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In this paper, the model of a multiverse made up of universes that are created in entangled pairs that
conserve the total momentum conjugated to the scale factor is presented. For the background spacetime,
assumed is a Friedmann-Robertson-Walker metric with a scalar field with mass m minimally coupled to
gravity. For the fields that propagate in the entangled spacetimes, the perturbations of the spacetime and the
scalar field, whose quantum states become entangled too, are considered. They turn out to be in a
quasithermal state, and the corresponding thermodynamical magnitudes are computed. Three observables
are expected to be caused by the creation of the universes in entangled pairs: a modification of the
Friedmann equation because of the entanglement of the spacetimes, a modification of the effective value of
the potential of the scalar field by the backreaction of the perturbation modes, and a modification of the
spectrum of fluctuations because the thermal distribution is induced by the entanglement of the partner
universes. The later would be a distinctive feature of the creation of universes in entangled pairs.
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I. INTRODUCTION

One of the most beautiful features of quantum cosmol-
ogy is the appearance of the classical spacetime and the
quantum mechanics of matter fields from the quantum state
of the Universe. From the point of view of quantum
cosmology, these are emergent features of the semiclassical
regime of the wave function of the Universe [1]. This is not
very surprising because the wave function of the Universe
is obtained by quantizing the Einstein-Hilbert action and
the action of the matter fields; so, in a top-down approach,
one must recover in the appropriate limit the (semi-)
classical behavior of the spacetime and the matter fields.
The wave function of the spacetime and the matter fields,

all together,1Ψ, can be obtained by solving the Hamiltonian
constraint

ĤΨ ¼ 0; ð1Þ
where Ĥ is the operator form of the Hamiltonian associated
to the total action. The Hamiltonian constraint (1) turns
out to be a very complicated equation. However, for most
of the evolution of the Universe, this is described by a
homogeneous and isotropic background with small energy
fields propagating therein. In that case, the Hamiltonian
constraint (1) can be rewritten as

ðĤbg þ ĤmÞΨ ¼ 0; ð2Þ

where Hbg is the Hamiltonian of the background spacetime
and Hm contains the matter degrees of freedom. The wave
function, Ψ ¼ Ψðqbg; qmÞ, where qbg are the degrees of
freedom of the background and qm are the matter degrees
of freedom, can then be expressed in the semiclassical regime
as a linear combination of WKB solutions, i.e., [1],

Ψðqbg; qmÞ ¼
X

CðqbgÞe� i
ℏS0ðqbgÞχðqbg; qmÞ; ð3Þ

where CðqbgÞ is a slow-varying function of the background
variables, S0ðqbgÞ is the action of the background spacetime,
and χðqbg; qmÞ is the wave function of the inhomogeneous
degrees of freedom that propagate in the homogeneous and
isotropic background. Inserting the semiclassical wave
function (3) into the Hamiltonian constraint (2) and solving
it in order by order of ℏ in Hbg, the following is obtained:
at zero order, the classical equations of the background
spacetime, which provide us with the time variable for the
fields that propagate therein, and at first order in ℏ recover
the Schrödinger equation of the matter fields with the time
variable of the background spacetime provided by the
zero-order equations. Spinors and vector fields can also be
considered in the semiclassical state (3). Therefore, all the
physics we know can, in principle, be derived from a
semiclassical state like (3).
Each single addend in (3) can quantum mechanically

represent the state of a spacetime background with matter
fields propagating therein. The semiclassical state (3) should

1In the context of a single universe Ψ is called the wave
function of the universe [2]. However, that name can be
misleading in the context of the multiverse, so we here retain
the name wave function of the spacetime and matter fields for the
wave function that describes the quantum state of the whole
spacetime manifold and the matter fields that propagate therein.
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be seen then as the quantum state of a many universe system.
However, once the decoherence process has taken place
between the branches in (3) [3,4], the customary approach
consists of considering one of these branches as the repre-
sentative of our Universe and disregard the rest of them as
beingphysically redundant or just account them for statistical
measures, even though one can still consider other possibil-
ities. For instance, one can look for nonlocal interactions or
quantum correlations between the branches in (3). These
would ultimately be rooted in a common origin or derived
from residual interacting terms of the underlying theory,
whether this is one of the string theories or the quantum
theory of gravity. In any of these cases, one cannot disregard
the rest of the branches of the general state (3).
In particular, in this paper, we are going to study the

effects that the creation of universes in entangled pairs may
have in the properties of each single universe of the
entangled pair. Let us notice that the semiclassical state
(3) can be rearranged as

Ψ ¼
X

Ce
i
ℏS0χ þ C�e− i

ℏS0χ�: ð4Þ

Each term in the sum (4) can be seen as the wave function
of a pair of entangled branches or universes. We show that
each branch of the entangled pair has an opposite momen-
tum conjugated to the background variables, and thus, the
creation of universes in entangled pairs conserves the total
momentum in a parallel way as the creation of particles in
entangled pairs conserves the total momentum in a quan-
tum field theory [5]. The creation of universes in entangled
pairs would have important consequences in the properties
of thematter fields that propagate in their spacetimes because
the quantum state of the fields of the two universes become
entangled too with a rate of entanglement that depends on
the entanglement properties of the parent universes. Then,
the effects of the creation of universes in entangled pairs are
encoded in the properties of the matter fields that propagate
in each single universe, and thus, they might be observed in
the properties of our Universe [5].
In this paper, we provide the detailed model of a

multiverse made up of universes which are created in
entangled pairs. This complements the model presented in
Ref. [5], where it is considered a conformally coupled
massless scalar field propagating in a homogeneous and
isotropic background spacetime. The later provides ana-
lytical solutions for the quantum state of the universes and a
clear picture of the entanglement processes that may occur
in the multiverse. However, we here consider a minimally
coupled scalar field with mass m, which can mimic more
accurately the early stage of our Universe. The paper is
outlined as follows. In Sec. II, we obtain the dynamics of
the background spacetime and the Schrödinger equation
of the matter fields from the semiclassical state of the
spacetime and the matter fields. In Sec. III, we show that
the most natural way in which the universes can be created

is in entangled pairs that conserve the total momentum.
In Sec. IV, we impose the boundary condition that the
perturbation modes are in the composite vacuum state of
the invariant representation that represents a stable vacuum
state along the entire evolution of the field. However, in
terms of the instantaneously diagonal representation, the
invariant vacuum state is full of particle-antiparticle pairs,
with the former created in the observer’s universe and the
antiparticle in the partner one. In Sec. V, we compute the
quantum state of the particles in each single universe of
the entangled pair and the thermodynamical magnitudes
of the field. In Sec. VI, we present three observables that
are expected to be caused by the creation of universes in
entangled pairs. Finally, in Sec. VII, we summarize and
draw some conclusions.

II. SPACETIME BACKGROUND AND THE
QUANTUM MECHANICS OF

MATTER FIELDS

For the background of the model of our Universe, let us
consider a homogeneous and isotropic spacetime with the
Friedmann-Robertson-Walker (FRW) metric

ds2 ¼ −dt2 þ a2ðtÞdΩ2
3; ð5Þ

where dΩ2
3 is the line element on the unit three sphere and a

homogeneous and isotropic scalar field, ϕðtÞ, minimally
coupled to gravity, with mass m given by

m ¼ V 00ðϕÞ; ð6Þ

where VðϕÞ is the potential of the scalar field. We leave
unfixed the functional form of the potential in order to
potentially consider different cases including convex
(V 00 > 0) as well as concave (V 00 < 0) potentials.
For the fields that propagate in the homogeneous and

isotropic background, we consider the small perturbations
of the spacetime and the scalar field, i.e., the gravitons and
the field particles. These are described by two fields [6,7]

hijðt;xÞ − a2Ωij ¼ a2
X
n

2dnðtÞGn
ijðxÞ þ…; ð7Þ

ϕðt;xÞ − 1ffiffiffiffiffiffi
2π

p ϕðtÞ ¼
X
n

fnðtÞQnðxÞ; ð8Þ

where QnðxÞ are the scalar harmonics on the three sphere
and Gn

ijðxÞ the transverse traceless tensor harmonics [6],
with n≡ ðn; l; mÞ. We only focus on the scalar modes of
the perturbed field, fn, and the tensor modes of the
perturbed spacetime, dn, as representative examples of
the matter particles and the gravitons, respectively.
The background degrees of freedom are therefore the

scale factor, a, and the homogeneous and isotropic part of
the scalar field, ϕ, and the matter degrees of freedom are

SALVADOR J. ROBLES-PÉREZ PHYS. REV. D 97, 066018 (2018)

066018-2



the perturbation modes fn and dn, denoted generically by
xn. The semiclassical wave function of the spacetime and
the matter fields, Ψða;ϕ; xnÞ, is then given by a composite
state of the wave function that represents the quantum state
of the homogenous and isotropic background, Ψ0ða;ϕÞ,
and a wave function that contains the degrees of freedom of
the perturbation,

Ψða;ϕ; xnÞ ¼ Ψ0ða;ϕÞχða;ϕ; xnÞ: ð9Þ

The wave function Ψ0 is the solution of the Wheeler-
DeWitt equation of the homogeneous and isotropic
background,

Ĥ0Ψ0 ¼ 0; ð10Þ

where

Ĥ0 ¼
1

2a

� ∂2

∂a2 þ
1

a
∂
∂a −

1

a2
∂2

∂ϕ2
þ a4H2ðϕÞ − a2

�
; ð11Þ

with H2ðϕÞ≡ 2VðϕÞ. In the semiclassical regime, we
can consider the WKB solutions of the Wheeler-DeWitt
equation (10),

Ψ�
0 ða;ϕÞ ¼ Cða;ϕÞe� i

ℏSða;ϕÞ: ð12Þ

Inserting the wave function (12) into the Hamiltonian
constraint (11), the classical Hamilton-Jacobi equation [7],
at zero order in ℏ, is satisfied,

−
�∂S
∂a
�

2

þ 1

a2

�∂S
∂ϕ
�

2

þ a4H2ðϕÞ − a2 ¼ 0: ð13Þ

Then, a WKB time parameter t can be defined [7],

∂
∂t ¼ �∇S ·∇≡�

�
−
1

a
∂S
∂a

∂
∂aþ 1

a3
∂S
∂ϕ

∂
∂ϕ
�
; ð14Þ

where∇ is the gradient of theminisuperspace [8]. In terms of
the WKB time (14),

_a2 ¼ 1

a2

�∂S
∂a
�

2

; _ϕ2 ¼ 1

a6

�∂S
∂ϕ
�

2

; ð15Þ

and the Hamilton-Jacobi equation (13) turns out to be the
Friedmann equation of the background spacetime

_a2 þ 1 − a2ð _ϕ2 þ 2VðϕÞÞ ¼ 0: ð16Þ

On the other hand, inserting the wave function (9) into
the total Hamiltonian, H ¼ H0 þHm, where Hm is the
Hamiltonian of theperturbationmodes, obtains the following
at first order in ℏ of H0:

∓ iℏ

�
−
1

a
∂S
∂a

∂
∂aþ 1

a3
∂S
∂ϕ

∂
∂ϕ
�
χ ¼ Hmχ; ð17Þ

which is the Schrödinger equation of the matter fields that
propagate in the background spacetime (5) provided that the
time variable of the Schrödinger equation is the WKB time
defined in (14) with the positive sign for the semiclassical
wave function Ψ− in (12) and the negative sign for Ψþ.
The wave function (9) can then be written as

Ψ ¼ Ceþ i
ℏSχþ þ C�e− i

ℏSχ−; ð18Þ

with χ− ¼ χ�þ, satisfying the Schrödinger equation (17), i.e.,

iℏ
∂
∂t� χ� ¼ Hmχ�; ð19Þ

where χ�ðt; xnÞ≡ χ�ða;ϕ; xnÞ, evaluated at thebackground
solutions, aðtÞ and ϕðtÞ of the Friedmann equation (16).
Let us notice that the Friedmann equation is invariant under
the time reversal symmetry, t ↔ −t.
If we restrict to small linear perturbations the different

modes do not interact [4,9], and Hm turns out to be

Hm ¼
X
n

Hn; ð20Þ

with

Hn ¼ 1

2M
p2
xn þ

Mω2
n

2
x2n; ð21Þ

where MðtÞ ¼ a3ðtÞ and [7]

ω2
n ¼

n2 − 1

a2
; ð22Þ

for the tensorial modes of the spacetime (xn ≡ dn), and

ω2
n ¼

n2 − 1

a2
�m2; ð23Þ

for the perturbation modes of the scalar field (xn ≡ fn).
In (23), the þ sign corresponds to the oscillatory phase and
the − sign to the inflationary stage of the scalar field ϕ [7].
The perturbation modes satisfy then the wave equation
of the harmonic oscillator

ẍn þ
_M
M

_xn þ ω2
nxn ¼ 0: ð24Þ

The wave function of the perturbation modes can then be
written as [4,7,10]

χ ¼
Y
n

χnðt; xnÞ; ð25Þ
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where the function χnðt; xnÞ is the wave function of a
harmonic oscillator with time-dependent mass and fre-
quency, whose general solution can be expanded in the
basis of number eigenstates of the invariant representation,
ψN;n, as

χn ¼
X
N

CNψN;n; ð26Þ

where CN are constants coefficients, and the wave function
of the invariant number state, ψN;n, is given by [11,12]

ψN;nða;ϕ; xnÞ≡ ha;ϕ; xnjNni

¼ 1

σ
1
2

exp

�
iM
2

_σ

σ
x2n

�
ψ̄N

�
xn
σ
; τ

�
; ð27Þ

where ψ̄Nðq; τÞ, with q≡ xn
σ , is the customary wave

function of the harmonic oscillator, i.e.,

ψ̄Nðq; τÞ ¼
�

1

2NN!π
1
2

�1
2

e−iðNþ1
2
Þτe−

q2

2 HNðqÞ; ð28Þ

with HN being the Hermite polynomial of degree N, and
τ ¼ τðtÞ is given by

τðtÞ ¼
Z

t 1

Mðt0Þσ2ðt0Þ dt
0; ð29Þ

and σðtÞ is an auxiliary function that satisfies the nonlinear
equation [11,13]

σ̈ þ
_M
M

_σ þ ω2
nσ ¼ 1

M2σ3
: ð30Þ

It is worth noticing that a solution of (30) can generally be
written as

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

q
; ð31Þ

where σ1 and σ2 are two independent solutions of (24)
satisfying some specific boundary condition. For the
boundary condition, one has to realize that in terms of
the variable, zn ≡ axn, in conformal time η ¼ R dt

a , the
equation of the harmonic oscillator (24) turns out to be

z00n þ n2zn ¼ 0; ð32Þ

in the limit of large modes. In that limit, and in terms of the
variable zn, the wave function of the modes should be then
the customary wave function of the harmonic oscillator
with unit mass and constant frequency n. This is accom-
plished if we impose that

σ →
1ffiffiffiffiffiffiffiffiffiffi
Mωn

p ≈
1

a
ffiffiffi
n

p ; _σ → 0; ð33Þ

in the limit of largemodes for all time. Thus, the computation
of the wave function of the perturbation modes essentially
reduces to the computation of the solutions of (30) that satisfy
the boundary condition (33). Their quantum state, however,
will depend on the boundary condition that we impose on
the state of the field, and this, in turn, will depend on the
boundary condition imposed on the state of the universes.
In particular, it is shown that in the context of the creation
of universes in entangled pairs it depends on the rate of
entanglement between the universes.

III. CREATION OF UNIVERSES IN
ENTANGLED PAIRS

During the early stage of the Universe, the potential of
the field can be considered approximately constant for the
tiny amount of time for which the universe is exponentially
expanding. In that case, the wave function of the Universe,
Ψ, can be easily expanded in partial waves

Ψða;ϕÞ ¼
Z

dKffiffiffiffiffiffi
2π

p eiKϕΨKðaÞχKða; xnÞ; ð34Þ

where the amplitude, ΨKðaÞ≡ ΨKða;ϕ0Þ, satisfies the
Wheeler–DeWitt-like equation

∂2ΨK

∂a2 þ 1

a
∂ΨK

∂a þ Ω2
KðaÞΨKðaÞ ¼ 0; ð35Þ

with

ΩK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2a4 − a2 þ K2

a2

s
; ð36Þ

where H2 ≡ Vðϕ0Þ, evaluated at some initial value ϕ0. The
wave function of the modes, χKða; xnÞ≡ χKða;ϕ0; xnÞ,
satisfies then the Schrödinger equation (19) with the time
variable t of the corresponding background spacetime.
However, the structure of the wave function Ψ in (4) and

(18) suggests that it can be seen as a field to be quantized
following a formalism that parallels that of a quantum field
theory, which is called the third quantization formalism
[14,15]. Following the parallelism, the constantsC andC� in
(4) and (18) are promoted to quantum operators that
eventually turn out to be the creation and annihilation
operators of universes, in a many-particle description of
the quantum field Ψ̂. Each component Ψ� in (4) and (18)
represents a universe with an opposite value of the
momentum conjugated to the configuration variables, i.e.,
the momentum conjugated to the scale factor and the
momentum conjugated to the scalar field, whose signs
are essentially determined by the signs of the exponents
of the WKB solutions involved in (4) and (18),
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p̂aΨ� ¼ −iℏ
∂Ψ�

∂a ≈� ∂S
∂a ;

p̂ϕΨ� ¼ −iℏ
∂Ψ�

∂ϕ ≈� ∂S
∂ϕ : ð37Þ

In that context, and holding on the parallelism with the
quantum field formalism, the most natural way in which the
universes should be created is in pairs with opposite values
of their momenta that would conserve the total momentum.2

In that case, the perturbation modes of the scalar field and
the gravitons of the spacetime of each universe propagate in
their corresponding background spacetimes separately but in
a quantum state that can be correlated with the quantum state
of the perturbations of the partner universe. Their quantum
states may become entangled too.
The creation of universes in entangled pairs can be easily

visualized as the Lorentzian continuation of a double
Euclidean instanton [17,18]. However, it can be considered
a more general feature in quantum cosmology. In the
particular case of (34), where the scalar field is assumed
to be constant, the action S of the WKB solutions can be
seen as a function of the scale factor alone. Then, one can
formally proceed as it is usually done in a quantum field
theory and express the wave function (34) in terms of two
linearly independent solutions of the Wheeler-DeWitt
equation (35). For these, let us take the WKB solutions,
given by

Ψ�
K ≈

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aΩKðaÞ

p e�i
R

ΩKðaÞda; ð38Þ

which are normalized according to Ψ�
K∂aΨK − ΨK∂aΨ�

K ¼
� 2i

a . Then, (34) can be written as

Ψða;ϕÞ ¼
Z

dKffiffiffiffiffiffi
2π

p ðeiKϕΨþ
KχKbK þ e−iKϕΨ−

Kχ
�
Kc

�
KÞ; ð39Þ

where bK and c�K are two constants that are promoted to
quantum operators, bK → b̂K and c�K → ĉ†K, in the third
quantization formalism [14,15]. The wave function (39)
describes then the quantum state of pairs of entangled
universes that are created with opposite momenta, given
by [5,17]

hp̂ai ≈�ΩK; ð40Þ

at leading order. The pair of newborn universes conserve
thus the total momentum conjugated to the scale factor. The
process parallels the creation of particles in entangled pairs
with opposite momenta that conserve the total momentum in
a quantum field theory described in an isotropic background

spacetime. Therefore, in the context of the multiverse, the
creation of universes in entangled pairs seems to be the most
natural way in which the universes can be created [5].
The momentum conjugated to the scale factor, however,

depends on the expansion rate of the universe. The two
WKB branches in (38) correspond then to an expanding
and a contracting branch of the spacetime in terms of the
time variable t. This can be seen by noticing that in the
semiclassical regime the expected value of the momentum
conjugated to the scale factor (40) is highly peaked around
the classical value, pc

a ≡ −a _a [see also (15)]. Thus,

−a _a ¼∓ ΩK; ð41Þ

which is nothing more than the Friedmann equation
associated to the Wheeler-DeWitt equation (35),

_a2

a2
¼ Ω2

K

a4
⇒ _a ¼ �ΩK

a
; ð42Þ

for the two branches Ψ�. Nevertheless, the WKB time
variable t is not the time experienced by the internal
observers in their particle physics experiments. Let us
notice that the value of the momentum conjugated to
the scale factor determines the value of the time variable
in each single universe. Thus, according to (41), the time
variable in one of the universes of the entangled pair is
defined by

∂
∂tI ¼

ΩK

a
∂
∂a ; ð43Þ

and the time variable in the partner universe by

∂
∂tII ¼ −

ΩK

a
∂
∂a : ð44Þ

The time variables of the entangled universes are related
by an antipodal-like symmetry [19], tI ¼ −tII, and the two
branches turn out to be expanding branches in terms of
the time variables tI and tII. These are the time variables
experienced by the internal observers in their particle
physics experiments [5,20], which are governed by the
Schrödinger-like equation

∓ i
ΩK

a
∂
∂a χ ¼ Hmχ: ð45Þ

This is the usual Schrödinger equation with the time
variable of each single universe of the entangled pair
provided that the time variables in the two universes are
taken to be tI and tII defined by (43) and (44), respectively.
Therefore, tI and tII are the time variables measured by
their actual clocks, and the two entangled universes become
expanding universes from the point of view of the internal
observers.

2For more details, the reader can see Refs. [5,16–18] and
references therein.
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The wave function (39) can now be written as

Ψ ¼
Z

dKffiffiffiffiffiffi
2π

p ðeiKϕΨþ
Kχ

I
Kb̂K þ e−iKϕΨ−

Kχ
II
K ĉ

†
KÞ; ð46Þ

where χIK and χIIK , with χ
II
K ¼ ðχIKÞ�, are the wave functions

of the perturbation modes in each single universe of the
entangled pair. They satisfy the Schrödinger equation (19)
with t� being replaced by tI or by tII and χ� by χIK and χIIK ,
respectively. In the case that the matter content of the
universe is represented by a complex scalar field, then
matter would be always created in the observer’s universe
and antimatter in the partner universe, restoring thus
the matter-antimatter symmetry in the pair of entangled
universes [20].

IV. QUANTUM STATE OF THE
PERTURBATION MODES

In the context of the creation of universes in entangled
pairs, the matter particles and the gravitons of each universe
propagate in the background spacetime of their correspond-
ing universe and follow the Schrödinger equation (19) with
the time variable of the corresponding background space-
time. The wave function χI;IIK defines the quantization of
the perturbation modes in the Schrödinger picture, where
x̂n and p̂xn are time-independent operators that act on the
time-dependent wave function jχðtÞi. In the configuration
space of the amplitude of the perturbation modes, the
Hilbert space is spanned by the basis, fQnjxnig, where the
vectors jxni are the eigenvectors of the amplitude operators
x̂n. The general quantum state of the perturbations is then
given by

jχKðtÞi ¼
Z Y

n

dxnχðxn; tÞ
Y
n

jxni: ð47Þ

In the case of small perturbations, for which the different
modes do not interact among them and χðxn; tÞ can be
written as in (25), it can be written that

jχKðtÞi ¼
Y
n

Z
dxnχnðxn; tÞjxni; ð48Þ

where χnðxn; tÞ ¼ hxnjχðtÞi.
However, the development of the corresponding quan-

tum field theory seems to be more useful. This can be done,
as usual, by considering the wave equation of the fields that
represent the inhomogeneous degrees of freedom, given by
(7) and (8), the general solution of the harmonic oscillator
(24) with ωn being given by (22) in the case of the
perturbation modes of the scalar field, and by (23) in the
case of the gravitons of the gravitational field. It can then be
written that

xnðtÞ ¼ v�nðtÞa−n þ vnðtÞbþ−n; ð49Þ

where vnðtÞ and v�nðtÞ are two linearly independent
solutions of the harmonic oscillator (24), and a−n and bþn
are two constants satisfying, bþn ¼ ða−nÞ�. Then, the devel-
opment of the quantum field theory of the perturbation
modes in the two entangled universes follows by promoting
the constants, a−n and bþn , to quantum operators, a−n → ân
and bþn → b̂†n, satisfying the customary commutation rela-
tions. In the picture of a pair of universes created in an
entangled state, the symmetry of the composite state (46)
suggests that matter is created in the observer’s universe
and antimatter in the partner universe [20]. Let us notice
that for the observer of the partner universe it is the other
way around. Therefore, â†n and ân are the creation and
annihilation operators of matter in one universe, and b̂†n and
b̂n are the creation and annihilation of matter in the other
universe, satisfying both the corresponding commutation
relations. In the case of a real field, the particles are their
own antiparticles. However, the creation and annihilation
operators of modes of the two universes commute among
them because to the Euclidean gap between the universes
[18,20] we retain the different names ân and b̂n. Then, the
inhomogeneous part of the mode decomposition given in
(7) and (8) can be written quantum mechanically as

xðx; tÞ ¼
X
n

v�nðtÞFnðxÞân þ vnðtÞF�
nb̂

†
n; ð50Þ

where FnðxÞ are the scalar harmonics on the three sphere,
QnðxÞ, in the case of the perturbation modes of the scalar
field, and Fn are the transverse traceless tensor harmonics,
Gn

ijðxÞ, in the case of the gravitons.
We can define the vacuum state of the particles in the two

universes as j0iI and j0iII as

j0iI;II ¼
Y
n

j0niI;II; ð51Þ

where the states j0ni are the states annihilated by ân in
universe I and by b̂n in universe II. On the other hand, with
the operators â†n and b̂†n, we can build the customary
orthonormal bases for the corresponding Hilbert spaces,

Y
n

jNniI ¼
Y
n

1ffiffiffiffiffiffiffiffi
Nn!

p ðâ†nÞNn j0niI; ð52Þ

and a similar one with b̂†n instead of â†n for universe II.
An arbitrary quantum state of the perturbations can then be
written as a linear combination of the excited states,

jχiI;II ¼
X
n

X
Nn

CNn;Nn0…

Y
n

jNniI;II; ð53Þ

with constants coefficients, CNn;Nn0….
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The quantum state of the perturbation modes are now
determined by the boundary condition imposed on the
states of the perturbation modes. This, in turn, depends on
the boundary condition imposed on the state of the hosting
universes. In the case of a pair of entangled universes, we
impose that the perturbation modes are in the composite
vacuum state of the invariant representation [21]. The
invariant representation has the great advantage that once
the field is in a number state of the invariant representation
it remains in the same state along the entire evolution of
the field. In particular, once the field is in the vacuum state
of the invariant representation, it remains in the same
vacuum state along the entire evolution of the field. It
seems to be then an appropriate boundary condition for the
perturbation modes of the pair of entangled universes. The
invariant representation of the harmonic oscillator (24) can
be written as [13,15]

ân ¼
ffiffiffi
1

2

r �
1

σ
xn þ iðσpxn −M _σxnÞ

�
; ð54Þ

b̂†−n ¼
ffiffiffi
1

2

r �
1

σ
xn − iðσpxn −M _σxnÞ

�
: ð55Þ

The perturbation modes are then in the vacuum state of the
invariant representation given by

j0i ¼ j0a0bi ¼ j0aiIj0biII: ð56Þ

However, the particles of the scalar field and the gravitons
measured by the internal observers of the universe are not
described by the number states of the invariant representa-
tions [(54), (55)]. They are instead described by the number
states of the instantaneous diagonal representation of the
Hamiltonian of the harmonic oscillator (21), which defines
the instantaneous vacuum state at each moment of time.
In terms of the diagonal representation, the amplitude of
the perturbations and their conjugate momenta can be
written as

xn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mωn

p ðcn þ d†−nÞ; ð57Þ

pxn ¼ −i
ffiffiffiffiffiffiffiffiffiffi
Mωn

2

r
ðcn − d†−nÞ: ð58Þ

The invariant representation [(54), (55)] can be related
to the diagonal representation [(57), (58)] through the
Bogolyubov transformation,

an ¼ μðtÞcn − ν�ðtÞd†−n; ð59Þ

b−n ¼ μðtÞd−n − ν�ðtÞc†n; ð60Þ

where μ≡ μn and ν≡ νn are given by

μðtÞ ¼ 1

2

 
σ
ffiffiffiffiffiffiffiffiffiffi
Mωn

p
þ 1

σ
ffiffiffiffiffiffiffiffiffiffi
Mωn

p − i _σ

ffiffiffiffiffiffi
M
ωn

s !
; ð61Þ

νðtÞ ¼ 1

2

 
σ
ffiffiffiffiffiffiffiffiffiffi
Mωn

p
−

1

σ
ffiffiffiffiffiffiffiffiffiffi
Mωn

p − i _σ

ffiffiffiffiffiffi
M
ωn

s !
; ð62Þ

with jμj2 − jνj2 ¼ 1 for all time.
Let us now compute the quantum state of the perturba-

tion modes in one single universe of the entangled pair.
From (56), the composite state of the perturbation modes in
the two entangled universes can be written in the density
matrix formalism as

ρ ¼ j0a0bih0a0bj: ð63Þ

Using the Bogolyubov transformation [(59), (60)], the
vacuum state of the invariant representation, j0a0bi, can
be written as [22]

j0a0bi ¼
Y
n

1

jμj
�X∞

N¼0

�
ν

μ

�
N
jNc;nNd;−ni

�
; ð64Þ

where

jNc;ni ¼
ðc†nÞNffiffiffiffiffiffi

N!
p j0c;ni; jNd;−ni ¼

ðd†−nÞNffiffiffiffiffiffi
N!

p j0d;−ni ð65Þ

are the number states of the diagonal representation [(57),
(58)]. It means that the vacuum state of the invariant
representation is full of particles of the scalar field and
gravitons of the gravitational field. The number and
properties of the particles depend on the parameters μ
and ν, and thus, they depend on the rate of entanglement
between the universes. The effects of the entanglement
between the two universes can thus be indirectly observed
because they are encoded in the observable state of the
perturbation modes. These effects have no classical ana-
logue, so they should entail distinguishable features of the
interuniversal entanglement and of the whole multiverse
proposal too.

V. QUANTUM THERMODYNAMICS OF
THE PERTURBATION MODES

Let us consider the quantum state of the particles and
gravitons in just one single universe of the entangled pair.
The reduced density matrix that represents the quantum state
of the particles in one single universe alone can be obtained
by tracing out from the density matrix (63) the state of
the particles in the partner universe. It yields [15,23,24]

ρc ¼ Trdρ ¼
Y
n

1

Zn

X
N

e−
1
Tn
ðNþ1

2
ÞjNc;nihNc;nj; ð66Þ
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where Z−1
n ¼ 2 sinh 1

2Tn
, and

Tn ≡ TnðtÞ ¼
1

ln jμðtÞj2
jνðtÞj2

¼ 1

ln ð1þ jνðtÞj−2Þ : ð67Þ

The density matrix ρc represents a quasithermal state whose
thermal properties depend on the rate of entanglement
between the universes. In particular, the specific temperature
of entanglement (67) is a measure of the entanglement [23]
between the field particles and the gravitons of the two
entangled universes. The largest modes of the particles and
gravitons do not feel the effect of the entanglement because
for large modes ν → 0 and T → 0, so these modes are in the
vacuum states. However, for the shorter modes, the effects of
the interuniversal entanglement may be significant.
A caveat should be made before going on. For appear-

ance, the state (66) is not properly a thermal state in the
sense of classical thermodynamics, for at least two reasons.
First, it is not derived from thermalizing interactions
between microscopic subsystems. Rather, it is obtained
just from the process of tracing out the degrees of freedom
of the perturbation modes of the partner universe from the
composite vacuum state (63). It is therefore a measure of
the entanglement between the two universes. Second, the
quantum distribution (66) cannot represent a classical
thermal state unless the temperature, Tn, would be the
same for all modes.3 We are not dealing therefore with
classical thermodynamics but with quantum thermodynam-
ics [25–27], which is expected to be a generalization of the
former [28], although the relationship between both for-
malisms is not clear yet.4 One would expect that in some
semiclassical limit the temperature of entanglement asso-
ciated to each mode would converge to a constant value for
all modes, i.e., Tn → T, for which the properties of thermal
equilibrium and ergodicity of the classical formulation of
thermodynamics should be recovered. However, as we
already said, this process is not clear yet. In the present
work, we assume that Tn is a measure of entanglement
between the modes of the two universes without ascribing to
it any specific thermal property, at least in the classical sense.
Therefore, the modes are not really thermalized until the

temperature Tn becomes the same for all modes, even
though one can define, for each mode, the thermodynam-
ical magnitudes of entanglement associated to the quantum
state (66). They are given by [16,26,27]

EðaÞ ¼ Trð ρ̂cðaÞĤðaÞÞ; ð68Þ

QðaÞ ¼
Z

a
Tr

�
dρ̂cða0Þ
da0

Ĥða0Þ
�
da0; ð69Þ

WðaÞ ¼
Z

a
Tr

�
ρ̂cða0Þ

dĤða0Þ
da0

�
da0; ð70Þ

where TrðÔÞ stands for the trace of the operator Ô,H is the
Hamiltonian of the harmonic oscillator (21), and the sums
and integrals have to be performed within the Hubble
horizon [see Eq. (91)]. For the density matrix ρc in (66), it
yields [5,16]

EnðtÞ ¼
ωn

2
cotanh

1

2Tn
¼ ωn

�
Nn þ

1

2

�
; ð71Þ

QnðtÞ ¼
ωn

2
cotanh

1

2Tn
− ωnTn ln sinh

1

2Tn
; ð72Þ

WnðtÞ ¼ ωkTn ln sinh
1

2Tn
; ð73Þ

where Nn ≡ jνj2. The first principle of thermodynamics,
dEnðtÞ ¼ δQnðtÞ þ δWnðtÞ, is satisfied for all modes n
individually, and the energy densities that correspond to En,
Qn, and Wn, are given by

εn ¼
En

V
; qn ¼

Qn

V
; wn ¼

Wn

V
; ð74Þ

with V ¼ a3ðtÞ being the volume of the space. The entropy
of entanglement [16,33] can also be easily obtained from
the von Neumann formula

SðρcÞ ¼ −Trðρc ln ρcÞ; ð75Þ

with ρc given by (66). It yields [34]

SentðaÞ ¼ jμj2 ln jμj2 − jνj2 ln jνj2; ð76Þ

from which it can be checked that the second principle
of thermodynamics is also satisfied [16].
It is worth noticing that the energy of the vacuum state

of the invariant representation is the same as the energy
of the quantum state (66) of the diagonal representation.
The former is given by

EI
0 ¼ Ih0jHj0iI: ð77Þ

It yields [11]

EI
0 ¼

ωn

4

�
σ2Mωn þ

1

σ2Mωn
þM _σ2

ωn

�
: ð78Þ

On the other hand, the energy of the quantum state (66) in
the diagonal representation is given by (71) with,Nn ¼ jνj2,
which can be also written as

3Let us also notice that Tn in (67) is not exactly the temperature
but the specific temperature, which is the temperature divided by
the frequency ωn.

4The relationship between the thermodynamics of entangle-
ment and the classical formulation of thermodynamics is a subject
of intense research (see, for instance, Refs. [25,28–32]).
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ED
th ¼

ωn

2
ðjμj2 þ jνj2Þ: ð79Þ

Byusing the values of μ and ν given in (61) and (62), it can be
checked that (78) and (79) yield the samevalue.The energy is
therefore conserved, as it was expected, and the quantum
state ρc in (66) entails just a redistribution of the modes with
the same total energy.

VI. OBSERVABLE IMPRINTS

Three potentially observable effects are expected to be
caused by the creation of universes in entangled pairs. First,
the boundary condition imposed on the state of the universes
may modify the effective value of their Friedmann equation,
given initially by (42). Let us notice that theWheeler-DeWitt
equation (35) can be formally considered as the generalized
equation of a harmonic oscillator with time-dependent mass,
MðaÞ ¼ a, and frequency, ΩKðaÞ, given by (36), with the
scale factor formally playing the role of the time variable.
The quantization of that generalized harmonic oscillator is
the basis of the so-called third quantization formalism. In that
context, a similar argument to that applied to the perturbation
modes can be given for the states of the wave function ΨK .
We can then impose that the quantum state of the homo-
geneous and isotropic background should be the vacuum
state of the invariant representation associated to the gener-
alized harmonic oscillator (35). The vacuum state of the
invariant representation, which is a stable ground state along
the entire evolution in theminisuperspace, turns out to be full
of entangled pairs of number states of the diagonal repre-
sentation [5]. The expected value of the generalized
Hamiltonian H of the harmonic oscillator (35) is given,
similarly to (78), by

h0jHj0i ¼ ΩK

4

�
R2MΩK þ 1

R2MΩK
þ M
ΩK

�
dR
da

�
2
�

≡ Ω̃K

2
: ð80Þ

Then, the evolution of the entangled universes is effectively
determined by a modified Friedmann equation given now,
instead of by (42), by

da
dt

¼ � Ω̃K

a
: ð81Þ

In the adiabatic limit, for a large value of the scale factor,

R ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

MΩK
p : ð82Þ

Then,

Ω̃K ≈ΩK

�
1þ 1

8Ω2
K

�
d
da

logðMΩKÞ
�

2
�
: ð83Þ

With the valuesM ¼ a andΩK ≈HðϕÞa2, the following is
obtained:

Ω̃K ≈Ha2 þ 9

8Ha4
: ð84Þ

The modified Friedmann equation (81) yields

aðtÞ ¼ a0ðe6HΔt − 1Þ16: ð85Þ

At late times, the scale factor (85) evolves in an exponential
way. However, the entanglement between the universes
produce a preinflationary stage in the evolution of the
universe that might leave observable consequences in the
properties of the cosmic microwave background (CMB).
Let us notice that although inflation is supposed to wash out
most of the imprints of a preinflationary stage of the universe,
some preinflationary scenarios would entail a suppression of
the lowest modes of the power spectrum of the CMB that is
compatible with the astronomical data [35,36], provided that
inflation does not last for too long, i.e., in the so-called just-
enough inflation scenarios. In that case, the preinflationary
evolution of the universe caused by the entanglement with
a partner universe might leave observable consequences,
which is currently under investigation [37].
Another modification of the Friedmann equation that is

expected to leave observable imprints in the properties of
our universe is the backreaction of the perturbation modes,
given by the energy density associated to the energy (78)
[or (79)]. In the case of an exactly flat DeSitter expansion,
the value of σ that satisfies the boundary condition (33) is
given by (31) with σ1 and σ2 given by

σ1 ¼
ffiffiffiffiffiffiffi
π

2H

r
a−

3
2J q

�
n
Ha

�
; ð86Þ

σ2 ¼
ffiffiffiffiffiffiffi
π

2H

r
a−

3
2Yq

�
n
Ha

�
; ð87Þ

where J qðxÞ and YqðxÞ are the Bessel functions of first and
second kind and order q ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

H2

q
. For the case, m ≪ H

(q ≈ 3
2
), σ turns out to be

σ2 ≈
H2a2 þ n2

a2n3
; ð88Þ

and the energy (78) yields

En ¼
Hx
2

�
1þ 1

2

�
1þ m2

H2

�
x−2 þ 2

m2

H2
x−4
�
; ð89Þ

with

x≡ n
Ha

¼ nph
H

∼
H−1

Lph
; ð90Þ

COSMOLOGICAL PERTURBATIONS IN THE ENTANGLED … PHYS. REV. D 97, 066018 (2018)

066018-9



where Lph is the physical wave length and H−1 is the
distance to the Hubble horizon. The problem now is that the
energy of the backreaction (89) turns out to be divergent
when it is summed over all modes. A cutoff has to be
imposed. Following Refs. [38,39], the energy of the modes
can be integrated from the value n ¼ ab, where b is the
SUSY breaking scale of the subjacent landscape, to the
value n ¼ aH, disregarding thus the superhorizon modes.
Then, the following is obtained:

ε ¼ 1

V

Z
aH

ab
dnn2En

¼ H4

8

�
1 −

m2

H2
log

b2

H2
þ
�
1þ m2

H2

��
1 −

b2

H2

��
; ð91Þ

where terms of higher order have been disregarded. The
energy shift (91) can be seen as a correction to the effective
value of the potential of the scalar field, an effect that has
also been studied in Refs. [38,39] (see, also, Refs. [40–42]),
where it is concluded that a similar correction to that given
in (91) would entail a suppression of the power spectrum at
large angular scales, running of the spectral index, and a
suppression of the σ8 parameter [38,39].
Finally, the third effect that is expected to leave observ-

able imprints in the properties of the CMB is the spectrum
of fluctuation of the quantum state (66) caused by the
entanglement between the universes. The fluctuations of
the perturbation modes can be obtained from

δϕn ¼ n
3
2

2π
Δϕn; ð92Þ

where

ðΔϕnÞ2 ¼ hjϕnj2i − jhϕnij2: ð93Þ

In the vacuum state of the invariant representation [11],
jhϕnij ¼ 0 and

hjϕnj2i ¼
σ2

2
: ð94Þ

In the case of a DeSitter spacetime, σ1 and σ2 in (86) and
(87) are the real and imaginary parts of the Bunch-Davies
vacuum, so σ is essentially the modulus of the Bunch-
Davies modes. Thus, the fluctuations of the invariant
vacuum, given by (92) with (94), turn out to yield the
customary expression [22]

δϕn ¼ Hffiffiffiffiffiffi
8π

p x
3
2ðJ 2

qðxÞ þ Y2
qðxÞÞ12: ð95Þ

However, the creation of universes in entangled pairs
induces the perturbation modes to be in the quantum state
(66) of the diagonal representation, and then,

hjϕnj2i ¼
1

Mωn

�
jνj2 þ 1

2

�
ð96Þ

¼ 1

4Mωn

�
σ2Mωn þ

1

σ2Mωn
þM _σ2

ωn

�
: ð97Þ

With the value of σ given by (88), it turns out that

δϕth
n

δϕI
n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ x2

ð1þ x2Þð1þ m2

H2x2Þ

�s
: ð98Þ

The large modes (x ≫ 1) are in the vacuum state, and then,
δϕth

n ≈ δϕI
n. However, the departure could be relevant for

the horizon modes x ∼ 1. It is worth noticing that this is not
an effect derived from a preinflationary evolution of the
universe, so it is not expected to be washed out by inflation.
It is an effect derived from a different choice of the initial
state of the perturbation modes, which would be stem
from the existence of a partner universe whose quantum
mechanical state is entangled with ours. Although the
departure of the quantum state (66) from the vacuum state
is expected to be small because the entanglement between
the universes, and thus the temperature of entanglement
(67), is expected to be small too, the residual effect that
it would entail might still produce observable imprints.
Even though the possibility of finding this effect is
currently quite small, the analysis of the present work is
still important because it would represent a distinctive
effect with no classical analogue in the context of an
isolated universe, and therefore, it would be a distinguish-
able effect of the whole multiverse proposal.

VII. SUMMARY AND CONCLUSIONS

We have presented a detailed model of a multiverse
made up of pairs of universes whose quantum mechanical
states are entangled. The existence of the multiverse,
although bizarre at first sight, is something that has been
implicitly considered from the very beginning of quantum
cosmology. Each semiclassical branch of the general
solution of the Wheeler-DeWitt equation represents a
spacetime background with matter fields propagating
therein; i.e., it represents a different realization of the
universe. The customary approach has generally con-
sisted of considering one of these branches as the
representative of our universe and disregarding the rest
of them because it seems meaningless to physically
consider external elements to the universes. However,
we have shown that quantum correlations and other
nonlocal interactions may exist between the states of
the universes and that they may leave observable imprints
in the properties of a universe like ours. In particular, we
have shown that the creation of universes in entangled
pairs correlate the quantum states of the matter fields that
propagate in their respective spacetimes.
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We have shown as well that the most natural way in
which the universes can be created is in entangled pairs that
conserve the momentum conjugated to the scale factor, in a
parallel way as particles are created in entangled pairs that
conserve the total momentum in a quantum field theory.
The momentum conjugated to the scale factor, however,
depends on the expansion rate of the universes. Thus, the
opposite values of the momentum in the pair of universes is
related to the opposite expansion rates of the universes in
terms of a common time variable. Nevertheless, the time
experienced by the internal observers in their particle
physics experiments, i.e., the time measured by actual
clocks, are related by an antipodal like symmetry, tI ¼ −tII .
Then, from the point of view of the internal observers, the
universes are both expanding universes.
The quantum states of the particles of the matter fields

and the gravitons of the spacetime that propagate in the two
entangled universes become entangled too. The most
appropriate boundary condition seems to be that the fields
are in the composite vacuum state of the invariant repre-
sentation. This is a stable representation of the vacuum state
along the entire evolution of the fields. However, in terms
of the instantaneous diagonal representation of the corre-
sponding Hamiltonian, which would represent the state of
the particles measure by internal observers, the quantum
state of the field turns out to be given by a quasithermal
state whose thermodynamical magnitudes of entanglement
depend on the rate of entanglement between the universes.
Thus, the interuniversal properties of entanglement may be
encoded in the quantum state of the matter fields that
propagate in our universe.

We expect three observable effects caused by the creation
of universes in entangled pairs. The first onewould be caused
by the entanglement of the background spacetimes of
the universes. It would modify the effective value of the
Friedmann equation by introducing a preinflationary stage in
the evolution of the universe that might leave observable
imprints in the properties of the CMB provided that inflation
does not last for too long.A second effectwould be caused by
the backreaction of the inhomogeneous degrees of freedom.
It would entail a modification of the effective value of
the potential of the scalar field that would have a direct
consequence in the properties of the inflationary expansion
and, thus, in the observed properties of the early universe.
Finally, the spectrum of fluctuations of the perturbation
modes for the thermal state induced by the entanglement
of the partner universes is significantly different from the
one expected from an unentangled universe. This is then a
distinctive feature of the creation of the universes in
entangled pairs that has no analogue in the context of an
isolated universe. It is therefore a distinguishable feature of
the whole multiverse proposal.
We have shown therefore that the multiverse is a testable

proposal. The process that may happen in the multiverse
would eventually leave their imprints in the observable
properties of the single universes, and thus, they become
testable. The door is now open for the study of a wide
variety of new cosmic phenomena. Let us notice that these
effects are expected to be residual effects of the underlying
theory, whether this is one of the string theories of the
quantum theory of gravity. Thus, they may help us to test
these most fundamental theories.
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