
J
H
E
P
0
5
(
2
0
1
7
)
0
3
8

Published for SISSA by Springer

Received: January 22, 2017

Revised: April 3, 2017

Accepted: April 25, 2017

Published: May 8, 2017

Cosmological signals of a mirror twin Higgs

Nathaniel Craig,a,b Seth Korena and Timothy Trotta

aDepartment of Physics, University of California,

Santa Barbara, CA 93106, U.S.A.
bKavli Institute for Theoretical Physics,

Santa Barbara, CA 93106, U.S.A.

E-mail: ncraig@physics.ucsb.edu, koren@physics.ucsb.edu,

ttrott@physics.ucsb.edu

Abstract: We investigate the cosmology of the minimal model of neutral naturalness,

the mirror Twin Higgs. The softly-broken mirror symmetry relating the Standard Model

to its twin counterpart leads to significant dark radiation in tension with BBN and CMB

observations. We quantify this tension and illustrate how it can be mitigated in several

simple scenarios that alter the relative energy densities of the two sectors while respecting

the softly-broken mirror symmetry. In particular, we consider both the out-of-equilibrium

decay of a new scalar as well as reheating in a toy model of twinned inflation, Twinflation.

In both cases the dilution of energy density in the twin sector does not merely reconcile the

existence of a mirror Twin Higgs with cosmological constraints, but predicts contributions

to cosmological observables that may be probed in current and future CMB experiments.

This raises the prospect of discovering evidence of neutral naturalness through cosmology

rather than colliders.

Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM

ArXiv ePrint: 1611.07977

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2017)038

mailto:ncraig@physics.ucsb.edu
mailto:koren@physics.ucsb.edu
mailto:ttrott@physics.ucsb.edu
https://arxiv.org/abs/1611.07977
http://dx.doi.org/10.1007/JHEP05(2017)038


J
H
E
P
0
5
(
2
0
1
7
)
0
3
8

Contents

1 Introduction 1

2 The mirror Twin Higgs 3

3 Thermal history of the mirror Twin 4

3.1 Twin degrees of freedom 5

3.2 Decoupling 5

3.3 Cosmological constraints 12

3.3.1 Effective number of neutrinos 13

3.3.2 Neutrino masses 16

3.3.3 Bounds 17

4 Reheating by the decay of a scalar field 19

4.1 Asymmetric reheating 20

4.2 Imprints on the CMB 26

4.2.1 Analytic estimate of Neff 26

4.2.2 Numerical calculation of Neff 28

4.2.3 Neutrino masses 32

4.3 Thermal production 32

5 Twinflation 35

5.1 Toy model 36

5.2 Observability 37

6 Conclusion 42

1 Introduction

The electroweak hierarchy problem is one of the primary motivators for accessible physics

beyond the Standard Model and has led to an expansive set of searches at the LHC and

beyond. Recent null results in searches for conventional approaches to the hierarchy prob-

lem motivate the exploration of alternative solutions. “Neutral naturalness” provides one

such promising alternative, in which the lightest states responsible for protecting the weak

scale are partly or wholly neutral under the Standard Model (SM). In these theories,

discrete symmetries enforce cancellations between finite threshold corrections to the Higgs

mass. The discrete symmetries may be approximate or exact, although solutions with

approximate symmetries typically require a plethora of new particles near the TeV scale.

Perhaps the simplest avatar of neutral naturalness is the “mirror” Twin Higgs [1], in

which the new physics near the weak scale consists of an identical copy of the Standard
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Model related by an exact Z2 exchange symmetry. Higgs portal-type couplings between

the Higgs doublets of the Standard Model and the twin sector lead to accidental global

symmetries that protect the Higgs mass. The lightest partner particles are entirely neutral

under the Standard Model, subject only to indirect bounds from precision Higgs coupling

measurements. In conjunction with supersymmetry or compositeness at 5–10TeV, this

provides a complete solution to the “little” and “big” hierarchy problems consistent with

current LHC limits. In this respect, the Twin Higgs naturally reconciles the observation of

a light Higgs with the absence of evidence for new physics thus far at the LHC.

The primary challenge to the mirror Twin Higgs comes not from LHC data, but from

cosmology. An exact Z2 exchange symmetry predicts mirror copies of light Standard Model

states, which contribute to the energy density of the early universe. In particular, twin neu-

trinos and a twin photon provide a new source of dark radiation that is strongly constrained

by CMB and BBN measurements [2, 3]. While these constraints could be avoided if the

two sectors were at radically different temperatures, the Higgs portal couplings required

by naturalness keep the two sectors in thermal equilibrium down to relatively low temper-

atures. Constraints on dark radiation in the mirror Twin Higgs have motivated models

in which the Z2 symmetry is approximate (such as the orbifold [4, 5], holographic [6–8],

fraternal [9], and vector-like [10] Twin Higgs), in which case the dark radiation component

can be made naturally small. This problem was examined recently in [11], where the Z2

symmetry in the fermion Yukawa couplings was broken in order to find an arrangement

that would reduce the residual dark radiation from the twin particles.1 However, such cos-

mological fixes come at the cost of minimality, as models with approximate Z2 symmetries

require a considerable amount of additional structure near the TeV scale.

In this work we take an alternative approach and investigate ways in which early

universe cosmology can reconcile the mirror Twin Higgs with current CMB and BBN

observations. In doing so, we find compelling scenarios that transfer the signatures of

electroweak naturalness from high-energy colliders to cosmology. We consider several pos-

sibilities in which the energy density of the light particles in the twin sector is diluted by the

out-of-equilibrium decay of a new particle after the two sectors have thermally decoupled.

Crucially, the new physics in the early universe respects the exact (albeit spontaneously

broken) Z2 exchange symmetry of the mirror Twin Higgs. This symmetry may be used

to classify representations of the particle responsible for this dilution. We concentrate on

two minimal cases: in the first, the long-lived particle is Z2-even and the asymmetry is

naturally induced by kinematics. In the second, there is a pair of particles which are ex-

changed by the Z2 symmetry and which may be responsible for inflation.2 Moreover, in

these cases the new physics does not merely reconcile the existence of a mirror twin sector

with cosmological constraints, but predicts contributions to cosmological observables that

may be probed in current and future CMB experiments. This raises the prospect of dis-

1For recent related work on the cosmology and cosmological signatures of non-minimal Twin Higgs

scenarios, see e.g. [12–18].
2A third case exists, in which the particle is Z2-odd. This may additionally be related to the spontaneous

Z2-breaking in the Higgs potential, although we find that a realisation of such a scenario is dependent upon

the UV completion of the model.
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covering evidence of electroweak naturalness first through cosmology, rather than colliders,

and provides natural targets for future cosmological constraints on minimal realizations of

neutral naturalness.

This paper is organized as follows: we begin in section 2 by reviewing the salient

features of the mirror Twin Higgs. In section 3 we discuss the thermal history of the

mirror Twin Higgs, with a particular attention to the interactions keeping the Standard

Model and twin sector in thermal equilibrium and the cosmological constraints on light

degrees of freedom. In section 4 we present a simple model where the out-of-equilibrium

decay of a particle with symmetric couplings to the Standard Model and twin sector leads to

a temperature difference between the two sectors after they decouple. We turn to inflation

in section 5, constructing a model of “twinflation” in which the softly broken Z2-symmetry

extends to the inflationary sector and leads to two periods of inflation. The first primarily

reheats the twin sector, while the second primarily reheats the Standard Model sector. We

conclude in section 6.

2 The mirror Twin Higgs

We begin by briefly reviewing the salient details of the mirror Twin Higgs. The reader

is referred to any of the references listed in the previous section for further details. The

theory consists of the Standard Model and an identical copy, related by a Z2 exchange

symmetry at a scale Λ ≫ v. The two sectors are connected only by Higgs portal-type

interactions between the two SU(2) doublet scalars.3 Subject to conditions on the quartic

coupling, the Higgs sector enjoys an approximate SU(4) global symmetry.4

The Higgs potential is best organized in terms of the accidental SU(4) symmetry

involving the SU(2) Higgs doublets of the SM and twin sectors, HA and HB. The general

tree-level Twin Higgs potential is given by (see e.g. [9])

V (HA, HB) = λ(|HA|2 + |HB|2 − f2/2)2 + κ(|HA|4 + |HB|4) + σf2|HA|2 . (2.1)

The first term respects the accidental SU(4) global symmetry, the second breaks SU(4) but

preserves the Z2 and the final term softly breaks the Z2. Clearly, κ, σ ≪ λ are required

for the SU(4) to be a good symmetry of the potential. The coupling κ should naturally

be of order the expected SU(4)-breaking radiative corrections to the potential induced by

Yukawa interactions with the top/twin top, κ ∼ 3y4t /(8π
2) log(Λ/mt) ∼ 0.1 for a cut-off

Λ ∼ 10TeV (yt being the top quark Yukawa coupling and mt its mass). Requiring λ ≫ κ

therefore implies λ & 1. As the SM and twin isospin gauge groups are disjoint subgroups

of the SU(4), the spontaneous breaking of the SU(4) coincides with the SM and twin

electroweak symmetry breaking. Three Goldstone bosons are eaten by the broken gauge

3Here and in what follows we neglect possible kinetic mixing between the two U(1)Y gauge bosons; such

mixing is not generated in the low-energy theory at three loops [1], and may be forbidden in UV completions

where the mirror symmetry relates sectors with unified gauge groups.
4Properly speaking, the model must contain an SO(8) global symmetry in order to enjoy a residual

custodial symmetry [7, 8], but in linear realizations the SU(4) is sufficient provided that higher-dimensional

operators violating the custodial symmetry are adequately suppressed.
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bosons in each sector, leaving one Goldstone remaining. This will acquire mass through

the breaking of the SU(4) that is naturally smaller than the twin scale f . For future

reference, it is convenient to define the real scalar degrees of freedom in the gauge basis as

hA = 1√
2
ℜ(H0

A)− vA and hB = 1√
2
ℜ(H0

B)− vB, where 〈H0
A〉 = vA and 〈H0

B〉 = vB.

The surviving Goldstone boson should be dominantly composed of the hA gauge eigen-

state in order to be SM-like. The soft Z2-breaking coupling σ is required to tune the poten-

tial so that the vacuum expectation values (vevs) are asymmetric and that the Goldstone is

mostly aligned with the hA field direction. The (unique) minimum of the Twin Higgs poten-

tial (2.1) occurs at vA ≈ f
2

√

λ(κ−σ)−κσ
λκ and vB ≈ f

2

√

σ+κ
κ . The required alignment of the

vacuum in the HB direction occurs if σ ≈ κ, which has been assumed in these expressions

for the minimum. The consequences of this are that vA ≈ v/
√
2 and vB ≈ f/

√
2 ≫ v (where

v is the vev of the SM Higgs, although vA ≈ 174GeV is the vev that determines the SM

particle masses and electroweak properties), so that the SM-like Higgs h is identified with

the Goldstone mode and is naturally lighter than the other remaining real scalar, a radial

mode H whose mass is set by the scale f . The component of h in the hB gauge eigenstate is

δhB ≈ v/f (to lowest order in v/f). Measurements of the Higgs couplings restrict f & 3v [9],

and the naive tuning of the weak scale associated with this inequality is of order f2/2v2.

The spectrum of states in the broken phase consists of a SM-like pseudo-Goldstone

Higgs h of massm2
h ∼ 8κv2, a radial twin Higgs modeH of massm2

H ∼ 2λf2, a conventional

Standard Model sector of gauge bosons and fermions and a corresponding mirror sector.

The current masses of quarks, gauge bosons, and charged leptons in the twin sector are

larger than their Standard Model counterparts by ∼ f/v, while the twin QCD scale is larger

by a factor ∼ (1 + log(f/v)) due to the impact of the higher mass scale of heavy twin quarks

on the renormalisation group (RG) evolution of the twin strong coupling. The relative mass

of twin neutrinos depends on the origin of neutrino masses, some possibilities being ∼ f/v

for Dirac masses and ∼ f2/v2 for Majorana masses from the Weinberg operator. Mixing

in the scalar sector implies that the SM-like Higgs couples to twin sector matter with an

O(v/f) mixing angle, as does the radial twin Higgs mode to Standard Model matter. These

mixings provide the primary portal between the Standard Model and twin sectors.

The Goldstone Higgs is protected from radiative corrections from Z2-symmetric physics

above the scale f . While the mirror Twin Higgs addresses the little hierarchy problem,

it does not address the big hierarchy problem, as nothing stabilizes the scale f against

radiative corrections. However, the scale f can be stabilized by supersymmetry, compos-

iteness, or perhaps additional copies of the twin mechanism without requiring new states

beneath the TeV scale. Minimal supersymmetric UV completions can furthermore remain

perturbative up to the GUT scale [19, 20].

3 Thermal history of the mirror Twin

The primary challenge to the mirror Twin Higgs comes from cosmology, rather than collider

physics. The mirror Twin contains not only states responsible for protecting the Higgs

against radiative corrections (such as the twin top), but also a plethora of extra states

due to the Z2 symmetry that are irrelevant to naturalness. The lightest of these, namely
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the twin photon and twin neutrinos, contribute significantly to the energy density of the

early universe around the era of matter-radiation equality, since they have a temperature

comparable to that of the Standard Model plasma at all times. This is because the same

Higgs portal coupling that makes the Higgs natural also keeps the two sectors in thermal

equilibrium down to O(GeV) temperatures. Then the identical particle content in the twin

and Standard Model sectors guarantees that they remain at comparable temperatures

even after they decouple — for every massive Standard Model species that becomes non-

relativistic and transfers its entropy to the rest of the plasma, its twin counterpart does

the same within a factor of f/v in temperature.

In this section we undertake a detailed study of the decoupling between the Standard

Model and twin sectors as well as the constraints from precision cosmology.

3.1 Twin degrees of freedom

In thermal equilibrium, each relativistic degree of freedom has roughly the same energy

density. In general, we express the energy density of the universe ρ during the radiation-

dominated era as ρ ≡ g⋆
π2

30T
4, where we define g⋆ through this relation as the effective

number of relativistic degrees of freedom and T the temperature of the SM photons. This

then determines the evolution of the scale factor through the first Friedmann equation

H =
1

Mpl

[

π2

90
g⋆T

4

]1/2

(3.1)

(assuming spatial flatness), where Mpl is the reduced Planck mass. In general, the energy

density of a particular species i may be computed from ρi = gi
∫ d3p

(2π)3
fi(p, Ti)E(p), where

gi are the number of internal degrees of freedom, E(p) is the energy as a function of

momentum p, while fi(p, Ti) is the phase-space number density and is a Bose-Einstein or

Fermi-Dirac distribution if the species is in equilibrium at temperature Ti. The number of

effective relativistic degrees of freedom may then be defined for each sector separately as

gSM⋆ (T ) and gt⋆(T ) satisfying ρSM(T ) = π2

30 g
SM
⋆ (T )T 4 and ρt(T ) =

π2

30 g
t
⋆(T )T

4, respectively,

where ρSM(T ) and ρt(T ) are the total energy densities of SM and twin particles. The values

of g⋆(T ) for the SM and twin sectors are shown in figure 1, where all species within each

sector are in thermal equilibrium. These can then be used to calculate the total number g⋆
as a function of temperature, by weighting twin sector energy density by its temperature:

g⋆(T ) = gSM⋆ (T ) + gt⋆(T̂ )(T̂ /T )
4, where T̂ is the twin sector photon temperature when the

SM photon temperature is T .

Likewise, entropy densities for each sector i are defined as si(T ) = 2π2

45 gi⋆(T )T
3. We

neglect the small differences between the number of relativistic degrees of freedom defined

from energy and entropy densities, which are not significant over the range of temperatures

of interest here.

3.2 Decoupling

In the early universe, the two sectors are thermally linked by interactions mediated by the

Higgs, which, through mixing with both hA and hB components, allows for SM fermions
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Figure 1. The effective number of relativistic degrees of freedom for mirror Twin Higgs models

for different values of f/v. The dash-dotted line is the for the Standard Model gSM⋆ (T ) and the

dashed lines are the twin sector degrees of freedom gt⋆(T ). The evolution of g⋆ during the QCD

phase transition (QCDPT) is not well-understood, so we assign the SM QCDPT a central value of

175MeV and a width of 50MeV and interpolate linearly between the values of g⋆ at 225MeV for

free partons and at 125MeV for pions. Further discussion may be found in [21]. For the twin sector

we use a central value and width which are
(

1 + log
(

f
v

))

times larger than the SM values. Note

that new mass thresholds, expected to appear at energies ∼ 10TeV in UV completions of the twin

Higgs, have not been included.

and weak bosons to scatter off or annihilate into their twin counterparts. However, once

the temperature drops sufficiently for this Higgs-mediated interaction to become rare on

the expansion time-scale, the sectors decouple and thereafter thermally evolve indepen-

dently. More precisely, thermal decoupling will occur once the rate at which energy can be

exchanged between SM and twin particles (through the Higgs) falls below the Hubble rate.

Thermal decoupling is traditionally formulated from the Boltzmann equations describ-

ing the evolution of single-particle phase space number densities, wherein collisions induce

instantaneous changes to the shape of these distributions. When the collisions occur faster

than the expansion rate, the phase space probability density functions of the interacting

species are expected to relax to an equilibrium distribution (Boltzmann, neglecting quan-

tum statistics, will be applicable to our case). However, once the rate of collisions falls

below the expansion rate, collisions become rare on cosmological time scales and the phase

– 6 –
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space distributions depart from equilibrium. The decoupling temperature is determined as

that at which the scattering rate of a participating particle, Γ, drops below the Hubble rate,

assuming that this occurs instantaneously across the entire phase space where the number

density is significant. This formulation can be used to determine the time at which a par-

ticular species of particle will cease to scatter off twin particles on cosmological time scales.

In the case of interest here, however, both sectors of particles remain thermalised within

themselves while the interactions between sectors freeze-out. This implies that the phase

space number densities are still Boltzmann distributions throughout decoupling, with a

different temperature for each sector. As it is the twin sector temperature that ultimately

determines the impact of the light twin degrees of freedom on the cosmological observables

(discussed below in section 3.3), we wish to describe the thermal evolution of the two

sectors by that of their entire energy or entropy content and the bulk heat flows between

them. They may then be identified as thermally decoupled once the rate at which they

exchange energy falls below the expansion rate.

If the SM and twin sector plasmas have temperatures T and T̂ respectively, then calling

q the net heat flow density from the SM to the twin sector, the rate at which the twin

entropy densities st and sSM evolve is determined by

dst
dt

+ 3Hst =
1

T̂

dq

dt
=

1

T̂

(dqin
dt

− dqout
dt

)

(3.2)

dsSM
dt

+ 3HsSM =
−1

T

dq

dt
= − 1

T

(dqin
dt

− dqout
dt

)

. (3.3)

Here, H is the Hubble rate. The heat flow rate has been decomposed into the sum of the

energy transferred into and out of the twin sector by collisions in the second equality in

each line, where dqin
dt and dqout

dt are both positive.

The rate of heat flow q may be calculated by performing a phase space average of the

rate that energy is transferred from the SM to the twin sector through particle interactions.

Since the decay rates of top quarks or weak bosons are fast compared to their scattering

rate and the Hubble rate, energy transferred to them is instantaneously transferred to the

rest of the plasma. Similarly, the scattering rate of lighter fermions off other particles

of the same sector (such as photons or gluons) is much faster than their interaction rate

with twin fermions. Energy transferred to the lighter fermions therefore quickly diffuses

throughout their respective plasmas. The rate of heat flow between sectors may therefore

be well approximated by the rate at which energy is transferred from SM particles to

twin particles in Higgs mediated interactions. This may occur through elastic scattering

of SM particles off twin particles or annihilations of SM particle/antiparticle pairs into

twin particles (or the reverse). The energy density transferred to twin particle i from SM

particle j in scattering is given by

dqij→ij

dt
=

gigj
(2π)6

∫ ∫

d3k

2Ei(k)

d3h

2Ej(h)
fi(k, T̂ )fj(h, T )

(

4Ei(k)Ej(h)

∫

vrel(Ei(p)−Ei(k))
dσij→ij

dΩ
dΩ

)

,

(3.4)

where p is the outgoing 4-momentum of particle i. In the cosmic comoving frame, the

phase space number densities fi and fj are just Boltzmann factors, although evaluated at

the different temperatures of each sector. The factor gi is the number of internal degrees
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of freedom of particle i, which here includes colour (the cross section should not be colour

averaged, as each colour of quark is present in the plasma in equal abundances and each

mediates the exchange of energy, so have their contributions summed). Finally, Ei(k) is the

on-shell energy of particle i with momentum k, while
dσij→ij

dΩ is the differential scattering

cross section for species i scattering off j per solid angle Ω and vrel is the usual relative

speed of the incoming particles. As described in [22], the factor in the integrand giving the

energy transferred per reaction is simply a component of a 4-vector,

X = 4Ei(k)Ej(h)

∫

(p− k)vrel
dσij→ij

dΩ
dΩ. (3.5)

This may be calculated in the centre-of-mass frame and then boosted back into the cosmic

comoving frame where the integrals in (3.4) can be evaluated, similarly to the thermal

averaging procedure described in [23].

The integral (3.4) may be decomposed into two terms giving the positive and nega-

tive energy changes of the twin particle, which respectively contribute to dqin
dt and dqout

dt .

When evaluated in the centre-of-mass frame, these terms correspond to the cases where

the scattering angle of the twin particle is respectively less than and greater than the angle

between its initial momentum and the total momentum of the system. However, when

T 6= T̂ , we find the integrals involved in this decomposition substantially more arduous

than when they are evaluated together.

Energy transferred through annihilations may be similarly calculated as

dqjj̄→īi

dt
=

g2j
(2π)6

∫ ∫

d3k

2Ej(k)

d3h

2Ej(h)
fj(k)fj(h)

(

4Ej(k)Ej(h)

∫

vrel(Ej(h) + Ej(k))
dσjj̄→īi

dΩ
dΩ

)

− g2i
(2π)6

∫ ∫

d3k

2Ei(k)

d3h

2Ei(h)
fi(k)fi(h)

(

4Ei(k)Ei(h)

∫

vrel(Ei(h) + Ei(k))
dσīi→jj̄

dΩ
dΩ

)

,

(3.6)

where
dσjj̄→īi

dΩ is now the differential annihilation cross section. This rate may be evaluated

as described above and is more directly amenable to the factorisation of the integrals

observed in [23]. See also [24] for further details of similar calculations. The first term

of (3.6) is the energy transferred from the SM to the twin sector and contributes to dqin
dt

in (3.2), while the second term is the energy transferred from the twin sector to the SM

and contributes to dqout
dt .

In thermal equilibrium, the rate of energy transferred through collisions into one sector

will be balanced by that of energy transferred out of it so that there is negligible net

heat flow. This state will be rapidly attained (compared to the age of the universe) if
dqin,out

dt ≫ 3HT̂st. However, as the universe expands and the plasma cools, the energy

transfer rates fall faster than the Hubble rate. This is demonstrated in the figure 2 below.

Once they drop below the Hubble rate, energy exchange ceases on cosmological time scales

and the sectors thermally decouple, thereafter thermodynamically evolving independently.

To determine the decoupling temperature of the sectors, we calculate the rates of

positive energy exchange for the twin particles interacting with the SM particles. The cross

sections are calculated using a tree-level effective fermion-twin fermion contact interaction

– 8 –
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that, in the full twin Higgs model, would be UV completed by a SM Higgs exchange (the

heavier mass of the radial mode would make its exchange subdominant). The interaction

strength is determined by the masses of the fermions through their Yukawa couplings, as

well as the mixing angle of the SM-like mass state h with the gauge eigenstate hB, giving

a 4-fermion coupling of strength
mfmf̂

m2
h
f2 (here mf and mf̂ are the masses of fermions f

and f̂). See [11, 19] for a more detailed discussion of the cross sections. This effective

interaction is appropriate for the temperatures of interest here and helps to simplify the

integrals of (3.4). In order to further simplify the integrations of (3.4) when it is to be

decomposed into terms in which the energy exchange is positive and negative, we calculate
dqin
dt under the assumption that the sectors have the same temperature (this ensures that

the rate dqout
dt is identical). This is then combined with the rate of energy transferred from

annihilation. A similar calculation of these rates was recently performed in [11], for cases

where the Yukawa couplings do not respect the Z2 twin symmetry.

In figure 2 we compare the energy transfer rate to the Hubble rate in order to determine

when decoupling occurs. As long as the energy exchange rate exceeds the expansion rate,

the sectors will be thermalised and have the same temperature. Decoupling then occurs

once this rate drops below the Hubble rate. From figure 2, this occurs at a temperature

∼ 2GeV. However, even after the energy exchange rate drops below the Hubble rate, the

sectors will remain at the same temperature unless some event that either injects or redis-

tributes entropy occurs within a sector (such as the temperature dropping below a mass

threshold). As the heavy quark masses roughly coincide with the decoupling temperature,

these do cause the twin sector to be mildly reheated with respect to the SM below de-

coupling. However, the resulting temperature difference is small and the energy exchange

rates are expected to continue to be well-approximated by the rates presented in figure 2

beyond decoupling.

The lower plot of figure 2 illustrates the decomposition of the energy exchange rates

into contributions from interactions involving different SM quarks. The interaction cross

sections are proportional to the Yukawa couplings of the interacting fermions. The greatest

heat exchange is therefore expected to be mediated by the most massive particles, provided

that their abundances are not too Boltzmann suppressed. As expected, at temperatures

∼ 1GeV, the bottom quark is the best conduit of thermal equilibration, followed by the

charm quark and then the τ (with colour factors enhancing the former two with respect

to the latter). The rate of heat flow that the top quarks and weak bosons can mediate at

these temperatures (or below) is negligible because of Boltzmann suppression. The bend

in the curves at temperatures ∼ 5GeV in the lower plot corresponds to a transition from

temperatures where the dominant energy exchange rate is through scatterings to those

where it occurs through annihilations, as can be seen in the upper plot. The annihilation

rate into twin bottom quarks is the dominant component at high enough energies (again

because of the larger Yukawa coupling), but this becomes rapidly threshold suppressed as

the temperature drops. As can also be inferred in the upper plot, the energy exchange rate

through annihilations involving the twin charmed quarks and tau leptons overtakes that of

twin bottom quarks at similar temperature, but are still subdominant to scatterings.

– 9 –
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Figure 2. Rates of energy density exchange per twin entropy density ( 1

3stT̂

dqin
dt

) decomposed

into contributions from scattering and annihilation (top) and for interactions involving different

species of SM fermions (bottom), along with the Hubble parameter, for f/v = 4. The decoupling

temperature is that where the sum of the energy exchange rates equals the Hubble rate, which

occurs at Tdecoup ≈ 2GeV.

The decoupling temperature depends upon f/v, which sets both the mass scale of

the twin sector and the strength of the Higgs-mediated coupling. As f/v is increased,

decoupling occurs earlier because of the greater Boltzmann suppression, although this is

only a relatively small effect that, for f/v = 10, increases the decoupling temperature by

only 4GeV.

When the twin sector is colder than the SM (which will be important for much of what

follows) the heat flow is typically dominated by annihilations of SM into twin particles.

However, the energy exchange from elastic scattering can be comparable to that from
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annihilations, as illustrated in figure 2. Although the energy exchange in an annihilation

will generally exceed that of a scattering because all of the energy involved in the process

must be transferred, the annihilation rate also becomes more Boltzmann or threshold

suppressed when the temperature drops below the mass of the heavier twin particles. It is

therefore not always clear that energy transfer through annihilations dominates.

Decoupling is not exactly instantaneous and there is some range of temperatures over

which the rate of heat flow freezes-out. The net heat flow rate dq
dt is greater for larger

temperature differences between sectors. The generation of a potentially large temperature

difference within this brief epoch of sector decoupling, such as those discussed below in

section 4, may be cut off when the heat flow rate becomes comparable to the Hubble rate.

For a given SM temperature T , the minimum twin-sector temperature T̂min during the

decoupling period may be roughly estimated as that which satisfies

H ∼ 1

3stT̂

dq

dt

∣

∣

∣

T̂=T̂min

. (3.7)

Twin temperatures colder than T̂min will partially thermalise back to this value. As the

participating fermions are not non-relativistic, instantaneous decoupling is not as accurate

an approximation as it is, for example, for chemical decoupling of a WIMP, although it is

still reliable.

In figure 3, we show the minimum temperature that the twin sector may have as a

function of SM temperature for heat flow to freeze out, estimated using (3.7). Only anni-

hilations have been included in the determination of the minimum temperature, although

we have verified that, for these temperatures, the scatterings contribute only . 10% to the

heat flow. Note that while the energy exchange rate, such as 1
T̂

dqin
dt in (3.2), in scattering

processes may be faster, the net energy flow rate, or heat flow ( 1
T̂

dq
dt in (3.2)), which is the

difference between energy exchange rates into and out of the sector, is actually dominated

by annihilations. Generally, we find that decoupling begins at temperatures ∼ 4GeV. The

temperature difference can reach an order of magnitude without relaxing once the SM

temperature drops to ∼ 1GeV.

While the extent of thermal decoupling is temperature dependent, the maximum tem-

perature difference that will not relax grows quickly as the SM temperature drops. Then

we may describe the two sectors as being decoupled if, in a given cosmology, all events that

raise the temperature of one sector relative to the other (such as the crossing of a mass

threshold and the resulting entropy redistribution, the most significant of which is the

confinement of colour) induce temperature differences that are too small to partially relax.

At energies . 1GeV in figure 2, the reliability of the calculation of the heat flow rate

diminishes because of the strengthening of the strong coupling and the eventual confinement

of colour. Fortunately, for a cooler twin sector, which will be of interest in subsequent

sections, annihilations from the SM dominate other processes over most of the parameter

space. These are the least sensitive to higher order corrections and non-perturbative effects

because of their higher temperature, and hence energy, compared to the potentially cooler

twin sector. The range of temperatures illustrated in figures 2 and 3 have been selected to

roughly illustrate the duration of decoupling, but may extend below the range where the
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Figure 3. Minimum temperature of the twin sector that will not be heated by interactions with a

hotter SM plasma, as a function of SM temperature, for f/v = 4. Also shown is the SM temperature,

for reference.

perturbative calculation of the heat flow rate is valid. For example, at temperatures below

the twin sector QCDPT, which occurs at ∼
(

1 + log
(f
v

)

)

higher temperatures than in the

SM, the partonic calculation of twin quark/anti-quark pair production must be replaced

by a hadronic one. Furthermore, the growth of the twin strong coupling necessitates that

the quark-Higgs Yukawa couplings be RG evolved to the scale of the energy exchanged,

which can induce an O(1) change to the cross section, although this has only a relatively

small effect on the decoupling temperature. It is nevertheless clear that decoupling is mostly

complete by then and that these uncertainties are not large enough to affect this conclusion.

In the standard mirror Twin Higgs cosmology, knowing the decoupling temperature

tells us how the temperatures of the two sectors will be related at subsequent times. The

sectors separately evolve adiabatically after decoupling, though they redshift in the same

way and differences in temperature only arise from events that redistribute entropy. Non-

minimal cosmological events that could potentially cause the temperatures of each sector to

diverge can therefore only be effective if they leave each sector colder than this approximate

decoupling temperature.

3.3 Cosmological constraints

Given that the twin and Standard Model sectors remain in thermal equilibrium to O(GeV)

temperatures, the simplest mirror Twin Higgs scenario is cosmologically inviable due to

the presence of light twin species (photons and neutrinos) with abundances comparable to

those of the SM. The cosmological observables through which evidence of light species may

be inferred are typically represented by Neff , the “effective number of neutrino species” in

the early universe; their individual masses, which determine their free-streaming distances;

and the “effective mass” meff
ν , which parameterises their contribution to the present-day

energy density of non-relativistic matter. These observables are probed by both the CMB

and large scale structure (LSS).
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3.3.1 Effective number of neutrinos

The parameter Neff describes the amount of radiation-like energy density during the evo-

lution of the CMB anisotropies before photon decoupling. It is defined as the effective

number of massless neutrinos with temperature as predicted in the standard cosmology

that would give equivalent energy density in radiation:

ρr = ργ +
7

8

(

4

11

)4/3

Neffργ , (3.8)

where ρr is the energy density of radiation and ργ is the energy density of photons (the

factor of
(

4
11

)4/3
arises from the relative reheating of the photons from electron/positron

annihilation, which occurs after most of the neutrinos have decoupled, and the factor of 7/8

is from the opposite spin statistics). A deviation from the Standard Model prediction of

3.046 [25] is denoted by ∆Neff = Neff − 3.046. This definition of radiation, or equivalently,

relativistic degrees of freedom, becomes less clear if the new fields have a non-negligible

mass, as we discuss further below.

We here review the CMB physics of dark radiation, summarising the discussion in [26].

See also [2] for further review. The angular size and scale of the first acoustic peak is

well-measured and this approximately fixes the scale factor at matter-radiation equality

aeq. If we imagine fixing all other ΛCDM parameters, extra radiation would delay the

epoch of matter-radiation equality. This would have a pronounced effect on the power

spectrum in the vicinity of the first acoustic peak through the early Integrated Sachs-Wolfe

(eISW) effect. The modes corresponding to this feature entered the horizon close to matter-

radiation equality and the evolution of their potentials is highly sensitive to the radiation

energy density. However, the impact of a ∆Neff ∼ O(1) deviation on the peak height

can be simultaneously balanced by increasing the amount of non-relativistic matter, to

the extent to which other observations providing independent constraints upon Ωc permit

(for ΛCDM+Neff , a variation of ∼ 10% in Ωch
2 is consistent with present CMB+BAO

measurements [2], although these variations must be consistent with other observables).

This degeneracy is not expected to be broken by CMB-S4 [27].

Given that aeq is approximately fixed, the utility of Neff arises because, in simple

extensions of the ΛCDM model, it approximately corresponds to the suppression of power

in the small scale CMB anisotropies that arises from Silk damping. The reason for this is

roughly that, although the greater expansion rate induced by the extra radiation reduces

the time that CMB photons have to diffuse before decoupling, it also reduces the sound

horizon size more severely. As the angular size of the sound horizon is determined by the

location of the acoustic peaks and is also well measured, the reduction in the sound horizon

must be compensated for by a reduction in the angular diameter distance to the CMB.

This effectively raises the angular distance over which photon diffusion proceeds and results

in a prediction of smoother temperature anisotropies at small scales. This correspondence

with the Silk damping allows Neff to be approximately factorised from other parameters

and constrained independently, providing a direct observational avenue for detecting the

presence of new, massless fields [26] (see [28] for further implications for model building).
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This relationship arises because the fixing of aeq implies that Neff effectively determines

the energy density of the universe, and hence the Hubble rate, during CMB decoupling.

Note, however, that further extensions of ΛCDM may complicate this correspondence,

in particular deviations from the standard Big Bang Nucleosynthesis prediction of the

primordial helium abundance.

The contribution to Neff (or ∆Neff) in the mirror Twin Higgs arises from two sources:

the twin photons, which can be treated as massless dark radiation with an appropriate twin

temperature T t
eq at the time of matter-radiation equality, and the twin neutrinos, whose

non-zero masses may need to be accounted for. For the twin photons, the contribution to

Neff is simple; their equation of state is always w = 1/3 and their energy density is given

by g π2

30

(

T t
eq

)4
, where g = 2. The twin temperature at matter-radiation equality is found

from the SM temperature using comoving entropy conservation,

T t
eq

T SM
eq

=

(

gt⋆(Tdecoup)

gSM⋆ (Tdecoup)

)1/3
(

gSM⋆ (T SM
eq )

gt⋆(T
t
eq)

)1/3

, (3.9)

where the two sectors have the same number of thermalized degrees of freedom by this

time. Here, T SM
eq is the SM photon temperature at matter-radiation equality and Tdecoup

is the sector decoupling temperature.

Since neutrinos are massive, their behavior is more complicated. Their equation of

state parameter takes on a scale factor dependence which is controlled by their mass. In

the Standard Model, this sensitivity is negligible because present CMB bounds imply that

neutrinos are ultra-relativistic at aeq to good approximation [2]. However, the factor by

which the twin neutrino masses are enhanced may raise them to order T t
eq or greater (see

section 2 for discussion of the scaling of the masses with f/v).

To better describe the impact of the extra twin (semi-)relativistic degrees of freedom

on the CMB, we choose to define Neff through the effects of neutrinos at matter-radiation

equality, when the impact on the expansion rate of the universe for most of the period

relevant for the evolution of the CMB is greatest. Note that, in their presentation of joint

exclusion bounds on Neff and
∑

mν (the sum of SM neutrino masses) or meff
ν (effective mass

contributing to the present-day non-relativistic matter density of an extra sterile neutrino),

the Planck collaboration define Neff as the value in (3.8) at temperatures sufficiently high

that the neutrinos are fully relativistic. Our values cannot be directly compared with

their analysis, although we consider ours to be a reasonable rough estimate that is more

representative of the CMB constraints. The ensuing correction from the finite neutrino

masses is, in the cases considered in this work, a small effect anyway.

To determine this correction and provide a definition of Neff that better describes

the impact of quasi-relativistic particles on the CMB, we first define the epoch of matter-

radiation equality as the time at which the average equation of state parameter of the

universe is w̄ = 1/6 (the equation of state is defined as ρ = w̄P , where ρ is energy density

and P is pressure). We can express this condition as

d lnH

d ln a

∣

∣

∣

∣

aeq

= −7

4
, (3.10)
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as in [29]. Call the quasi-relativistic neutrino energy density ρ̃(a) with time-evolving equa-

tion of state parameter w(a), which is to be balanced against some extra non-relativistic

energy density ∆ρCDM(a) ∝ a−3 to keep aeq the same. This amount of non-relativistic

energy density ∆ρCDM is

∆ρCDM(aeq) = ρr(aeq)− ρm(aeq)− 2aeq
dρ̃

da

∣

∣

∣

∣

aeq

− 7ρ̃(aeq), (3.11)

where ρr and ρm are the energy densities of the radiation and non-relativistic matter. For a

perfect fluid, dρ̃
da = −3(1+w(a))ρ̃/a (neglecting the anisotropic stress that is expected only

to contribute to a weak phase shift in the CMB [30]), this results in a Hubble parameter of

H2(aeq) =
2

3M2
pl

[ρr(aeq) + 3w(aeq)ρ̃(aeq)] . (3.12)

This suggests a definition of the effective number of neutrinos, Neff , via

H2(aeq) =
2

3M2
pl

(

ργ +Neffρ
th
ν,m=0

)∣

∣

∣

aeq
(3.13)

Neff ≡
∑

i

wi

1/3

ρi

ρthν,m=0

, (3.14)

where ρi is the contribution to the energy density from some species i with equation of

state parameter wi and ρthν,m=0 is the energy density of a massless neutrino with a thermal

distribution in the standard cosmology. Then 3w gives the ‘relativistic fraction’ of the

energy density. Note that this is simply a ratio of the pressure exerted by the new fields to

that of a massless neutrino. The effectiveness of this approximation was discussed in [31]

in the context of thermal axions (while effective at keeping aeq fixed, changes to odd peak

heights subsequent to the first are imperfectly cancelled and require further changes to H0

to compensate — see section 3.3.2 below).

Calling T i
ν the temperature at which the neutrinos in sector i freeze-out and aiν the cor-

responding scale factor, then assuming instantaneous decoupling, the phase space number

density for scale factor a is given by a redshifted Fermi-Dirac distribution [32]

f i
α(p) ≈

[

1 + epa/(a
i
νT

i
ν)
]−1

(3.15)

for the α neutrino mass eigenstate in the i sector (mi
α ≪ T i

ν , so has been dropped). The

energy density and pressure are

ρiνα =
gα
2π2

∫ ∞

0
dp p2

√

p2 + (mi
α)

2f i
α(p) (3.16)

P i
να =

gα
2π2

∫ ∞

0
dp

p4

3

√

p2 + (mi
α)

2
f i
α(p), (3.17)

where gα = 2 is the number of degrees of freedom for a neutrino species.
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Since the neutrino decoupling temperature depends on the strength of the weak inter-

action as Tν ∝ G
−2/3
F , while GF ∝ v2, then the twin neutrino decoupling temperature T t

ν

is related to the SM neutrino decoupling temperature T SM
ν by

T t
ν = (f/v)4/3T SM

ν . (3.18)

We can then simply use (3.16) and (3.17) at matter-radiation equality to find ∆Neff

(assuming instantaneous decoupling). We thus obtain

H2(aeq) =
2

3M2
pl

(

ρSMγ + 3.046ρthν,m=0 + ρtγ +
∑

α

3wναρ
t
να

)∣

∣

∣

∣

∣

aeq

(3.19)

and

∆Neff =

(

11

4

)4/3 120

7π2 (T SM)4

(

ρtγ +
∑

α

3wt
ναρ

t
να

)

, (3.20)

where we now have equation of state parameters wνα for each neutrino, while ρSMγ and ρtγ are

the SM and twin photon energy densities, ρthν,m=0 and ρtνα are the neutrino energy densities.

3.3.2 Neutrino masses

Because they are so weakly interacting, the neutrinos have a long free-streaming scale

given by the distance travelled in a Hubble time vν/H, with vν ∝ m−1
ν the speed of the

neutrino once it becomes non-relativistic. This defines a free-streaming momentum scale

kfs =
√

3
2
aH
vν

∝ mν , above which neutrinos do not cluster. Below this scale, perturbations

in the matter density consist coherently of neutrinos and other matter, but well above it

only non-neutrino matter contributes to density perturbations. This results in a suppression

of the matter power spectrum on large scales which is proportional to the fraction of energy

density in the free-streaming matter. Since this occurs at late times when neutrinos are

non-relativistic, the energy density is simply ρνα = nναmνα for each neutrino species α,

where nνα is the number density. Constraints on the sum of neutrino masses then come from

the observations of power on small scales, which is suppressed relative to that expected for

massless neutrinos by a factor ∝∼ 1–8fν , where fν = Ων/Ωm is the fraction of non-relativistic

energy in neutrinos at late times [33].

More generally, inferences of the matter power spectrum constrain the present-day

energy density fraction of free-streaming species that do not cluster on small scales and

have since become non-relativisitic, Ων = (
∑

mν + meff
ν )/(94.1 eV), where

∑

mν is the

sum of SM neutrino masses and meff
ν is the sum of twin neutrino masses weighted by their

number density

meff
ν =

nt
ν

nSM
ν

∑

α

mt
να . (3.21)

Here nt
ν is the number density of a relic twin neutrino flavour and nSM

ν is that for a SM

neutrino. It is assumed that the neutrinos have been thermally produced as hot relics.

The relic abundance of a neutrino species is given by its number density when it de-

coupled, diluted by the factor by which the universe has since expanded. The scale factors
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at which neutrino decoupling occurs in the two sectors, aSMν and atν can be determined

from (3.18), the relative temperatures in the two sectors and comoving entropy conserva-

tion, to obtain

atν = aSMν

(

v

f

)4/3( gt⋆ (Tdecoup)

gSM⋆ (Tdecoup)

)1/3

(3.22)

where the same mass thresholds have been assumed in each sector below their neutrino

decoupling temperatures, so that gSM⋆
(

T SM
ν

)

= gt⋆
(

T t
ν

)

. The neutrino number densities

are then
nt
ν

nSM
ν

=

(

T t
νa

t
ν

T SM
ν aSMν

)3

=
gt⋆ (Tdecoup)

gSM⋆ (Tdecoup)
. (3.23)

For f/v from 3 to 10 and using Tdecoup ∼ 2–6GeV from section 3.2, we find

gt⋆ (Tdecoup) / gSM⋆ (Tdecoup) ∼ 0.8 and thus arrive at

meff
ν ≈ 0.8

(

f

v

)n
∑

α

mSM
να , (3.24)

where n = 1 for Dirac masses and n = 2 for Majorana masses.

If they are sufficiently light and hot, the twin neutrinos only affect the CMB as dark

radiation and their masses may then only be inferred from tests of the matter power spec-

trum. However, if heavier and colder, they are better described as a hot dark matter

component. Their impact on the CMB is discussed in [34], where the shape of the power

spectrum can depend upon the individual neutrino kinetic energies through their char-

acteristic free-streaming lengths. The early Integrated Sachs-Wolfe effect (eISW) is also

sensitive to the masses if the neutrinos become non-relativistic during decoupling (thereby

affecting the radiation energy density and the growth of inhomogeneities) [33].

There is a significant degeneracy in cosmological fits to the CMB between Ωm and H0

(the Hubble constant) [35], where raising the non-relativistic matter fraction, such as with

nonrelativistic neutrinos, can be accommodated by a decrease in H0 (or equivalently, the

dark energy density), which keeps the angular diameter distance to the CMB approximately

fixed. This degeneracy can be broken by measurements of the baryon acoustic oscillations

(BAOs), which are sensitive to the expansion rate of the late universe and provide an

independent measurement of Ωm and H0. It is through combination with these results

that bounds from Planck on neutrino masses are strongest [2].

3.3.3 Bounds

The authors are unaware of any specialised analysis of the present and projected future

cosmological constraints on scenarios with both massless dark radiation and additional

light, semi-relativistic sterile neutrinos. In the absence of this, we use bounds from [2]

as a rough indication of the present level of sensitivity to these parameters, which we

nevertheless expect to be a reliable indication of the (in)viability of this model. The 95%

confidence limits on these parameters are Neff = 3.2± 0.5 and
∑

mν < 0.32 eV when each

are constrained separately with the other fixed. This, of course, overlooks correlations

between the impacts of masses and ∆Neff on the CMB and LSS. Bounds on an additional
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sterile neutrino as the only source of dark radiation are also presented with number density,

or equivalently, contribution to ∆Neff, left to float. These are similar to the limit on
∑

mν .

It was found in [36] that, allowing
∑

mν and meff
ν to float independently for a single extra

sterile neutrino, the bound mildly relaxes to meff
ν . 1 eV, although the bound may be

stronger depending on the combination of data sets chosen (the lensing power spectrum

presently prefers higher neutrino masses and raises the combined bounds if included).

Other bounds from LSS on
∑

mν exist and are potentially stronger than those placed

from the CMB, possibly as low as meff
ν . 0.05 eV, again depending on data sets combined

(see [37, 38]), although these are subject to greater uncertainties in the inference of the

power spectra of dark matter halos from galaxies surveys and the Lyα forest.

It must also be noted that the shape of the CMB temperature anisotropies depends

upon both the mass of individual neutrino components (through their free-streaming dis-

tance) and their contribution to the energy density of the nonrelativistic matter that does

not cluster on small scales. However, it is not expected that improvements in bounds on the

former will be made from improved measurements of the primary CMB itself, but rather

from weak lensing of the CMB, in conjunction with future measurements from DESI of the

BAOs to break degeneracy with Ωm. The lensing spectrum, like inferences of the matter

power spectrum made in galaxy surveys, is expected to measure the suppression of small

scale power and therefore to strengthen constraints upon meff
ν , rather than the individual

neutrino masses. One of the goals of CMB-S4 will be the detection of neutrino masses,

given the present lower bound
∑

mν & 0.06 eV from oscillations. Projected bounds are as

low as ∼ 0.02 eV [27], although this assumes no extra dark radiation or sterile neutrinos.

A projection of the joint bound on Neff (from extra massless dark radiation) and meff
ν

combining improved measurements CMB temperature measurements, lensing and BAOs

indicates a limit of meff
ν . 0.1 eV at 1σ [27]. Any contribution from additional states to

meff
ν may therefore be testable and bounded by the excess of the neutrino mass inference

over the minimum neutrino mass, although laboratory measurements or measurements of

∆Neff will be required to further ascertain the contribution from the new particles.

Constraints on ∆Neff from improved measurements of the damping tail as part of

CMB-S4 are projected to be ∼ 0.02–0.05 at 1σ [27]. In the following sections, we use an

optimistic estimate of 0.02 for its reach in order to identify as much of the potentially

testable parameter space as possible.

To estimate the impact of current and projected CMB limits on the mirror Twin

Higgs, we consider two scenarios: the minimal Standard Model neutrino mass spectrum of

mν = [0.0, 0.009 eV, 0.06 eV] and a degenerate spectrum of mν = [0.1 eV, 0.1 eV, 0.1 eV] /3

from [2]. In figure 4 we plot the predictions of the mirror Twin Higgs for ∆Neff and

meff
ν for both types of spectra, as well as for both Dirac and Majorana masses (which

scale differently with f/v). As is plainly evident, the mirror Twin Higgs is ruled out

cosmologically, no matter the choices of neutrino masses one makes, if only for the presence

of the twin photon. In the standard cosmology, the twin sector will have roughly the

same temperature as the SM, giving 4.6 . ∆Neff . 6.3 for f/v < 10, according to the

definition of (3.20). This range depends upon f/v through the twin neutrino decoupling

temperature (3.18), which determines the extent to which the twin photons are reheated
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Figure 4. Predicted values of ∆Neff and
∑

mν +meff
ν for minimal and degenerate neutrino mass

spectra with both Dirac and Majorana masses for f/v from 3 to 10. The Planck 2015 constraint [2]

is the dashed line; the corresponding Neff upper bound is well below the bottom of the plot. All

points are excluded by the combination of bounds on ∆Neff and
∑

mν +meff
ν .

relative to the twin neutrinos after twin electron/positron annihilations. This is sufficiently

large that even the cold dark matter fraction cannot be adjusted to keep matter-radiation

equality fixed, resulting inevitably in changes to the height and shape of the first acoustic

peak. The energy density in neutrinos is predicted to be above the present observational

upper bounds for most neutrino mass configurations, with the exception of the minimal

values permitted by neutrino oscillation measurements with f/v . 6. We therefore discuss

cosmological mechanisms in which the twin radiation is diluted to levels compatible with

these observational bounds in the subsequent sections of this paper.

4 Reheating by the decay of a scalar field

We now turn to simple scenarios that reconcile the mirror Twin Higgs with cosmological

bounds, while taking care to respect the softly-broken Z2 symmetry. We begin with the

out-of-equilibrium decay of a particle with symmetric couplings to the Standard Model and

twin sectors, in which the desired asymmetry is generated kinematically. That is to say, the

dimensionless couplings between the decaying particle and the two sectors are equal, and

– 19 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
8

asymmetric energy deposition into the two sectors is a direct consequence of the asymmetric

mass scales. In this respect, the scenario is philosophically similar to Nnaturalness [39],

albeit with a parsimonious N = 2 sectors. See also [40, 41] and [24] for other recent related

ideas of using long-lived particles for the dilution of dark sectors.

For simplicity, here we will focus on the case of a real scalar X coupled symmetrically

to the A and B sector Higgs doublets. Due to the difference in masses between the sectors

after electroweak symmetry breaking, simple kinematic effects give X a larger branching

ratio into the Standard Model. This occurs over a range of X masses within a few decades

of the weak scale. If X decays out-of-equilibrium below the decoupling temperature of

the two sectors, this injects different amounts of energy into the two sectors, effectively

suppressing the temperature of the twin sector relative to the Standard Model. This

relative cooling suppresses the contribution of the light degrees of freedom of the mirror

Twin Higgs to below cosmological bounds. Insofar as the asymmetry is driven entirely by

kinematic effects arising from v ≪ f , the resulting temperature inequality between the two

sectors is proportional to powers of v/f .

The requisite suppression of the twin sector temperature relative to the Standard

Model temperature necessitates that the X dominate the cosmology before it decays. Our

main discussion will follow the simplest case of an X which dominates absolutely before

it decays, comprising all of the energy density of the universe and effectively acting as a

‘reheaton’. Afterwards, we will discuss the possibility of a ‘thermal history’ for X — a

scenario where X is in thermal equilibrium with the two sectors, then chemically decouples

at some high temperature and grows to dominate the cosmology before it decays. This

scheme will result in additional stringent constraints on the viable parameter space.

4.1 Asymmetric reheating

A Z2-even scalar X which is a total singlet under the SM and twin gauge groups admits

the renormalisable interactions

V ⊃ λxX(X + x)
(

|HA|2 + |HB|2
)

+
1

2
m2

XX2, (4.1)

where mX is the mass of X (neglecting corrections from mixing that will be shown below

to be tiny), λx is a dimensionless coupling and x is a dimensionful parameter, which one

may imagine identifying as a vacuum expectation value (vev) of X in an UV theory. Note

that these interactions preserve the accidental SU(4) symmetry of the Twin Higgs. The X

field may additionally possess self-interactions, which we omit here as they do not play a

significant role in what follows.

The interactions in (4.1) allow X to decay into light states in the Standard Model and

twin sectors. If X reheats the universe through out-of-equilibrium decays, the reheating

temperatures of the two sectors will be determined by its partial decay widths, assuming

that the decay products do not equilibrate. In the instantaneous decay approximation, X

decays when the Hubble parameter falls to its decay rate ΓX ∼ H. As we will show in

section 4.2, in order to evade cosmological constraints we need the X to decay mostly into

the SM, so we may estimate ΓX ∼ Γ(X → SM). Then the energy that was contained in
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the X is transferred into radiation energy density, with the resulting temperature of the

radiation given by (see [42])

T ∼ 1.2

√

ΓXMpl√
g⋆

(4.2)

where g⋆ is the effective number of relativistic degrees of freedom, as defined in section 3,

of the particles that are being reheated. Our numerical calculation of the reheating

temperature, which will be presented in section 4.2.2, indicates that the approximation

T ∼ 0.1
√

ΓXMpl reliably reproduces the reheating temperature over the range of interest.

As shown in section 3.2, the two sectors thermally decouple when the temperature

falls below Tdecoup ∼ 1GeV, so reheating must take place to below this temperature. At

even lower temperatures, big bang nucleosynthesis (BBN) places strong constraints on

energy injected into the SM at temperatures below O(1–10)MeV [43]. Requiring that

the SM reheating temperature is above ∼ 10MeV, these constraints on the SM reheating

temperature become constraints on the decay rate of the X into the SM, which in the

above approximation becomes

5× 10−21GeV . ΓX . 3× 10−16GeV. (4.3)

This then constrains the couplings λx and x of the X to the Higgs sector. Importantly, it

means that X must couple very weakly, in order to be long-lived enough to reheat to a low

temperature, as will be shown below.

The asymmetry in partial widths arises from different effects depending upon the mass

of X. For masses below the SM Higgs threshold, it is predominantly differences in mass

mixing with the two Higgs doublets that produces the asymmetry, where the size of the

mixing angles determines the effective coupling of X to the SM and twin particles and

therefore its branching fractions. For masses below the twin scale, the relative size of the

mixing scales inversely with the vevs in each sector. Thus the hierarchy v ≪ f already

present in the Higgs sector can automatically gives rise to a hierarchy in partial widths.

Note that additional threshold effects can enhance the asymmetry further, in particular

when X has mass above threshold for a significant decay channel in the SM, but below the

corresponding mass threshold in the twin sector. Decays into on-shell Higgses complicate

this picture further. In what follows, we first give an analytic calculation of the mass

mixing effect, then present a more precise calculation of the decay widths into each sector.

To lowest order, X decays via its interactions with the SM and twin Higgs, and only to

other fermions and gauge bosons through its mass mixing with the Higgs scalars. Expand-

ing the X potential after the SU(4) is spontaneously broken, the mixing term between X

and hA in the scalar mass matrix is
√
2λxxvA, while that between X and hB is

√
2λxxvB.

The hA and hB components of the X mass eigenstate, which we denote respectively as δXA

and δXB, can then be determined. The expressions for the mixing angles are in general

complicated, but they simplify in limits mX < f and mX ≫ f :

(δXA, δXB) ≈







4λxxvA
m2

X
−m2

h

(

1√
2
, vAf

)

mX < f

λxxf
m2

X

(√
2vA
f , 1

)

mX ≫ f
(4.4)
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to lowest order in (v/f)2 and κ/λ. The partial width for the decay of X into SM states

(excluding the Higgs) is

Γ(X → SM) ≈ |δXA|2 Γh(mh = mX), (4.5)

where Γh(mh = mX) denotes the decay width of a SM Higgs if it were to have mass mX .

Note that the Higgs partial width must be computed using the vev vA ≈ v/
√
2 to determine

the masses and couplings of the SM particles. The partial width of the X into twin states

is computed the same way using δXB and the vev vB ≈ f/
√
2.

From the mixing angles (4.4), it is already apparent over what mass range asymmetric

reheating from X decays will work. These give

Γ(X → SM)

Γ(X → Twin)
∼
{

f2/v2A ≫ 1 mX < f

v2A/f
2 ≪ 1 mX ≫ f.

(4.6)

Thus when the mass of X is less than the twin scale, the Standard Model will be reheated

to a higher temperature than the twin sector, but in the large mass limit this mechanism

works in the opposite direction and would appear to lead to preferential reheating of the

twin sector.

More precise statements about the relative branching ratios and resulting temperatures

require additional care. In addition to decaying through mass mixing, X can decay into

the Higgs mass eigenstates themselves if above threshold. As the energy is ultimately

transferred to the SM and twin sectors, we then need to consider how these states decay and

account for the further mixing of the Higgs mass eigenstates into Higgs gauge eigenstates.

For mX > 2mh, decay can occur into the lighter (SM-like) Higgs mass eigenstate h

with partial width

Γ(X → hh) ≈ λ2
xx

2

16πmX

√

1−
(

2mh

mX

)2

. (4.7)

Similarly, for mX > 2mH , decays can proceed into HH with a similar partial width,

but with the h mass replaced with that of the H. Above the intermediate threshold

mX > mh +mH , there is also the mixed decay

Γ(X → hH) ≈ λ2
x

2πmX

√

1−
(

mH +mh

mX

)2

(fδAX + 2vAδBX)2. (4.8)

Here, δAX ≈ −δhAδXA − δhBδXB is the component of the hA gauge eigenstate in the X

mass eigenstate and δBX ≈ δhBδXA − δhAδXB is the corresponding component of the hB
gauge eigenstate, where δhA and δhB are, respectively, the components of the SM Higgs

in the hA and hB gauge eigenstates to zeroth order in λx. Combining all ingredients, this

decay width is of order λ4
xx

2. Since it is only the total decay width that is constrained to

be small by the demand that the SM reheating temperature lie in the required window,

this fixes only a product of λx and x. If x ∼ v, then the mixed decay to hH is effectively

second order in the small coupling λ2
x and can be neglected relative to the other partial

widths. Conversely if x ≪ v, then λx is much larger and this decay cannot be neglected.
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In what follows we will work in the region of parameter space where mixed decays to hH

are negligible.

The rate of heat flow into each sector may be well approximated by adding the decay

rates of X into each channel and weighting these by the fraction of energy transferred into

the particular sector. Of course, when X decays into Higgs particles, these in turn decay

out of equilibrium into both the Standard Model and twin sectors. As the Higgs decays

are almost instantaneous, the fraction of energy transferred into each sector is simply that

carried by the Higgs decay products multiplied by their branching fractions for each sector.

The total rate at which X particles are transferred into the SM plasma is

W (X → SM) ≈ Γ(X → SM) + Γ(X → hh)Br(h → SM)

+ Γ(X → HH)(Br(H → SM) +Br(H → hh)Br(h → SM)). (4.9)

The corresponding rate for energy deposition into the twin sectors is simply given by the

replacement of SM 7→ Twin. The first term is the rate at which X decays directly into the

SM through mass mixing with the Higgs. The second is the fraction of X energy that is

transferred into lighter Higgs states that subsequently decay into the SM. The third is the

analogous term for decays into the heavy Higgs, where cascade decays of the H into the

h and subsequently other SM particles must be included. Note that decays of the heavy

Higgs into the light Higgs make up a majority of decay width, because of the large quartic

coupling required for the twin Higgs potential.

Below the hh threshold, it is possible for X to decay via one on-shell and one off-

shell Higgs boson. The partial width for off-shell Higgs production was calculated for

X → hh∗ → hbb̄ and found to be negligible compared to two-body decays through mass

mixing and so we omit three-body decay widths in what follows.

Ultimately, the complete partial widths for the decay of X into the Standard Model and

twin sectors includes the sum of decays into Higgs bosons h and H and direct decays into

the fermions and gauge bosons of the two sectors. We compute the latter to an intended

level of accuracy of ∼ 10% (including, e.g., NLO QCD corrections to decays into light-flavor

quarks), mostly following [44]. The resulting partial widths into the Standard Model and

twin sectors are shown as a function of mX in figure 5 with the ratio of branching fractions

displayed in figure 6.

Over much of the space below the Higgs mass, the branching ratio exhibits the ex-

pected (f/v)2 scaling from the mass mixing. Below ∼ 40GeV, suppression of the twin

partial width arises because the twin bottom quark pair production threshold is crossed.

AsmX nearsmh, the SM branching fraction grows by ∼ 4 orders of magnitude as theWW ∗,

ZZ∗, and then WW and ZZ decays go above threshold. Since the analogous thresholds

are at much higher energies in the twin sector, the enhancement is not paralleled by decays

into the twin sector until mX is close to the twin scale. There is therefore a large range of

masses mh . mX . mH over which the SM branching fraction dominates by several orders

of magnitude.

Above the X → hh threshold, the ratio of decay widths is roughly constant in mass up

to the HH threshold. The twin sector decay rate is dominated by decays of on-shell light
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Figure 5. The partial widths of the X into the SM (solid blue line) and twin sector (dashed orange)

for f/v = 3 in units of (λxx)
2. The light gray bands indicate regions of QCD-related uncertainty in

the SM calculation, while the darker gray bands indicate the corresponding regions of uncertainty

for the twin calculation.
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Figure 6. The ratio of branching fractions of the X into the SM and twin sectors at f/v = 3. The

dashed line gives the expected (v/f)
2
scaling from the mass mixing; deviations are due to various

mass threshold effects.

Higgs into twin states, Γ(X → Twin) ≈ Γ(X → hh)Br(h → Twin) ∝ 1/mX as in (4.7). If

the SM were also predominantly reheated through this channel, then the ratio of branching

fractions would again be approximately δ2hA/δ
2
hB ≈ (f/v)2. However, the SM decay width

also receives a larger contribution from decays through mass mixing between the X and

the Higgs gauge eigenstates.
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For masses mX > 2mh, decays through mass mixing are dominated by the SM WW

and ZZ channels. In this mass region, the decay rate of a Higgs into longitudinally polarized

vector bosons scales as Γ(h → WW,ZZ) ∼ m3
X , but the mixing angle scales as δ2AX ∼

1/m4
X (as in (4.4)), resulting in the same ∼ 1/mX scaling and thus a roughly constant

ratio in this range of masses. Near mX ∼ 1TeV, decays into twin vector bosons through

mass mixing begin to dominate, and there is no favourable asymmetry in the branching

fractions, as discussed in this section. Even at higher masses, the effects of heavy Higgs

decays into light Higgs do not compensate sufficiently, as this partial width scales with mX

in the same way as the partial width for longitudinally polarised weak bosons.

The constraint on the decay width from the required reheating temperature (4.3)

translates into a constraint on the size of the coupling λxx. For mX & mh, this gives

10−8.5GeV . λxx . 10−6GeV, while for lower masses, this range increases to 10−7GeV .

λxx . 10−5.5GeV at mX ∼ 20GeV.

The gray bands in figure 5 highlight regions where our analytic estimates of the partial

widths encounter enhanced uncertainties arising from the bottom and charm thresholds in

both sectors. Over most of these ranges, we estimate the size of these uncertainties to be

either ∼ 10% or confined to very small subregions. The thicknesses of these bands have been

chosen conservatively, and ultimately the branching ratios should be accurate to within a

factor of ±ΛQCD of the bottom and charm mass thresholds. In particular, the prescription

of [45] has been followed for approximating the bottom partial width close to the open

flavour threshold. Resonant decay into gluons from bottomonia mixing has been neglected,

although these resonant mass ranges are expected to be only ∼MeV wide at the CP-even,

spin-0 bottomonia masses mX = mχbi
(see [45] and [46]). It should be noted, however, that

at temperatures above that of the QCD phase transition, the quark decay products behave

differently compared to that expected in a low temperature environment. In particular,

for hot enough temperatures, the b or c quarks may not hadronise and the partonic partial

widths may more reliable. The applicability of the treatment of the flavour thresholds used

here may therefore not be valid if the decay occurs in the hot early universe. However, it is

only very close to the threshold itself (within several GeV) that this uncertainty becomes

significant. Finally, quark masses have been neglected in the gluon partial width. For mX

close to the flavour thresholds, this approximation breaks down, but the gluon branching

fraction is only ∼ 10% and so the error does not contribute to the uncertainty of the total

width by more than this order (it is this uncertainty that is responsible for most of the

extension of the length of the gray bands about the flavour threshold).

Close to the charm threshold, the analogous uncertainties are even more poorly under-

stood. Below the charm threshold, hadronic decays of a light scalar are highly uncertain

(see [47] for discussion). We avoid these regions altogether by restricting our considerations

to mX roughly above the twin charm threshold. Note that below the SM charm threshold,

the smaller decay rate of a Higgs-like scalar necessitates larger couplings λXx for X to have

a lifetime within the required reheating window. The larger couplings then imply poten-

tially stronger constraints from invisible mesonic decays. See [46–48] for further discussion

and recent analysis of the pertinent experimental constraints.
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Taken together, the results in figures 5 and 6 bear out the expectation that a scalar X

with symmetric couplings to the Standard Model and twin sectors may nonetheless inherit

a large asymmetry in partial widths from the hierarchy between the scales v and f . Across

a wide range of masses mX , the asymmetry is proportional to (or greater than) v2/f2,

tying the reheating of the two sectors to the hierarchy of scales.

Before proceeding to our computation of cosmological observables, we comment on an

alternative variation on the reheating mechanism presented here that involves having X

odd under the twin parity. This permits two renormalisable interactions with the Higgses

to give a Higgs potential of the form:

V ⊃ m2
0

(

|HA|2 + |HB|2
)

+λ0

(

|HA|4 + |HB|4
)

+ǫX2
(

|HA|2 + |HB|2
)

+ǫ̃X
(

|HA|2 − |HB|2
)

.

(4.10)

If X then acquires a vev at some scale, it may be possible to arrange for the resulting

spontaneous breaking of the Z2 to give that required in the Higgs potential. However, we

find that, in order for X to be long-lived and reheat the universe, its couplings to the Higgs

must be highly suppressed and therefore that the resulting vev of X required to explain

the soft Z2-breaking in the Higgs potential must be many orders of magnitude above the

twin scale. If this is to be identified with the characteristic mass scale of X, then a UV-

completion of the twin Higgs is required for anything further to be said of the prospects of

this possibility. However, if such a UV completion has similar structure to the couplings

in (4.10), then asymmetric reheating may require a cancellation between the odd and even

couplings of X to the Higgs potential in order to suppress its twin-sector branching fraction

(because the odd coupling appears with opposite signs in the coupling between X and the

hA and hB states). We do not consider this possibility further.

4.2 Imprints on the CMB

For appropriate values of mX , the out-of-equilibrium decay of X reheats the two sectors

to different temperatures and effectively dilutes the energy density in the twin sector.

We obtain an analytic estimate of the effects of the X decay on the number of light

degrees of freedom observed from the CMB by approximating both the decay of X and

the decoupling of species as instantaneous in section 4.2.1. We then demonstrate that this

estimate is reliable over most of the parameter space of interest with a numerical calculation

in section 4.2.2. In section 4.2.3 we consider neutrino masses and their joint constraints

with Neff .

4.2.1 Analytic estimate of Neff

If X dominates the energy density of the universe and then decays, depositing energy

ρSM and ρt into the SM and twin sectors respectively, then the temperature ratio is

determined by

ρt
ρSM

=
gt⋆(T

t
reheat)

gSM⋆ (T SM
reheat)

(

T t
reheat

T SM
reheat

)4

≈ Γ(X → Twin)

Γ(X → SM)
, (4.11)

where T SM
reheat and T t

reheat are the reheating temperatures for each sector, while gSM⋆ and gt⋆
are the SM and twin effective number of relativistic degrees of freedom, respectively. We
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have assumed that the two sectors are cool enough that they have already decoupled. We

point out that not only does the number of effective degrees of freedom in each sector need

to be evaluated at the temperature of that sector, but that gt⋆ and gSM⋆ differ as functions

of temperature due to the differences in the spectra of the sectors, as seen in figure 1. As

is well-known [42], reheating is a protracted process that occurs over a time-scale given

by the lifetime of the reheaton. During this time, the temperature of the plasma cools

slowly because, while the energy is being replenished by the decay of the reheaton, it is

simultaneously diluted and redshifted with the expansion of the universe. It is assumed

in (4.11) that any primordial energy density in either sector is subdominant.

The temperatures of both sectors then redshift in the same way, so the only addi-

tional differences between their temperatures arise from changes to the effective number

of degrees of freedom in each sector. By conservation of comoving entropy within each

sector, each evolves as T i
eq/T

i
reheat =

(

gi⋆(T
i
reheat)/g

i
⋆(T

i
eq)
)1/3

a(Treheat)/a(Teq) where T i
eq

is the temperature of the sector at matter-radiation equality, which the CMB probes as

explained in section 3.3, and a(T ) is the scale factor as a function of temperature. In

the mirror Twin Higgs model, the two sectors have the same number of light degrees of

freedom at recombination (three neutrinos and a photon, assuming that the neutrinos are

still relativistic), so

(

T t
eq

T SM
eq

)4

=

(

T t
reheat

T SM
reheat

)4(
gt⋆(T

t
reheat)

gSM⋆ (Treheat)

)4/3

=
Γ(X → Twin)

Γ(X → SM)

(

gt⋆(T
t
reheat)

gSM⋆ (Treheat)

)1/3

. (4.12)

As our range of reheat temperatures encompasses the QCD phase transitions of both

sectors, the factors of g⋆ can be important.

Given the temperatures of the two sectors after X decays, we can obtain a simple

estimate of the contribution to Neff that neglects the impact of masses of the twin neutrinos

discussed in section (3.3.1),

(∆Neff)mν=0 =
4

7

(

11

4

)4/3

gSM⋆ (T SM
eq )

ρt(T
t
eq)

ρSM(T SM
eq )

(4.13)

≈ 7.4× Br(X → Twin)

Br(X → SM)

(

gt⋆(T
t
reheat)

gSM⋆ (T SM
reheat)

)1/3

. (4.14)

In this limit the most recent Planck data give a 2σ bound of ∆Neff . 0.40 assuming

pure ΛCDM+Neff [2]. This translates into the requirement
ρt(T t

eq)

ρSM(TSM
eq )

≈ Γ(X→Twin)
Γ(X→SM) . 0.05,

ignoring possible differences in g⋆.

Of course, as discussed in section 3, the twin neutrino masses are relevant at the

temperature of matter-radiation equality, so we can obtain a more meaningful estimate of

∆Neff using the results of section 3.3.1 evaluated at the twin temperature determined above:

∆Neff =

(

11

4

)4/3 120

7π2
(

T SM
eq

)4

(

ρtγ
(

T t
eq

)

+
∑

α

3wt
να

(

T t
eq

)

ρtνα
(

T t
eq

)

)

(4.15)

T t
eq = T SM

eq

(

Γ(X → Twin)

Γ(X → SM)

)1/4( gt⋆(T
t
reheat)

gSM⋆ (T SM
reheat)

)1/12

(4.16)
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with T SM
eq ≈ 0.77 eV [2] the photon temperature. While the right-hand side of this equality

has implicit dependence on T t
eq through gt⋆, this is only important if the reheating occurs

between the SM and twin QCDPTs and the neglecting of the factors of g⋆ is otherwise

reliable. With the further inclusion of Standard Model neutrino masses or an extra sterile

neutrino, the bound described above weakens to ∆Neff . 0.7. As discussed in section 3.3.3,

we are not aware of any analyses specific to our model involving both pure dark radiation

and three sterile neutrinos with masses of order the photon decoupling temperature of the

CMB and possibly cooler temperatures. In the absence of such an analysis, we use the

inequality ∆Neff . 0.7 to indicate where the present CMB measurements are likely to

constrain the light degrees of freedom of this model, leaving a more detailed analysis of

the CMB constraints as future work. In this case, the bound on the decay width ratio is
Γ(X→Twin)
Γ(X→SM) . 0.09. The next generation of CMB experiments are projected to strengthen

this constraint to ∆Neff . 0.02 at the 1σ level [49].

4.2.2 Numerical calculation of Neff

A more precise study of the effect of X decay on the number of effective neutrino species at

recombination may be performed by numerically solving a system of differential equations

for the entropy in X and the two sectors as a function of time. Following the analysis of

chapter 5.3 of [42] we have

H =
1

a

da

dt
=

√

1

3M2
Pl

(ρX + ρSM + ρt) (4.17)

dρX
dt

+ 3HρX = −ΓXρX (4.18)

ρi =
3

4

(

45

2π2gi⋆

)1/3

S
4/3
i a−4 (4.19)

S
1/3
i

dSi

dt
=

(

2π2gi⋆
45

)1/3

a4
(

ρXΓX→i +
dqj→i

dt

)

, (4.20)

where Si are comoving entropy densities and it has been assumed that X is cold by the

time it decays so that ρX = mXnX with number density nX (this is reliable as we only

consider mX > 10GeV, which is above the decoupling temperature of ∼ 1GeV). The rate

of heat flow from sector j to i per proper volume,
dqj→j

dt , is defined in (3.6). To account

for the temperature-dependence of the effective number of relativistic degrees of freedom

in each sector, these equations are solved iteratively in the profiles of gi⋆(T
i).

The equations are solved in three stages: before, during and after the decoupling of the

SM and twin sectors. The ratio f/v is fixed to 4 for this analysis. Initial conditions were

chosen with ρ = 10−12ρX , for combined SM and twin energy densities ρ. However, it is only

the requirement that the initial energy density of X dominates over that of the SM and

twin sectors that is important for simulating the cosmology over the times of interest here,

as the entirety of the latter is then generated by the subsequent decay. The results close

to the decoupling and reheating epochs are otherwise insensitive to the initial conditions

and ultimately match onto the standard outcome [42] expected by equating the Hubble
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Figure 7. Ratio of twin to SM energy densities throughout decoupling and reheating, for different

decay rates ΓX . The dashed line corresponds to the prediction of from the ratio of decay widths,

here selected to be 1/16.

rate with the decay rate of X. The sectors are assumed to be in thermal equilibrium and

sharing entropy until a temperature of 10GeV, below which they are evolved separately

with the heat flows
dqi→j

dt switched on. Elastic scatterings were neglected from the heat flow

rate to accelerate the computation. It was verified for the results found below that their

contribution to the heat flow was always . 10% while the heat flow was itself not dominated

by the Hubble rate. Heat flow was switched off again once the twin temperature reaches

0.1GeV, by which time thermal decoupling is long-since complete, and the sectors are

subsequently evolved separately. Again, although the strengthening of the colour force and

the QCDPT make the perturbative tree-level computation of the scattering rates unreliable

at temperatures below ∼ 1GeV, as found in section 3.2 and also in the results below, the

sectors decouple above these temperatures. Notably, the impact of X on the expansion

rate causes decoupling to occur at slightly hotter temperatures than expected from the

analysis of section 3.2 for the decoupling in the standard cosmology.

The ratio of energy densities in each sector determines Neff, from (4.15). A plot of

this ratio over time is shown in figure 7, with the expectation under the approximations of

the previous section shown as well. This approximation is reliable as long as the lifetime

of X is much longer than the temperature at which decoupling concludes, here ∼ 1GeV.

The larger asymptotic value of the ratio of the blue line arises because the lifetime lies

close to the decoupling period, so that a significant fraction of the energy is transferred

while the sectors are thermalised or partially thermalised and does not contribute toward

asymmetric reheating. Equivalently, as will be discussed below, insufficient time elapses

between decoupling and reheating for the twin energy density to dilute and be repopulated

by the decays to the level predicted by (4.11). The subsequent bump represents the period
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between the reheating of the twin sector by its QCD phase transition followed by that of

the SM. The green and orange lines correspond to reheating temperatures that lie between

SM and twin QCD phase transitions. In these cases, the reheating of the SM from the

subsequent SM QCD phase transition raises its energy density relative to the twin sector

above that expected from the ratio of branching fractions. As this occurs after the lifetime

of the reheaton, the estimate of the reheating temperatures presented in (4.12) is still good

as subsequent changes in the ratio due to the evolution of g⋆ are accounted for in our

analysis of the reheating scenarios.

The steep drop in the energy density ratio corresponds to the brief period during which

the energy density of the twin sector present at decoupling dilutes and redshifts, which

continues until it reaches a comparable size to the energy density that is being replenished

by reheating. If the twin-sector branching fraction is highly suppressed, as can occur in the

“valley” region in figure 6 with mh . mX . 2mh, then a longer time is required for this

to happen, especially close to the decay epoch where the diminishing of the X population

also contributes to a reduced reheating rate. These effects can prolong the time required

for the energy density ratio to converge to the asymptotic prediction of (4.11).

Contour plots of ∆Neff as a function of mX and f/v appear in figure 8, along with

current and predicted bounds using the analytic results of section 4.2.1. The minimum

neutrino mass configuration with Dirac masses has also been assumed, although the re-

sults are relatively insensitive to this provided that the twin neutrino masses are not well

above the eV scale. A SM reheating temperature of 0.7GeV has been assumed. At this

temperature, we have verified using the numerical calculation of section 4.2.2 that the twin

sector reheating temperature is always roughly above the twin neutrino decoupling tem-

perature over the parameter space of the figure, ensuring that the neutrinos thermalise

once produced in the decays and hence that the predictions of section 4.2.1 are valid. A

treatment of the case in which the twin neutrinos are produced below their decoupling

temperature is beyond the scope of this analysis, but would involve the computation of the

phase space spectrum of the neutrino decay products of the X.

Also, as discussed in section 3.2, a large temperature difference may partially relax back

if reheating occurs close to sector decoupling. However, a reliable calculation of the heat

flow at the temperatures of interest here must incorporate non-perturbative effects. We do

not perform such a computation, but note that, at a slightly higher SM reheating temper-

ature of 2GeV where this computation is more reliable, ∆Neff in figure 8 can be raised by

up to an order of magnitude in the region with f/v . 4 and 150GeV . mX . 200GeV,

notably where the twin sector partial width is suppressed relative to the SM by several

orders of magnitude. The resulting ∆Neff prediction is, nevertheless, still out of ob-

servable reach. At the lower SM reheating temperature assumed in figure 8, it is ex-

pected that decoupling will be further advanced and the enhancement in ∆Neff would

be weaker.

We emphasize that, if the lifetime of X is sufficiently close to the time of decoupling, or

equivalently, that the reheating temperature is sufficiently close to the decoupling temper-

ature, then the residual twin energy density left-over may be comparable to or greater than

that regenerated by reheating. Consequently, the suppression in ∆Neff would be less than
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Figure 8. Contours of log10 ∆Neff as a function of mX and f/v, for T SM
reheat = 0.7GeV. The dark

blue region is in tension with Planck, while the light blue region will be tested by CMB-S4. Gray

regions are where the X mass is below the twin charm threshold and our calculation of the twin

sector partial width is unreliable.

that predicted in (4.12). In this respect, the projection of figure 8 should be regarded as a

lower bound on ∆Neff . In the regions of high suppression, such as the “valley” region, the

full asymmetry may not be generated before the complete decay of X when the reheating

temperature is of similar order as the decoupling temperature. In particular, for the reheat-

ing temperature chosen here of 0.7GeV and branching fraction Br(X → Twin) ∼ 10−5,

the numerical calculation of the energy density ratio saturates at ∼ 4 × 10−5. We do not

include this effect in figure 8 as its only impact is to mildly shift the unobservably small

∆Neff = 10−4 contour. Lower reheating temperatures would agree with the prediction

of (4.11) were it not for the caveat that the twin neutrinos may be produced out of equi-

librium. However, this minimum value at which ∆Neff is saturated can grow significantly

with hotter reheating temperatures upon which it is highly dependent.

CMB-S4 observations will be able to probe a large portion of the most natural pa-

rameter space, save the region mh . mX . 2mh where decays into the Standard Model

dominate well beyond the ratio f2/v2, as previously discussed. Significantly, precision
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Higgs coupling measurements at the LHC are unlikely to probe the mirror Twin Higgs

model beyond f ∼ 4v, so that the observation of additional dark radiation may be the first

signature of a mirror Twin Higgs.

4.2.3 Neutrino masses

In addition to the bounds on Neff , we must also respect the bounds on neutrino masses.

The analysis remains nearly the same as in section 3.3.2, but now with the twin neutrinos

at a lower temperature, as determined above. As mentioned above, for large enough f/v

and SM reheating temperature sufficiently close to the lower bound, the reheating temper-

ature of the twin sector may be below the twin neutrino decoupling temperature and the

resulting energy density would be more difficult to compute. For simplicity, we choose λxx

large enough such that the twin reheating temperature is always above the twin neutrino

decoupling temperature.

As before, we compute meff
ν as

meff
ν =

nt
ν

nSM
ν

∑

α

mt
να . (4.21)

In relating the scale factors at neutrino decoupling in each sector, we now have to use the

above temperature ratio to find, analogously to section 3.3.2, that

meff
ν =

(

Γt

ΓSM

)3/4
(

gt⋆
(

T t
reheat

)

gSM⋆
(

T SM
reheat

)

)1/4
(

f

v

)n
∑

α

mSM
να , (4.22)

where, again, n = 1 for Dirac masses and n = 2 for Majorana masses. Interestingly, if

the branching ratios scale as Γt/ΓSM = (v/f)2, then we have meff
ν ∝ (f/v)−3/2+n, so the

contribution grows with f/v for Majorana masses, but is suppressed for Dirac masses.

As before, we consider the minimal mass spectrum of mν = [0.0, 0.009, 0.06 eV] and a

degenerate spectrum of mν = [0.1 eV, 0.1 eV, 0.1 eV] /3. In figure 9 we plot the predictions

of the X reheating for ∆Neff and meff
ν for both spectra and both Dirac and Majorana

masses using the approximations of section 3.3, for f/v from 3 to 10 and assuming the
Γt

ΓSM
∼ (v/f)2 scaling; there are regions in the space of mX where the suppression of meff

ν

would be much higher.

Dashed lines indicate the rough locations of present experimental limits from

Planck 2015, and projected bounds from CMB-S4. As mentioned in section 3.3.2, we

are unaware of any study of bounds on both meff
ν and ∆Neff treated jointly. In the absence

of this, we show present and projected constraints on Neff and
∑

mν from [50] and [27],

ignoring correlations, as described in section 3.3.3.

4.3 Thermal production

In our discussion up to this point, we have been agnostic about the origin of the cosmic

abundance of X and have operated under the assumption that it absolutely dominates

the cosmology before it decays. Here, we consider the possibility that X was thermally

produced through freeze-out and subsequently dominates the universe as a relic before
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Figure 9. Predicted values of ∆Neff and
∑

mν +meff
ν for minimal and degenerate neutrino mass

spectra with both Dirac and Majorana masses for f/v from 3 to 10. The Planck 2015 [2] bounds on
∑

mν and Neff , as discussed in section 3.3.3, are represented by the dashed lines, and the projected

CMB-S4 constraints are given by the dotted lines. It has been assumed that Γt

ΓSM
∼ (v/f)2.

Note however, that, from figure 8, this scaling of the partial widths holds only for the mass range

50GeV . mX . 120GeV, outside of which the twin partial width is more suppressed and the

model is only testable through ∆Neff over a smaller range in f/v.

decaying. This thermal history is viable, but places strong constraints on the mass and

couplings of the X.

The energy density of relativistic species redshifts as ρr ∝ a−4 ∝ T 4, while the energy

density of non-relativistic, chemically decoupled matter scales as ρm ∝ a−3. The energy

density contained in the X can therefore only grow relative to the energy density in the

thermal bath once it becomes non-relativistic. We found in section 4.2.1 that by recombina-

tion, ρt/ρSM . 0.09 is needed to evade current bounds on ∆Neff. Thus we need to have the

energy density in the X dominate over the SM and twin plasmas by more than this factor

when it decays. If X becomes non-relativistic instantaneously at the moment that its tem-

perature reaches some fraction c ∼ O(0.1) of its mass, then, as T ∝ 1/a and ρX is ∼ 1/g⋆ of

the total energy density, the mass is required to satisfy mX & 10/c×g⋆ (T = mX)T SM
Xreheat.

Since the SM reheating temperature is strongly constrained to be above BBN, this effec-

tively puts a lower limit on the mass of the X. Importantly, X must freeze-out when

relativistic or its energy density will be further Boltzmann suppressed. The lower limit on

the mass of the X becomes an upper limit on the X’s couplings — if it couples too strongly

to the thermal bath, then it won’t freeze out early enough to be hot.
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In fact the situation is somewhat less favorable than the above analysis suggests, be-

cause it is relevant operators that must keep X in thermal equilibrium. For an X with

the interactions introduced in section 4.1, the annihilations have rates that scale with tem-

perature as Γ ∼ nX 〈σv〉 ∼ T for T & mX ,mh (where nX is the number density of X

and 〈σv〉 is its thermally averaged annihilation cross section). However, in a radiation-

dominated universe, H ∼ T 2. Thus, at high enough temperatures, X is not in thermal

equilibrium with the plasma and it is only once the universe cools enough that it may ther-

malise. Then, as the temperature drops, XX → qq̄ annihilations become suppressed by

the Higgs mass and subsequent Boltzmann suppression causes X to freeze-out. Note that

the rates of these annihilation processes are controlled by the coupling λx, independently

of x, which is unconstrained by itself (other processes mediated by λxx are found to be

subdominant in the ensuing analysis, for the range of λx over which thermal production

is successful). If the coupling is too weak to begin with, then the X never thermalises

and thermal production cannot happen. Thermal production therefore requires a care-

ful balancing of parameters — small coupling λx is preferred for X to freeze-out hot and

as early as possible, but the coupling is bounded from below by the requirement that X

reach thermal equilibrium. This combination of constraints severely restricts the size of

the parameter space over which thermal production is viable to cases in which the cou-

pling is selected so that X enters and departs from thermal equilibrium at close to the

same temperature.

To obtain numerical predictions for this scenario, the calculation of section 4.2.2 was

modified to account for the time after the freeze-out of X before it becomes non-relativistic.

During this period we use (3.15) and (3.16) for the energy density of the X, approximating

decays as being negligible, before switching over to (4.18) when the temperature drops

below the mass of the X. The approximation that the X does not decay appreciably

while it is relativistic must be good if there is to be sufficient time for it to grow to

dominate between becoming non-relativistic and decaying. The decay width of X was

fixed to 5 × 10−21GeV, corresponding to a reheating temperature close to the ∼ 10MeV

lower limit, in order to maximise the amount of time over which the energy density of X

may grow relative to the SM plasma, thereby providing the greatest possible reheating.

The predictions for ∆Neff from a thermally produced X are shown in figure 10 for

the small regions of parameter space where this is viable, with f/v = 4. We find that

the dominant annihilation channels over this region are XX → tt̄ and XX → bb̄, medi-

ated by the light Higgs, as well as their twin analogues, mediated by the heavy Higgs. As

expected, the primordial energy density in the twin sector is too large compared to that

generated by the X for the asymmetric reheating to be effective when mX is too light

(. 100GeV in this case). Similarly, when the coupling is too strong, the X is held in

equilibrium for longer and freezes-out underabundant compared to the twin energy den-

sity. However, when the coupling is too weak (the gray region), X never thermalises to

begin with (close to the boundary with this region, X freezes-out almost immediately after

thermalising). The peak in the contours occurs because of the “H-funnel” in which the

twin Higgs resonantly enhances annihilations into twin quarks. All of this region will be

testable by CMB-S4.
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Figure 10. Parameter space where thermal production of X gives a large enough relic abundance

to dilute the twin sector, for f/v = 4. In the gray region, the coupling is too weak for X to ever

reach thermal equilibrium. The blue region is in tension with recent Planck measurements of ∆Neff ,

whereas all of the white region will be tested by CMB-S4. Predictions presented here for ∆Neff

close to the gray boundary are more uncertain because of the high sensitivity of the freeze-out

temperatures to the coupling.

5 Twinflation

As an alternative to the model presented above of late, out-of-equilibrium decays of a

Z2-symmetric scalar, one may imagine that the field driving primordial inflation reheats

only the Standard Model to below the decoupling temperature of the two sectors. Produc-

tion of the twin particles then ceases at some time after the temperature drops below the

decoupling temperature during reheating.

To make this consistent with a softly-broken Z2 symmetry, we extend the inflationary

sector and introduce a ‘twinflaton’ that couples solely to the twin sector. The combined

inflationary and twinflationary sectors respect the Z2 symmetry. However, if the two

sectors are entirely symmetric then one generally expects both inflationary dynamics to

happen coincidentally, which would result in identical reheating. We therefore rely on soft

Z2-breaking to give an asymmetry between the two sectors that causes the twinflationary
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sector to dominate the universe first. With the right arrangement we can end up with

two distinct periods of inflation — a first caused by the “twinflaton” and a second that

then reheats the Standard Model to below the decoupling temperature, having diluted the

sources of twin-sector reheating from the first period.

One simple mechanism for Z2-breaking which is well-suited for introducing asymme-

try to inflationary sectors is to introduce an additional Z2-odd scalar field η (as was done

in [51]). This admits linear and quadratic interactions to antisymmetric and symmetric

combinations of the inflationary sector fields, respectively. When η acquires a vev, this

introduces an asymmetry in the fields to which it was coupled, dependent on the combi-

nation of its vev and its couplings. If η is coupled to both the inflationary sectors and the

Higgs sectors, it could be the sole source of Z2-breaking in a twinflationary theory. One

may generally imagine that, in some UV completion, the mechanism that softly breaks

the symmetry in the Higgs potential could also be the origin of the soft breaking of the

inflationary sector.

Cosmologically, this possibility may have similar observational signatures as the model

discussed in section 4, where the amount of twin-sector dark radiation is determined by the

partial widths of the inflaton of the second inflationary epoch. If this dominantly couples to

the SM, then ∆Neff will be suppressed which, while successfully resolving the cosmological

problems of the Mirror Twin Higgs, may also be observationally inaccessible. However,

additional, distinctly inflationary signatures may make this potentially testable by other

cosmological observations.

The mechanism of twinflation completes a catalog of models of asymmetric reheating

by late decays, which may be indexed by representations of the twin parity: the case

of a Z2-even particle, in which a kinematic asymmetry in the partial widths provides the

reheating asymmetry, the case of a Z2-odd particle, which can also provide the spontaneous

Z2-breaking required in the Higgs potential, and the case where two distinct, long-lived

particles couple to each sector, which may also be related to inflation.

5.1 Toy model

As a toy model we here consider ‘twinning’ the simple ϕ2 chaotic inflation scenario. The

inflationary dynamics in this case are easy to understand and we have the additional

benefit that this inflationary model has been considered in the literature before as ‘Double

Inflation’ (see [52, 53] and [54]). We furthermore specialize to ‘double inflation with a

break’, where there are two distinct periods of inflation which produces a step in the power

spectrum, and we consider the constraints that this places on our model. In this case, it is

assumed that each inflaton field couples and therefore decays dominantly into the sector to

which it belongs. We will comment briefly on the case without a break and the additional

signals one could look for in that case.

The potential of the inflationary sector for inflaton ϕA and twinflaton ϕB is

V =
1

2
m2

Aϕ
2
A +

1

2
m2

Bϕ
2
B, (5.1)

where mA 6= mB may arise from soft Z2- breaking, perhaps related to the soft Z2-breaking

in the Higgs potential. In order for the ‘twinflation’ to occur first, we require that the energy
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of the B field initially dominates the energy density of the universe. We take the initial po-

sitions of the fields to be the same and m2
B ≫ m2

A.
5 Call ϕA(0) = ϕB(0) = n

√
2Mpl = nϕc,

where ϕc is the critical value at which inflation stops and mB = rmA = rm with n, r > 1.

The inflationary dynamics are then those of slowly-rolling scalar fields. At some point in

the early universe we imagine that the slow-roll approximation holds for both fields and the

inflationary sector dominates the universe. The dominating field then slow-rolls down its

potential for n2−1
2 e-folds, while the lighter field’s velocity is suppressed by approximately

ϕA

r2ϕB
. Solving the system numerically reveals that the motion of ϕA during this period can

be neglected entirely.

After ϕB reaches the critical value
√
2Mpl, it stops slow-rolling and begins oscillating

around the minimum of its potential. For there to be two distinct periods of inflation, there

must be a period where these oscillations dominate the universe, which requires that the en-

ergy densities of each inflaton ρA and ρB satisfy ρB(ϕc) = r2m2M2
pl > ρA(ϕ(0)) = n2m2M2

pl

and therefore r > n. For a ϕ2
B potential, the energy in these oscillations redshifts as

ρB ∼ a−3. Eventually, the energy density in ϕB drops below that of ϕA and a new epoch

of inflation, driven by ϕA, begins. This provides a further n2−1
2 e-folds of inflation to give

n2 − 1 in total, while the B-sector energy density is diluted away.

Note that in order for our toy model to reheat below the decoupling temperature of

the two sectors, reheating must occur well after the end of inflation. If, during the coherent

oscillation of an inflaton, it becomes the case that the inflaton decay width Γ ∼ H, then

reheating will occur and result in temperature Treheat ∼ 0.1
√

ΓMpl. However, if Γ ≫ H

when inflation ends, then all of the energy in the inflaton is immediately transferred and

we instead have reheating temperature Treheat ∼ 0.1
√

mαMpl for an inflaton of mass mα.

But in order for Treheat . 1GeV, it is required that mα . 10−7 eV, so this possibility that

the inflaton is short lived is not viable. The procedure of twinning inflationary potentials

may be generalised to other, more realistic models, provided that this constraint upon the

reheating temperature can be satisfied.

5.2 Observability

One could always make a twinflationary scenario consistent with observational constraints

by letting the second inflationary period of inflation last long enough. In our toy model,

this would correspond to setting n high enough that the momentum modes which left the

horizon during the first inflation have not yet re-entered the horizon — such a scenario

would look exactly like single-field chaotic inflation.

Alternatively, we may also allow for n small enough that all the momentum modes

that left the horizon during the second inflation are currently sub-horizon. In this case,

fluctuations at large enough wavenumbers (equivalently, small enough length scales) are

‘processed’ (cross the horizon) at a different inflationary energy scale than those that were

processed earlier, giving a step in the power spectrum. While Planck has measured the

primordial power spectrum for modes with 10−4Mpc−1 . k . 0.3Mpc−1 (where the lower

5Note that merely giving the twin field a much larger initial condition does not instigate twinflation.

The dynamics of the subdominant field in this case are such that it will track the dominant field and both

will reach the critical value at the same time. This is easily confirmed numerically.
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bound is set by the fact that smaller modes have not yet re-entered the horizon), proposed

CMB-S4 experiments will increase this range [27] somewhat, as will be discussed further

below. We wish to show that the power spectrum of our toy model is not ruled out and,

furthermore, may be observed in the coming decades.

The height of the step in the primordial power spectrum is determined by the energy

scale of each period of inflation, so modes crossing the horizon in the second inflationary pe-

riod should be suppressed by a factor of r2 > n2 & 25 compared to those exiting in the first

period. This degree of suppression is ruled out by Planck for the range of modes over which

it has reconstructed the power spectrum [50]. A computation of the primordial power spec-

trum for double inflation was given in [53]. It was found that significant damping does not

occur for modes which cross outside the horizon during the first inflationary period, re-enter

during the inter-inflationary period and again cross the horizon during the second infla-

tionary period. It is only those scales which first cross the horizon during the second infla-

tionary period that are significantly damped (although other features in the shape, such as

oscillations, may be present for modes that are subhorizon during the intermediate period).

The relation of this characteristic scale to present-day observables is easily done using

the framework given in [55]. Let the subscripts a, b, c, d, e respectively correspond to the

beginning of the first inflationary period, the end of that period, the beginning of the second

inflationary period, the end of that period, and the beginning of radiation domination.

During the coherent oscillation periods, the inflaton acts as matter and the energy density

falls as ρ ∝ a−3. Let ki be the momentum whose mode is horizon-size at the i epoch;

ki = aiHi. The scales ki can be related using the number of e-folds in each period, which

are themselves determined from the first Friedmann equation. Denoting Nij = ln
aj
ai
, we

have ka = e−Nabnkb, kb = e
1
2
Nbckc and similarly for the other characteristic modes, where,

in particular, slow-roll inflation predicts that Nab = Ncd = n2−1
2 . The evolution of the

characteristic momentum scales is shown schematically in figure 11. Finally, ke can be

determined using the conservation of comoving entropy:

ke =
πg

1/3
⋆ (T0)g

1/6
⋆ (Treheat)T0Treheat

3
√
10Mpl

, (5.2)

where T0 and a0 are the temperature and scale factor today and Treheat is the reheating

temperature (which is sufficiently low that only SM particles are produced). We work

explicitly with the convention a0 = 1. The characteristic modes associated with the break

can then be determined.

As mentioned above, [53] shows that damping occurs for modes that exit the horizon

only during the second inflationary period, so we should take the characteristic damping

scale to be the smallest such scale, which here corresponds roughly to kb This can be

determined as

kb = ne
1
2
Nbc−Ncd+

1
2
Ndeke (5.3)

= n
( r

n

)1/3
exp

(

−n2 − 1

2

)

[

1
2m

2M2
pl

π2

30 g⋆(Treheat)T
4
reheat

]1/6
πg

1/3
⋆ (T0)g

1/6
⋆ (Treheat)T0Treheat

3
√
10Mpl
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Figure 11. Schematic evolution of the characteristic scales in Twinflation, as seen by comparing

wavenumbers to the Hubble radius over time. Note that the time axis is not a linear scale.

where kc only differs by the factor of (r/n)1/3 (which is roughly close to unity). Once

again, between kb and kc are oscillatory features, so kb should merely be taken as the rough

characteristic scale of the damping.

Now the characteristic damping scale is determined by m, n, r, and Treheat. Our

observational bound on kb is that Planck has not seen this suppression on momentum

scales at which it has been able to reconstruct the primordial power spectrum from the

angular temperature anisotropy power spectrum, which is roughly k . 0.3Mpc−1. We

have constraints on the reheating temperature from rethermalization of the twin sector or

interrupted big bang nucleosynthesis 10MeV . Treheat . 1GeV, on having a period of

intermediate matter domination between the two inflations r > n and on the total number

of e-folds n2 − 1 & 25 to solve cosmological problems. Note that we require fewer e-folds

of inflation than is typically assumed in the standard cosmology. Since the low reheating

temperature gives fewer e-folds from reheating up to today, less inflation is needed to

explain the large causal horizon and flatness.

The normalization of the spectrum provides a further constraint, the most recent mea-

surement of which come from Planck [50]. The scalar power spectrum at k⋆ = 0.05 Mpc−1

is measured to be PR(k⋆) = e3.094±0.034 × 10−10. Then for k⋆ < kc (i.e. k⋆ having left

the horizon during the first period of inflation and not re-entered before the second, so no
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Figure 12. The prediction for the characteristic suppression scale as a function of the initial values

of the fields. The mapped regions should be interpreted not as having hard boundaries, but rather

fuzzy endpoints where they break down. Here we have used Treheat = 10MeV and r = 2n.

deviation from single-field inflation would be seen at this scale), the spectrum of [53] yields

the constraint

2.03× 10−6 =
r2m2

M2
pl

ln

(

kb
k⋆

)(

ln
kb
k⋆

+
n2

2

)

. (5.4)

The characteristic scale (5.3) depends much more strongly on n than it does on any

of the other parameters. In figure 12, we give a rough idea of the scale as a function of

n, having set Treheat = 10MeV and r = 2n, while m is chosen to satisfy the normalization

condition. We also show the constraint on kb set by Planck. Note again that the region

described as “observationally single-stage inflation” does still provide a solution to the

problem of reconciling cosmology with the mirror Twin Higgs.

CMB-S4 will improve the constraint on kb through its improved measurement of polar-

ization anisotropies [27]. With only precision measurements of temperature anisotropies,

the un-lensed power spectrum cannot be so easily reconstructed from the lensed spectrum.

The effects of gravitational lensing of CMB place an upper limit on the size of primordial

temperature anisotropies that can be measured [56], which Planck has saturated. However,

the polarization anisotropy power spectrum allows the removal of lensing noise from the

temperature spectrum so that higher primordial modes can be detected. The polarization

power spectrum itself also gives us another window into the high-ℓ modes of the primor-

dial power spectrum, as the signal does not become dominated by polarized foreground

sources until higher scales near ℓ ∼ 5000. CMB-S4 is projected to make cosmic variance

limited measurements of both the temperature and polarization anisotropy power spectra

up to the modes where they become foreground-contaminated and so provide additional

information on the shape of the primordial power spectrum [27]. The map from measure-

ments of angular modes ℓ to contraints on spatial modes k depends on the evolution of the

power spectrum between inflation and the CMB, so forecasting constraints requires careful

study. However, these improvements will not test most of the parameter space presented

in figure 12, where the step is predicted on extremely small distance scales.
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We have discussed a twinflationary model of double inflation with a break for simplicity,

but there is a parametric regime where double inflation without a break gives the required

amount of asymmetric reheating into the Standard Model. With two periods of inflation,

the second period dilutes the energy density of the heavier field sufficiently that there is

no observable signal of it produced in reheating. However, even with only one period,

inflation can continue for long enough after the inflaton turns the corner in field space

such that, at late times, the fraction of the inflaton in the B state relative to the A state

is small enough that the expected energy densities that are transferred into each sector

satisfy ρB/ρA < 0.1. This occurs as long as r & 1.2, assuming that the mixing angle of the

slow-rolling field with the ϕA and ϕB fields entirely determines the fraction of its energy

that reheats each sector. There is thus a much larger range of r where this toy model of

inflation passes Neff bounds than our above analysis shows. The resulting imprint on the

CMB could resemble that of the long-lived decay model of section 4, with ∆Neff again

being related to the ratio of branching fractions, although this is dependent upon the UV

completion of the Twin Higgs.

When there is only one period of inflation, the step is smoothed out and less pronounced

and it is necessary to locate the feature numerically. Furthermore, having multiple degrees

of freedom available allows for non-trivial evolution of momentum modes after they become

super-horizon, which does not occur in single-field inflation but may be calculated from the

full solution to the field equations [54]. While a twinned potential leading to two periods

of inflation generally predicts a step in the power spectrum, when there is no break the

predictions, and thus constraints, this prediction become more model-dependent. Therefore

we leave detailed predictions in that case for future study using realistic models and merely

state that the range of r = 1 to n interpolates between the single field spectrum and that

with a step, as one would expect.

There are also at least two other detectable effects one might expect in double infla-

tion without a break and in general realistic twinflationary models. Interactions between

inflaton fields may produce primordial non-Gaussianities, while the presence of additional

oscillating degrees of freedom may produce isocurvature perturbations. These do not ap-

pear in our toy model because the heavy field is exponentially damped during the second

inflation. CMB-S4 is projected to improve Planck’s bounds on non-Gaussianities by a fac-

tor of ∼ 2 and on isocurvature perturbations by perhaps an order of magnitude (though

model-independent projections have not been made), so may be able to detect or place

useful constraints on realistic twinflationary models [27].

We have introduced twinflation as a mirror Twin Higgs model which suppresses the

cosmological effects of twin light degrees of freedom. It extends the mirror symmetry to

the inflationary sector. The soft Z2 symmetry-breaking of the Higgs sector may be used

in the inflationary sector to cause distinct periods of inflation. There exists a parametric

region where this is cosmologically indistinct from single-stage inflation, but also another

in which it may be observable. As the direct product of inflation and the Mirror Twin

Higgs, this is in some sense a minimal solution.
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6 Conclusion

In this work we have considered scenarios in which cosmology provides meaningful insight

on solutions to the electroweak hierarchy problem. In particular, we have demonstrated

several simple mechanisms in which the cosmological history of a mirror Twin Higgs model

is reconciled with current CMB constraints and provides signatures accessible in future

CMB experiments. In the case of out-of-equilibrium decays, we have found that decays

of Z2-even scalars sufficiently dilute the energy density in the twin sector without the

addition of any new sources of Z2-breaking. In much of the parameter space, the residual

contribution to ∆Neff is directly proportional to the ratio of vacuum expectation values

v2/f2 parameterizing the mixing between Standard Model and twin sectors (as well as the

tuning of the electroweak scale), and may be within reach of CMB-S4 experiments. In

the case of twinflation, we have found that a (broken) Z2-symmetric inflationary sector

may successfully dilute the energy density in the twin sector, as well as potentially leave

signatures in the form of a step in the primordial power spectrum or in departures of

primordial perturbations from adiabaticity and Gaussianity. In both cases, these models

raise the tantalizing possibility that signatures of electroweak naturalness may first emerge

in the CMB, rather than the LHC.

There are a variety of possible directions for future work. Here we have focused on

the cosmological consequences of late-decaying scalars and twinned inflationary sectors

without specifying their origin in a microscopic model. It would be interesting to construct

complete models (where, e.g., supersymmetry or compositeness protect the scale f from

UV contributions) in which the existence and couplings of late-decaying scalars arise as

intrinsic ingredients of the UV completion. Likewise, we have considered only a toy model

of twin chaotic inflation; it would be interesting to see if twinflation may be realized in

complete inflationary models that match the observed spectral index and constraints on

the tensor-to-scalar ratio.

While we have taken care to ensure that our scenarios respect the well-measured cos-

mological history beneath T ∼ 1MeV, we have not addressed the origin of the observed

baryon asymmetry. In the case of out-of equilibrium decays, there are a number of pos-

sibilities. It is plausible that a somewhat larger baryon asymmetry is generated through

various conventional mechanisms and diluted by late decays. Alternatively, the decay

mechanism itself may possibly be expanded to generate a baryon asymmetry or some other

late decay may generate the baryon asymmetry below ∼ 1GeV. In the case of twinflation,

inflationary dilution of pre-existing baryon asymmetry requires that baryogenesis occur

in association with reheating or via another mechanism at temperatures below ∼ 1GeV.

It would be worthwhile to study models for the baryon asymmetry consistent with these

scenarios. Steps in this direction have been taken in [17], which attempted to relate this

to asymmetric dark matter in the twin sector.

Likewise, any investigation of dark matter, be it related directly to the twin mechanism

or otherwise, must also address implications of the dilution. Previous work attempting

to construct dark matter candidates in the twin sector [11–18]) has relied upon explicit

Z2-breaking that is not present in the mirror model. Dark matter may alternatively be
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unrelated to the Twin Higgs mechanism, such as a a WIMP in some minimal extension

of the electroweak sector that freezes-out as an overabundant thermal relic and is then

diluted to the observed density during reheating. Alternatively, it may be that the dark

matter abundance is produced directly during reheating. It would be interesting to study

extensions of our scenarios that incorporate dark matter candidates directly related to the

mechanism of dilution.

Finally, we have only approximately parameterized Planck constraints and the reach

of CMB-S4 on twin neutrinos and twin photons. Ultimately, more precise constraints and

forecasts may be obtained via numerical CMB codes. This strongly motivates the future

study of CMB constraints on scenarios with three sterile neutrinos and additional dark

radiation whose temperatures differ from the Standard Model thermal bath.
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