the only non-trivial metric function
in a Friedmann universe is the Hubble parameter H(z) (besides
the curvature of the spatial part of the metric), hence, it is not
possible to determine the energy densities of individual compo-
nents of energy densities in the universe from any geometrical
observation. However, the analysis in this section might give
the wrong impression that we have actually been able to deter-
mine both Ωm and ΩΛ just from geometrical observations. The
point to note that we have made a crucial additional assump-
tion that the universe is dominated by non-relativistic matter
and a cosmological constant, with known equations of state.
Once this assumption about the equations of state is made, it
allows us to determine the energy densities of the individual
components. On the other hand, if, for example, we generalize

the composition of the universe from a simple cosmological
constant to a more general dark energy with unknown equation
of state, it will turn out that the constraints will become much
weaker. We shall take up this issue in the next section.

3. Constraints on evolving dark energy

As we have discussed in Paper I, the supernova data can be used
for constraining the equation of state of the dark energy. In this
section, we shall examine the possibility of constraining wX(z)
by comparing theoretical models with supernova observations.

As done in Paper I, we parametrize the function wX(z) in
terms of two parameters w0 and w1:

wX(z) = w0 − w1(a − 1) = w0 + w1
z

1 + z
, (16)

and constrain these parameters from observations. We shall
confine our analyses to flat models in this section (keeping in
mind that the supernova data favours a universe with Ωtot > 1
when w0 = −1, w1 = 0).

If we assume wX does not evolve with time (w1 = 0), then a
simple best-fit analysis for RIESS data set shows that for a flat
model withΩm = 0.31 andM2 = 43.34 (the best-fit parameters
for flat models, obtained in the previous section), the best-fit
value of w0 is −1.03 ± 0.07 (which is nothing but the conven-
tional cosmological constant). The data, as before in Paper I,
clearly rules out models with w0 > −1/3 at a high confidence
level, thereby supporting the existence of a dark energy com-
ponent with negative pressure.

One can extend the analysis to find the constraints in the
w0−w1 plane. As before, we limit our analysis to a flat universe.
Ideally, one should fit all the four parametersΩm,M1,2, w0, w1,
and then marginalize over Ωm and M1,2 to obtain the con-
straints on wX . However, if we put a uniform prior on Ωm in
the whole range, then it turns out that it is impossible to get any
sensible constraints on w0 and w1. Furthermore, we would like
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Fig. 6. Confidence region ellipses in the w 0 − w1 plane for flat models with a fixed value of Ωm, as indicated in the frames. The confidence
regions are obtained after marginalizing overM1,2. The ellipses corresponding to the 68, 90 and 99 per cent confidence regions are shown. The
square point denotes the equation of state for a universe with a non-evolving dark energy component (the cosmological constant). The unbroken
slanted line corresponds to the contour of constant luminosity distance, Q(z) = constant. The top, middle and bottom rows show data points
for the data sets RIESS, RIESS(w/o HST) and TONRY respectively. The best-fit values of the fitted parameters w0 and w1 are indicated in the
panels, alongwith the corresponding errors.

to present the results in such a manner so that one can see how
the uncertainty in Ωm affects the constraints on wX . Keeping
this in mind, we fix the value of Ωm to 0.2, 0.3 and 0.4 (which
are typical range of values determined by other observations,
like the LSS surveys, and are independent of the nature of the
dark energy; Pope et al. 2004; Tegmark et al. 2004b; Tegmark
et al. 2004a), and marginalize only overM1,2.

The confidence contours for the three data sets are shown
in Fig. 6, which can be compared with Fig. 8 of Paper I.

The square point denotes the equation of state for a uni-
verse with a non-evolving dark energy component (the cos-
mological constant). The main points revealed by this figure
are: (i) the confidence contours are quite sensitive to the value
of Ωm used, thus confirming the fact (which was mentioned in
Paper I) that it is difficult to constrain wX with uncertainties
in Ωm. For example, in the TONRY data set, we see that non-
accelerating models with w0 < −1/3 are ruled out with a high
degree of confidence for low values of Ωm, while it is possi-
ble to accommodate them for Ωm >∼ 0.4. We have elaborated

this point in Paper I by studying the sensitivity of Q(z) to w0

and w1 with varying Ωm. (ii) The shape of the confidence con-
tours clearly indicates that the data is not as sensitive to w1 as
compared to w0. We stressed in Paper I that this has nothing to
do with the supernova data as such. Essentially, the supernova
observations measure Q(z) and it turns out that Q(z) is compar-
atively insensitive to w1. (iii) The best-fit values for all the three
data sets strongly favour models with w0 < −1, which indicate
the possibility of exotic forms of energy densities – possibly
scalar fields with negative kinetic energies (such models are ex-
plored, for example, in Caldwell 2002; Hannestad & Mörtsell
2002; Carroll et al. 2003; Caldwell et al. 2003; Melchiorri et al.
2003; Singh et al. 2003; Johri 2004; Stefancic 2004; Sami &
Toporensky 2004; Li & Hao 2004; Hao & Li 2004; Szydlowski
et al. 2004; Piao & Zhang 2004). However, one should note that
all the three data sets are still quite consistent with the standard
cosmological constant (w0 = −1, w1 = 0) at 99 per cent con-
fidence level for relatively higher values of Ωm. One still re-
quires data sets of better qualities to settle this issue. (iv) The
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Fig. 7. Confidence region ellipses in the Ωm − ΩΛ plane for models with non-relativistic matter and a cosmological constant for different
selection criteria based on extinction for the TONRY data set. The ellipses corresponding to the 68, 90 and 99 per cent confidence regions are
shown. The confidence regions are obtained after marginalizing overM1. The dashed line corresponds to the flat model (Ωm + ΩΛ = 1). The
left panel shows results when only those points with AV < 0.5 are included, the middle panel considers only points which have AV < 0.3, while
the right panel includes all the points irrespective of the value of AV. The values of the best-fit parameters, with 1σ errors are indicated in the
respective panels.

inclusion of the new HST data points (RIESS data set) have re-
sulted in drastic decrease in the best-fit value of w1 (from 5.92
to 3.31 for Ωm = 0.3), implying less rapid variation of wX(z).

4. Discussion

We have reanalyzed the supernova data with the currently avail-
able data points and constrained various parameters related to
general cosmological models and dark energy. We would like
to mention that our analysis ignores the effects of correlation
and other systematics present in the data. The main aim of
the work has been to focus on some important theoretical is-
sues which are not adequately stressed in the literature. We
have used three compiled and available data sets, which are
called TONRY (194 points), RIESS(w/o HST) (142 points) and
RIESS (156 points). The RIESS(w/o HST) is obtained from
the TONRY data set by discarding points with large uncer-
tainties and by reducing calibration errors, while the RIESS
data set is obtained by adding the recent points from HST to
the RIESS(w/o HST) set. The analysis is an extension to what
was performed in Paper I with a small subset of data points. In
particular, we have critically compared the estimated values of
cosmological parameters from the three data sets. While the er-
rors on the parameter estimation have come down significantly
with all the data sets, we find that there some crucial differ-
ences between the data sets. We summarize the key results once
more:
• It has been well known that the supernova data rule out

the flat and open matter-dominated models with a high degree
of confidence (Riess et al. 1998; Perlmutter et al. 1999; Riess
2000). However, for the TONRY and RIESS(w/o HST) data
sets, we find that the data favours a model with Ωtot > 1 (with
probability >∼ 0.97) and is in mild disagreement with the “con-
cordance” flat models with cosmological constant. This dis-
agreement seem to be less (the probability of obtaining mod-
els with Ωtot > 1 being ≈ 0.9) for the RIESS data set, which
includes the new HST points in the redshift range 1 < z < 1.6,

• The supernova data on the whole rules out non-
accelerating models with very high confidence level. However,
it is interesting to note that if we divide the TONRY data
set into high and low redshift subsets, neither of the subsets
are able to rule out the non-accelerating models. In particu-
lar, the low redshift data points are consistent with the non-
accelerating models because of large errors on the data. This
keeps open the possibility that the evolutionary effects in the
absolute luminosities of supernovae might make the entire data
set consistent with SCDM model. The situation is quite dif-
ferent for the RIESS(w/o HST) and RIESS data sets, where
points with large errors are discarded. The low redshift data
alone seem to rule out the SCDM model with high degree of
confidence. This means that unless the absolute luminosities
of supernovae evolve rapidly with redshift, it might be difficult
for the data set to be consistent with the SCDM model. In other
words, the RIESS(w/o HST) and RIESS data sets establish the
presence of the accelerating phase of the universe regardless of
the evolutionary effects.

• The key issue regarding dark energy is to determine the
evolution of its equation of state, wX . We find that although one
can constrain the current value of wX quite well, it is compara-
tively difficult to determine the evolution of wX . The situation
is further worsened when we take the uncertainties in Ωm into
account.

• The supernova data mildly favours a dark energy equa-
tion of state with its present best-fit value less than −1 which
will require more exotic forms of matter (possibly with nega-
tive kinetic energy). However, one should keep in mind that the
data is still consistent with the standard cosmological constant
at 99 per cent confidence level.

• The analysis of different subsamples of the supernova
data set is important in determining the effect of evolution.
In this work, we have taken the simple approach of dividing
the data roughly around the epoch where the universe might
have transited from a decelerating to an accelerating phase,
and checked whether the data can be made consistent with the
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non-accelerating models. In future, it would be interesting to
divide the data based on the nature of supernova searches. For
example, one can divide the data into three redshift splits: z <
0.1, 0.2 < z < 0.8 and z > 0.8, which roughly correspond to
supernovae discovered in shallow searches, ground-based deep
searches, and space-based deep searches. It would be interest-
ing to check the cosmological constraints with such a divide.

Acknowledgements. We thank Alex Kim for extensive comments
which significantly improved the paper.

Appendix: Effect of including supernovae with high
extinction

Since there is considerable uncertainty in determining the host
extinction and reddening, we have considered only those super-
nova which have extinction AV < 0.5 for the TONRY data set.
It would be interesting to see how this selection criterion af-
fects our determination of cosmological parameters. In partic-
ular, one should keep in mind that the high-redshift supernovae
observed from the ground could have large uncertainty in their
color and hence statistically will often have measured AV > 0.5
even if they have no extinction.

To check how this affects the cosmological parameters, we
concentrate on the cosmological models with non-relativistic
matter and a cosmological constant, and find the constraints in
the Ωm − ΩΛ plane. We consider three cases, namely, (i) the
usual one where we exclude all the data points with AV > 0.5,
(ii) the one with a stricter selection criterion where we exclude
points with AV > 0.3 and finally (iii) we include all the points
irrespective of the extinction. The results for the three cases
are plotted in Fig. 7. It is clear from the figure that the exclu-
sion of points based on their extinction have little effect on the
determination of the cosmological parameters, at least for the
TONRY data set. The cosmological parameters agree within
1σ errors for the three different selection criteria.
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