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Eugenio Meǵıas,a,b Germano Nardinic and Mariano Quirósd
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1 Introduction

The Standard Model (SM) of ElectroWeak (EW) and strong interactions has been put on

solid grounds by the past and current experimental data collected at e.g. the Large Hadron

Collider (LHC) or the Large Electron Positron collider [1, 2]. Still the model is unable

to cope with some cosmological observables and suffers from theoretical drawbacks. For

instance, it fails to explain a number of observational and consistency issues such as the

baryon asymmetry of the universe, the strong CP problem, the origin of the flavor structure,

the origin of inflation and the strong sensitivity to high scale physics. In particular the
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latter problem, a.k.a. the hierarchy problem, has motivated the introduction of Beyond the

SM (BSM) physics which makes nowadays the subject of active experimental searches at

the LHC.

One of the best motivated BSM frameworks was introduced years ago by Randall and

Sundrum [3]. In this scenario the hierarchy between the Planck and EW scales is generated

by the Anti de Sitter (AdS) warp factor involved in the extra dimension. An appealing

feature of this framework is that the five-dimensional (5D) model is holographically dual

to a non-perturbative four-dimensional (4D) Conformal Field Theory (CFT) and the dy-

namics of the strongly-coupled states of the 4D theory can be investigated perturbatively

by means of the 5D theory.

Once the extra dimension is integrated out, the Randall-Sundrum theory contains

towers of heavy states, the Kaluza-Klein (KK) modes of all SM particles, propagating in

the bulk. It also contains a light state, the radion, dual to the dilaton, a Goldstone boson

of the conformal invariance of the dual 4D theory. In the absence of a potential stabilizing

the brane distance (see e.g. ref. [4]), the radion (and equivalently the dilaton) is massless

but, as soon as the extra dimension is stabilized, it acquires a mass. Still the radion

typically remains the lightest BSM state and it can play a relevant role in the collider

and early-universe phenomenology. In particular, it undergoes a phase transition during

which it acquires a Vacuum Expectation Value (VEV) and which, in the dual language,

corresponds to a (holographic) phase transition from the deconfined to the confined phase.

In other words, the dilaton condenses.

The holographic phase transition has been studied by a number of authors and it has

been concluded to be of first-order [5–13]. However, in models with small back-reaction on

the gravitational metric, in order to avoid the graceful exit problem, one has to consider

scenarios where the number of degrees of freedom in the CFT phase (i.e. the number of

“colors” N of the SU(N) symmetry) is small, thus jeopardizing the perturbativity of the 5D

gravitational theory. It is hence worth investigating models where the conformal symmetry

is strongly broken in the infrared (IR), but the corresponding large back-reaction can be

conveniently treated. In this way one expects to avoid the graceful exist problem even with

N large, with clear benefits for the perturbativity of the 5D gravitational theory.

In the present paper we provide a method to deal with the large back-reaction issue.

This method is a generalization of the superpotential procedure [14], and to show its

capabilities, we apply it to analyze a class of theories where conformality is strongly broken

at the IR brane. We dub these theories soft-wall models as they generate a naked singularity

in the 5D metric beyond the location of the IR brane. Although the singularity is outside

the physical interval, between the two branes, the distance of the singularity from the

IR brane is important because it controls the breaking of conformality. This kind of

models were introduced as minimal ultraviolet (UV) completions with no tension with

EW precision data [15–24], as an alternative to models with extended (custodial) gauge

symmetry [25]. Recently, the same models were also considered to accommodate the (gµ−
2) [26] and B-meson anomalies [27–33], in agreement with the quark mass and mixing angle

spectra, and the natural generation of lepton flavor universality violation.

The outline of the paper is as follows. In section 2 we introduce the general formalism

for the 5D action, including the Gibbons-Hawking-York (GHY) boundary term. We also
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review the Equations of Motion (EoM) and Boundary Conditions (BCs) of the theory, and

show that solving the EoM is equivalent to applying the superpotential procedure [14].

In section 3 we develop a novel method to employ the superpotential formalism in the

presence of mistuned BCs. This allows to calculate the effective potential between the two

branes as a function of their distance without major problems with the back-reaction. It

hence opens up the possibility of studying warped models without imposing tight upper

bounds on the amount of back-reaction.

In section 4 we introduce the particular soft-wall model and we apply the generalized

superpotential method to it. Since the method needs to be carried out numerically, we

focus on some benchmark scenarios with different degrees of back-reaction (up to N ≃ 25).

In all cases, the relevant parameters are set to solve the hierarchy problem.

The relation between the UV and IR brane distance and the canonically normalized

radion field is analyzed in section 5. The effective potential for the brane distance, previ-

ously obtained, can then be reinterpreted as a function of the physical radion field. This

in particular allows to ensure that in our benchmark scenarios the KK gravitons are much

heavier than the radion. For this reason the radion phase transition can be analysed within

an Effective Field Theory (EFT) where the SM-like particles and the radion are the only

dynamical fields.

The EFT at finite temperature of the soft-wall model is computed in section 6. We

obtain that, depending on the amount of back-reaction, the free energy difference between

the confined and deconfined phases can span several orders of magnitude. This of course

has relevant effects on the value of the nucleation temperature and, in turn, on the phe-

nomenology of the model.

In section 7 we analyze the phase transition of the radion in detail. We find that, in

agreement with precedent analyses [5–7], for tiny back-reaction the nucleation rate tends

to be too small to overcome the Hubble expansion rate, and hence the universe is stuck in

an eternal inflationary phase. Instead, for scenarios with large back-reaction, the universe

inflates by (at most) a few e-folds and eventually completes the transition. In these cases

the nucleation temperature is typically of the order of the EW scale, contrarily to what

happens in most of the (small-back-reaction) frameworks considered in the literature [8–12].

Moreover, depending on the benchmark choice, the transition can end up with a reheating

temperature smaller or larger than the nucleation temperature of the EW phase transition

in the SM. We highlight the implication of this feature in section 8, with some remarks

about the feasibility of EW baryogenesis.

In section 9 we discuss the prospects for detecting the stochastic gravitational wave

(GW) background that the radion phase transition induces. Interestingly enough, the

signal is so strong that both the Laser Interferometer Space Antenna (LISA) and Einstein

Telescope (ET) will have very good chances to detect it.

We observe that the large-back-reaction regime favors the radion mass to be large,

typically around the TeV scale. The corresponding collider phenomenology is studied

in section 10. No tension with present LHC data is found for the benchmark scenarios

although, for future integrated luminosity, the radion decay into W+W− and ZZ might

lead to detectable signatures.

Finally general conclusions are drawn in section 11.
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2 General formalism

We follow the notation and conventions of ref. [10].1 We consider a slice of 5D spacetime

between two branes at values r = r0, the UV brane, and r = r1, the IR brane. The 5D

action of the model, including the stabilizing bulk scalar φ(x, r), reads as

S =

∫

d5x
√

| det gMN |
[

− 1

2κ2
R+

1

2
gMN (∂Mφ)(∂Nφ)− V (φ)

]

−
∑

α

∫

Bα

d4x
√

| det ḡµν |Λα(φ)−
1

κ2

∑

α

∫

Bα

d4x
√

| det ḡµν |Kα , (2.1)

where V (φ) and Λα(φ) are the bulk and brane potentials of the scalar field φ, and the index

α = 0 (α = 1) refers to the UV (IR) brane. The parameter κ2 = 1/(2M3), with M being

the 5D Planck scale, can be traded by the parameter N in the holographic theory by the

relation [34]

N2 ≃ 8π2ℓ3

κ2
, (2.2)

where ℓ is a constant parameter of the order of the Planck length, which determines the

value of the 5D curvature. The metric gMN is defined in proper coordinates by

ds2 = gMNdx
MdxN ≡ e−2A(r)ηµνdx

µdxν − dr2 , (2.3)

so that in eq. (2.1) the 4D induced metric is ḡµν = e−2A(r)ηµν , where the Minkowski metric

is given by ηµν = diag(+1,−1,−1,−1). The last term in eq. (2.1) is the usual GHY

boundary term [35, 36], where Kα are the extrinsic UV and IR curvatures. In terms of the

metric of eq. (2.3) the extrinsic curvature tensor reads as

Kµν =
1

2

d

dr
(ḡµν) = −e−2AA′ηµν , (2.4)

with trace

K = e2AηµνKµν = −A′ηµνηµν = −4A′ , (2.5)

so that K0,1 = ∓4A′(r0,1).

The EoM read then as2

A′′ =
κ2

3
φ′ 2 , (2.6)

A′ 2 = −κ
2

6
V (φ) +

κ2

12
φ′ 2 , (2.7)

φ′′ − 4A′φ′ = V ′(φ) , (2.8)

and, assuming a Z2 symmetry across the branes, the localized terms impose the constraints

A′(rα) =
κ2

6
(−1)αΛα(φ(rα)) , (2.9)

φ′(rα) =
1

2
(−1)α

∂Λα(φ(rα))

∂φ
. (2.10)

1Except for a global change in the sign of the metric exponent as eA(r) → e−A(r).
2From here on the prime symbol ( ′ ) will stand for the derivative of a function with respect to its

argument.
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The EoM can then be written in terms of the superpotential W (φ) as [14]

φ′ =
1

2

∂W

∂φ
, A′ =

κ2

6
W , (2.11)

and

V (φ) =
1

8

(

∂W

∂φ

)2

− κ2

6
W 2(φ) , (2.12)

while the BCs read as

Λα(φ(rα)) = (−1)αW (φ(rα)) , (2.13)

∂Λα(φ(rα))

∂φ
= (−1)α

∂W (φ(rα))

∂φ
. (2.14)

Note that the EoM in eqs. (2.6)–(2.10) and eqs. (2.11)–(2.14) are completely equivalent,

having both sets three integration constants. In particular one of the integration constants

appears in eq. (2.12).

Starting from a potential V and integrating eq. (2.12) is usually a very complicated

task which normally cannot be accomplished analytically. On the other hand starting from

a superpotential function W , and computing the potential V from eq. (2.12), amounts

to fixing the corresponding integration constant to zero, and no radion potential can be

generated using this method. To circumvent this problem (for details see the next section)

we propose an alternative procedure: we determine the effective potential by integrating

the action over the solutions of the EoM with the scalar BC (2.10) (or equivalently (2.14))

imposed at both branes, but we mistune the BC (2.9) [or equivalently (2.13)] while finely

adjusting the potential Λ0.
3 In this way, by means of the mistuning we break the flatness

of the radion potential, and by means of the Λ0 adjustment we achieve a zero cosmological

constant at the minimum of the potential.

For concreteness we consider for the brane potentials the form

Λα(φ) = Λα +
γα
2
(φ− vα)

2 (2.15)

where Λα is a constant, hereafter considered as a free parameter as it does not enter in

eqs. (2.10) and (2.14), and γα is a dimensionful parameter. Using eq. (2.15) for the brane

potentials, the BCs in eq. (2.14) can be written as

φ(rα)− vα =
(−1)α

γα

∂W (φ(rα))

∂φ
, (2.16)

which fixes two integration constants, from the first equality of eq. (2.11) and eq. (2.12),

in terms of the parameters vα. Using now eq. (2.16) the brane potentials can be written as

Λα(φ(rα)) = Λα +
1

2γα

(

∂W (φ(rα))

∂φ

)2

. (2.17)

3See e.g. the thorough discussion in ref. [37].
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As we will see in section 3 the effective potential will depend through Λα(φ(rα)) on the γα
parameters.

In the simple (stiff wall) limit where γα → ∞, the BCs (2.16) and the potential (2.17)

simplify to

φ(rα) = vα, Λα(φ(rα)) = Λα (2.18)

in which case ∆α ≡ Λα − (−1)αW (vα) measures the mistuning we are doing, while the

parameters γα have introduced a dynamical mechanism by which φ(rα) = vα. In fact the

condition φ(0) = v0 is enforced by fixing the integration constant of the first equality in

eq. (2.11), while the condition φ(r1) = v1 is enforced by fixing the integration constant

appearing in eq. (2.12) as we will see in section 3. In the generic case of finite γα, an

analytic solution to the BCs (2.14) does in general not exist but still numerical solutions

can be worked out, as we will see in section 3. In the following, and unless explicit mention,

we work in the limit γα → ∞.

3 The effective potential

By using eqs. (2.6)–(2.8), the action (2.1) can be written as

S = Sbulk + Sbr + SGHY , (3.1)

with

Sbulk = 2

∫

d4x

∫ r1

r0

dr
√

| det gMN |
[

−M3R+
1

2
(∂φ)2 − V (φ)

]

=

∫

d4x
1

3

(

[

e−4AW
]

r1
−
[

e−4AW
]

r0

)

, (3.2)

Sbr = −
∑

α

∫

Bα

d4x
√

| det ḡMN |Λα(φ) = −
∫

d4x
(

[

e−4AΛ1

]

r1
+
[

e−4AΛ0

]

r0

)

(3.3)

SGHY = − 1

κ2

∑

α

∫

Bα

d4x
√

| det ḡMN |Kα

=

∫

d4x

(

−4

3

)

(

[

e−4AW
]

r1
−
[

e−4AW
]

r0

)

, (3.4)

where we have included a factor of 2 in Sbulk and SGHY from orbifolding, as we are inte-

grating over S1/Z2. By joining all these terms together we get

S ≡ −
∫

d4xVeff (3.5)

with

Veff =
[

e−4A (W + Λ1)
]

r1
+
[

e−4A (−W + Λ0)
]

r0
, (3.6)

where we are using the EoM degrees of freedom to fix r0 = 0 and A(0) = 0. The variable

r1 is thus the branes distance and establishes the relationship between κ2 and the 4D

rationalized Planck mass, MP = 2.4× 1018GeV, via the expression

κ2M2
P = 2ℓ

∫ r̄1

0
dr̄e−2A(r̄) , (3.7)

– 6 –
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where r̄ ≡ r/ℓ is dimensionless. In particular, for some given N and r̄1, eqs. (2.2) and (3.7)

fix the value of ℓ.

In the limiting case γα → ∞, using the superpotential formalism, the first equation

in (2.11) has just one integration constant and thus only the value of the field at, say the

UV brane, is fixed (thus v0 is fixed). Therefore within the superpotential formalism, if

we start from a superpotential W0 from which the bulk potential V is deduced, we fix to

zero the integration constant that should have appeared in eq. (2.12). We have then lost

the freedom to choose the value of φ at the IR brane (v1), in particular we cannot set

v1 at the value for which r1 solves the hierarchy problem [cf. eq. (2.18)]. However, as we

now explain, there exists a way of reintroducing such a freedom. Let us call the “lost”

integration constant s.

We consider a potential V that is expressed in terms of a zero-order superpotential W0

via eq. (2.12), with

W =
∞
∑

n=0

snWn (3.8)

being solution of eq. (2.12) to all orders. This means that eq. (2.12) does not fix the

integration constant s, which should then be fixed from the BC φ(r1) = v1. An explicit

solution is given for n = 1 by [38] (see also discussion in [39, 40])

W1(φ) =
1

ℓκ2
exp

(

4κ2

3

∫ φ W0(φ̄)

W ′
0(φ̄)

dφ̄

)

, (3.9)

while for n > 1 it can be iteratively defined as

Wn(φ) =W1(φ)

∫ φ Qn(φ̄)

W ′
0(φ̄)W1(φ̄)

dφ̄ (3.10)

with

Qn = −1

2

n−1
∑

m=1

[

W ′
mW

′
n−m − 4κ2

3
WmWn−m

]

. (3.11)

From now on we assume sW1 ≪ W0, so that we can keep the expansion in eq. (3.8)

to linear order, which corresponds to use W =W0 + sW1 +O(s2), an approximation that

should be verified a posteriori. We can similarly expand the field φ and metric A as4

φ(r) = φ0(r) + sφ1(r) +O(s2) , (3.12)

A(r) = A0(r) + sA1(r) +O(s2) . (3.13)

As we are solving eq. (2.11) order by order perturbatively, condition sW1 ≪W0 also implies

sφ1 ≪ φ0 and sA1 ≪ A0. The corresponding expansion of W then reads

W (φ) =W0(φ0) + s
[

φ1W
′
0(φ0) +W1(φ0)

]

+O(s2) . (3.14)

4Notice that the mass dimensions are [W ] = 4, [s] = 0 and [φ] = 3/2.

– 7 –
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Using now the first expression in eq. (2.11) we get

φ′0(r) =
1

2
W ′

0(φ0), φ′1(r) =
1

2

[

φ1W
′′
0 (φ0) +W ′

1(φ0)
]

, (3.15)

φ1(r) ≡ φ1[φ0(r)] =W ′
0(φ0)

∫ φ0

C1

W ′
1(φ̄)

[W ′
0(φ̄)]

2
dφ̄ , (3.16)

where eq. (3.16) defines the field φ1(r), while the first relation in eq. (3.15) is the usual

equation for φ0(r) [cf. eq. (2.11)]. The integration constants have been chosen to fulfill

the BCs

φ(0) = v0 , φ(r1) = v1 , (3.17)

corresponding to the values of φ(r) in the UV and IR branes, respectively. In particular

one can fix C1 = v0 such that φ0(0) = v0 and φ1(0) = 0. Then the condition φ(r1) = v1
leads to fixing the integration constant s as5

s(r1) =
v1 − φ0(r1)

φ1[φ0(r1)]
. (3.18)

Therefore the superpotential in eq. (3.14) gets an explicit dependence on the brane distance,

W (r1), which in turn creates a non-trivial dependence on r1 of the effective potential of

eq. (3.6). As the latter only gets contributions from the branes, one can then expand the

superpotential on the branes as

W (vα) =W0(vα) + s(r1)W1(vα) (3.19)

so that the effective potential can be expanded to first order in s(r1):

Veff(r1) = Λ0 −W0(v0) (3.20)

+ e−4A0(r1)
{

[Λ1 +W0(v1)] [1− 4A1s(r1)] + s(r1)
[

W1(v1)− e4A0(r1)W1(v0)
]}

.

Eq. (3.20) involves several key parameters that play a relevant role in our analysis.

The second line, and in particular the function s(r1), provides a non-trivial dependence on

the brane distance r1. We anticipate that r1 can be interpreted as the constant background

value of the (canonically unnormalized) radion/dilaton field. Consequently, the cosmolog-

ical constant at the minimum of the radion potential can be set to zero by an accurate

choice of the terms in the first line, which are independent of r1. We fine-tune Λ0 for such

a purpose.6

Similarly, from eq. (3.14) and the second expression in eq. (2.11) one finds

A′
0(r) =

κ2

6
W0(φ0) ,

A′
1(r) =

κ2

6

(

φ1W
′
0(φ0) +W1(φ0)

)

. (3.21)

5For the case of finite γα, eq. (3.18) has O(1/γα) corrections.
6This one is the cosmological constant fine-tuning of the theory.
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After solving eqs. (3.15) and (3.16), we have to integrate eqs. (3.21) to obtain the metric.

This yields

A0(r) =
1

4
log

[

W1(φ0(r))

W1(v0)

]

, (3.22)

A1(r) =
κ2

3

∫ φ0(r)

v0

dφ̄

[

W1(φ̄)

W ′
0(φ̄)

+ φ1(φ̄)

]

, (3.23)

where φ1(φ̄) is given by eq. (3.16) with the substitution φ0 → φ̄. The integration constants

in eqs. (3.22) and (3.23) have been chosen to fix A(0) = A0(0) = 0. Given that φ0 =

φ + O(sφ1), and since sA1 ≪ A0, we can keep the zero order φ0 ≃ φ in the definition of

A1 in eq. (3.23). This, together with the BC φ(r1) = v1, leads to

A1(r1) =
κ2

3

∫ v1

v0

dφ̄

[

W1(φ̄)

W ′
0(φ̄)

+ φ1(φ̄)

]

. (3.24)

As we see, A1(r1) does not explicitly depend on r1, it only depends on vα and the super-

potential parameters.

To conclude this section we want to stress here that the method we have developed to

compute the effective potential, and simultaneously take into account the back reaction on

the gravitational metric, is completely general and can be applied to any model defined by

any superpotential. However, since the method relies on the perturbative expansion given

in eq. (3.8), one has to restrict the values of the free parameters of the model (e.g. the

values of vα, superpotential parameters, . . . ) such that the perturbative expansion makes

sense. This restricts the range of validity of the method for general physical conditions.

4 The soft-wall metric

We consider the exponential superpotential used in soft-wall phenomenological models [15]:

W0(φ) =
6

ℓκ2

(

1 + eγφ
)

. (4.1)

This function W0(φ) is an exact solution of the EoM involving the scalar potential

V (φ) = − 6

ℓ2κ2

[

1 + 2eγφ +

(

1− 3γ2

4κ2

)

e2γφ
]

. (4.2)

Following the general procedure described in section 3, we find

W1(φ) =
1

ℓκ2
exp

[

4κ2

3γ2

(

γφ− e−γφ
)

]

. (4.3)

The scalar field φ = φ0 + sφ1 turns out to be given by

φ0(r) = v0 −
1

γ
log

(

1− r

rS

)

, (4.4)

φ(r) = φ0(r) + s
2

γ (rS − r)

∫ φ0(r)

v0

W ′
1(φ̄)

[W ′
0(φ̄)]

2
dφ̄ , (4.5)
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where the location of the naked singularity, rS , is given by

rS =
κ2ℓ

3γ2
e−γv0 . (4.6)

Note that integration constants have been fixed such that φ(0) = φ0(0) = v0. From the

condition φ(r1) = v1 we get

s(r1) =
γ(rS − r1) [v1 − φ0(r1)]

2
∫ φ0(r1)
v0

W ′

1(φ̄)

[W ′

0(φ̄)]
2dφ̄

, (4.7)

in which the integrand is

W ′
1(φ)

[W ′
0(φ)]

2
=

ℓκ4

27γ3

(

1 + eγφ
)

exp

[

−4κ2

3γ2
e−γφ − 3γ

(

1− 4κ2

9γ2

)

φ

]

. (4.8)

The integrals in eqs. (4.5) and (4.7) cannot be computed analytically in general and there-

fore all calculations of the effective potential will be performed numerically.

For the warp factor A = A0 + sA1, we can determine A0 as

A0(r) =
r

ℓ
+
κ2

3γ
(φ0(r)− v0) =

r

ℓ
− κ2

3γ2
log

(

1− r

rS

)

. (4.9)

Instead A1 cannot be given in terms of an analytic solution and we have thus to determined

it numerically. In particular for A1(r1) we use the general expression provided in eq. (3.24).

In order to solve the hierarchy problem we have to fix A(r1) ≃ 35. This can be done

by conveniently choosing the brane parameters vα and γ in the superpotential, as well as

κ2, which provides the physical KK scale ρ1 ≡ ℓ−1 exp[−A(r1)].7 Moreover, by fixing the

parameter κ2 and the metric A(r), the value of ℓ is established from the 4D Planck mass

value as in eq. (3.7). Since s(r1)A1(r1) ≪ A0(r1), to solve the hierarchy problem it is

enough to work to zero order in the s expansion, which means A0(r1) ≃ 35. Then, from

A0(r1) ≃ 35 and assigning some values to γ and rS (i.e. v0), one can find r1. Moreover

using the approximation φ0(r1) ≃ v1 one can roughly estimate v1 from

r1 ≃
κ2

3γ2
(

e−γv0 − e−γv1
)

. (4.10)

This simple approximation is useful to guide the eye although the correct value of r1 has

to eventually be computed numerically. Eq. (4.10) also highlights that the IR brane is

shielding the singularity since r1 < rS .

The amount of back-reaction in our solution can be read off from comparing the size

of the two terms in the right hand side of the approximation

A0(r1) ≃
r1
ℓ
+
κ2

3γ
(v1 − v0) . (4.11)

7The scale ρ1 is O(TeV) for ℓ−1 ≃ MP = 2.4× 1018 GeV and A(r1) ≃ 35. In the numerical calculations

we will work in units where ℓ = 1.
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Two extreme possibilities arise for a fixed value of κ2: i) For ℓ−3/2γ & 1 and ℓ3/2|v1−v0| . 1,

the second term is small compared with the first one and the hierarchy problem is mainly

solved by the first term. In this case there is little back-reaction on the metric and the

length of the extra dimension is comparable to the AdS case, i.e. r1 ≃ A0(r1) ℓ. ii) For

ℓ−3/2γ ≪ 1 and/or ℓ3/2|v1 − v0| ≫ 1 the second term can be comparable to the first term

and the length of the extra dimension is smaller than in the AdS case, i.e. r1 < A(r1) ℓ. This

case is also characterized by the fact that the IR brane is close enough to the singularity,

i.e. (rS − r1) ≪ r1. For different values of κ2 (N2) the amount of back-reaction decreases

with decreasing (increasing) values of κ2 (N2).

Since the superpotential formalism does not permit an analytic approach, in the present

paper we carry out our investigation by concentrating in a few concrete benchmark scenar-

ios. They cover parameter configurations with large or small back-reactions on the metric,8

and are expected to give some qualitative insight on a vast class of plausible models where

the hierarchy problem is solved. Our benchmark scenarios belong to the following classes:

— Small back-reaction (class A)

γ = 0.55 ℓ3/2, v0 = − 9.35 ℓ−3/2, v1 = − 6.79 ℓ−3/2, γ1 → ∞ ,

κ2 =
1

4
ℓ3 (N ≃ 18), rS = 47.1 ℓ, 〈r1〉 = 34.6 ℓ . (4.12)

— Large back-reaction (class B)

γ = 0.1 ℓ3/2, v0 = − 15 ℓ−3/2, v1 = − 3.3 ℓ−3/2, γ1 → ∞ ,

κ2 =
1

4
ℓ3 (N ≃ 18), rS = 37.3 ℓ, 〈r1〉 = 25.4 ℓ . (4.13)

— Large back-reaction & larger N (class C)

γ = 0.1 ℓ3/2, v0 = − 20 ℓ−3/2, v1 = 0.7 ℓ−3/2, γ1 → ∞ ,

κ2 =
1

8
ℓ3 (N ≃ 25), rS =30.8 ℓ, 〈r1〉 = 26.7 ℓ . (4.14)

— Large back-reaction & smaller N (class D)

γ = 0.1 ℓ3/2, v0 = 2 ℓ−3/2, v1 = 8.9 ℓ−3/2, γ1 → ∞
κ2 = ℓ3 (N ≃ 9), rS = 27.3 ℓ, 〈r1〉 = 13.6 ℓ . (4.15)

— Finite γ1 (class E)

γ = 0.1 ℓ3/2, v0 = −15 ℓ−3/2, v1 = −2.6 ℓ−3/2, γ1 = 10 ℓ−1 ,

κ2 =
1

4
ℓ3 (N ≃ 18), rS = 37.3 ℓ, 〈r1〉 = 25.4 ℓ . (4.16)

8Models with bulk potentials quadratic in φ as those originally considered by Goldberger and Wise [4],

would fall in our formalism into the small back-reaction class.
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For concreteness, in all of them we choose the remaining free parameters to obtain A(r1) ≃
35. We also rescale the brane tensions Λα as

Λα ≡ 6

ℓκ2
λα (4.17)

where λα are dimensionless constants and the value of λ0, which is negative, is used to fine-

tune the cosmological constant to zero at the minimum of the potential. At this point, λ1 is

a free parameter, which, as we will see, will determine the shape of the effective potential.

In the left panels of figure 1 we show some numerical result of Veff for several values of

λ1 in classes A and B scenarios (upper and lower panels, respectively). The potentials are

normalized to zero at r1 → ∞, where there is a minimum in all cases. The plots highlight

how the parameter λ1 controls the shape of the potential. For |λ1| ≫ 1 (with λ1 < 0), the

absolute minimum at 〈r1〉 is very deep, and the maximum between the absolute minimum

and the local minimum at r1 → ∞ is tiny. Moreover there is a critical value of |λ1| for
which the absolute minimum becomes degenerate with the minimum at r1 → ∞, and even

disappears (becomes a saddle point) for smaller values of |λ1|.
In the right panels of figure 1 we also show the relative size of the O(s) terms in the

superpotential expansion, displayed as sW1(vα)/W0(vα). In the upper panel we present

the results for the class A scenarios (small back-reaction) while in lower panel we do it

for the class B scenarios (large back-reaction). Notice that within one given class the

ratio sW1(vα)/W0(vα) does not depend on the particular λ1 value. As we can see, in the

region r1 > 〈r1〉 relevant for the study of the phase transition, the ratio is small enough to

guarantee the validity of the s-expansion, as assumed in the analysis.

In view of this behavior of Veff , in the rest of the paper we restrict ourselves to con-

figurations with potentials having two minima (and reliable s expansion). Specifically, for

each class we take some generic set of values for λ1. Such values are provided in table 1

(for the color code of λ1 in the table, see section 7). Within each class, the choice of λ1
unequivocally define benchmark scenarios. The scenarios A1, B1, . . . , B11, C1, C2, D1 and

E1 are those we investigate numerically in the next sections. Table 1 also includes the value

of ℓ in units of MP that we obtain via eq. (3.7). As expected, ℓ−1 results very close to MP .

5 The radion field

We now introduce the radion field as a perturbation of the metric whose definition is

ds2 = −[1 + 2F (x, r)]2dr2 + e−2[A+F (x,r)]ḡMNdx
MdxN , (5.1)

φ(x, r) = φ0(x) + ϕ(x, r) . (5.2)

The Einstein EoM can be solved with the radion ansatz F (x, r) = F (r)R(x) such that the

excitation of the field φ, ϕ(x, r), can be reparametrized as [41]

ϕ(x, r) =
3

κ2
F ′(r)− 2A′(r)F (r)

φ′0(r)
R(x) , (5.3)

– 12 –
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Figure 1. Left panels: effective potential for different values of λ1 in units of ℓ. Only the rel-

evant regime r1 > 〈r1〉 is considered. Right panels: the relative correction to the superpotential

sW1(v1)/W0(v1) as a function of r1. The panels on the top correspond to ‘small back-reaction

scenario (class A)’, while the panels on the bottom correspond to ‘large back-reaction scenario

(class B)’.

so that the only remaining degree of freedom is the radion field R(x). In particular we

adopt the ansatz F (r) ≃ e2A which is appropriate for a light radion/dilaton.9 In this case

eq. (5.3) leads to ϕ(x, r) ≃ 0. Moreover the geodesic distance between the branes can be

written as [10]

r(x) ≡
∫

ds =

∫ r1

0
dr

[

1 + 2F (r)R(x)

]

= r1 +XF (r1)R(x) , (5.4)

with

XF (r) = 2

∫ r

0
dr e2A(r) , (5.5)

by which R(x) can be interpreted as the excitation of the (unnormalized) radion field

r(x) with background value r1. This provides the functional dependence of the effective

potential Veff(r1) we consider in eq. (3.20) and subsequently.

9We have checked numerically that this ansatz remains a good approximation for a not so light (sub-TeV)

radion as far as its mass remains sufficiently smaller than the mass of KK excitations.
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Scen. λ1 ℓ−1/MP mrad/mG ρ1/TeV mrad/TeV 〈µ〉/TeV µ0/〈µ〉 Tc/〈µ〉 Tn/〈µ〉
A1 −1.250 0.501 0.0645 0.758 0.1998 0.750 — 0.305 —

B1 −3.000 0.554 0.1969 1.085 1.018 0.828 0.9995 0.903 0.609

B2 −2.583 0.554 0.1905 1.007 0.915 0.767 0.989 0.825 0.428

B3 −2.500 0.554 0.1888 0.989 0.890 0.752 0.974 0.806 0.367

B4 −2.438 0.554 0.1874 0.973 0.870 0.741 0.937 0.790 0.297

B5 −2.375 0.554 0.1859 0.957 0.849 0.728 0.982 0.774 0.193

B6 −2.292 0.554 0.1836 0.934 0.818 0.710 0.971 0.750 0.149

B7 −2.208 0.554 0.1809 0.908 0.784 0.690 0.949 0.724 0.0990

B8 −2.125 0.554 0.1776 0.879 0.745 0.667 0.890 0.694 0.0388

B9 −2.096 0.554 0.1763 0.8675 0.7303 0.6585 0.827 0.682 0.0122

B10 −2.092 0.554 0.1761 0.8658 0.7281 0.6572 0.808 0.680 0.0073

B11 −2.090 0.554 0.1760 0.8650 0.7270 0.6565 0.793 0.679 0.0039

C1 −3.125 0.377 0.289 0.554 0.890 0.378 0.989 1.123 0.601

C2 −2.604 0.377 0.271 0.496 0.751 0.336 0.937 0.976 0.098

D1 −3.462 1.49 0.106 0.468 0.477 0.250 0.9996 1.007 0.445

E1 −2.429 0.554 0.155 0.877 0.643 0.667 0.895 0.694 0.142

Table 1. List of benchmark scenarios defined by the classes in eqs. (4.12)–(4.16) and the input

values of λ1 (second column). The outputs obtained in each scenario are presented from the third

column on. The foreground red [blue] color on the value of λ1 indicates that the corresponding

phase transition is driven by O(3) [O(4)] symmetric bounce solutions. In scenario A1 there is no

phase transition.

The kinetic term of the action is given by [24]

2

∫

d4x

∫ r1

0
dr
√

| det gMN |
(

−M3R+
1

2
(∂φ)2

)

= 6M3

∫

d4x
√

| det ḡµν |(∂r)2X−1
F (r1) + . . . , (5.6)

from where we can see that the field r(x) is not canonically normalized. One uses to define

the canonically normalized10 field µ(x) with kinetic and mass terms as

Lrad =
6ℓ3

κ2

∫

d4x
√

| det ḡµν |
(

1

2
(∂µ)2 − 1

2
m2

rad µ
2

)

, (5.7)

with mrad being the mass of the normalized radion. The field µ(x) is related to r(x) by

∂µ(x) = −ℓ−3/2X
−1/2
F (r1)∂r(x) ≃ −ℓ−3/2X

−1/2
F [r(x)]∂r(x) , (5.8)

where in the last step the background field r1 is approximated by the whole field configu-

ration r(x). The formal solution to eq. (5.8) is

µ(r) = ℓ−3/2

∫ rS

r
dr̄XF [r̄]

−1/2 , (5.9)

which ensures µ(r = rS) = 0.11 If r = r(x), eq. (5.9) provides µ(x) ≡ µ[r(x)]. In this case

the effective potential is given by the function

Veff(µ) ≡ Veff [r(µ)] , (5.10)

where r(µ) is the inverse function provided by eq. (5.9).

10As it is conventional, we leave aside the action the global constant factor 12(Mℓ)3 = 6ℓ3/κ2.
11In the standard AdS scenarios the value of µ = 0 is achieved in the limit r → ∞. Here this condition

is replaced by r → rS which is the location of the singularity and where the space is cutoff.

– 14 –



J
H
E
P
0
9
(
2
0
1
8
)
0
9
5

0 2 4 6 8
-2.´10

-60

-1.´10
-60

0

1.´10
-60

2.´10
-60

10
16
× Μ

V
e
ff

Case A

Case B

Case C

Case E

0.0 0.2 0.4 0.6 0.8 1.0
-4.´10

-65

-2.´10
-65

0

2.´10
-65

4.´10
-65

10
16
× Μ

V
e
ff

Case D

Figure 2. The effective potential as a function of µ, in units of ℓ, in scenarios A1, B8, C2, E1 (left

panel) and D1 (right panel).

In general the relationship between the fields µ and r can only be obtained numerically.

However the relation can be easily solved analytically in the particular regime of no back-

reaction, e.g. in the AdS scenario. In that case it turns out that A(r) = r/ℓ and XF (r) =

ℓ exp(2r/ℓ) so that also eq. (5.8) can be solved analytically leading to µ(r) = ℓ−1e−r/ℓ

or, equivalently, r = ℓ log(1/µℓ), which is the usual expression obtained in the Randall-

Sundrum theory.

The effective potential for the cases of small and large back-reaction (and thus N large)

are shown in figure 2. We observe that the shape of the potential in every case, i.e. the depth

and location of the minimum, has important consequences for the dilaton phase transition.

The flatter the potential, the slower the way to the false minimum, the bigger the euclidean

action (as we will see) and the more difficult (if not impossible) the phase transition. The

flatness of the potential is associated with the amount of back-reaction.12 This happens

for the potentials in classes A, B, C and E in the left panel of figure 2, as we can see. In

fact we will see that in class A, unlike in classes B, C and E, the euclidean action is so large

that the transition rate never overcomes the expansion rate of the universe. Moreover, the

location of the minimum is also important for the phase transition. In fact the smaller the

value of 〈µ〉, the shorter the road along the potential to the false minimum, and thus the

smaller the euclidean action. This fact is exemplified in the right panel of figure 2 where

the potential for the class D scenario is shown. Even if the potential is flatter than in case

A, the value of 〈µ〉 for case D is one order of magnitude smaller than in case A, and then

the euclidean action is also smaller and allows the phase transition, as we will see.

For the validity of the 4D treatment of the radion field it is necessary that the KK

graviton modes are significantly heavier than the radion and thus can be integrated out

in the EFT. In that case, it is energetically expensive for the KK fields to move and the

transition can be studied in an effective theory where the only extra (with respect to the

SM) dynamical degree of freedom is the radion. To check such a hierarchy, the following

12Notice that the case of a completely flat potential as in the Randall Sundrum model corresponds to the

case where there is no back-reaction on the metric.
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analytical approximate formulas turn out to be useful [24]:

m2
rad ≃ ρ21

Πrad(r1)
, ρ1 ≡ (1/ℓ)e−A(r1) , (5.11)

with

Πrad(r1) =
1

ℓ2

∫ r1

0
dre4(A−A1)

(

W

W ′

)2
[

2

W [φ(r1)]
+

∫ r1

r
dr̄e−2(A−A1)

(

W ′

W

)2
]

+
4W [φ(r1)]

ℓ2W ′2[φ(r1)] (γ1 +W ′′[φ(r1)])
, (5.12)

in which the last term is negligible for strict stiff wall boundary potentials (γα → ∞).

Similarly, the mass of graviton KK modes can be approximated as [24]

m2
G ≃ ρ21

ΠG(r1)
(5.13)

with

ΠG(r1) =
1

ℓ2

∫ r1
0 dre−2(A−A1)

∫ r1
r dr′e4(A−A1)

∫ r1
r′ dr

′′e−2(A−A1)

∫ r1
0 dre−2(A−A1)

. (5.14)

Therefore the validity of the EFT requires the ratio

m2
rad

m2
G

=
ΠG(r1)

Πrad(r1)
(5.15)

to be small.

Using eqs. (5.12), (5.14) and (5.15), for our benchmark scenarios we obtain

(class A): mrad ≃ 0.2 ρ1, mG ≃ 2.9 ρ1 , (5.16)

(class B): mrad ≃ 0.9ρ1, mG ≃ 4.8 ρ1 , (5.17)

(class C): mrad ≃ 1.6ρ1, mG ≃ 5.6 ρ1 , (5.18)

(class D): mrad ≃ 1.0ρ1, mG ≃ 9.6 ρ1 , (5.19)

(class E): mrad ≃ 0.7 ρ1, mG ≃ 4.7 ρ1 , (5.20)

although the more precise values depend on the specific value of λ1 of each scenario.13

It then turns out that the radion is not very light in the scenarios of the class B and

C because of the large back-reaction and the strong departure from conformality near the

IR brane. Still there is enough hierarchy between the radion and the KK graviton masses

to justify the use of the EFT effective potential for the analysis of the phase transition in

most of the benchmark scenarios although class C might be borderline.14 However this

does not happen for scenarios A, B, D and E where the radion is lighter, as compared with

the corresponding KK graviton mass. The precise values of the mass ratios for the different

benchmarks are shown in the table 1 which also includes the scale ρ1, defined in eq. (5.11),

and the radion VEV 〈µ〉, corresponding to the minima of the potentials.

13As expected from eq. (5.12), a way of decreasing the radion mass is to make the value of γ1 finite and

thus decrease the denominator in Πrad. See class D scenario.
14Our numerical results for C1 and C2 might hence be inaccurate.
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6 The effective potential at finite temperature

At finite temperature the system allows for an additional gravitational solution with a

Black Hole (BH) singularity located in the bulk. In the AdS/CFT correspondence this BH

metric describes the high temperature phase of the system where the dilaton is sent to the

symmetric phase 〈µ〉 = 0 and thus the condensate evaporates [5].

Let us consider a BH metric of the form

ds2BH = − 1

h(r)
dr2 + e−2A(r)(h(r)dt2 − d~x 2) , (6.1)

where h(r) is a blackening factor which vanishes at the position of the event horizon, r = rh.

The EoM with this metric read

h′′

h′
− 4A′ = 0 , (6.2)

A′′ − κ2

3
φ′ 2 = 0 , (6.3)

A′ 2 − h′

4h
A′ +

κ2

6

V (φ)

h
− κ2

12
φ′ 2 = 0 , (6.4)

φ′′ +

(

h′(r)

h(r)
− 4A′

)

φ′ − 1

h(r)

∂V

∂φ
= 0 . (6.5)

Eq. (6.5) can be eliminated in favor of (6.2)–(6.4) by means of the identity

κ2hφ′ · [(6.5)] = −3

2
A′h′ · [(6.2)] + 3

2
(8A′h− h′) · [(6.3)]− 6

(

h′ + h
d

dr

)

· [(6.4)] , (6.6)

so that we have three differential equations with five integration constants which can be

fixed by imposing BCs at the UV brane r = 0, and regularity conditions at the singularity

r = rh. Four of these integration constants are then set as

h(0) = 1 , h(rh) = 0 , φ(0) = v0 A(0) = 0 , (6.7)

while the fifth one is A(rh) and is traded for the physical parameter Th representing the

Hawking temperature of the system. Indeed, from eq. (6.1) it can be derived that the

temperature Th and the entropy S of the BH can be expressed as [36, 42]15

Th =
1

4π
e−A(rh)

∣

∣h′(r)
∣

∣

r=rh
, S =

4π

κ2
e−3A(rh) . (6.8)

The quantity Th has a key role in the phase transition. To appreciate this, it is useful

to consider the thermodynamics relations for the internal and free energies

U(Th) = ThS(Th)−
∫ Th

0
S(T̄h)dT̄h , (6.9)

F (Th) = (Th − T )S(Th)−
∫ Th

0
S(T̄h)dT̄h , (6.10)

15We have included in the definition of the entropy a factor of two coming from the integration over the

orbifold.
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with U and F = U − TS being the internal energy and the free energy, respectively. In

fact eq. (6.10) makes manifest that F (Th) has a minimum at Th = T that amounts to

Fmin = F (T ) = −
∫ T

0
S(T̄h)dT̄h = −4π4ℓ3

κ2

∫ T

0
ahT̄

3
hdT̄h , (6.11)

where we have employed eq. (6.8) and the definition

ah(Th) =

∣

∣

∣

∣

4

ℓh′(rh)

∣

∣

∣

∣

3

. (6.12)

In particular, under the assumption of ah being a smooth function of T , we can approximate

the free energy as

F app
min = −π

4ℓ3

κ2
ah(T )T

4 . (6.13)

6.1 The case of small back-reaction

The regime of small back-reaction has been broadly studied [5–7]. In this case the constant

part of the bulk potential V (φ) ≃ −6/(κ2ℓ2) dominates, and neglecting the back-reaction of

the scalar field on the metric A is a good approximation. Thus the solutions to eqs. (6.2)–

(6.5) read

φ(r) ≃ v0 , A(r) ≃ r/ℓ , h(r) ≃ 1− e4(r−rh)/ℓ . (6.14)

Moreover, from eqs. (6.8) and (6.14) one recovers the usual expressions

Th =
e−rh/ℓ

πℓ
, rh = 1 , (6.15)

leading to the standard expression for the free energy in AdS space [5]:

FAdS
min = −π

4ℓ3

κ2
T 4 . (6.16)

6.2 The case of large back-reaction

In the case of large back-reaction, the blackening factor h(r) has to be obtained by solving

eqs. (6.2)–(6.5) numerically, from where one can easily deduce ah(T ) and Fmin.

We show the result of this procedure in figure 3 whose left and right panels deal, respec-

tively, with the class A (i.e. small back-reaction) and B (i.e. large back-reaction) scenarios.

The resulting function ah(T ) is marked in (blue) solid, while the quantity κ2Fmin/(π
4ℓ3T 4)

is marked in (red) dashed. We see that, as anticipated, for small-back reaction ah(T ) ba-

sically reproduces the case of pure AdS (i.e. ah(T ) = 1), whereas for large back-reaction

it results ah(T ) ≪ 1. This effect has important phenomenological implications since it

strongly influences the nucleation temperature of the phase transition, as we discuss in sec-

tion 7. The comparison between ah and κ2Fmin/(π
4ℓ3T 4) highlights the fact that eq. (6.13)

is a very good approximation of Fmin for all practical purposes.

We have checked that these features do not depend on the specific benchmark scenarios

we have considered. In particular the behavior of ah(T ) is generic and only depends, in all

cases, on the amount of back-reaction on the gravitational metric.
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Figure 3. The quantities ah(T ) (blue solid line) and κ2Fmin/(π
4ℓ3T 4) (red dashed line) as a

function of T in the scenarios of the class A (left panel) and class B (right panel).

7 The dilaton phase transition

The phase transition can start when the free energy of the BH deconfined phase, Fd,

becomes smaller than the free energy in the soft-wall confined phase, Fc. Those free

energies are defined by

Fd(T ) = E0 + Fmin −
π2

90
geffd T 4 , (7.1)

Fc(T ) = −π
2

90
geffc T 4 , (7.2)

where geffc (geffd ) is the number of SM-like degrees of freedom in the confined (deconfined)

phase, Fmin is given in (6.11) and finally E0 is defined as E0 = Veff(µ = 0) − Veff(µ =

〈µ〉) > 0.16 In this way the critical temperature Tc at which the phase transition starts

being allowed (the nucleation temperature Tn is indeed below it) is given by

Fd(Tc) = Fc(Tc) . (7.3)

The values of Tc for the different considered benchmark scenarios are shown in table 1.

16For numerical purposes we need to focus on a given particle setup: we assume that at low energy the

confined phase does not contain BSM fields besides the radion. In this phase, at T much below the mass

scale of the n = 1 modes, gB(F )(T ) matches the SM number of bosonic (fermionic) degrees of freedom.

It follows that geff = gB(T ) +
7
8
gF (T ) = 106.75 at 172GeV . T ≪ mG. On the other hand, at very

high temperatures, in the deconfined phase only the elementary degrees of freedom will contribute to the

free-energy Fd, which we will then assume to be contributed by most of the SM degrees of freedom, as we

will only consider, as we will see later on in this section, a few (composite) states (as the right-handed top

quark and the Higgs scalar) living in the IR brane. Under this reasonable assumption, the contribution to

the free energies coming from the SM degrees of freedom is balanced between the confined and deconfined

phases, and can be neglected. This approximation will be justified in sections 7.3 and 8.
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To study in detail the dilaton/radion phase transition we have to consider the bounce

solution of the Euclidean action, as described in refs. [43–45]. For the canonically nor-

malized field µ, the Euclidean action driven by thermal fluctuation is O(3) symmetric and

given by [45, 46]

S3 = 4π

∫

dρρ2
6ℓ3

κ2

(

1

2
µ′2 + Vrad(µ)

)

with Vrad ≡ κ2

6ℓ3
Veff . (7.4)

The corresponding bounce equation is

∂2µ

∂ρ2
+

2

ρ

∂µ

∂ρ
− ∂Vrad

∂µ
= 0 , (7.5)

with ρ =
√
~x 2 and BCs17

3ℓ3

κ2
µ′ 2(ρ)

∣

∣

∣

∣

µ=0

= |Fmin(T )| , µ(0) = µ0 ,
dµ

dρ

∣

∣

∣

∣

ρ=0

= 0 . (7.6)

Thermal fluctuations are not the only way of overcoming the barrier between the false

and true vacua. At low enough temperatures it can also occur via quantum fluctuations.

In this case the bounce solution is O(4) symmetric, with Euclidean action S4 provided

by [43, 46]

S4 = 2π2
∫

dρρ3
6ℓ3

κ2

(

1

2
µ′2 + Vrad(µ)

)

, (7.7)

where ρ =
√
~x2 + τ2 (with τ being the Euclidean time), and satisfies the differential

equation
∂2µ

∂ρ2
+

3

ρ

∂µ

∂ρ
− ∂Vrad

∂µ
= 0 , (7.8)

with BCs given in eq. (7.6).

As we are normalizing the potential to zero at the origin µ = 0, instead of normalizing

it at the (fake) BH minimum as in the original calculations [43, 45], we have to add the

omitted contribution to the Euclidean action. In a suitable approximation this is given for

the O(3) solution by
∆S3
T

=
|Fmin|
T

4

3
πρ̄3 , (7.9)

and for the O(4) solution by

∆S4 = |Fmin|
π2

2
ρ̄4 . (7.10)

Here ρ̄ (the bubble ‘radius’) is calculated assuming a simple step approximation for the

bubble profile, namely µ = µ0 inside the bubble and µ = 0 outside. Specifically it results
∫ ρ0

0
ρn−1µ(ρ)dρ ≡ µ0

∫ ρ̄

0
ρn−1dρ = µ0

ρ̄n

n
, (7.11)

for the O(n) solution (n = 3, 4), with ρ0 being the value of the ‘time’ ρ when µ reaches zero.

17Notice that the BC at µ = 0 is not the standard one which fixes the behaviour of the solution at

ρ → ∞. Here we exploit the fact that µ(ρ) reaches µ = 0 at very large values of ρ, so that at even larger

ρ the friction term in eq. (7.5) is negligible. Our BC at µ = 0 is thus equivalent to the standard one due

to approximate energy conservation (i.e. approximate lack of friction) in the subsequent evolution of the

bounce.
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Figure 4. µ0 (left panel) and S4 and S3/T (right panel) as a function of the temperature in the

benchmark scenario A1 where the back-reaction is small. Dimensional quantities are in units of 〈µ〉
with values quoted in table 1.

Once S3 and S4 are known, the bubble nucleation rate per unit volume per unit time

from the false BH minimum to the true vacuum is given by the sum over configurations

Γ/V = A e−SE (7.12)

with

e−SE = c3 e
−(S3+∆S3)/T + c4 e

−(S4+∆S4) , (7.13)

where, in practice, we can take c3 ≃ c4 ≃ 1 and A ≃ T 4
c (changing these values has

negligible impact on the results of this paper). Then Γ/V is dominated by the least action

such that in non-pathological regimes we can assume SE = (S3+∆S3)/T for O(3) bubbles

and SE = S4 + ∆S4 for O(4) bubbles. Only when the first and second terms in the

right hand side of eq. (7.13) are very close to each other, one should take care of the full

expression of eq. (7.13).

The onset of nucleation then happens at the temperature Tn such that the probability

for a single bubble to be nucleated within one horizon volume is O(1). A simple estimate

translates into the upper bound on the Euclidean action [10, 11]

SE . 4 log (MP /〈µ〉) ≈ 140 , (7.14)

which will be considered throughout the forthcoming numerical analysis.

7.1 Small back-reaction

Figure 4 presents the numerical results on the analysis of the phase transition in the (small

back-reaction) scenario A1. The figure displays the values of the bounce solution µ0 and

the action SE , as a function of the temperature, under the assumption that only the O(3)

or O(4) ansätze are valid.
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Figure 5. Upper panels: as in figure 4 but for scenario B8. Lower panels: as in figure 4 but for

scenario B2. The findings are qualitatively similar to those arising in the most common parameter

scenarios where the back-reaction is large (cf. figure 6).

As we can see, at low (high) temperatures the O(4) (O(3)) solution dominates, as

expected. Remarkably, neither S4 nor S3/T , and therefore SE , ever reach the threshold

140. This happens because the free-energy in the BH solution is large, i.e. ah ≃ O(1), and

the system tries to cool down as much as possible to minimize the energy barrier between

the confined and deconfined phases. Nevertheless, due to the flatness of the potential, the

barrier is still too big even at zero temperature. As a consequence the bubble nucleation

is always too suppressed to compete with the Hubble expansion of the universe, and the

bubbles of the confined phase 〈µ〉 never percolate. This leads to a universe where a (huge)

portion of the space remains in an inflationary phase (see section 7.3). The viability of the

scenario A1 is then quite debatable and we do not further investigate it hereafter.

7.2 Large back-reaction

To describe the behavior of the radion phase transition in the regime of large back-

reaction, we first focus on classes B and C, and then comment on the remaining parameter

configurations.
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Figure 6. Upper panels: as in figure 4 but for scenario C2. Lower panels: as in figure 4 but for

scenario C1. The findings are qualitatively similar to those arising in the most common parameter

scenarios where the back-reaction is large (cf. figure 5).

The upper (lower) panel of figure 5 shows the numerical results for the bounce in

scenario B8 (B2). Similarly, the upper (lower) panel of figure 6 deals with scenario C2

(C1). The plots illustrate that for large values of |λ1| (lower panels) the phase transition is

dominated by the O(3) bounce, while for lower values of |λ1| it is dominated by the O(4)

bounce (upper panels). The plots moreover highlight that µ0 and Tn, which is the largest

temperature where S4 or S3/T crosses the horizontal dashed line, are of the same order of

〈µ〉. This happens due to the fact that ah ≪ 1: the temperature in the free energy has to

be substantially increased to compensate the smallness of the prefactor ah, in comparison

to what happens in ah ≈ 1 configurations (remember that T appears only in Fd once the

SM-like plasma is neglected, as previously stressed).

As expected, figures 5 and 6 also show that the nucleation temperature provided by the

O(3) ansatz, if it exists, is higher than the one arising in the O(4) case. In particular the

nucleation temperature of the latter case is small enough not to jeopardize the correctness of

the O(4) action calculation. In fact, the O(4) ansatz assumes a space topology that is a good

approximation of the (compactified) finite-temperature space only when ρ̄ Tn ≪ 1 [5, 8].

We have checked that our solutions fulfill such a condition.
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The numerical results obtained for other benchmark scenarios with large back-reaction

are qualitatively similar to those just described. We then simply report our findings in

table 1, together with those above. Besides quoting the results, we display the value of

λ1 in blue (red) when the phase transition occurs via the O(4) (O(3)) solution. Overall,

all the considered benchmark configurations hint at the fact that in the ballpark of the

large back-reaction parameter space, the transition is possible and occurs with Tn/〈µ〉 of

the order of between one or one tenth. Much smaller values of Tn are of course feasible by

tuning the parameters.

7.3 Inflation and reheating

As table 1 shows, when the radion phase transition happens, Tn is smaller than the value

of µ inside the nucleated bubble, µ0, or the value of µ at the radion potential minimum,

〈µ〉 (of course µ0 < 〈µ(Tn)〉 with µ0 ≃ 〈µ(Tn)〉 in our scenarios). The considered scenarios

thus exhibit a quite large order parameter 〈µ〉/Tn, namely 2 . 〈µ〉/Tn . 25, signaling the

presence of a strong first order phase transition. This is a consequence of the cooling in

the initial (BH) phase, which also triggers a (very brief) inflationary stage just before the

onset of the phase transition.

The energy density ρ = F − TdF/dT in the two phases is given by

ρd = E0 +
3π4ℓ3

κ2
ahT

4 +
π2

30
geffd T 4 , (7.15)

ρc =
π2

30
geffc T 4 . (7.16)

Inflation in the deconfined phase happens provided that E0 dominates the value of ρd over

the thermal corrections. So inflation in the deconfined phase starts at the temperature

Ti ≈
(

30κ2E0

90π4ℓ3ah + π2κ2geffd

)1/4

, (7.17)

and finishes everywhere when bubbles percolate, which is expected to occur at a temper-

ature very closed to Tn (for details, see e.g. ref. [8]). So, the amount of e-folds of inflation

occurring just before the radion phase transition is Ne ≈ log(Ti/Tn).

The precise values of Ti and Ne for the different benchmark scenarios depend on the

matter content in the different confinement/deconfinement phases, i.e. the values of geffc
and geffd . As previously stated, we assume that in the confined phase, at low energy, the

dynamical degrees of freedom are the SM fields plus the massive radion, i.e. geffc = 106.75.18

Among these, only the Higgs and the right-handed top quark are localized towards the IR

brane, so that geffd = 97.5. The consequent values of Ti and Ne in the considered benchmark

scenarios are shown in table 2. Notice that the scenario D1, eq. (7.17), yields Ti < Tn and

thus there is no inflationary period before nucleation. In the other scenarios, instead, a

brief inflationary epoch exists, so that the plasma contribution due to the SM-like degrees

18We are not counting here the radion/dilaton, which is highly localized towards the IR brane and thus

composite in the dual theory, whose mass in the confined phase is larger than the nucleation temperature.

Its contribution ∆geffc ∝ exp(−mrad/Tn) is Boltzmann suppressed, as it decouples from the thermal plasma.
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Scen. Ti/〈µ〉 Ne TR/〈µ〉 TR/GeV α log10(β/H⋆)

B1 0.663 0.09 1.272 1053 1.60 2.36

B2 0.605 0.35 1.071 821.8 4.61 1.99

B3 0.591 0.48 1.024 770.4 7.86 1.79

B4 0.580 0.67 0.986 730.6 17.1 1.48

B5 0.568 1.08 0.953 694.0 90.1 1.97

B6 0.551 1.31 0.921 654.2 228 1.86

B7 0.531 1.68 0.887 612.0 1047 1.67

B8 0.509 2.57 0.849 566.4 4.0 · 104 1.23

B9 0.5004 3.71 0.834 549.3 4.1 · 106 0.64

B10 0.4991 4.22 0.832 546.8 3.3 · 107 0.34

B11 0.4985 4.86 0.831 545.6 4.5 · 108 -0.32

C1 0.828 0.32 1.531 578.4 4.3 2.03

C2 0.718 1.99 1.239 416.2 5.0 · 103 1.45

D1 – – 0.535 133.7 5.0 1.05

E1 0.509 1.28 0.850 567.2 203 1.89

Table 2. Some physical parameters for the cases Bi, Ci, D and E considered in the text.

of freedom is subdominant at the onset of the radion phase transition. This proves a

posteriori that our calculation of Tn by disregarding the thermal contribution proportional

to geffd is fully justified.

Under the approximation that the percolation temperature is very similar to Tn, during

the phase transition the energy density is approximately conserved. At the end of the phase

transition the universe then ends up in the confined phase at the reheating temperature

TR given by

ρc(TR) = ρd(Tn) , (7.18)

or, equivalently,

π2

30
geffc T 4

R = E0 +

(

3π4ℓ3

κ2
ah +

π2

30
geffd

)

T 4
n . (7.19)

The value of TR for the different benchmark scenarios is shown in table 2. It turn out

that in most of the cases TR is quite close to the TeV scale, nevertheless a parameter window

with TR at the EW scale exists (e.g. scenario D1). We will comment on the consequences

of this observation in the next section.

8 The electroweak phase transition

Depending on the particle setup and the embedding of the Higgs field in the model, the

confinement/deconfinement phase transition can be tightly connected to the EW phase

transition. This is the case in our setup (specified in section 7.3) where the Higgs, the

radion, and the right-handed top are localized towards the IR brane and hence only exist

in the confined phase.
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All SM-like fields propagating in the bulk, as well as those localized at the branes, are

present in thermal plasma of the confined phase. Their contribution to the free energy is

∆Fc = −π2geffc T 4/90, with geffc ≃ 106.75 at 100GeV . T . mrad. Instead, the fields local-

ized near the IR brane are beyond the BH horizon and, being outside the physical space,

they are not present in the deconfined phase. Within our particle setup, the thermal plasma

before the radion phase transition contributes to the free energy as ∆Fd = −π2geffd T 4/90,

with geffd ≃ 97.5 at any EW-scale temperature for all SM-like fields being massless. In view

of this, the (model dependent) quantity ∆geff = geffc − geffd = 9.25 effectively shifts Fmin in

eq. (6.11) by

∆Fmin =
π2

90
∆geffT 4 , (8.1)

which corresponds to |∆Fmin/Fmin| ≃ 0.01. Therefore the nucleation temperature of the

radion phase transition is essentially unaffected by the presence of the SM-like degrees of

freedom in the plasma. Disregarding them in the calculation of Tn is hence fully justified,

even when the phase transition does not start in an inflationary epoch, as in our scenario D1.

On the other hand the SM-like particles do not contribute to the free energy only

via the plasma term: when the BH horizon moves beyond the IR brane during the phase

transition, the Higgs field (H) appears and there is an extra dynamical field besides the

radion. The effective potential becomes a function of both fields and can be written as [8]

V (µ,H) = Veff(µ) +

(

µ

〈µ〉

)4

VSM(H, T ) , (8.2)

while the SM potential VSM in the effective theory, after integrating the extra dimension,

is given by

VSM(H, T ) = −1

2
m2H2 +

λ

4
H4 +∆VSM(H, T ) , (8.3)

where the Higgs mass is m2
H

= 2λv2 ≃ (125GeV)2 with λ = v2/m2 ≃ 0.123 and v =

246GeV, and the term ∆VSM(H, T ) contains the Higgs field dependent loop corrections

both at zero and at finite temperature. VSM(H, T ) has its absolute minimum at 〈H(T )〉 =
v(T ) whose value, in the first (leading) approximation for the thermal corrections, turns

out to be [46, 47]

v(T ) =

{

0 for T > TEW

v
√

1− T 2/T 2
EW for T ≤ TEW

(8.4)

where TEW, the temperature at which the SMminimum at the origin turns into a maximum,

is given by

TEW ≃ mH/
(

m2
W /v

2 +m2
Z/2v

2 +m2
t /v

2
)1/2 ≃ 150 GeV . (8.5)

In principle, the analysis of the radion phase transition should also take into account

the H degree of freedom. However, in practice, this is not necessary. In fact, VSM provides a

contribution O(λv4(T )/4), so that it effectively shifts the µ4 term in Veff(µ) by the amount

O(λv4(T )/(4〈µ〉4)), which is vanishing for Tn > TEW and is +O(10−4) otherwise. Such

a correction is therefore too small to substantially affect the results of the radion phase
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transition, obtained without including VSM (cf. figure 2). The calculations in section 7 turn

out to be justified a posteriori.

We can see from table 1 that some scenarios lead to Tn < TEW, so that the EW

symmetry is broken at the same time that the confinement/deconfinement phase transition,

while other scenarios yield Tn > TEW and the EW symmetry remains unbroken during

the radion phase transition.19 Nevertheless, it ultimately depends on TR whether the

universe really ends up in the EW broken phase after the deconfined/confined bubble

percolation or, in other words, whether the dilaton and the EW phase transitions are

sequential or simultaneous. This has consequences for electroweak baryogenesis [47, 48], as

we now discuss.

8.1 Sequential phase transitions: TR > TEW

Models with TR > TEW are exhibited by the scenarios of classes B, C and E (see table 2).

In those cases, even when Tn < TEW, at the end of the reheating process the Higgs field is

in its symmetric phase and the universe evolves along a radiation dominated era. Within

the particle setup we have assumed so far, the EW symmetry breaking would occur as

in the SM, that is, via a crossover that prevents the phenomenon of electroweak baryo-

genesis [49, 50]. Had we chosen a low energy particle content rich of new BSM degrees

of freedom, the dynamics of the EW symmetry breaking would have been the one corre-

sponding to the chosen low energy setup (while the radion phase transition would have been

basically unchanged). In this sense, when TR > TEW, the implementation of electroweak

baryogenesis remains a puzzle for which the UV soft-wall framework is not helpful.

8.2 Simultaneous phase transitions: TR < TEW

For TR < TEW the reheating does not restore the EW symmetry and eventually the Higgs

lies at the minimum of V(H, TR). The value of its minimum, v(TR), can be considered as

the upper bound of the Higgs VEV during the (simultaneous) EW and deconfined/confined

phase transitions. Taking this upper bound, it results that the EW baryogenesis condition20

v(TR)

TR
& 1 (8.6)

is fulfilled in the presence of a SM-like low energy particle content (and mH ≃ 125GeV)

when TR satisfies the bound [8] (see also ref. [51])

TR . TH ≃ 140 GeV . (8.7)

To summarize, in scenarios with TR < TEW the nature of the EW phase transition is then

entirely dependent on the radion reheating temperature. More specifically:

19For Tn < TEW we have µ = 〈µ〉 and H = v(Tn) deep inside the bubbles (the confined phase), while far

outside the bubble walls, in the sea of the deconfined phase, we have µ = H = 0. For Tn > TEW we instead

have the same behaviour for µ but the H profile is zero both outside and inside the radion bubbles.
20The SM at finite temperature has an IR singularity at the origin such that perturbative calculations

in this region are unreliable. In fact lattice calculations point toward an extremely weak phase transition,

or cross-over, for Higgs masses around the experimental value. However for temperatures low enough

condition (8.6) is fulfilled, and the perturbative potential near the minimum can be approximately trusted.
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• If the reheating temperature is TEW & TR > TH, the EW phase transition is too

weak (i.e. it does not satisfy eq. (8.6)) and the sphalerons inside the bubble wipe out

any previously created baryon asymmetry.

• If the reheating temperature is below TH, then the sphalerons inside the bubble do

not erase the possible baryon asymmetry accumulated inside the bubble during their

expansion. Therefore EW baryogenesis can take place if there is a strong enough

source of CP violation in the theory. However, the radion phase transition in the

generic scenarios leading to TR ≪ TH should be studied paying particular attention

to the bounce procedure. In fact the vacuum energy E0 might not have dominated

the energy density prior to the transition (see eq. (7.19)), as the dilaton and Higgs

potentials might be of the same order of magnitude. The precise bounce solution

would then need to be solved in the two-field space (µ,H), as in ref. [52].21

A parameter configuration leading to TR < TH is provided by scenario D1. In this

case the dilaton and EW phase transitions happen simultaneously at T = Tn ≃ 112GeV,

ending up with T = TR = 133.7GeV < TEW, so that both the radion and the Higgs acquire

a VEV. Before and after the reheating, the bound of eq. (8.7) is fulfilled, and the condition

of strong-enough first order phase transition for EW baryogenesis is satisfied.22

9 Gravitational waves

A cosmological first-order phase transition generates a stochastic gravitational waves back-

ground (SGWB) [54–75].23 The corresponding GW power spectrum depends on several

quantities that characterize the phase transition [77]. Determining accurately all of them

is challenging even in the simplest setups. Hereafter we discuss the main uncertainties and

assumptions influencing our estimate of the SGWB sourced by the radion phase transition.

A key quantity is the velocity vw at which the bubble walls are expanding at the

moment of their collisions. In standard cases this would be determined as the asymptotic

solution of the EoM of the field driving the phase transition [78–80]:

✷µ̃+
∂V (µ̃, T )

∂µ̃
+
∑

j

∂m2
j (µ̃)

∂µ̃

∫

d3p

(2π)3
δfj(~p,E)

2E
= 0 , (9.1)

where δfj is the small deviation from the Boltzmann distribution of the species j with mass

mj . However in our case, where µ̃ = µ for µ̃ ≥ 0 and µ̃ = −Th for µ̃ < 0, not all δfj are

small.24 Thus eq. (9.1) does not capture the complex dynamics of the confined/deconfined

21The precise evaluation of such bounce solutions goes beyond the scope of the present paper whose main

aim is more to stress new possibilities than providing refined results.
22For a recent analysis see refs. [52, 53].
23It has been recently observed that the SGWB from first order phase transitions can contain anisotropies,

correlated to those of the cosmic microwave background of photons, which may be within the reach of the

forthcoming gravitational wave detectors [76].
24For instance, fields exactly localized on the IR brane are degrees of freedom that do not exist in the

deconfined phase and suddenly appear when the BH horizon crosses the IR brane (at µ̃ = 0). This abrupt
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phase transition, and strongly-coupled techniques, still under development, should be ap-

plied; see e.g. refs. [81, 82]. In any case, it seems reasonable to expect supersonic walls,

even reaching vw ≈ 1 in the extremely supercooled scenarios (i.e. very strong phase tran-

sitions, in practice). For concreteness we thus discuss in detail two reasonable options for

vw, namely vw = v1 ≡ 0.70 and vw = v2 ≡ 0.95.

A further critical feature is the behavior of the plasma during, and after, the bubble

collisions. Besides the energy stored in the bubble walls, the turbulent or coherent motions

of the plasma, excited by the bubble expansion, can contribute to the SGWB spectrum

too. Including them would enhance not only the amplitude of the GW frequency spectrum

but even the shape of the spectrum at high frequencies. Unfortunately, no robust result

on the plasma effects exists for the subtle case of a deconfined/confined phase transition.

We thus refrain ourselves from including plasma effects in the subsequent analysis.

In view of the above considerations, in our analysis we employ the envelope approxi-

mation results [56, 60, 61, 74, 75, 83]. In such a regime, the frequency power spectrum of

the SGWB is given by [77]

h2ΩGW(f) ≃ h2ΩGW
3.8(f/fp)

2.8

1 + 2.8(f/fp)3.8
, (9.2)

with

h2ΩGW ≃ 0.80× 10−4

(

H⋆

β

α

α+ 1

)2 ξ(vw)
3
√

gc(TR)
, (9.3)

fp ≃ 7.7× 10−5Hz ξ̃(vw)

(

β

H⋆

)

TR
6
√

gc(TR)

100GeV
, (9.4)

ξ(vw) =
0.11v3w

0.42 + v2w
, ξ̃(vw) =

0.62

1.8− 0.1 + v2w
, (9.5)

α ≃ E0

3(π4ℓ3/κ2)ah(Tn)T 4
n

, (9.6)

β

H⋆
≃ Tn

dSE
dT

∣

∣

∣

∣

T=Tn

. (9.7)

In particular for the chosen velocities v1 and v2 it turns out that ξ(v1) ≃ 0.04, ξ(v2) ≃ 0.07,

ξ̃(v1) ≃ 0.28, ξ̃(v2) ≃ 0.24.

The size of the peak of the power spectrum, fp, can span many orders of magni-

tudes, and strongly depends on β/H⋆ and TR. The latter is basically set by 4
√
E0 (see

eq. (7.15)). Had we not bothered about the solution to the hierarchy problem, values of

TR differing from the TeV scale by orders of magnitude25 (in particular for 4
√
E0 much

larger than TeV26) would have been consistent with the theoretical framework.27 Also

change implies δfj to be of the same order of the Boltzmann distribution fj , i.e. the species j is far away from

the thermal equilibrium. By continuity, large deviations are also expected for fields non-exactly localized.

For these, it is manifest that their non-trivial prefactor ∂m2
j/∂µ̃ is not sufficient to enforce the sum in

eq. (9.1) to be a small perturbation.
25Even though 4

√
E0 much below the TeV scale might be in tension with LHC data; see section 10.

26For some theories with large TR, see e.g. [84].
27For the production of GW from the QCD phase transition, see e.g. [85].
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β/H⋆ can span many order of magnitude and radically modify fp. Its lower bound is

set by Big Bang Nucleosynthesis (BBN), which provides an upper bound on the num-

ber of relativistic species during nucleosynthesis that can be converted into the constraint
∫

∞

0 dff−1h2ΩGW(f) . 1.12 × 10−6 [86, 87]. For the spectrum in eq. (9.2) this constraint

implies h2ΩGW . 5.6 × 10−7, corresponding to log10(β/H⋆) & 0.045 for vw = v1 and

log10(β/H⋆) & 0.16 for vw = v2.

In the next two decades several GW observatories will have the potential to observe,

or constrain, the SGWB produced in our benchmark models. Figure 7 highlights the sen-

sitivity curves of the main existing and forthcoming GW experiments. The dashed-dotted

lines at f ∼ 1 nHz and ∼ 10Hz are the power-law sensitivity curves h2Ωpls,NANO and

h2Ωpls,LIGOO1 [88, 89] reached by the NANOGRAV and aLIGO collaborations, respec-

tively [90, 91]. These collaborations do not find any SGWB in their data and consequently

rule out any spectrum h2ΩGW(f) that intersects one of the two dashed-dotted curves and

behaves as a power law inside them (EPTA and PPTA also achieve a bound similar to the

NANOGRAV’s one [92, 93]). The solid lines correspond to the future sensitivity curves of

SKA, LISA, ET and aLIGO at its design sensitivity. Since for SKA, LISA and ET there

exists no official and/or updated power-law sensitivity curve, for all future detectors we

perform our analysis starting from the “standard” sensitivity curves. Specifically, for SKA

we determine h2Ωsens,SKA(100) and h2Ωsens,SKA(2000) from refs. [94, 95], assuming observa-

tion of respectively 100 and 2000 milli-second pulsars (light and dark red lines respectively)

during 20 years with 14 days of cadence and 3 × 10−8 timing precision. For LISA (orange

line) we take the sensitivity curve h2Ωsens,LISA from ref. [96], while for aLIGO at its de-

sign sensitivity (green line) we obtain h2Ωsens,LIGOdesign by joining the sensitivity curves of

Virgo, LIGO and KAGRA of ref. [97]. For ET (yellow line) we use the “ET-D” sensitivity

curve presented in ref. [98]. The dashed lines display the SGWBs h2ΩGW corresponding to

the benchmark scenarios B1, B2 and B11 summarized in table 2 (the values of α and β/H

from eqs. (9.7) and (9.6) are also quoted in the table). The SGWB spectra touching the

blue area are ruled out by the BBN bound previously discussed.28

Figure 8 sketches the parameter region (hatched areas) of the plane β/H⋆–TR that

NANOGRAV, EPTA, PPTA and aLIGO O1 rules out, assuming the spectrum in eq. (9.2)

with vω = v2. The exclusion is based on the criterion that a spectrum touching the

power-low sensitivity curves of these experiments would have already been detected.29 The

blue area is the BBN bound above mentioned. The remaining areas sketch the β/H⋆–TR
parameter regions for which ΩGW will yield a Signal-to-Noise Ratio (SNR) larger than 10

in the data which will be collected in the next two decades. For concreteness, for each

28Notice that the blue area includes the region β/H⋆ ≪ 1. In this limit the phase transition is so slow

that our prediction of the GW spectrum should be corrected, taking into account e.g. the expansion of

the universe during the phase transition. For continuity we do not however expect such corrections to

make points with β/H⋆ ≪ 1 compatible with BBN, while points with β/H⋆ ≃ 1.2, for which our GW

spectrum prediction is rather trustable, are excluded. We thank the referee for pointing out this (implicit)

approximation.
29We do not check that h2ΩGW behaves as a power law within the full frequency band of each experiment.

Were we adopting this (correct) criterion, we would not expect appreciable differences in the corresponding

plot region.
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Figure 7. SGWB signals of the benchmark scenarios B1 (lower dashed curve), B2 (middle dashed

curve) and B11 (upper dashed curve), and the current and forthcoming GW experiments able to

test them. The dotted-dashed lines correspond to the power-law sensitivity curves h2Ωpls of PPTA

& EPTA & NANOGRAV (at frequencies f ∼nHz) and aLIGO O1 (at frequencies f ∼100Hz); the

solid lines correspond to the sensitivity curves Ωsens(f) of SKA observing 100 milli-second pulsars

(dark red), SKA observing 2000 milli-second pulsars (light red), LISA (orange), aLIGO at its final

design (green) and ET (yellow).

experiment we check the condition

SNRi =

√

(3.16× 107s)
Ti

1 year

∫

∞

0
df

Ω2
GW(f)

Ω2
sens,i(f)

> 10 , (9.8)

with Ti = 20, 3, 7 and 8 years, respectively, for i =“SKA”,“LISA”, “ET” and “aLIGO

design” (these numbers are very indicative estimates of the amount of data that each

experiment may take by 2040 including duty cycles). The parameter reach that we obtain

for LISA does not substantially differ from the one previously calculated in ref. [77].

We remind that figures 7 and 8 assume vw = v2. The forecast for a different bubble

velocity, vω, can be obtained from the right panel of the figure by shifting the coloured

regions by 0.5 log10[0.07/ξ(vω)] and log10[0.06/(ξ̃(vω)
√

ξ(vω))] along the log10(β/H⋆) and

log10(TR/GeV) axes, respectively. Thus for the case vw = v1 the shifts are around 10%

in log10(β/H⋆), and 1% in log10(TR/GeV), which are negligible with respect to the ap-
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Figure 8. The TR–β/H⋆ parameter space that exhibits SNR > 10 at SKA, LISA, aLIGO, and

ET for vw = v2. The etched areas are in tension with present aLIGO O1, EPTA, PPTA and

NANOGRAV constraints [90–93]. The BBN bound excludes the blue area. The considered bench-

mark scenarios Bi (blue points), Bi (orange points), D1 (green point) and E1 (red point) are

detectable at both LISA and ET. The stepwise behavior shown in the inserted figure, a zoom of

the main one, is a consequence of the continuous change of regime from O(4) to O(3) bubbles when

decreasing the IR brane parameter λ1; cf. eqs. (7.12) and (7.13) and colors of λ1 in table 1.

proximations on the spectrum we are making. Notice also that this rescaling proves that

subsonic velocities, suitable for EW baryogenesis, are not incompatible with detection. For

instance, within our approximations (which might not be reliable for small velocities), the

“simultaneous phase transition” of the scenario D1 would be detectable at LISA, even with

vw & 0.02 30 (fully consistent with the scenario of EW baryogenesis [100], which is known

to work only for the cases of low (subsonic) wall velocities, as said above). Unfortunately

this would not hold for the ET detector, whose detection region would stay completely on

the right of the point representing D1.

In conclusion, for both vw = v1 and vw = v2, all our benchmark scenarios are promising

for detection at both LISA and ET, whereas SKA and aLIGO, as well as present GW

30See e.g. the more complete analysis in ref. [99].
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constraints, do not reach them. Out of our benchmarks, only scenario B11 is ruled out due

to the BBN bound. In general, measuring the SGWB at two experiments, sensitive to very

different frequencies, will allow to better understand the nature of the SGWB. We further

comment on the possible implications of this result in the conclusions.

10 Heavy radion phenomenology

As concluded in the previous sections, a considerable amount of back-reaction on the

metric facilitates the confined/deconfined phase transition. It also typically implies that

the radion is lighter than any KK resonances and has a mass around the TeV scale, at

least for the parameter choices solving the hierarchy problem. Due to this mass hierarchy,

in our particle setup with only SM-like fields at the EW scale the radion can decay only

into SM-like fields. In particular, since the radion couples to the trace of the energy

momentum tensor, its production and decay channels are those of the SM Higgs, although

with different strengths. We can thus estimate the detection prospects for the radion at

the LHC by rescaling the cross sections and branching rations valid for a generic SM-like

Higgs, H [101]31 with mass equal to the radion mass.

10.1 Radion couplings

As in our particle setup the 125-GeV Higgs boson is localized towards the IR brane to

solve the hierarchy problem, hereafter we make the simplifying hypothesis that the Higgs

is exactly localized at the IR brane. This allows to avoid technicalities that would affect

the final result only marginally. The relevant 4D action for the radion, the generic Higgs

H and the SM fields is then

S4 = 2

∫ r1

0
dr

[

(1− F )ψ̄L,Ri /DψL,R −
(

1

4
+
F

2

)

trF 2
µν − e−A(1− 2F )M(φ)ψ̄ψ (10.1)

+ δ(r − r1)

{

−ℓhf√
2
(1−4F )(Hψ̄LψR + h.c.) + (1−2F )

1

2
(DµH)2 − (1−4F )V (H)

}]

where all 5D fields have already been rescaled with the corresponding power of the warp

factor and the 5D Dirac mass is M(φ) = ∓cL,RW (φ). Moreover V (H) has the form of

VSM(H, T = 0) in eq. (8.2) but with a generic λ (λ ≃ 0.123 only when H matches the 125-

GeV SM Higgs H). In addition the zero modes are defined, in terms of the 4D fields, as

Aµ(x, r) =
Aµ(x)√

2r1
,

ψL,R(x, r) =
e(1/2−cL,R)A

[

2
∫ r1
0 dre(1−2cL,R)A

]1/2
fL,R(x) , (10.2)

and the 5D (g5) and 4D (g4) gauge couplings are correspondingly related by g5 = g4
√
2r1.

31In non-minimal particle setups the radion might be coupled to sectors that do not interact with the

SM fields. In this case the considerations in this section would be relaxed, as all radion signal strengths

would be correspondingly reduced, with benefits on the minimal radion mass experimentally allowed and,

in turn, on the range of values that are permitted for E0.
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Using the radion ansatz F (x, r) ≡ e2AR(x) and expanding eq. (10.1) to first order in

R(x), we obtain the reparametrization (see eq. (5.9))

µ(x) = ℓ−3/2

∫ rS

r1

X−1
F − ℓ−3/2X

1/2
F (r1)R(x) +O(R2) . (10.3)

This leads to the canonically normalized radion field R(x) defined, in terms of the Planck

scale relation in eq. (3.7), by

R(x) = −
[

∫ r1
0 e−2A

6
∫ r1
0 e2A

]1/2
R(x)

MP
. (10.4)

Couplings to massless gauge bosons. To compare the loop-induced couplings of the

radion with those of the heavy Higgs H, it is useful to calculate the loop-induced couplings

of both scalar fields. In the case of the heavy Higgs, the interactions to photons and gluons

are given by the Lagrangians

LHγγ =
α

8π





∑

f

NcQ
2
fA1/2(τf ) +A1(τW )





h

v
FµνF

µν , (10.5)

LHgg =
αs

16π





∑

Q

A1/2(τQ)





h

v
trGµνG

µν , (10.6)

where τi = m2
H/4m

2
i and H = v + h. For the functions A1/2(τ) and A1(τ) we use their

generic expressions defined e.g. in ref. [102] although, in our regime of heavy Higgs with

τ = m2
H/(4m

2
i ) ≫ 1, they can be well approximated as

A1(τ) → −2, A1/2(τ) → − [log(4τ)− iπ]2

2τ
. (10.7)

It follows that

∑

f

NcQ
2
fA1/2(τf ) +A1(τW ) = −2 +O(m2

t /m
2
H) , (10.8)

∣

∣

∣

∣

∣

∣

∑

Q

A1/2(τQ)

∣

∣

∣

∣

∣

∣

=
2m2

t

m2
H

[

log2(m2
H/m

2
t ) + π2

]

+O(m2
b/m

2
H) , (10.9)

which implies that LHγγ and LHgg are respectively dominated by diagrams with W -boson

exchange and top exchange.

For the radion interactions with the massless gauge bosons we take the results from

ref. [24]. The Lagrangian relevant for photons is given by

LRγγ = −R(x)
2

F 2
µν(x)

∫ r1
0 dre2A

r1
, (10.10)

– 34 –



J
H
E
P
0
9
(
2
0
1
8
)
0
9
5

Scen. mrad/TeV mG/TeV cγ cg cV cH cf
B2 0.915 4.80 0.472 0.164 0.0649 0.259 0.259

B8 0.745 4.19 0.542 0.146 0.0744 0.298 0.298

C1 0.890 3.08 0.532 0.179 0.0904 0.362 0.362

C2 0.751 2.77 0.595 0.162 0.101 0.404 0.404

D1 0.477 4.50 3.791 0.475 0.397 1.586 1.586

E1 0.643 4.16 0.562 0.124 0.0746 0.298 0.298

Table 3. Masses of the radion and the n = 1 graviton mode, and coupling coefficients of the radion

interactions with the SM fields, for the scenario B2, B8, C1, C2, D1 and E1.

and similarly for gluons. For our aim it is convenient to re-express such Lagrangians in

terms of the canonically normalized radion R. We find

LRγγ =
α

8π

[

∑

f

NcQ
2
fA1/2(τf ) +A1(τW )

]

cγ
R(x)

v
FµνF

µν , (10.11)

LRgg =
αs

16π

[

∑

Q

A1/2(τQ)

]

cg
R(x)

v
trGµνG

µν , (10.12)

where cγ (cg) measures the departure of the γγ (gg) coupling from the value that the

hypothetical SM Higgs H has when mH = mrad. If the radion had couplings exactly equal

to those of the SM Higgs, then cγ and cg would be equal to one, but in general they are

given by

cγ = − 4π

α
√
6
[

∑

f NcQ2
fA1/2(τf ) +A1(τW )

]

v

kr1e−A1MP

[

k2
∫

dr e−2A

∫

dr e2A−2A1

]1/2

,

cg = − 8π

αs

√
6
[

∑

QA1/2(τQ)
]

v

kr1e−A1MP

[

k2
∫

dr e−2A

∫

dr e2A−2A1

]1/2

. (10.13)

Table 3 reports the numerical results of cγ and cg arising in the benchmark scenarios B2,

B8, C1, C2, D1 and E1 introduced in table 1.

Couplings to fermions. After canonically normalizing the fermions, the fermion masses

are given by

mf =
ℓhfv√

2

e(1−cfL−cfR )A1

2
[

∫

e(1−2cfL )A
∫

e(1−2cfR )A
]1/2

, (10.14)

and their couplings to the radion are manifest in the Lagrangian interaction

Lrf̄f = −R(x)

v
cfmf f̄f , (10.15)

with

cf =

√

8

3

(
∫

e−2A

∫

e2(A−A1)

)1/2
v

e−A1MP
. (10.16)
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As before, the coupling coefficient cf would be equal to one for a radion coupled to fermions

exactly like the SM Higgs.

The coefficient cf is universal, i.e. equal for all fermions. However the full radion

couplings to fermions depend on the fermion masses, as it happens for the Higgs; see

eq. (10.15). The values of cf in the considered benchmark scenarios are listed in table 3.

Couplings to massive gauge bosons. In the Lagrangian involving the radion interac-

tions with the massive gauge bosons, the couplings can be again normalized as

LRV V = −R(x)

v

{

2cW m2
WWµW

µ + cZ m
2
ZZµZ

µ
}

, (10.17)

with

cV = cW = cZ =
1

4
cf . (10.18)

Were these couplings of the same size of those of the SM Higgs, we would have obtained

cW = cZ = 1. The values of the coefficients cW and cZ in our selected scenarios are shown

in table 3.

Coupling to the Higgs boson. The coupling of the radion to Higgs bosons can be

deduced from the interaction

LRHH = −R(x)

v
cH

1

2
m2

HH2 . (10.19)

The interaction would have the same size of the SM trilinear interaction for cH = 1. For a

generic radion it instead results

cH = cf . (10.20)

The numerical values of cH for the considered models are exhibited in table 3.

10.2 LHC constraints on the radion signal strengths

The production cross section and decays of the radion at the LHC can be calculated by

manipulating the results on the productions and decays of a (heavy) SM Higgs. We concen-

trate on the scenarios B2, B8 and D1 since they well represent the collider phenomenology

of our scenarios.

Radion production. At the LHC we can produce the heavy radion by the following

main production mechanisms:

• Gluon fusion, with a cross-section σggF (gg → R) related to the corresponding heavy

SM Higgs prediction σggFSM (gg → H) by

σggF
R

≡ σggF (gg → R) ≃ |cg|2σggFSM (gg → H) , (10.21)

assuming mH = mrad. Taking σggFSM (gg → H) for mH =(0.915, 0.745, 0.477)TeV at√
s = 13TeV [101], we get σggFSM (gg → H) ≃ (0.219, 0.685, 5.62) pb in B2, B8 and D1,

respectively. Using the values of cg from table 3 we then obtain

σggF
R

≃ (5.88, 14.6, 1270) fb (10.22)

in the three considered benchmark scenarios.
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• Vector-boson fusion, with a cross-section σVBF(V V → R) related to σVBF
SM (V V →

H) by

σVBF
R ≡ σVBF(V V → R) ≃ |cV |2σVBF

SM (V V → H) , (10.23)

provided mH = mrad. For a Higgs as heavy as the radion in B2, B8 or D1, ref. [101]

provides σVBF
SM (V V → H) ≃ (0.141, 0.220, 0.546) pb. From the values of cV in table 3

we hence obtain

σVBF
R ≃ (0.59, 1.22, 86) fb . (10.24)

Likewise there exists the associated production with V , σ(pp → V ∗ → RV ), which

is proportional to |cV |2, and the associated production with tt̄, σ(gg → tt̄R). However

they are tiny at the considered values of the radion mass so that they can be neglected

as compared to the aforementioned production processes. In conclusion our benchmark

scenarios highlight that at the LHC the TeV-scale radion is mainly produced via gluon

fusion, and to some extent via vector-boson fusion.

Radion decay. The radion decays, mimicking the (heavy) SM Higgs, have the partial

widths

Γ(R → XX̄) ≃ |cX |2ΓSM(H → XX̄) , (10.25)

with X = γ, g,W,Z, f . On top of these channels, the radion can also decay into a pair of

125-GeV Higgses with partial width

Γ(R → HH) =
|cH|2
16π

m4
H

v2mr

√

1− 4m2
H

m2
r

, (10.26)

from which it turns out that the radion branching fraction into an X pair is

BR
XX ≃ |cX |2ΓSM(H → XX̄)

Γ(R → HH) +
∑

Y |cY |2ΓSM(H → Y Ȳ )
, (10.27)

with Y = γ, g,W,Z, f . The numerical values of the radion partial widths and branching

ratios in scenarios B1, B8 and D1 are quoted in tables 4 and 5. As we can see, at the TeV

scale the radion mainly decays into WW , ZZ and tt̄.

From these results we observe that the radion total width is ΓR ≃ (4.51, 3.86, 35.7)

GeV in B1, B8 and D1, respectively. The radion is therefore a narrow resonance since in

these three scenarios it turns out that

ΓR

mr
≃ (4.9, 5.2, 75)× 10−3 . (10.28)

Experimental bounds. Since the radion is a narrow resonance, the cross section

SggF (VBF)
XX ≡ σggF (VBF)(pp→ R → XX) can be calculated as

SggF (VBF)
XX = σ

ggF (VBF)
R

BR
XX . (10.29)
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Scen. ΓR→WW ΓR→ZZ ΓR→hh ΓR→tt̄ ΓR→bb̄ ΓR→τ τ̄ ΓR→γγ

B2 1220 610 5.70 2670 0.825 0.129 0.0385

B8 786 389 9.01 2680 0.917 0.138 0.0143

D1 4960 2350 362 28000 17.73 2.49 0.378

Table 4. Partial widths of the radion in the scenarios B2, B8 and D1. All widths are in MeV units.

Scen. BR
WW BR

ZZ BR
hh BR

tt̄ BR

bb̄
BR
τ τ̄ BR

γγ

B2 0.271 0.135 1.26 · 10−3 0.592 1.83 · 10−4 2.85 · 10−5 8.55 · 10−6

B8 0.203 0.101 2.33 · 10−3 0.693 2.37 · 10−4 3.58 · 10−5 3.70 · 10−6

D1 0.139 6.58 · 10−2 1.01 · 10−2 0.785 4.97 · 10−4 6.99 · 10−5 1.06 · 10−5

Table 5. The radion branching fractions in the scenarios B2, B8 and D1.

Scen. SggF
WW SggF

ZZ SggF
τ τ̄ SggF

γγ +SVBF
γγ SVBF

WW SVBF
ZZ SVBF

τ τ̄

B2 (predic.) 1.59 0.80 1.7 · 10−4 (5.0 + 0.5) · 10−5 0.16 0.080 1.7 · 10−5

B2 (bound) 52 14 11 0.29 12 8 —

B8 (predic.) 2.96 1.47 5.2 · 10−4 (5.4 + 0.5) · 10−5 0.25 0.12 4.4 · 10−5

B8 (bound) 91 42 20 0.34 19 19 –

D1 (predic.) 176 83 0.09 0.013+0.001 12 6 0.006

D1 (bound) 1100 300 90 2 200 130 —

Table 6. The predictions of S
ggF (V BF )
XX and their corresponding 95% C.L. upper bounds in the sce-

narios B2, B8 and D1. The bound on the γγ channel does not distinguish between gluon and vector

fusion production and then has to be compared to the sum of the two processes. No specific bound

on SVBF
ττ̄ is considered. All quantities are in fb units. The bounds are taken from refs. [103–106].

To determine whether such collider features are experimentally allowed, we consider the

ATLAS searches of refs. [103–106] constraining theWW , ZZ, ττ and γγ channels.32 These

furnish 95% C.L. bounds on SggF
WW , SggF

ZZ , SggF
τ τ̄ , SVBF

τ τ̄ , SVBF
WW , SVBF

ZZ and SggF
γγ +SVBF

γγ as func-

tions of the scalar mass. Table 6 reports the pertinent limits and the respective predictions

of SggF
XX and SVBF

XX in each of the considered scenarios. Notice that the constraint on the γγ

channel does not distinguish between the gluon and the vector-boson fusion productions,

and for this reason it has to be compared with the sum of the two production processes.

We conclude that the scenarios B2, B8 and D1 are in full agreement with the current

bounds33 and, given the values collected in tables 4 and 5, we expect the same conclusion

32The equivalent CMS searches (see e.g. ref. [107]) tend to provide weaker bounds and therefore we do

not take them into account. On the other hand, since we eventually find that our scenarios are well within

the current limits, we do not expect our conclusions to depend on the particular analyses we consider.
33In principle also the searches for the SM-like and graviton KK modes might be relevant. Under some

model assumptions, the bounds in ref. [108], for instance, require the KK gluons to be above 4TeV,

approximatively, and thus should not be in tension with most of our scenarios. Moreover such bounds are

extremely model dependent and can thus be circumvented by adjusting our particle setups. For instance,

assuming the first and second generation of quarks localized towards the UV brane could relax the bounds

from Drell-Yan production, as the KK modes are extremely localized towards the IR brane, without major

changing on our main results.
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to hold for all previously investigated benchmark configurations, as D1 is the scenario with

the smallest radion mass and largest coupling coefficients. In particular, among scenarios

B2, B8 and D1, only D1 has some channels (i.e. the ZZ and WW ones) that are not

far below the experimental constraints. It then results that, at least for the parameter

regions our benchmark points represent, future LHC data, with much larger integrated

luminosity, will be able to probe some of the decay channels here investigated, but likely

only future colliders [109] will be capable of discovering the soft-wall radion, or putting

strong constraints on the model. This will probably happen in conjunction with the LISA

and ET measurements, given the time schedule of future collider and GW facilities. Of

course such conclusion might be not generic, as it is potentially biased by the limited

number of benchmark points we have investigated. To clarify this point we should extend

the above procedure to a much larger set of parameter points, an analysis that we postpone

to a future publication.

11 Conclusions

The hierarchy problem has motivated several ultraviolet completions of the Standard

Model. Among these, the frameworks of warped extra dimensions have gained popularity

in the last decade. The interest in these frameworks is two-fold: on the one side, they

may be the correct description of nature if the latter has a five dimensional spacetime;

on the other, they may be a useful tool for understanding a strongly-coupled sector in a

four dimensional nature. The most investigated warped model is the Randall-Sundrum

one, followed by scenarios where the metric is less trivial, which can show phenomeno-

logical advantages related to the description of precision electroweak observables. In the

present paper we have explored technical challenges and phenomenological issues of one

of these setups, the soft-wall models, with special emphasis on the so-called holographic

phase transition.

Concerning the technical achievements, we have extended the application of the super-

potential formalism to configurations where the mechanism stabilizing the extra dimension

can have a strong back-reaction on the metric. This formal result is remarkable because, in

principle, it can be applied to any warped model, with clear advantages on the parameter

space that can be investigated without losing control on the back-reaction effects. (We

remind that the correct treatment of the back-reaction has strongly limited the parameter

space that some of the previous studies could explore [5–8]).

As a concrete application, we have applied the proposed formalism to the soft-wall

model, where the potential in the bulk behaves exponentially near the IR brane. The

radion phase transition is controlled, on the one hand by the free energy in the confined

phase (i.e. essentially the depth of the effective potential at its minimum), and on the

other hand by the free energy in the deconfined phase. Concerning the confined phase, the

depth of the effective potential is essentially controlled by the radion mass, which in turn

is controlled by the amount of back-reaction on the gravitational metric.34 The heavier the

34In the extreme case of no back-reaction, the radion potential is flat, consequently the radion is massless

and there is no phase transition. We have exemplified such situation in scenario A1 above.
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radion, the deeper (and steeper) the effective potential, the smaller the Euclidean action (as

the Euclidean ”time” to get to the true minimum is shorter), and consequently the higher

the nucleation temperature. In this way, for the cases of large back-reaction considered in

this paper, there is no supercooling and the nucleation temperature is usually above the

electroweak temperature. On the other hand the free energy in the deconfined phase, as

given by eq. (6.13), depends on the factor ah(T ) which, for the cases of small back-reaction

is ah(T ) ≃ 1, while for the cases of large back-reaction is ah(T ) ≪ 1, a fact which makes

easier the phase transition and increases the nucleation temperature by a factor O(a
−1/4
h ).

Therefore the nucleation temperature is not necessarily much below the electroweak scale,

which implies that the SM-like particles in the plasma are not Boltzmann suppressed during

the bubble expansion and collision. Clearly, the presence of this rich plasma could have

relevant effects on the dynamics of the conformal symmetry breaking and, in turn, on the

phenomenology of the model.

Our method has allowed to determine the radion potential even in the regime of large

t’Hooft coupling, e.g. as large as N ≃ 25, when the back-reaction goes away if all the other

parameters are fixed, and the phase transition meets more difficulties to happen. The

reason the phase transition can take place in those cases is because we can still compensate

the sizable back-reaction by changing the values of the other parameters, in particular the

values of the field φ at the UV and IR branes, v0 and v1. However we have found that the

radion mass increases parametrically in the cases with large values of N , the low energy

effective theory describing the SM degrees of freedom and the radion field should not be

trustable, and one instead should consider the whole set of 5D Kaluza-Klein modes in the

thermal plasma, a task outside the scope of the present paper.

In summary, in the class of models we consider in this paper, where conformality is

strongly broken in the IR brane, and we can keep track of the back-reaction, the nucleation

temperature is higher than the electroweak temperature and thus the dilaton phase tran-

sition naturally occurs (sequentially) before (at higher temperatures than) the electroweak

phase transition.35 However (less natural) solutions where both phase transitions are si-

multaneous can be implemented in our class of models only at the price of decreasing the

value of N (see the benchmark scenario D1 above). In all the cases there is no supercooling

in the deconfined phase and the amount of inflation which takes place is very marginal and

does not affect at all the dynamics of the phase transition.

Together with other quantities, the reheating temperature plays a key role in the

signatures of the radion phase transition. In most of the considered benchmark scenarios

(cf. scenarios of classes B, C and E) the reheating temperature is much above 150GeV; thus

the electroweak phase transition is subsequent to the holographic one and resembles the one

of the SM. On the contrary, when this does not happen (see e.g. benchmark scenario D1)

and the Higgs is localized at the infrared brane, the electroweak phase transition turns out

to be supercooled and then of first order. Electroweak baryogenesis in soft-wall models thus

looks possible, although further studies would be required to better understand this issue.

35This makes a difference with respect to the class of models presented in ref. [13] where conformality is

only weakly broken and both phase transitions occur simultaneously.
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We also have investigated the detectability prospects of the model at the forthcoming

gravitational wave observatories. Present and future pulsar time array experiments, and

the current generation of ground based interferometers, are not sensitive to the stochastic

gravitational signals our benchmark scenarios lead to. The LISA and ET interferometers

can instead measure all of them with a signal to noise ratio of about 10 or larger (assum-

ing the absence of further astrophysical [110] or cosmological [87] sources). Simultaneous

detection of the signal at both experiments is possible due to the broadband of the pre-

dicted power spectrum and the large signal amplitude that emerges when the bubbles are

supersonic. Curiously, in a corner of parameter space, the signal is so powerful that the

big bang nucleosynthesis constraint rules it out. On the other hand, for subsonic bubble

velocities (vw & 0.02), which are those favored by electroweak baryogenesis, the signal is

weaker and redshifted, and only LISA can detect (most of) the benchmark scenarios.

We have moreover noticed that in the large-back-reaction regime the soft-wall scenario

tends to provide a radion mass that is only slightly suppressed with respect to the radion

vacuum expectation value. For this reason, once such a vacuum expectation value is fixed at

the electroweak scale to alleviate the hierarchy problem, the radion mass is not necessarily

of the order of the electroweak scale or below. Thanks to this feature, the radion is not in

tension with present LHC searches. Its observation may be however feasible at the future

LHC runs.

In conclusion, by means of the aforementioned superpotential formalism, we have de-

termined some interesting features of the soft-wall models in the presence of large back-

reaction. A heavy radion and a large nucleation temperature look to be the main smoking

guns. Whereas measuring the former at colliders would be suitable by standard techniques,

inferring the latter would need improvements in the prediction and detection of stochastic

gravitational wave backgrounds. In fact, based on the envelope approximation we have

followed, two phase transitions having the same reheating temperature but different nu-

cleation temperatures would provide the same stochastic signal. Only going beyond the

envelope approximation, and having well under control the plasma effects during the phase

transition, would allow to disentangle scenarios with tiny nucleation temperature — where

most of the SM degrees of freedom are Boltzmann suppressed, as it typically happens in

the Randall-Sundrum model — from those with large nucleation temperature. More de-

tailed theoretical predictions, as well as more refined phase transition simulations, are thus

required in order to break this degeneracy. We look forward to knowing them in order to

understand how to possibly disentangle a given warped framework from another one.

Note added: before submission, the LISA CosWG preview of this paper unveiled the ex-

istence of refs. [111, 112], which partially overlap with section 9, but all done independently

of this paper.
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der Grant FQM-225, by the Basque Government under Grant IT979-16, and by the Spanish

Consolider Ingenio 2010 Programme CPAN (CSD2007-00042). The research of EM is also

supported by the Ramón y Cajal Program of the Spanish MINEICO, and by the Univer-
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[24] E. Megias, O. Pujolàs and M. Quirós, On dilatons and the LHC diphoton excess, JHEP 05

(2016) 137 [arXiv:1512.06106] [INSPIRE].

[25] K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision

tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

[26] E. Megias, M. Quirós and L. Salas, gµ − 2 from vector-like leptons in warped space, JHEP

05 (2017) 016 [arXiv:1701.05072] [INSPIRE].
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[41] C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys.

Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].

[42] S. Carlip, Black hole thermodynamics and statistical mechanics, Lect. Notes Phys. 769

(2009) 89 [arXiv:0807.4520].

[43] S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15

(1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

[44] C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum

corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

[45] A.D. Linde, Fate of the false vacuum at finite temperature: theory and applications, Phys.

Lett. B 100 (1981) 37.

[46] M. Quirós, Finite temperature field theory and phase transitions, in the proceedings of the

Summer School in High-energy physics and cosmology, June 29–July 17, Trieste, Italy

(1998), hep-ph/9901312 [INSPIRE].

[47] M. Quirós, Field theory at finite temperature and phase transitions, Helv. Phys. Acta 67

(1994) 451 [INSPIRE].

[48] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak

baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36.

[49] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak

phase transition at m(H) larger or equal to m(W )?, Phys. Rev. Lett. 77 (1996) 2887

[hep-ph/9605288] [INSPIRE].

[50] K. Rummukainen et al., The universality class of the electroweak theory, Nucl. Phys. B 532

(1998) 283 [hep-lat/9805013] [INSPIRE].

[51] M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron rate in the minimal standard

model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].

– 44 –

https://arxiv.org/abs/1705.04822
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.04822
https://doi.org/10.1103/PhysRevD.96.075030
https://doi.org/10.1103/PhysRevD.96.075030
https://arxiv.org/abs/1707.08014
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08014
https://doi.org/10.1016/j.nuclphysBPS.2018.03.011
https://doi.org/10.1016/j.nuclphysBPS.2018.03.011
https://arxiv.org/abs/1709.05100
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.05100
https://doi.org/10.1103/PhysRevD.63.084017
https://arxiv.org/abs/hep-th/9912001
https://inspirehep.net/search?p=find+EPRINT+hep-th/9912001
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevLett.28.1082
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,28,1082%22
https://doi.org/10.1103/PhysRevD.15.2752
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D15,2752%22
https://doi.org/10.1140/epjc/s10052-014-2790-x
https://doi.org/10.1140/epjc/s10052-014-2790-x
https://arxiv.org/abs/1305.3919
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3919
https://doi.org/10.1088/1126-6708/2007/05/075
https://arxiv.org/abs/hep-th/0703152
https://inspirehep.net/search?p=find+EPRINT+hep-th/0703152
https://doi.org/10.1007/JHEP08(2014)081
https://arxiv.org/abs/1401.4998
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4998
https://doi.org/10.1088/1742-6596/670/1/012034
https://arxiv.org/abs/1510.01990
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.01990
https://doi.org/10.1103/PhysRevD.63.065002
https://doi.org/10.1103/PhysRevD.63.065002
https://arxiv.org/abs/hep-th/0008151
https://inspirehep.net/search?p=find+EPRINT+hep-th/0008151
http://dx.doi.org/10.1007/978-3-540-88460-6_3
http://dx.doi.org/10.1007/978-3-540-88460-6_3
https://arxiv.org/abs/0807.4520
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.15.2929
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D15,2929%22
https://doi.org/10.1103/PhysRevD.16.1762
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D16,1762%22
http://dx.doi.org/10.1016/0370-2693(81)90281-1
http://dx.doi.org/10.1016/0370-2693(81)90281-1
https://arxiv.org/abs/hep-ph/9901312
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9901312
https://inspirehep.net/search?p=find+J+%22Helv.Phys.Acta,67,451%22
http://dx.doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1103/PhysRevLett.77.2887
https://arxiv.org/abs/hep-ph/9605288
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9605288
https://doi.org/10.1016/S0550-3213(98)00494-5
https://doi.org/10.1016/S0550-3213(98)00494-5
https://arxiv.org/abs/hep-lat/9805013
https://inspirehep.net/search?p=find+EPRINT+hep-lat/9805013
https://doi.org/10.1103/PhysRevLett.113.141602
https://arxiv.org/abs/1404.3565
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3565


J
H
E
P
0
9
(
2
0
1
8
)
0
9
5

[52] S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, The baryon asymmetry

from a composite Higgs, arXiv:1803.08546 [INSPIRE].

[53] S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Electroweak phase

transition and baryogenesis in composite Higgs models, arXiv:1804.07314 [INSPIRE].

[54] E. Witten, Cosmic separation of phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].

[55] A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum

bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].

[56] A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles:

envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372

[astro-ph/9211004] [INSPIRE].

[57] M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order

phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].

[58] C.J. Hogan, Gravitational radiation from cosmological phase transitions, Mon. Not. Roy.

Astron. Soc. 218 (1986) 629 [INSPIRE].

[59] C. Caprini and R. Durrer, Gravitational waves from stochastic relativistic sources:

primordial turbulence and magnetic fields, Phys. Rev. D 74 (2006) 063521

[astro-ph/0603476] [INSPIRE].

[60] C. Caprini, R. Durrer and G. Servant, Gravitational wave generation from bubble collisions

in first-order phase transitions: an analytic approach, Phys. Rev. D 77 (2008) 124015

[arXiv:0711.2593] [INSPIRE].

[61] S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles,

JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].

[62] T. Kahniashvili et al., Gravitational radiation from primordial helical inverse cascade MHD

turbulence, Phys. Rev. D 78 (2008) 123006 [Erratum ibid. D 79 (2009) 109901]

[arXiv:0809.1899] [INSPIRE].

[63] T. Kahniashvili, A. Kosowsky, G. Gogoberidze and Y. Maravin, Detectability of

gravitational waves from phase transitions, Phys. Rev. D 78 (2008) 043003

[arXiv:0806.0293] [INSPIRE].

[64] C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from

turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009)

024 [arXiv:0909.0622] [INSPIRE].

[65] T. Kahniashvili, L. Kisslinger and T. Stevens, Gravitational radiation generated by

magnetic fields in cosmological phase transitions, Phys. Rev. D 81 (2010) 023004

[arXiv:0905.0643] [INSPIRE].

[66] M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the

sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301

[arXiv:1304.2433] [INSPIRE].

[67] J.T. Giblin Jr. and J.B. Mertens, Vacuum bubbles in the presence of a relativistic fluid,

JHEP 12 (2013) 042 [arXiv:1310.2948] [INSPIRE].

[68] J.T. Giblin and J.B. Mertens, Gravitional radiation from first-order phase transitions in the

presence of a fluid, Phys. Rev. D 90 (2014) 023532 [arXiv:1405.4005] [INSPIRE].

[69] L. Kisslinger and T. Kahniashvili, Polarized gravitational waves from cosmological phase

transitions, Phys. Rev. D 92 (2015) 043006 [arXiv:1505.03680] [INSPIRE].

– 45 –

https://arxiv.org/abs/1803.08546
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08546
https://arxiv.org/abs/1804.07314
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.07314
https://doi.org/10.1103/PhysRevD.30.272
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D30,272%22
https://doi.org/10.1103/PhysRevD.45.4514
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D45,4514%22
https://doi.org/10.1103/PhysRevD.47.4372
https://arxiv.org/abs/astro-ph/9211004
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9211004
https://doi.org/10.1103/PhysRevD.49.2837
https://arxiv.org/abs/astro-ph/9310044
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9310044
https://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,218,629%22
https://doi.org/10.1103/PhysRevD.74.063521
https://arxiv.org/abs/astro-ph/0603476
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0603476
https://doi.org/10.1103/PhysRevD.77.124015
https://arxiv.org/abs/0711.2593
https://inspirehep.net/search?p=find+EPRINT+arXiv:0711.2593
https://doi.org/10.1088/1475-7516/2008/09/022
https://arxiv.org/abs/0806.1828
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1828
https://doi.org/10.1103/PhysRevD.78.123006
https://arxiv.org/abs/0809.1899
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.1899
https://doi.org/10.1103/PhysRevD.78.043003
https://arxiv.org/abs/0806.0293
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0293
https://doi.org/10.1088/1475-7516/2009/12/024
https://doi.org/10.1088/1475-7516/2009/12/024
https://arxiv.org/abs/0909.0622
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0622
https://doi.org/10.1103/PhysRevD.81.023004
https://arxiv.org/abs/0905.0643
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0643
https://doi.org/10.1103/PhysRevLett.112.041301
https://arxiv.org/abs/1304.2433
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.2433
https://doi.org/10.1007/JHEP12(2013)042
https://arxiv.org/abs/1310.2948
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.2948
https://doi.org/10.1103/PhysRevD.90.023532
https://arxiv.org/abs/1405.4005
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4005
https://doi.org/10.1103/PhysRevD.92.043006
https://arxiv.org/abs/1505.03680
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03680


J
H
E
P
0
9
(
2
0
1
8
)
0
9
5

[70] M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of

acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D 92

(2015) 123009 [arXiv:1504.03291] [INSPIRE].

[71] D.J. Weir, Revisiting the envelope approximation: gravitational waves from bubble collisions,

Phys. Rev. D 93 (2016) 124037 [arXiv:1604.08429] [INSPIRE].

[72] R. Jinno and M. Takimoto, Gravitational waves from bubble collisions: An analytic

derivation, Phys. Rev. D 95 (2017) 024009 [arXiv:1605.01403] [INSPIRE].

[73] R. Jinno and M. Takimoto, Gravitational waves from bubble dynamics: Beyond the

Envelope, arXiv:1707.03111 [INSPIRE].

[74] T. Konstandin, Gravitational radiation from a bulk flow model, JCAP 03 (2018) 047

[arXiv:1712.06869] [INSPIRE].

[75] D. Cutting, M. Hindmarsh and D.J. Weir, Gravitational waves from vacuum first-order

phase transitions: from the envelope to the lattice, Phys. Rev. D 97 (2018) 123513

[arXiv:1802.05712] [INSPIRE].

[76] M. Geller, A. Hook, R. Sundrum and Y. Tsai, Primordial anisotropies in the gravitational

wave background from cosmological phase transitions, arXiv:1803.10780 [INSPIRE].

[77] C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves

from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].

[78] G.D. Moore and T. Prokopec, How fast can the wall move? A study of the electroweak

phase transition dynamics, Phys. Rev. D 52 (1995) 7182 [hep-ph/9506475] [INSPIRE].

[79] P. John and M.G. Schmidt, Do stops slow down electroweak bubble walls?, Nucl. Phys. B

598 (2001) 291 [Erratum ibid. B 648 (2003) 449] [hep-ph/0002050] [INSPIRE].

[80] T. Konstandin, G. Nardini and I. Rues, From Boltzmann equations to steady wall velocities,

JCAP 09 (2014) 028 [arXiv:1407.3132] [INSPIRE].

[81] K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74

(2011) 014001 [arXiv:1005.4814] [INSPIRE].

[82] J.O. Andersen, W.R. Naylor and A. Tranberg, Phase diagram of QCD in a magnetic field:

a review, Rev. Mod. Phys. 88 (2016) 025001 [arXiv:1411.7176] [INSPIRE].

[83] P.J. Steinhardt, Relativistic detonation waves and bubble growth in false vacuum decay,

Phys. Rev. D 25 (1982) 2074 [INSPIRE].

[84] P.S.B. Dev and A. Mazumdar, Probing the scale of new physics by advanced LIGO/VIRGO,

Phys. Rev. D 93 (2016) 104001 [arXiv:1602.04203] [INSPIRE].

[85] M. Ahmadvand and K. Bitaghsir Fadafan, The cosmic QCD phase transition with dense

matter and its gravitational waves from holography, Phys. Lett. B 779 (2018) 1

[arXiv:1707.05068] [INSPIRE].

[86] R.H. Cyburt, B.D. Fields, K.A. Olive and E. Skillman, New BBN limits on physics beyond

the standard model from 4He, Astropart. Phys. 23 (2005) 313 [astro-ph/0408033]

[INSPIRE].

[87] C. Caprini and D.G. Figueroa, Cosmological backgrounds of gravitational waves, Class.

Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].

[88] E. Thrane and J.D. Romano, Sensitivity curves for searches for gravitational-wave

backgrounds, Phys. Rev. D 88 (2013) 124032 [arXiv:1310.5300] [INSPIRE].

[89] C.J. Moore, S.R. Taylor and J.R. Gair, Estimating the sensitivity of pulsar timing arrays,

Class. Quant. Grav. 32 (2015) 055004 [arXiv:1406.5199] [INSPIRE].

– 46 –

https://doi.org/10.1103/PhysRevD.92.123009
https://doi.org/10.1103/PhysRevD.92.123009
https://arxiv.org/abs/1504.03291
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03291
https://doi.org/10.1103/PhysRevD.93.124037
https://arxiv.org/abs/1604.08429
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.08429
https://doi.org/10.1103/PhysRevD.95.024009
https://arxiv.org/abs/1605.01403
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01403
https://arxiv.org/abs/1707.03111
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.03111
https://doi.org/10.1088/1475-7516/2018/03/047
https://arxiv.org/abs/1712.06869
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.06869
https://doi.org/10.1103/PhysRevD.97.123513
https://arxiv.org/abs/1802.05712
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.05712
https://arxiv.org/abs/1803.10780
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.10780
https://doi.org/10.1088/1475-7516/2016/04/001
https://arxiv.org/abs/1512.06239
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06239
https://doi.org/10.1103/PhysRevD.52.7182
https://arxiv.org/abs/hep-ph/9506475
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9506475
https://doi.org/10.1016/S0550-3213(00)00768-9
https://doi.org/10.1016/S0550-3213(00)00768-9
https://arxiv.org/abs/hep-ph/0002050
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0002050
https://doi.org/10.1088/1475-7516/2014/09/028
https://arxiv.org/abs/1407.3132
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3132
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://arxiv.org/abs/1005.4814
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4814
https://doi.org/10.1103/RevModPhys.88.025001
https://arxiv.org/abs/1411.7176
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7176
https://doi.org/10.1103/PhysRevD.25.2074
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D25,2074%22
https://doi.org/10.1103/PhysRevD.93.104001
https://arxiv.org/abs/1602.04203
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.04203
https://doi.org/10.1016/j.physletb.2018.01.066
https://arxiv.org/abs/1707.05068
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.05068
https://doi.org/10.1016/j.astropartphys.2005.01.005
https://arxiv.org/abs/astro-ph/0408033
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0408033
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/1361-6382/aac608
https://arxiv.org/abs/1801.04268
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.04268
https://doi.org/10.1103/PhysRevD.88.124032
https://arxiv.org/abs/1310.5300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5300
https://doi.org/10.1088/0264-9381/32/5/055004
https://arxiv.org/abs/1406.5199
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.5199


J
H
E
P
0
9
(
2
0
1
8
)
0
9
5

[90] NANOGRAV collaboration, Z. Arzoumanian et al., The NANOGrav 11-year data set:

pulsar-timing constraints on the stochastic gravitational-wave background, Astrophys. J. 859

(2018) 47 [arXiv:1801.02617] [INSPIRE].

[91] Virgo, LIGO Scientific collaboration, B.P. Abbott et al., Upper limits on the stochastic

gravitational-wave background from advanced LIGO’S first observing run, Phys. Rev. Lett.

118 (2017) 121101 [arXiv:1612.02029] [INSPIRE].

[92] L. Lentati et al., European pulsar timing array limits on an isotropic stochastic

gravitational-wave background, Mon. Not. Roy. Astron. Soc. 453 (2015) 2576

[arXiv:1504.03692] [INSPIRE].

[93] R.M. Shannon et al., Gravitational waves from binary supermassive black holes missing in

pulsar observations, Science 349 (2015) 1522 [arXiv:1509.07320] [INSPIRE].

[94] C.J. Moore, R.H. Cole and C.P.L. Berry, Gravitational-wave sensitivity curves, Class.

Quant. Grav. 32 (2015) 015014 [arXiv:1408.0740] [INSPIRE].

[95] C.J. Moore, R.H. Cole and C.P.L. Berry, Gravitational wave detectors and sources,

http://rhcole.com/apps/GWplotter.

[96] LISA collaboration, H. Audley et al., Laser Interferometer Space Antenna,

arXiv:1702.00786 [INSPIRE].

[97] VIRGO, KAGRA, LIGO Scientific collaboration, B.P. Abbott et al., Prospects for

observing and localizing gravitational-wave transients with advanced LIGO, advanced Virgo

and KAGRA, Living Rev. Rel. 21 (2018) 3 [arXiv:1304.0670] [INSPIRE].

[98] B. Sathyaprakash et al., Scientific objectives of Einstein Telescope, Class. Quant. Grav. 29

(2012) 124013 [Erratum ibid. 30 (2013) 079501] [arXiv:1206.0331] [INSPIRE].

[99] D.G. Figueroa et al., LISA as a probe for particle physics: electroweak scale tests in synergy

with ground-based experiments, arXiv:1806.06463 [INSPIRE].

[100] M. Carena et al., Supersymmetric CP-violating currents and electroweak baryogenesis, Nucl.

Phys. B 599 (2001) 158 [hep-ph/0011055] [INSPIRE].

[101] LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al.,

Handbook of LHC Higgs Cross Sections: 1. Inclusive observables, arXiv:1101.0593

[INSPIRE].

[102] A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the

standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

[103] ATLAS collaboration, Search for WW/WZ resonance production in ℓνqq final states in pp

collisions at
√
s = 13 TeV with the ATLAS detector, JHEP 03 (2018) 042

[arXiv:1710.07235] [INSPIRE].

[104] ATLAS collaboration, Searches for heavy ZZ and ZW resonances in the ℓℓqq and ννqq

final states in pp collisions at
√
s = 13 TeV with the ATLAS detector, JHEP 03 (2018) 009

[arXiv:1708.09638] [INSPIRE].

[105] ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using

37 fb−1 of proton–proton collisions collected at
√
s = 13 TeV with the ATLAS detector,

Phys. Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].

[106] ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the

ditau final state produced in 36 fb−1 of pp collisions at
√
s = 13 TeV with the ATLAS

detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].

– 47 –

https://doi.org/10.3847/1538-4357/aabd3b
https://doi.org/10.3847/1538-4357/aabd3b
https://arxiv.org/abs/1801.02617
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.02617
https://doi.org/10.1103/PhysRevLett.118.121101
https://doi.org/10.1103/PhysRevLett.118.121101
https://arxiv.org/abs/1612.02029
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.02029
https://doi.org/10.1093/mnras/stv1538
https://arxiv.org/abs/1504.03692
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03692
https://doi.org/10.1126/science.aab1910
https://arxiv.org/abs/1509.07320
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07320
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://arxiv.org/abs/1408.0740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0740
http://rhcole.com/apps/GWplotter
https://arxiv.org/abs/1702.00786
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.00786
https://doi.org/10.1007/s41114-018-0012-9
https://arxiv.org/abs/1304.0670
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0670
https://doi.org/10.1088/0264-9381/29/12/124013
https://doi.org/10.1088/0264-9381/29/12/124013
https://arxiv.org/abs/1206.0331
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.0331
https://arxiv.org/abs/1806.06463
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.06463
https://doi.org/10.1016/S0550-3213(01)00032-3
https://doi.org/10.1016/S0550-3213(01)00032-3
https://arxiv.org/abs/hep-ph/0011055
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0011055
https://arxiv.org/abs/1101.0593
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0593
https://doi.org/10.1016/j.physrep.2007.10.004
https://arxiv.org/abs/hep-ph/0503172
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0503172
https://doi.org/10.1007/JHEP03(2018)042
https://arxiv.org/abs/1710.07235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.07235
https://doi.org/10.1007/JHEP03(2018)009
https://arxiv.org/abs/1708.09638
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.09638
https://doi.org/10.1016/j.physletb.2017.10.039
https://arxiv.org/abs/1707.04147
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.04147
https://doi.org/10.1007/JHEP01(2018)055
https://arxiv.org/abs/1709.07242
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.07242


J
H
E
P
0
9
(
2
0
1
8
)
0
9
5

[107] CMS collaboration, Search for high-mass diphoton resonances in proton-proton collisions at

13TeV and combination with 8TeV search, Phys. Lett. B 767 (2017) 147

[arXiv:1609.02507] [INSPIRE].

[108] ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using

lepton-plus-jets events in proton-proton collisions at
√
s = 13TeV with the ATLAS detector,

Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].

[109] T. Golling et al., Physics at a 100 TeV pp collider: beyond the standard model phenomena,

CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].

[110] Virgo, LIGO Scientific collaboration, B.P. Abbott et al., GW170817: implications for

the stochastic gravitational-wave background from compact binary coalescences, Phys. Rev.

Lett. 120 (2018) 091101 [arXiv:1710.05837] [INSPIRE].

[111] M.F. Axen et al., Multi-wavelength observations of cosmological phase transitions using

LISA and Cosmic Explorer, arXiv:1806.02500 [INSPIRE].

[112] T. Opferkuch et al., Probing light hidden sectors with pulsar timing arrays, talk given at the

21st International Conference From the Planck Scale to the Electroweak Scale (Planck

2018), May 21–25, Bonn, Germany (2018).

– 48 –

https://doi.org/10.1016/j.physletb.2017.01.027
https://arxiv.org/abs/1609.02507
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.02507
https://doi.org/10.1140/epjc/s10052-018-5995-6
https://arxiv.org/abs/1804.10823
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.10823
https://doi.org/10.23731/CYRM-2017-003.441
https://arxiv.org/abs/1606.00947
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00947
https://doi.org/10.1103/PhysRevLett.120.091101
https://doi.org/10.1103/PhysRevLett.120.091101
https://arxiv.org/abs/1710.05837
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.05837
https://arxiv.org/abs/1806.02500
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.02500
https://indico.desy.de/indico/event/18498/session/12/contribution/43/material/slides/0.pdf
https://indico.desy.de/indico/event/18498/session/12/contribution/43/material/slides/0.pdf

	Introduction
	General formalism
	The effective potential
	The soft-wall metric
	The radion field
	The effective potential at finite temperature
	The case of small back-reaction
	The case of large back-reaction

	The dilaton phase transition
	Small back-reaction
	Large back-reaction
	Inflation and reheating

	The electroweak phase transition
	Sequential phase transitions: T(R)>T(EW)
	Simultaneous phase transitions: T(R)<T(EW)

	Gravitational waves
	Heavy radion phenomenology
	Radion couplings
	LHC constraints on the radion signal strengths

	Conclusions

