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ABSTRACT

Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing

our understanding of structure and galaxy formation in the Universe. These simulations follow the non-

linear evolution of galaxies modeling a variety of physical processes over an enormous range of scales. A

better understanding of the physics relevant for shaping galaxies, improved numerical methods, and in-

creased computing power have led to simulations that can reproduce a large number of observed galaxy

properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding

space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challeng-

ing due to the large array of physical processes affecting this matter component. Cosmological simulations

have also proven useful to study alternative cosmological models and their impact on the galaxy population.

This review presents a concise overview of the methodology of cosmological simulations of galaxy formation

and their different applications.

1 Introduction

Modern astronomical surveys provide enormous amounts of observational data confronting our theories of

structure and galaxy formation. Interpreting these observations demands accurate theoretical predictions.

However, galaxy formation is a challenging problem due to its intrinsic multi-scale and multi-physics

character. Cosmological computer simulations are, hence, the method of choice for tackling these

complexities when studying the properties, growth and evolution of galaxies. These simulations are

important to understand the detailed workings of structure and galaxy formation. Dark matter builds the

backbone for structure formation and is therefore a key ingredient of these simulations. In addition, dark

energy is responsible for the accelerated expansion of the Universe and must also be considered. Despite

the fact that the nature of dark matter and dark energy are not known, simulations can make detailed and

reliable predictions for these dark components based on their general characteristics. Ordinary matter,

e.g. stars and gas, contribute only about five percent to the energy budget of the Universe. Nevertheless,

simulating this matter component is essential to study galaxies, but, unfortunately, it is also the most

challenging aspect of galaxy formation. Recent simulations follow the formation of individual galaxies

and galaxy populations from well-defined initial conditions and yield realistic galaxy properties1. Visual

representations of the predictions of some of these simulations are shown in Figure 1. At the heart of

these simulations are detailed galaxy formation models. Among others, these models describe the cooling

of gas, the formation of stars, and the energy and momentum injection caused by supermassive black

holes and massive stars2. More recent simulations also model the impact of radiation fields, relativistic

particles, and magnetic fields leading to a more and more complex description of the galactic ecosystem

and the detailed evolution of galaxies in the cosmological context. Galaxy formation simulations have also
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become important for cosmological studies since they can, for example, explore the impact of alternative

cosmological models on the galaxy population. Cosmological simulations of galaxy formation therefore

provide important insights into a wide range of problems in astrophysics and cosmology. The most

important components of cosmological galaxy formation simulations are discussed in this review. A

schematic overview of the different ingredients of cosmological simulations is presented in Figure 2.

2 Cosmological Framework

Cosmological simulations of galaxy formation are performed within a cosmological model and start from

specific initial conditions. Both of these ingredients are now believed to be known to high precision.

2.1 Cosmological Model

Various observations revealed that our Universe is geometrically flat and dominated by dark matter and

dark energy accounting for about ∼ 95% of the energy density. Standard model particles make up for the

remaining ∼ 5% and are collectively referred to as baryons. The leading model for structure formation

assumes that dark matter is cold, with negligible random motions when decoupled from other matter, and

collisionless, so-called cold dark matter, and dark energy is represented by a cosmological constant Λ,

which drives the accelerated expansion of the Universe. This leads to the concordance ΛCDM model, which

builds the framework for galaxy formation. Measurements of the cosmic microwave background combined

with other observations such as the distance-redshift relation from Type Ia supernovae, abundances of

galaxy clusters, and galaxy clustering constrain the fundamental parameters of the ΛCDM model3.

2.2 Initial Conditions

Initial conditions for cosmological simulations specify the perturbations imposed on top of a homogeneous

expanding background. The background model is generally taken to be a spatially flat Friedmann-

Lemaı̂tre-Robertson-Walker space-time with a defined composition of dark matter, dark energy and

baryons. Inflation predicts Gaussian perturbations, where the joint probability distribution of density

fluctuations is a multidimensional Gaussian completely specified by its matter power spectrum P(|k|). The

post-recombination density field is the linear convolution of the primordial fluctuation field as predicted

by inflation with a transfer function T (k)4–7. Therefore, the power spectrum used to initialize simulations

generally takes the form P(k) = Akn|T (k)|2 with n ≈ 1. Once the linear density fluctuation field has been

specified at some initial time, typically at redshift z ∼ 100, dark matter particle positions and velocities

are assigned along with baryon density, velocity, and temperature fields. The standard approach for

dark matter is to displace simulation particles from a uniform Cartesian lattice or glass-like8, 9 particle

configuration using a linear theory approximation10 or low-order perturbation theory11–14. A gravitational

glass is made by advancing particles from random positions using the opposite sign of gravity until they

freeze in comoving coordinates. Baryon positions and velocities are set in a similar way, and the baryon

temperature is often roughly initialized to the redshift-dependent microwave background temperature.

Two types of initial conditions are commonly employed: uniformly sampled periodic large volumes or

zoom initial conditions, where a low resolution background realization of the density fields surrounds a

high resolution region of interest. The computational cost of these zoom simulations increases with the

mass of the object that is studied for a given mass resolution. Zoom simulations of dwarf galaxies are

therefore computationally less expensive than zoom simulations of large galaxy clusters given the larger

number of resolution elements. Some simulations also employ constrained initial conditions to mimic, for

example, the local Universe, e.g. nearby dark matter overdensities15, 16.
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Generating initial conditions

initial positions: x = q+D(t)Ψ(q) initial velocities: a(t) ẋ = a(t)
dD(t)

dt
Ψ(q) = a(t)H(t)

dlnD

dlna
D(t)Ψ(q)

Comoving initial positions, x, are assigned based on the unperturbed particle position, q, the linear growth factor,

D(t), and the scale factor, a, which is related to the initial redshift, z = 1/a−1. The curl-free displacement field Ψ is

computed by solving the linearized continuity equation ∇ ·Ψ =−δ/D(t), where δ is the relative density fluctuation.

3 Simulating Dark Matter

Dark matter builds the backbone for the formation of galaxies, which are expected to form at the centers

of dark matter overdensities, so-called halos. The continuum limit of non-interacting dark matter particles

is described by the collisionless Boltzmann equation coupled to Poisson’s equation. This pair of equations

has to be solved in an expanding background Universe dictated by the Friedmann equations, which are

derived from the field equations of general relativity. Most cosmological simulations employ Newtonian

rather than relativistic gravity, which provides a good approximation since linear structure growth is

identical in the matter dominated regime in the two theories, and non-linear large-scale structure induces

velocities far below the speed of light. Cosmological simulations are also typically performed with periodic

boundary conditions to mimic the large-scale homogeneity and isotropy of the matter distribution of the

Universe, i.e. the cosmological principle.

Modeling dark matter

collisionless Boltzmann equation:
d f

dt
=

∂ f

∂ t
+v

∂ f

∂r
−

∂Φ

∂r

∂ f

∂v
= 0 Poisson’s equation: ∇2Φ = 4πG

∫
f dv

The collisionless Boltzmann equation describes the evolution of the phase-space density or distribution function of dark

matter, f = f (r,v, t), under the influence of the collective gravitational potential, Φ, given by Poisson’s equation. The

collisionless Boltzmann equation states the conservation of the local phase-space density; i.e. Liouville’s theorem.

3.1 Numerical Techniques

The high dimensionality of the collisionless Boltzmann equation prohibits efficient numerical solution

methods based on standard discretization techniques for partial differential equations. Therefore, over

the past decades, other numerical techniques have been developed to solve this problem more efficiently.

An overview of some selected simulation codes and the employed dark matter simulation techniques is

presented in Table 1.

The N-Body method: N-body methods are often employed to follow the collisionless dynamics of dark

matter, where the phase-space density is sampled by an ensemble of N phase-space points ri, ṙi, i = 1 . . .N
with masses mi. The conservation of f along the flow implies that the masses mi remain unchanged along

each trajectory. N-body methods therefore solve the collisionless Boltzmann equation by the method

of characteristics. Alternatively, this method can also be interpreted as a Monte Carlo technique since

any initial sample of N phase-space points drawn from the same phase-space density at t = 0 results in

an N-body model for the time evolution of f (r, ṙ, t). The ensemble of all N particles together represents

the coarse grained phase-space density 〈 f 〉 ≈ ∑i mi f (ri(t), ṙi(t)). The latter represents a typical Monte

Carlo estimate that can be applied also to other quantities, like the configuration space density. This
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dark matter-only (N-body) dark matter + baryons (hydrodynamical)

Aquarius

Via Lactea

Latte / FIRE

Auriga

Illustris IllustrisTNG

EAGLE

Millennium-XXL

ELVIS

Millennium Horizon-AGN

Phoenix

Aquarius

Massiveblack-II

Bolshoi

GHALO

APOSTLE

Romulus25

Millennium-II

Dark Sky

NIHAO

Magneticum

Eris

Simba

Figure 1. Visual representations of some selected recent structure and galaxy formation simulations. The simulations

are divided in large volume simulations providing statistical samples of galaxies, and zoom simulations resolving smaller

scales in more detail. Furthermore, they are also divided in dark matter-only, i.e. N-body, and dark matter plus baryons,

i.e. hydrodynamical simulations. Dark matter-only simulations have now converged on a wide range of predictions for the

large-scale clustering of dark matter and the dark matter distribution within gravitationally bound dark matter halos. Recent

hydrodynamical simulations reproduce galaxy populations that agree remarkably well with observational data. However, many

detailed predictions of these simulations are still sensitive to the underlying implementation of baryonic physics.

sampling is subject to Poisson noise, and high particle numbers are therefore desirable to reduce noise

in these estimates. To avoid unphysical two-body scatterings between nearby particles, gravitational

interactions are softened on small scales so that the particle collection represents a smoothed density field.
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A variety of kernel-based smoothing techniques are implemented, and some simulations also implement

adaptive softening schemes to reduce the softening length in high density regions to reach higher spatial

force resolution17. The main challenge of N-body simulations is to efficiently calculate the gravitational

force that governs the motion of the dark matter sample particles. Once the forces have been calculated,

the particles are advanced based on symplectic integration schemes commonly implemented through

a Leapfrog integrator. Symplectic integrators exactly solve an approximate Hamiltonian such that the

numerical time evolution is a canonical map and preserves certain conserved quantities, such as the total

angular momentum, and the phase-space volume. Cosmological simulations are further confronted with

a large dynamic range in timescales; i.e. in high-density regions orders of magnitude smaller timesteps

are required than in low-density regions. Integration schemes with individual timesteps are therefore

typically employed. The time integration is no longer symplectic in a formal sense when individual

short-range timesteps are chosen for different particles. Methods to calculate gravitational forces of the

N-body system can roughly be divided in two groups: approaches to accelerate the direct summation

problem through approximations, or mesh-based methods to calculate the forces. The former approaches

aim for efficient numerical solutions of the integral form of Poisson’s equation. The latter methods aim for

efficient techniques to solve the differential form of Poisson’s equation.

Solving the integral form of Poisson’s equation: The integral form of Poisson’s equation, Φ(r) =
−G

∫
dr′ρ(r′)/|r− r′|, can be translated to a discrete direct summation problem with complexity O(N2).

Solving this problem directly results in the so-called particle-particle scheme, and the earliest simulations

employed this brute-force approach. The most common method to accelerate the direct summation through

approximations is the so-called tree approach18. Here, contributions to the gravitational potential from dis-

tant particles are approximated by the lowest order terms in a multipole expansion of the mass distribution

at a coarse level of the tree reducing the computational cost to O(N logN). The approximation used in

the tree method is formally obtained by Taylor expanding the force around some expansion center of the

particle group. Often an octree is implemented in cosmological simulations, where each cubic cell is split

into up to eight child cells resulting in a tree-like hierarchy of cubic nodes with the root node containing all

particles at its bottom. The particles within each of the tree nodes constitute a well-defined and localized

group that build the basis for the tree force calculation. A further improvement to O(N) complexity

is possible through the use of the fast multipole method, where forces are calculated between two tree

nodes rather than between individual particles and nodes. This method is best implemented using a tree

structure19, although the original proposed method was based on a fixed mesh20. Implementing periodic

boundary conditions for these direct summation-based schemes typically requires Ewald summation

techniques21 originally developed for solid-state physics22.

Solving the differential form of Poisson’s equation: Mesh-based methods aim to solve the differential

form of Poisson’s equation, ∇2Φ(r) = 4πGρ(r). This equation can be solved efficiently through fast

Fourier transform-based methods, with Poisson’s equation in Fourier space k2Φ̃(k) =−4πGρ̃(k), leading

to the so-called particle-mesh method23. To obtain forces, the potential is then differentiated using a finite

difference approximation and the forces are interpolated to the particle positions. The calculation of the

gravitational forces via a fast Fourier transform has only a O(N logN) complexity, where N is the number

of mesh cells. The computational cost does not depend on the details of the particle distribution, and no

explicit force softening is necessary for this scheme since the force is automatically softened on the grid

scale. Combining the particle-mesh method with a set of nested grids of increasing resolution enables

an efficient force solver for inhomogeneous systems resulting in adaptive-mesh-refinement schemes.

Multigrid or multilevel methods, which solve the discretized form of Poisson’s equation using relaxation

methods, such as Gauss-Seidel iterations, are also commonly employed24. The advantage of this technique
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over the fast Fourier transform approach is that the grid does not need to be equidistant, but can be locally

adapted according to the particle density. The structure of such an adaptively refined mesh is identical to

that of a shallow octree.

Hybrid schemes: A variety of schemes combine direct summation-based techniques, for short range

forces, with Fourier transform-based methods, for long range forces. The most basic example of this is

the particle-particle plus particle-mesh method25. A common hybrid scheme is the tree-particle-mesh

method26 where the direct summation for short range interactions is approximated by a tree-like method.

Combinations of the multigrid method with the fast Fourier transform are also employed, where the

Fourier transform is used as a force solver on the coarsest grid27. Most modern simulations implement

these hybrid solvers to achieve high efficiency.

Beyond N-Body method: Conceptually different methods to solve the collisionless Boltzmann equation

have also been developed. However, none of these alternatives have so far been widely used for general

structure formation simulations. These different methods are motivated, among others, by the desire to

resolve the fine-grained structure of the phase-space density and to avoid numerical inaccuracies of the

N-body approach like the artificial clumping of simulation particles for dark matter models with a cut-off

in the initial power spectrum28. Among the methodological alternatives to the N-body method are, for

example, a reformulation of the Boltzmann-Poisson system as a Schrödinger equation29–31, the waterbag

method32, 33, geodesic deviation equation-based methods34, 35, Lagrangian tessellation techniques36, and

direct integration schemes using finite volume approaches based on positive flux conservation methods of

plasma physics37.

Table 1: Major galaxy formation simulation codes

code gravity hydrodynamics parallelization code primary

name treatmenta treatmentb techniquec availabilityd reference

ART PM/ML AMR data-based public Kravtsov (1997)27

RAMSES PM/ML AMR data-based public Teyssier (2002)38

GADGET-2/3 TreePM SPH data-based public Springel (2005)39

Arepo TreePM MMFV data-based public Springel (2010)40

Enzo PM/MG AMR data-based public Bryan et al. (2014)41

ChaNGae Tree/FM SPH task-based public Menon et al. (2015)42–44

GIZMOf TreePM MLFM/MLFV data-based public Hopkins et al. (2015)45

HACC TreePM/P3M CRK-SPH data-based private Habib et al. (2016)46

PKDGRAV3 Tree/FM − data-based public Potter et al. (2017)47

Gasoline2 Tree SPH task-based public Wadsley et al. (2017)48

SWIFT TreePM/FM SPH task-based public Schaller et al. (2018)49

a
PM: particle-mesh; TreePM: tree + PM, FM: fast multipole, P3M: particle-particle-particle-mesh; ML: multilevel; MG: multigrid

b
SPH: smoothed particle hydrodynamics, CRK-SPH: conservative reproducing kernel smoothed particle hydrodynamics , AMR: adaptive-mesh-

refinement, MMFV: moving-mesh finite volume, MLFM/MLFV: mesh-free finite mass / finite volume
c

data-based: data parallelism focuses on distributing data across different nodes, which operate on the data in parallel; task-based: task parallelism

focuses on distributing tasks concurrently performed
d

private: private code; public: publicly available code (in some cases with limited functionality)
e

gravity solver is based on PKDGRAV3
f

based on the GADGET-3 code

3.2 Some Key Results of N-body Simulations

The earliest dark matter simulations studied halo population models50, the assembly of massive clusters51,

and the growth of large-scale structure52, 53. Since then the resolution of these simulations has grown

exponentially starting from a few thousand to multi-trillion particle simulations today54. Table 2 presents

some selected recent structure and galaxy formation simulations. The findings of these simulations can
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roughly be divided in two categories: the large-scale distribution of dark matter and the structure of dark

matter halos. The interaction between baryons and dark matter does affect the structure of dark matter on

smaller scales, which is especially important for the internal structure of dark matter halos55–61. Studying

these phenomena requires, however, simulations that model both dark matter and baryons.

The large-scale distribution of dark matter: Cold dark matter simulations predict that the large-scale

distribution of dark matter is not completely homogeneous, but instead exhibits a web-like structure

consisting of voids, walls, filaments, and halos quantified through, among others, the halo mass and matter

correlation functions.

Halo mass function: The halo mass function quantifies the comoving number density of dark matter

halos as a function of their virial mass, Mvir, typically defined as the mass, M200, enclosed within a

radius r200 containing a mean density 200 times the critical density of the Universe. Recently, also other

halo boundary definitions like the splashback radius62, 63, which corresponds to the outermost caustic

originally discussed in symmetric analytic halo formation models64, 65, have been proposed to avoid,

for example, the pseudo-evolution of the halo mass and radius66. In simulations, dark matter halos are

identified through cluster finding methods like the friend-of-friends algorithm67 and extensions of this

based on gravitational unbinding68 or phase-space structure finding taking into account also velocity

space information69. In the cold dark matter cosmogony, structure forms through the hierarchical merging

of dark matter halos67, and the corresponding evolution of the halo mass function has been studied

extensively50, 70–77. Most importantly these studies revealed that the low-mass end of the halo mass

function has a power law slope close to −2. Furthermore, the high mass end of the halo mass function

is exponentially suppressed. The halo mass function is also an important probe of the nature of dark

matter since many particle candidates predict strong, scale-dependent deviations from the expectations

of the cold dark matter model78, 79. The high mass shape and evolution of the halo mass functions also

constrains cosmological parameters80. Simulation-based empirical halo mass functions are often expressed

as Mdn/dM = ρ0 dlnσ−1/dM f (σ(M)), where ρ0 is the mean mass density of the Universe, σ(M) is the

variance of the linear density field within a top-hat filter containing mass M, and f (σ) is a function that is

determined empirically by fitting the simulation results. This functional form of the halo mass function is

motivated and also predicted by the analytic Press-Schechter model50. However, the shape of f (σ) found

in simulations differs significantly from the analytic model originally proposed, agreeing much better with

a version motivated by ellipsoidal rather than spherical collapse81. The detailed form of f (σ) depends,

among others, on simulation details and halo mass definitions, and a variety of empirical fitting functions

have been published77, 82–85.

Dark matter distribution: A major success of cold dark matter simulations is their ability to predict the

matter distribution on large scales86, which is described through the two-point correlation function ξ (r).
For a set of points this function is defined as ξ (r) = 〈Np〉/Nm−1, where 〈Np〉 indicates the average number

of pairs in a thin shell of radius r centered on one point of the set and Nm the expected number of pairs in

the same shell given a uniform distribution of points. Although this function can be estimated analytically

in the linear regime, dark matter simulations are needed to probe its evolution into the non-linear regime.

The dark matter correlation function signal grows with time and develops a characteristic shoulder at small

scales87. This effect can be explained by the relative contribution of the one-halo term, i.e. pairs composed

of particles within the same halo, and the two-halo term, i.e. pairs formed by particles in different halos,

to the clustering signal88. Finally, the dark matter correlation function has a markedly different shape than

the galaxy correlation function. The latter has a power law shape over a significant range of scales and an

amplitude nearly constant at all redshifts86. Indeed, galaxies trace the highest peaks of the dark matter

distribution, and their clustering does not change significantly with time, as more and more dark matter
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structures grow. This bias needs to be taken properly into account when estimating the large-scale total

matter distribution using galaxy tracers89.

Structure of dark matter halos: Cold dark matter simulations have also established multiple charac-

teristics of the dark matter distribution within collapsed and virialized dark matter halos. This has most

importantly led to the discovery of a nearly universal radial density profile of dark matter halos.

Internal halo structure: The dark matter mass distribution within halos is well described by a near-

universal spherically averaged density profile, the so-called Navarro-Frenk-White profile90, 91: ρ(r) =
ρs/[(r/rs)(1+(r/rs))

2] with a characteristic density ρs, and a transition radius rs. This form of density

profiles has been shown to arise also in the absence of hierarchical growth like, for example, in hot dark

matter models28, or models with truncated initial power spectra92. The central slope of dark matter halos

has been debated for a long time and is also affected by baryonic physics effects that require hydrody-

namical simulations. More recent higher resolution simulations found a central slope shallower than −1,

indicating that the density profile is better described by a functional form with a gradually changing slope

profile93: ln(ρ(r)/ρ−2) = (−2/α)[(r/r−2)
α − 1] with slope α and transition radius r−2. This profile

had previously been used to fit star counts in the Milky Way94, and is known as the Einasto profile.

The adjustable shape parameter, α , shows considerable scatter but increases systematically with halo

mass at z = 0. The ratio of the virial radius, rvir, and the transition radius, rs, is called the concentration

parameter, c, that correlates with the mass of the halo leading to the mass-concentration relation95–97

(c ∝ M−δ ,δ ≈ 0.1). Simulations demonstrated that the dependence of halo concentration on mass, initial

fluctuation spectrum and cosmological parameters all reflect a dependence of concentration on the actual

halo formation time91. Specifically, lower mass halos typically assemble earlier, and thus have higher

concentration, due to the higher density of the Universe at the time of their formation. The shapes of

halos have also been studied, and those depart from sphericity, with halos typically being prolate and

increasingly so towards their centers. Major-to-minor axis ratios of two or greater are not uncommon, and

more massive halos tend to be less spherical than lower mass halos98–100. The exact shapes of dark matter

halos also depend on the dark matter particle physics model. Simulations also provide information on

the velocity structure of halos. The averaged velocity anisotropy profile, β (r) = 1−0.5σ2
t /σ2

r , grows

from zero, i.e. isotropic, to about 0.5, i.e. mild radial anisotropy, towards the outer regions101, 102. Here,

σt denotes the tangential and σr the radial velocity dispersion, with the total velocity dispersion being

σ2 = σ2
t +σ2

r . A β value of 1 and β →−∞ correspond to systems where dark matter particles have purely

radial and purely circular orbits, respectively. Simulated dark matter halos therefore turn out to be almost

isotropic in their inner regions and to be somewhat radially biased at larger radii. Although both ρ(r) and

σ(r) are not close to a power law, the combination f (r) = ρ(r)/σ3(r) , also called pseudo-phase-space

density, is remarkably close to a power law, with slope ≈−1.875102. This power law index is identical

to that of solutions for self-similar infall onto a point mass from an otherwise uniform Einstein-de Sitter

Universe65.

Halo substructure: As the resolution of dark matter simulations increased, halos within halos, so-called

subhalos, could be resolved92, 103. Subhalos have cuspy, Navarro-Frenk-White-like density profiles but

they tend to be less extended than comparable halos in the field due to tidal stripping101, 104. Bound

subhalos with µ = Msub/Mvir > 10−7 contain about 10% of the halo mass within the virial radius104.

Lower mass halos tend to have fewer subhalos and lower subhalo mass fractions at a given µ . This

shift is due to the difference in the relative dynamical age of halos; e.g. substructure is more effectively

destroyed by tides in older, galactic halos compared to more massive galaxy cluster halos. The cumulative

subhalo mass function is a power law N(> µ) ∝ µ−s for µ ≪ 1, with s close to the critical value of

unity104, 105. For s = 1 each logarithmic mass bin contributes equally to the total mass in substructure. This
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is logarithmically divergent as µ approaches zero, and implies that a significant fraction of the mass could,

in principle, be locked in halos too small to be resolved by the simulations. This can, for example, have

important implications for the prediction of dark matter annihilation signals since these small unresolved

halos can boost the overall resolved annihilation emission106. The abundance of subhalos also varies

systematically with other properties of the parent halo, like, for example, the concentration leading to a

lower amount of substructure with increasing halo concentration107. The radial distribution of subhalos

varies only little with the mass or concentration of the parent halo. It is much less centrally concentrated

than the overall dark matter profile104.
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Figure 2. Overview of the key ingredients of cosmological simulations. These simulations are performed within a given

cosmological framework, and start from specific initial conditions. This framework includes physical models for gravity, dark

matter, dark energy, and the type of initial conditions. Two types of simulations are typically performed: either large volume

simulations or zoom simulations. The evolution equations of the main matter components, dark matter and gas, are discretized

using different techniques and evolved forward in time. The dark matter component follows the equations of collisionless

gravitational dynamics that are in most cases solved through the N-body method using different techniques to calculate the

gravitational forces. The gas component of baryons is described through the equations of hydrodynamics that are solved, for

example, with Lagrangian or Eulerian methods. Various astrophysical processes must also be considered to achieve a realistic

galaxy population. Many of these are implemented through effective sub-resolution models.

9/34



4 Simulating Baryons

Dark matter and dark energy dominate the energy budget of the Universe, but the visible components of

galaxies consist of baryons. Simulating baryons is therefore crucial to make predictions for the visible

Universe. Initially, the baryon component is solely comprised of gas, mostly hydrogen and helium. Some

of this gas eventually turns into stars during structure formation. Astrophysical gases in cosmological

simulations are typically described as inviscid ideal gases following the Euler equations, which can be

expressed in different forms leading to different numerical discretization schemes. Hydrodynamics in

cosmological simulations is numerically demanding due to the large dynamic range, highly supersonic

flows, and large Reynolds numbers.

Modeling cosmic gas

Eulerian formulation: Lagrangian formulation: Arbitrary Lagrangian-Eulerian formulation:

∂ρ

∂ t
+∇ · (ρv) = 0

Dρ

Dt
=−ρ∇ ·v

d

dt

∫

V
ρdV =−

∫

S
ρ(v−w) ·ndS

∂ρv

∂ t
+∇ · (ρv⊗v+P1) = 0

Dv

Dt
=−

1

ρ
∇P

d

dt

∫

V
ρvdV =−

∫

S
ρv(v−w) ·ndS−

∫

S
PndS

∂ρe

∂ t
+∇ · (ρe+P)v = 0

De

Dt
=−

1

ρ
∇ ·Pv

d

dt

∫

V
ρedV =−

∫

S
ρe(v−w) ·ndS−

∫

S
Pv ·ndS

Different forms of the hydrodynamical equations. D/dt ≡ ∂/∂ t + v · ∇ denotes the Lagrangian derivative and

e = u+v2/2 the total energy per unit mass. The equations are closed through P = (γ −1)ρu with γ = 5/3. For the arbi-

trary Lagrangian-Eulerian formulation the grid moves with velocity w and cell volumes evolve as dV/dt =
∫

V (∇ ·w)dV .

4.1 Numerical Techniques

The hydrodynamical equations can be discretized in different ways employing methods that roughly

fall into three classes: Lagrangian, Eulerian or arbitrary Lagrange-Eulerian techniques. The Lagrangian

specification of the field assumes an observer that follows an individual fluid parcel, with its own properties

like density, as it moves through space and time. The Eulerian specification, on the other hand, focuses on

specific locations in space through which the fluid flows as time passes. In addition, numerical approaches

can also be distinguished between mesh-free and mesh-based algorithms. Mesh-free methods do not

require connections between nodes, but are rather based on interactions of each node with its neighbors.

An overview of some selected simulation codes and the employed hydrodynamical simulation techniques

is shown in Table 1.

Eulerian Methods: Eulerian methods are the traditional method to solve the system of hyperbolic partial

differential equations that constitute ideal hydrodynamics. The most common approaches include finite

volume, finite difference, finite element, spectral or wavelet methods. For example, accurate Godunov

finite volume schemes offer high-order spatial accuracy, have negligible post-shock oscillations and low

numerical diffusivity. For these methods a Riemann problem is solved across cell faces, which yields

the required fluxes at each cell face to update the conserved quantities. If the cell is assumed to have

uniform properties, this is called a first-order Godunov solver. Modern implementations employ parabolic

interpolation, known as the piecewise parabolic method108, 109. The large dynamic range of cosmological

simulations requires adaptive meshes, where the mesh size can be reduced based on some refinement

criterion. This leads to the class of adaptive-mesh-refinement schemes110–113, which were first developed

for solving general problems involving hyperbolic partial differential equations, and then later were also
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applied to cosmological simulations. Recently also discontinuous Galerkin methods114–116 became more

popular in computational astrophysics since they offer a framework for discretizing hyperbolic problems

at any order of spatial accuracy, together with attractive data locality by combining features of spectral

element and finite volume methods.

Lagrangian Methods: Smoothed particle hydrodynamics is a widely used mesh-free Lagrangian tech-

nique for approximating the continuum dynamics of fluids through the use of sampling particles, which

may also be viewed as interpolation points, following the equations of motion derived from the hydrody-

namical equations117–120. Energy, linear momentum, angular momentum, mass, and entropy, assuming no

artificial viscosity operates, are all simultaneously conserved. The local resolution follows the mass flow,

which is convenient to represent large density contrasts. Over the last years various improved formulations

of the smoothed particle hydrodynamics method have been developed and applied to cosmological simula-

tions121–126. A few cosmological simulations have also employed Lagrangian mesh-based hydrodynamics

schemes, which are based on grid deformation techniques127, 128. However, mesh-tangling effects are a

major problem of such multi-dimensional mesh-based Lagrangian hydrodynamics methods.

Arbitrary Lagrangian-Eulerian Methods: For arbitrary Lagrangian-Eulerian methods, the grid velocity

can be freely chosen. For astrophysical applications, such a scheme has recently been realized through a

Voronoi tessellation of a set of discrete mesh-generating points, which are allowed to move freely40. A

finite volume hydrodynamic scheme with the Voronoi cells as control volumes can then be consistently

defined. Most importantly, due to the mathematical properties of the Voronoi tessellation, the mesh

continuously deforms and changes its topology as a result of the point motion, without ever leading to

problematic mesh-tangling effects. Similar methods have over the last years also been implemented in

other simulation codes129, 130. Most recently new types of arbitrary Lagrangian-Eulerian, mesh-free, finite

mass and finite volume methods have been successfully applied to astrophysical and galaxy formation

problems45.

4.2 Baryonic Physics

The hydrodynamical equations have to be complemented by various astrophysical processes that shape the

galaxy population. Most of these processes are implemented through effective, so-called sub-resolution

models, which are necessary due to the limited numerical resolution of simulations.

Gas cooling: Gas dissipates its internal energy through cooling processes, like collisional excitation and

ionization, inverse Compton, recombination and free-free emission. Cooling processes are coupled to the

energy equation using cooling functions that are either tabulated or extracted from chemical networks.

Cosmological simulations often assume that the gas is optically thin and in ionization equilibrium and

neglect three-body processes that are typically unimportant. In addition to primordial cooling also cooling

due to heavy elements, so-called metals, is important. Metal line cooling dominates for temperatures

105 . T . 107 K. Early simulations typically employed cooling rates assuming collisional ionization

equilibrium131, but most later galaxy formation models account for the photo-ionization of metals by the

metagalactic radiation field132. For most post-reionization simulations this metagalactic radiation field is

assumed to be spatially uniform but time-dependent133. Simulations that resolve the cold phase of the

interstellar medium also include gas cooling below 104 K via fine-structure and molecular cooling. In

neutral atomic gas, the efficiency of cooling is sensitive to the residual ionization degree. In molecular

gas (n >
∼ 100cm−3,T <

∼ 50K), the CO molecule dominates the cooling at low densities while at higher

densities CI, O2 and H2O start to contribute134. Gas cooling is a direct physical process that is not

implemented through a sub-resolution model. However, following all cooling processes in detail requires

sufficient numerical resolution to resolve the different gas phases.

11/34



Interstellar medium: Carefully modeling the interstellar medium is important since its properties directly

impact star formation. However, simulating the interstellar medium is challenging due to its complex multi-

phase structure including magnetic fields and relativistic particles. Especially modeling the cold phase

is technically difficult because of the short timescales associated with the dense gas. These timescales

require very small time-steps to reliably follow the cold gas evolution. Moreover, the implementation of

additional physical processes is needed to accurately model such a phase. To circumvent this problem, this

dense gas phase is often not directly modeled but rather described by an effective polytropic equation of

state135–137; i.e. T ∝ ργ(ρ) , which naturally emerges from an equilibrium two-phase interstellar medium

where a hot, supernova-heated and volume-filling phase co-exists with a colder phase containing the bulk

of the mass135. More recent modeling efforts started to abandon the effective equation of state approach

and instead aimed towards resolving the multi-phase structure directly. Such simulations are starting to be

able to resolve the Jeans mass of gas, corresponding to the scale of molecular cloud complexes. Therefore,

a more direct modeling of the multi-phase interstellar medium is possible138. In such simulations, the

gas density and temperature distributions follow a multi-modal distribution138–140. Generally, the cold

gas phase dominates (∼ 90%) the gas mass budget, but occupies a very small volume fraction (∼ 1%),

which is mostly comprised of hotter gas141. Simulating the molecular phase of the interstellar medium

is challenging because it requires detailed modeling of the interaction between gas, dust, and radiation,

which tends to destroy molecules unless gas is able to effectively self-shield from ionizing radiation142.

Detailed models of the interstellar medium have also to take into account the various feedback sources that

ultimately shape the structure of the interstellar medium. Thus, future simulations have to consider how

this complex interplay of such a wide range of physical processes affects the properties of the interstellar

medium.

Star formation: Cold and dense gas eventually forms stars, and simulations therefore transform a portion

of this gas into collisionless star particles, representing co-eval, single-metallicity stellar populations

described by an underlying initial stellar mass function. Observations support a nearly universal star

formation efficiency in molecular gas, where about 1% of the gas is converted into stars per free fall

time143, 144. Based on a calculated star formation rate, the gas is converted into star particles typically

using a probabilistic sampling scheme. The star formation rate is usually computed based on a Kennicutt-

Schmidt type relation as dM⋆/dt = εMg/tff, where Mg is the gas cell/particle mass, tff is the gravitational

free fall time and ε is a conversion efficiency typically in the range 0.01− 1135, 145, 146. However, not

all the gas elements are eligible for star formation. Commonly adopted criteria are based on: a density

threshold124, 125, 135, 145–150, restricting star formation to gravitationally bound regions identified via the

virial parameter – that quantifies the degree of pressure support against gravitational collapse146, 151, Jeans

length-based criteria – that is gas must be prone to gravitational instability146, 148, 152, 153, restricting star

formation to the molecular gas phase145, 146, 154–158 or converging flows (∇ ·v < 0147). Alternative to the

probabilistic sampling scheme, and to better model the clustered nature of star formation, a few simulations

also consider star clusters as the unit of star formation by allowing the growth of star particles through

accretion from the ambient medium159. Once stellar particles have been formed, modern galaxy formation

models also track the stellar evolution and mass return of these stars to the gas component. This leads

to an enrichment of the gas with metals. Early models tracked only Type II supernova enrichment, but

recent models also follow asymptotic giant branch stars160, Type Ia supernovae, which are important for

iron enrichment161, and neutron star mergers for r-process element enrichment162. The actual enrichment

is based on metal yield models derived from detailed stellar evolution calculations. These yields are

however still rather uncertain, at least by a factor of two, particularly at low metallicities and for more
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massive stars. This uncertainty then propagates into predictions for metal abundances in simulations.

Future cosmological simulations will still have to implement star formation as sub-resolution models with

individual stars as their building blocks.

Stellar feedback: Stars interact with their surrounding gas through the injection of energy and momentum

leading to a feedback loop regulating star formation. To regulate star formation, stellar feedback must be

efficient in launching galactic-scale outflows to eject gas from galaxies, and a plethora of sub-resolution

schemes exists to achieve an efficient generation of galactic winds. Those differ in the way energy

and momentum, most notably in the form of supernova explosions, are coupled to the surrounding gas.

Essentially the energy can be deposited thermally or kinetically. In the first case, excessive radiative gas

cooling must be avoided. While cooling in dense and cold gas is physically expected, at the comparatively

low resolution of cosmological simulations it cannot be modeled reliably. The result is then an artificial

excessive cooling of the gas, which leads to the unphysical loss of the supernova feedback energy via

radiation and greatly reduces its effectiveness. Some approaches therefore disable the radiative cooling

of the affected gas for a prescribed amount of time (∼ 107 yr)147, or heat the gas probabilistically to

reach high enough temperatures (T ∼ 106 K) for radiative cooling to become ineffective on time scales

of ∼ 107 yr137. In the second case, kinetic energy cannot be radiated away until it thermalizes. However,

the use of hydrodynamically-decoupled wind particles, to realize a non-local injection of momentum

in the gas surrounding active star forming regions, can still be necessary to obtain large-scale galactic

outflows135, 150, 161, 163. Recently, more explicit models for stellar feedback have been developed. In

addition to supernova feedback they also take into account other feedback channels, such as energy and

momentum injection by stellar winds and photoionization and radiation pressure due to radiation emitted

by young, massive stars139, 145, 146, 164, 165. The combination of these processes then leads to a regulation of

star formation to the observed low gas to star conversion efficiency of 1% per free-fall time143, 144. Stellar

feedback must be efficient in launching galactic-scale outflows to eject gas from galaxies, thereby also

explaining the low baryon retention fraction in galaxies166, 167. Recent explicit feedback models can make

direct predictions for the outflow rates of these outflows168, whereas older models typically prescribe

the mass loading of these galactic-scale outflows close to the galaxies. Sub-resolution models of stellar

feedback vary widely among different galaxy formation models. More work is required to understand in

detail which stellar feedback channels are most important for shaping the different types of galaxies.

Supermassive black holes: Supermassive black holes are observed in massive galaxies169, 170, in small,

bulge-less disc galaxies171, 172 as well as in dwarf galaxies173, 174. Simulations therefore include models

for supermassive black holes, and numerically seed them typically in dark matter haloes with masses

& 1010 − 1011 M⊙ since the true seeds cannot be resolved, and their origin is not yet fully under-

stood. They then accrete mass often based on an Eddington-rate-capped Bondi-Hoyle-like accretion

rate: ṀBH = (4πG2M2
BHρ)/(c2

s + v2
rel)

3/2, where ρ and cs are the gas density and gas sound speed, re-

spectively, and vrel denotes the relative velocity between the gas and the black hole. Depending on the

numerical resolution this accretion rate is sometimes artificially increased, possibly in a density-dependent

fashion, to compensate for the inability of simulations to resolve the multi-phase structure of gas175. Many

simulations also explored variations of the Bondi-Hoyle model to overcome its limitations. The Bondi

model, for example, implicitly assumes that the accreting gas has negligible angular momentum, which is

most likely unrealistic. Some models therefore assume that black holes might be primarily fed by gas

driven to the centers by gravitational torques from non-axisymmetric perturbations176, which have more

recently been explored in simulations177–182. Black holes also grow through mergers, which are modeled

in cosmological simulations as well. Due to resolution limitations, general relativistic effects are not taken

into account and it is assumed that the black holes of the two galaxies merge instantly once they come
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close enough, i.e. within their numerical accretion radius, which is typically calculated based on a local

gas resolution element nearest neighbor search.

Feedback from active galactic nuclei: Active galactic nuclei are related to observational phenomena

associated with accreting supermassive black holes including electromagnetic radiation, relativistic jets,

and less-collimated non-relativistic outflows183. The resulting energy and momentum couple with the

surrounding gas leading to a regulation of black hole growth and star formation in more massive halos

(M >
∼ 1012 M⊙). This feedback is commonly divided in two modes that are implemented differently in

simulations: quasar and radio mode. However, some galaxy formation models do not make this distinction

arguing that cosmological simulations lack the resolution to properly distinguish the two feedback modes,

and to limit the number of feedback channels to the minimum required to match the observational data124.

Quasar mode feedback is associated with the radiatively efficient mode of black hole growth and is

often implemented through energy or momentum injection assuming that the bolometric luminosity is

proportional to the accretion rate, and a fixed fraction of this luminosity is deposited into the neighboring

gas184, 185. Recent works have also implemented momentum-driven winds via radiation pressure on

dust186–188 and via broad-line-region winds189. Radio mode feedback is caused by highly-collimated jets

of relativistic particles, which are often associated with X-ray bubbles with enough energy to offset cooling

losses. Therefore, this feedback mode is assumed to be important for the regulation of star formation in

massive galaxies. Radio mode feedback is often implemented as a second sub-resolution feedback channel

once the accretion rate is below a critical value190, 191. Jets themselves cover an enormous dynamic range,

being launched at several Schwarzschild radii, and propagating outwards to tens of kpc. Directly resolving

them in detail in cosmological simulations is therefore currently not feasible. The sub-resolution models

for supermassive black holes are therefore still very uncertain since they have to bridge a very large scale

gap between the actual accretion and feedback, and the scales that can be resolved with simulations.

Magnetic fields: Magnetic fields permeate the Universe on all scales and impact the motion of ionized

gas. Conversely, gas dynamics affects the topology and strength of magnetic fields. Cosmological sim-

ulations typically employ the ideal magnetohydrodynamics approach, which is a good approximation

for cosmological magnetic fields. This approach assumes that the plasma is perfectly conducting and

that relativistic effects, i.e. terms ∝ (v/c)2 such as the displacement current c−1∂E/∂ t, are negligible.

However, for other situations the ideal magnetohydrodynamics approximation breaks down and non-ideal

terms, such as ohmic resistivity, ambipolar diffusion and the Hall effect, must be taken into account.

These effects are important especially at very small spatial scales, e.g. for individual star formation,

causing a diffusion of the magnetic field. On large cosmological scales the impact of magnetic fields on the

dynamics of gas is rather limited192. However, magnetic fields are an essential constituent of the interstellar

medium, providing both pressure support against gravity193 and influencing the propagation of cosmic

rays194. Cosmological simulations including magnetic fields through the ideal magnetohydrodynamics are

typically initialized with a certain magnetic seed field, since the approximations and assumptions of ideal

magnetohydrodynamics do not permit the self-consistent generation of magnetic fields. Some simulations

also consider source terms like the Biermann battery effect or field injection from stellar winds as the

source for initial magnetic fields195. In most cases, the initial conditions of such cosmological simulations

contain however a small seed field of the order of roughly 10−10 Gauss at a redshift of around z ∼ 100.

The simulation results are not sensitive to this seed field as long as its value is not significantly too large,

close to violating observational constraints192, 196, or vanishingly small. The reason for this insensitivity

lies in the strong amplification processes that occur during structure formation. This amplification typi-

cally occurs in two phases. At high redshifts, a turbulent dynamo leads to an exponential amplification

of the magnetic fields in halos. Once the initial turbulent amplification phase has saturated, a second
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phase of magnetic field amplification starts leading to a linear growth caused by a galactic dynamo197.

The numerical discretization of the ideal magnetohydrodynamics equations is challenging because of

the solenoidal constraint ∇ ·B = 0. Two main families of discretization techniques exist: divergence

cleaning schemes and constrained transport. For the cleaning approach, source terms are added to the

underlying magnetohydrodynamics equations to correct for divergence errors198, 199. Constrained transport

discretizations200, on the other hand, guarantee that the divergence is zero by construction. However,

a more complex implementation is required in that case. For instance, either vector potentials201, Eu-

ler potentials202, 203 or staggered discretizations of the magnetic field components204–208 must be employed.

Modeling cosmic magnetic fields

Ideal magnetohydrodynamics equations: MHD Maxwell equations:

∂ρ

∂ t
+∇ · (ρv) = 0 ∇×B =

4π

c
J ∇ ·B = 0

∂ρv

∂ t
+∇ · (ρv⊗v+P1) =

J×B

c

1

c

∂B

∂ t
+∇×E = 0 E =−

v×B

c

∂ (ρe+ eB)

∂ t
+∇ ·

[
(ρe+P)v+ c

E×B

4π

]
= 0

The evolution of the magnetic field, B, is given by the induction equation, ∂B/∂ t = ∇× (v×B). Magnetic fields act

on gas through the Lorentz force, J×B/c with the current density, J = c∇×B/(4π). The energy equation contains the

magnetic energy density, eB = ||B||2/8π , and the Poynting vector, c(E×B/4π), in the flux part.

Cosmic rays: Relativistic nuclei and electrons, known as cosmic rays, are another important component

of the galactic ecosystem. They are accelerated through diffusive shock acceleration mostly in supernova

remnants and jets of active galactic nuclei (first-order Fermi acceleration) and turbulence (second-order

Fermi acceleration). Cosmic rays contribute to the pressure in the interstellar medium209, 210, provide an

important heating channel211, 212, and potentially play a role in driving galactic gas outflows213–222 due to

their shallow equation of state (Pcr ∝ ρ
4/3
cr ), their long cooling time, and their ability to transfer energy to

outflows outside of star-forming discs223. The propagation of cosmic rays is dictated by the strength and

topology of the underlying magnetic fields.

Reliably modeling the propagation of cosmic rays therefore requires a detailed modeling of magnetic

fields. To capture all these effects self-consistently, the injection, acceleration and the transport of cosmic

rays, through anisotropic diffusion and streaming, must be included in simulations. This requires, in

principle, a detailed knowledge of the cosmic ray energy spectrum to accurately estimate energy losses and

heating rates. The discretization of the cosmic ray transport terms is difficult. For example, anisotropic

diffusion requires discretization techniques that avoid the violation of the entropy condition by limiting

the transverse fluxes217, 224–226. Modeling cosmic ray streaming is particularly challenging because of the

discontinuous dependence of the streaming velocity on the sign of the scalar product between the magnetic

field and the cosmic ray pressure gradient in the one-moment formulation of cosmic ray hydrodynamics.

This leads to unphysical oscillations of the solution and small time steps especially near cosmic ray

pressure maxima if not addressed in form of regularization techniques – such as replacing the sign function

with the hyperbolic tangent function that ensures a smooth dependence of the streaming velocity on cosmic

rays and gas properties219, 226, 227, albeit at the expense of a dependence of the solution on a numerical

parameter. An elegant solution of this problem is to replace the equation for the cosmic ray energy by two

equations for cosmic ray energy and flux that are coupled to the MHD system of equations228, 229. This

two-moment formulation can be derived from quasi-linear theory of cosmic ray transport and describes
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cosmic ray streaming and diffusion self-consistently with a hyperbolic set of equations, which also contains

the evolution equations for Alfvén waves that are self-generated by the streaming cosmic rays229.

Modeling cosmic rays

Ideal magnetohydrodynamics equations with cosmic rays: MHD Maxwell equations:

∂ρ

∂ t
+∇ · (ρv) = 0 ∇×B =

4π

c
J ∇ ·B = 0

∂ρv

∂ t
+∇ · (ρv⊗v+P1) =

J×B

c
−∇Pcr

1

c

∂B

∂ t
+∇×E = 0 E =−

v×B

c

∂ (ρe+ eB)

∂ t
+∇ ·

[
(ρe+P)v+ c

E×B

4π

]
=−(v+vst) ·∇Pcr +Λth +Γth

Cosmic rays energy density evolution:

∂εcr

∂ t
+∇ · [εcr(v+vst)−κε b(b ·∇εcr)] =−Pcr∇ · (v+vst)+Λcr +Γcr.

Cosmic rays exhibit a force on the gas through ∇Pcr. Their energy density is influenced by streaming with velocity vst

(εcr[v+vst]), anisotropic diffusion with coefficient κε (κε b [b ·∇εcr]), and adiabatic processes due to the compression

of the Alfvèn frame (Pcr∇ · [v+vst]). The terms Λth, Λcr, Γth and Γcr, represent non-adiabatic source and sink terms.

Radiation Hydrodynamics: Radiation alters the thermal, kinetic, and chemical state of the gas. Radiation

hydrodynamics simulations are required to capture this self-consistently. In the context of cosmological

simulations, radiation hydrodynamics simulations have so far primarily been employed to study the epoch

of reionization153, 230, 231. These simulations are aimed at exploring the high redshift Universe and are typ-

ically not evolved towards the low redshift regime. Consequently, the employed galaxy formation models

within these simulations can also not be tested against low redshift predictions. Only a limited number of

simulations have studied the impact of radiation in the context of galaxy formation simulations140, 232. The

main reason for this lack of detailed radiation hydrodynamics studies is that numerical radiative transfer

is challenging because of the high dimensionality caused by the frequency and directional dependencies

of photon propagation. Even more challenging is the fact that in general the speed of light poses severe

constraints on the timesteps of these simulations, which can however be circumvented to some degree

through the application of a reduced speed of light approximation233–236. The most common numerical

methods for radiation hydrodynamics are ray-tracing, Monte Carlo, and moment-based methods. The

ray-tracing method discretizes the radiative transfer equation along individual directions from each source.

Long characteristic ray-tracing schemes237–239, cast rays from the source through the whole simulation

domain, and the transport, absorption and emission of radiation is computed along each ray. Long charac-

teristic schemes are accurate but computationally expensive, since they scale as O(Ns ×N
p
c ), where Ns is

the number of sources, Nc is the number of underling discretization resolution elements, for example cells,

and p is a method- and geometry-dependent exponent240, 241. Short characteristic methods242–245, on the

other hand, solve the radiative transport only along rays that connect nearby cells allowing an efficient

parallelization and merging procedures to break the O(Ns ×N
p
c ) scaling. Monte Carlo methods246–251,

often only applied in post-processing, emit photon packets and propagate them probing the gas opacity,

interaction lengths and scattering angles from underlying probability density functions thus stochastically

solving the radiative transfer equation. One drawback of Monte Carlo schemes is that the signal-to-noise

ratio improves only as the square root of the number of photon packets due to Poisson noise. Still, Monte

Carlo is highly accurate and photon weighting, path-based estimators, and discrete diffusion schemes help

overcome the efficiency barriers that inhibit convergence252–255. Moment-based methods became popular

16/34



over the last years due to superior scalability140, 256–259. They are based on a fluid-like description of

radiation fields by taking zeroth, first and second moments of the radiation specific intensity with respect to

the angular variable. This defines a radiation energy density Eν , flux Fν , pressure tensor Pν and hyperbolic

conservation laws for the energy density and the radiation flux. Similar to the hydrodynamical case, where

an equation of state is required to relate gas pressure and density, a non-unique closure relation is required

to relate Pν to Eν and Fν . A widely used approach is to define Pν ≡ EνD, where D is the Eddington

tensor that can be estimated with different methods, for example through flux-limited diffusion117, 260, the

optically thin variable Eddington tensor approach233, 261, 262 or the M1 closure140, 256, 259, 263, 264. For the

former methods D is estimated assuming that the gas between sources of radiation is always optically

thick or thin. The M1 method, instead, computes the Eddington tensor by using local radiation quantities.

Modeling cosmic radiation fields

Radiation hydrodynamics equations: Radiative transfer equation:

∂ρ

∂ t
+∇ · (ρv) = 0

1

c

∂ Iν

∂ t
+n ·

∂ Iν

∂r
=−κν Iν + jν

∂ (ρv)

∂ t
+∇ · (ρv⊗v+P1) = Γp

∂ (ρe)

∂ t
+∇ · (ρe+P)v =−Λ+ΓE

The radiative transfer equation relates the specific radiation intensity, Iν , with the absorption coefficient, κν , and the

specific emissivity, jν . The radiation direction of propagation is represented by the unit vector n. Λ is the cooling

function, Γp and ΓE are source terms that describe the transfer of momentum and energy from the radiation to the gas.

Other physics: Additional physical processes considered in some cosmological simulations of galaxy

formation are, for example, dust physics265–273, thermal conduction188, 225, 274–278, and viscosity279–282.

Dust has typically been neglected in galaxy formation simulations since it contributes only about ∼ 1% to

the mass budget of the interstellar medium. However, dust plays an important role for the evolution of the

interstellar medium affecting the thermochemistry and radiation processing. Therefore, recently galaxy

formation began to incorporate first simple dust models to follow its production, growth and destruction

in the interstellar medium. Most of these implementations treat dust as a passive scalar and model the

processes affecting the dust population through effective rate equations. Thermal conduction is another

physical effect that is often neglected in cosmological simulations of galaxy formation. However, in hot

plasmas of galaxy clusters, conduction can affect the thermodynamic properties of galaxy clusters as

has recently been demonstrated278, 283–285. Simulating thermal conduction requires a precise numerical

magnetohydrodynamics implementation to resolve the strength and topology of the magnetic field, and an

efficient anisotropic diffusion solver to model the conduction225.

Caveats and limitations: Simulations of the dark matter component typically boil down to implementing

efficient N-body methods and parallelization schemes. Simulations of the baryonic matter component are

however more challenging, since they require reliable hydrodynamics numerical schemes and well-posed

sub-resolution models. These additional complications lead to some caveats and limitations of such

simulations.

Calibration: The numerical implementation of baryonic physics is based on sub-resolution models due to

the intrinsic resolution limitations of any simulation. These effective models depend on a certain number of

adjustable parameters. Depending on the exact galaxy formation model implementation, these parameters

can either be chosen based on physical arguments or they require a certain calibration procedure. The latter
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approach is often employed in large volume simulations, where the sub-resolution models are less detailed

compared to those of zoom simulations. The calibration process consists of a parameter exploration for

the effective models through a large number of simulations. These simulations typically cover a smaller

volume compared to production simulations. The calibration is then based on a comparison to some key

observables of the galaxy population like the star formation rate density as a function of cosmic time, the

galaxy stellar mass function at z = 0 and the present-day stellar-to-halo mass relation.

Numerical convergence: Cosmological simulations have to cover a wide range of spatial and time scales.

This implies that simulations have to aim for the highest possible number of resolution elements. However,

even state-of-the-art simulations cannot capture all relevant scales. Simulations are therefore often

performed at different resolution levels to understand the exact dependence of the results on the number of

resolution elements. A simulation prediction is then said to be converged once this prediction does not

significantly change anymore if the numerical resolution is further increased.

Diverging results: Various simulations now agree on a wide range of predictions. This is especially the

case for predictions of the stellar content of galaxies and related observables. However, there is also a

wide range of predictions that diverge among different simulations. For example, the characteristics of gas

around galaxies are very sensitive to the feedback implementations used in the different galaxy formation

models. This can lead to rather different outcomes for the thermodynamic structure of gas around galaxies.

Such difference can then be used to differentiate and test galaxy formation models.

4.3 Some Key Results of Hydrodynamical Simulations

The results of hydrodynamical simulations can directly be confronted with observational data providing

important tests for galaxy formation models. This often involves the construction of detailed mock obser-

vations based on the simulated data286, 287. Early simulations successfully reproduced properties of the

intergalactic medium such as the column density distribution of the Lyman-α forest288. Many simulations

also focused on the formation of individual galaxies289–293. However, such simulations suffered for a long

time from, for example, inconsistent stellar masses, galaxy sizes, star formation histories and galaxy mor-

phologies163, 294–296. Only recently simulations began to produce realistic galaxies87, 124, 125, 146, 149, 297, 298.

However, different sub-resolution implementations of astrophysical processes remain a major source of

uncertainties. Results of hydrodynamical simulations can be grouped into those for global properties for

the whole galaxy population, and those for the properties of individual galaxies.

Global Properties: Large volume simulations are ideally suited to explore global properties of the galaxy

population due to their large statistical sample size. This enables direct comparisons to astronomical

galaxy surveys. Table 2 presents some selected recent structure and galaxy formation simulations.

Stellar content of galaxies: One of the most fundamental properties of the galaxy population is the

galaxy stellar mass function, which quantifies the comoving number density of galaxies as a function

of galaxy stellar mass. Stellar mass functions are frequently described by a Schechter function299 with

parameter M∗, a characteristic mass scale above which the distribution is exponentially suppressed, a

normalization φ∗, and α∗ setting the low-mass slope. Observed low redshift parameters are roughly given

by log(M∗/M⊙) ≈ 11, log(Φ∗/Mpc−3) ≈ −2.7, α∗ ≈ −1.2300. However, double Schechter functions

provide an even better description of low redshift galaxy stellar mass functions301–305. The halo mass

function exhibits a steeper low-mass slope, ≈ −2, than the galaxy stellar mass function and the expo-

nential suppression occurs at a lower volume density. Reproducing the observed stellar mass function

therefore requires a strong suppression of star formation at both the low and high mass ends. Galaxy

formation models assume that supernova feedback flattens out the low-mass (M <
∼ 1012 M⊙) slope by

suppressing star formation306–308 while the suppression of bright and high-mass (M >
∼ 1012 M⊙) galaxies
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is regulated by feedback from active galactic nuclei. Energetically plausible forms of supernova and active

galactic nuclei feedback in simulations resulted in galaxy stellar mass functions that are consistent with

observational data. Simulation predictions are also often confronted with empirical constraints on the

relationship between stellar mass and halo mass, which are derived based on various galaxy-halo mapping

techniques166, 167. This ratio of stellar mass to halo mass peaks around halo masses of roughly ∼ 1012 M⊙,

where star formation is most efficient. For higher and lower halo masses, the star formation rates are

reduced due to feedback processes. Modern large volume simulations reproduce the stellar to halo mass

relationship at low and high redshifts reasonably well124, 309.

Gas around galaxies: One of the key advantages of hydrodynamical simulations compared to semi-

analytic models (see Box 1) is their ability to make detailed predictions for the distribution and properties

of gas around galaxies including the circumgalactic medium, the intracluster medium, and the intergalac-

tic medium. The circumgalactic and intergalactic media are quite diffuse (n ∼ 10−3 − 10−7cm−3) and

cool (T ∼ 104−6 K) and observations in emission, like Lyman-α and metal lines, are therefore rather

challenging. However, absorption line observations from background quasars can probe the distribution,

enrichment, and ionization state of this gas. One of the first successes of hydrodynamical simulations has

been the reproduction of the declining trend of the number of absorbing clouds per unit redshift and linear

interval of HI column density with column density in the Lyman-α forest288. Reproducing properties of the

circumgalactic medium, however, is significantly more challenging. Observations of this gas indicate that it

features a rich multi-phase structure where individual lines of sight simultaneously contain highly ionized,

warm, and cool atomic species310, 311. The coolest and densest parts of this gas have spatial scales of

10−100pc312, although the coherence scale can reach up to ∼ 1kpc313. These spatial scales are below the

typical circumgalactic gas resolution limits of galaxy formation simulations. More recently, cosmological

simulations with special circumgalactic gas refinement schemes have been employed to overcome some

of the resolution limitations. Such simulations increase the numerical resolution in the circumgalactic

gas reaching smaller spatial scales314–317. At z = 2 such simulations can reach a spatial resolution below

∼ 100pc316, and at z = 0 below ∼ 1kpc within the circumgalactic medium315. In addition to resolution

concerns, the circumgalactic medium is influenced by feedback-driven outflows from galaxies, whose

characteristics are not yet properly understood and modeled. The circumgalactic medium can therefore also

be used to constrain feedback mechanisms. The intracluster medium can directly be observed via X-ray

observations due to the much higher gas temperatures (T ∼ 107−8 K). Many properties of the intracluster

medium , like X-ray and Sunyaev-Zeldovich scaling relations or the iron distribution, can be accu-

rately modeled in simulations318–321. However, significant challenges remain for galaxy formation models

to reproduce cluster entropy profiles and, in particular, distinct cool-core, and non cool-core clusters126, 322.

Galaxy clustering: Galaxy clustering varies as a function of galaxy mass and galaxy properties, e.g.

formation time, star formation rate, color. Simulations now reproduce a number of features in the galaxy

clustering signal including the mass dependent two-point correlation length87, which increases with

increasing masses323–325, the clustering signal for non- and star-forming galaxies87, 326, and the steepening

of the power law slope γ of the galaxy correlation function with declining redshift (γ ∼ 1.8 at z ≃ 0 and

γ ∼ 1.6 at z ≃ 187, 327).

Scaling relations: Galaxies exhibit a wide range of scaling relations linking various observables constitut-

ing another important test for galaxy formation models. Modern large volume hydrodynamical simulations

broadly reproduce many galaxy scaling relations including the mass-size328 , the supermassive black hole

mass-stellar velocity dispersion relation329, and the mass-metallicity330 relation331–334. Also other galaxy

characteristics like the color of galaxies as a function of galaxy stellar mass can now be reasonably well

reproduced by cosmological simulations298, 335, 336. However, there are still points of tension including, for
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example, the magnitude of the scatter, the detailed shape, or the dependence on additional galaxy properties.

Box 1: Semi-analytic modeling of galaxy formation

Studying baryonic physics through hydrodynamical simulations is computationally expensive compared to dark

matter-only N-body simulations. An alternative approach is to model baryonic physics on top of N-body dark

matter simulations through analytic models. This combination of numerical dark matter-only simulations, and

analytic models for the prescription of baryonic physics, is known as semi-analytic modeling337–341. These

semi-analytic models track, for example, how much gas accretes onto halos, how much hot gas cools and turns

into stars, or how feedback processes remove cold gas from the galaxy or heat the halo gas. The models are based

on the merger history of dark matter halos extracted from N-body simulations. The result of such a calculation

is a predicted galaxy population that can be compared to observational data in a similar way as the output of full

hydrodynamical simulations. The key advantage of semi-analytical models is their efficiency. It is therefore

possible to perform a wide range of calculations, using different model variations. However, a disadvantage of

semi-analytic models is that they are less self-consistent compared to hydrodynamical simulations. Furthermore,

studying detailed gas properties, for example, the circumgalactic gas with these models is not directly possible

since the gas component is not resolved.

Galaxy Properties: The detailed properties of late-type disc-like and early-type spheroid-dominated

galaxies have been studied extensively using simulations.

Properties of late-type galaxies: Simulating the formation of star-forming, late-type galaxies has been

one of the most pressing challenges of computational galaxy formation. For a long time, simulations

struggled to form galaxies with extended and rotationally-supported stellar and gaseous discs as observed

in the Universe. These discs are expected to form through angular momentum conservation of the cooling

gas in dark matter halos342, 343. However, realizing this mechanism in cosmological simulations turned

out to be difficult, and early works produced galaxies dominated by a stellar spheroidal component,

with a sub-dominant disc only294, 344. More efficient stellar feedback schemes were required to offset

runaway radiative losses of the star-forming gas, the so-called overcooling catastrophe345, and to eject the

low-angular momentum material responsible for the creation of the dominant stellar bulge , the so-called

angular momentum catastrophe346. The success of modern simulations in producing late-type disc galaxies

is largely due to the ability of stellar feedback to regulate star formation efficiently125, 145, 146, 164, 297, 347–352.

More recently, magnetic fields in late-type galaxies have also been studied to understand their topology

and field strengths197, 353–357. Furthermore, the impact of cosmic rays in galaxies has been studied in

more detail over the last years217, 219. These results indicate that cosmic rays are potentially important for

driving galactic outflows.

Properties of early-type galaxies: Simulations can also reproduce spheroid-dominated early-type systems,

which broadly match the early formation history358, scaling relations (e.g. the mass and size or velocity

dispersion)359, 360, and the metallicity distribution361 of observed early-type galaxies. The assembly of

such large objects proceeds in two phases362–365. At high redshift (z >
∼ 1.5), galaxies grow predominantly

in-situ by efficiently converting gas into stars. At later times, mass is predominantly gained through

accretion of smaller substructures, i.e. mergers, which also considerably increases galaxy sizes. Spatially-

resolved spectral observations have shown that spheroid-dominated galaxies have diverse kinematics and

shapes. The kinematics is usually described through the so-called spin parameter λR. This quantity is used

to split galaxies into fast (λR > 0.1) and slow (λR < 0.1) rotator classes. The ellipticity ε , instead, is used to

define the spheroid’s shape. Simulations have played a major role in building a physical picture to explain

the diversity in kinematics and shapes of spheroid-dominating galaxies that are produced based on their

formation histories358, 366, 367, in particular through gas dissipation, which builds rotationally-supported
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structures, and mergers, which set the late-time spin parameter.

Table 2: Recent structure and galaxy formation simulations

simulation volume methoda mass spatial primary

resolutionb resolutionc reference

[Mpc3] [M⊙] [kpc]

dark matter-only

Millennium 6853 TreePM 1.2×109/− 6.85/− Springel et al. (2005b)368

Millennium-2 1373 TreePM 9.4×106/− 1.37/− Boylan-Kolchin et al. (2009)369

Horizon 4π 27403 PM/ML 7.7×109/− 10.41/− Teyssier et al. (2009)370

Bolshoi 3573 PM/ML 1.9×108/− 1.43/− Klypin et al. (2011)371

Full Universe Run 291673 PM/ML 1.4×1012/− 55.6/− Alimi et al. (2012)372

Millennium-XXL 41103 TreePM 8.5×109/− 13.7/− Angulo et al. (2012)82

MultiDark 14293 PM/ML 1.2×1010/− 10/− Prada et al. (2012)373

Dark Sky 116283 Tree/FM 5.7×1010/− 53.49/− Skillman et al. (2014)54

ν2GC 16473 TreePM 3.2×108/− 6.28/− Ishiyama et al. (2015)374

Q Continuum 13003 TreePM/P3M 1.5×108/− 2.82/− Heitmann et al. (2015)84

OuterRim 42253 TreePM/P3M 2.6×109/− 6.0/− Habib et al. (2016)46

EuclidFlagship 200003 Tree/FM 109/− 5/− Potter et al. (2017)47

Aquarius zoom TreePM 1.7×103/− 0.02/− Springel et al. (2008)104

Via Lactea II zoom Tree 4.1×103/− 0.04/− Diemand et al. (2008)375

GHALO zoom Tree 1.0×103/− 0.06/− Stadel et al. (2009)376

CLUES zoom TreePM 3.4×105/− 0.21/− Libeskind et al. (2010)377

Phoenix zoom TreePM 8.7×105/− 0.21/− Gao et al. (2012)105

ELVIS zoom TreePM 1.9×105/− 0.14/− Garrison-Kimmel et al. (2014)378

COCO zoom TreePM 1.6×105/− 0.33/− Hellwing et al. (2016)379

+ baryons

Illustris 1073 TreePM+MMFV 6.7×106/1.3×106 1.42/0.71 Vogelsberger et al. (2014)149

Horizon-AGN 1423 PM/ML+AMR 8.0×107/1.0×107 1.0/1.0 Dubois et al. (2014)380

EAGLE 1003 TreePM+SPH 9.7×106/1.8×106 0.7/0.7 Schaye et al. (2015)124

MassiveBlack-2 1433 TreePM+SPH 1.6×107/3.2×106 2.64/2.64 Khandai et al. (2015)381

Bluetidesd 5743 TreePM+SPH 1.7×107/3.4×106 0.24/0.24 Feng et al. (2016)382

Magneticum 683 TreePM+SPH 5.3×107/1.1×107 1.4/0.7-1.4 Bocquet et al. (2016)85

MUFASA 743 TreePM+MLFM 9.6×107/1.8×107 0.74/0.74 Daveé et al. (2016)383

BAHAMAS 5713 TreePM+SPH 5.5×109/1.1×109 0.25/0.25 McCarthy et al. (2017)384

Romulus25 253 Tree/FM+SPH 3.4×105/2.1×105 0.25/0.25 Tremmel et al. (2017)385

IllustrisTNGe 1113 TreePM+MMFV 7.5×106/1.4×106 0.74/0.19 Springel et al. (2018)87

Simbaf 1473 TreePM+MLFM 1.4×108/2.7×107 0.74/0.74 Davé et al. (2019)182

Eris zoom Tree+SPH 9.8×104/2×104 0.12/0.12 Guedes et al. (2011)349

VELA zoom PM/ML + AMR 8.3×104/1.9×105 0.03/0.03g Ceverino et al. (2014)386

NIHAO zoom Tree+SPH 3.4×103/6.2×102 0.12/0.05 Wang et al. (2015)125

APOSTLE zoom TreePM+SPH 5.0×104/1.0×104 0.13/0.13 Sawala et al. (2016)387

Latte/FIRE zoom TreePM+MLFM 3.5×104/7.1×103 0.02/0.001 Wetzel et al. (2016)352

Auriga zoom TreePM+MMFV 4.0×104/6.0×103 0.18/0.18h Grand et al. (2017)297

MACSIS zoom TreePM+SPH 6.4×109/1.2×109 5.77/5.77 Barnes et al. (2017)388

Cluster-EAGLE zoom TreePM+SPH 9.7×106/1.8×106 0.7/0.7 Barnes et al. (2017)126

The Three Hundred Project zoom TreePM+SPH 1.9×109/3.5×108 9.59/9.59 Cui et al. (2018)389

FABLE zoom TreePM+MMFV 8.1×107/1.5×107 4.15/4.15 Henden et al. (2018)390

RomulusC zoom Tree/FM+SPH 3.4×105/2.1×105 0.25/0.25 Tremmel et al. (2019)391

a
PM: particle-mesh; TreePM: tree + PM; FM: fast multipole; P3M: particle-particle-particle-mesh; ML: multilevel; SPH: smoothed particle hydro-

dynamics; AMR: adaptive-mesh-refinement; MMFV: moving-mesh finite volume; MLFM: mesh-free finite mass
b

highest resolution quoted (dark matter/gas)
c

for particle based codes, the minimum softening length is reported; for mesh codes, the minimum cell size is quoted (dark matter/gas)
d

final redshift z = 8; spatial resolution is in physical units at that redshift
e

IllustrisTNG consists of three main simulations: TNG50, TNG100, TNG300; numbers are quoted for TNG100
f

numbers for largest volume simulation quoted
g

in physical units at z = 3
h

for baryons the minimum physical softening is reported
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5 Simulations of Alternative Cosmological Models

Cosmological simulations of galaxy formation have also been used to explore alternative cosmological

models. At the most basic level the cosmological model can be altered in three different ways: alternative

forms of dark matter, alternative forms of dark energy, or alternative forms of gravity. We note that many

simulations of alternative cosmological models typically only consider the dark matter component and do

not model baryons. However, these simulations then neglect the important backreaction between baryons

and dark matter. Similarly, simulations including baryons are also now important to infer cosmological

parameters. For example, DESI, LSST and Euclid will rely on models based on galaxy formation simula-

tions to achieve their forecasted precision. Future explorations of alternative cosmologies have to consider

and include these effects by also modeling the baryon component.

Box 2: Small-scale problems of cold dark matter

The cold dark matter paradigm correctly describes the large-scale distribution of galaxies. On sub-galactic scales

however, some problems have been identified over the last decades392. Among the most relevant challenges are:

the under-abundance of dwarf galaxies in the Milky Way and in the field (the missing satellites problem92, 393–396),

the inconsistency of inner dark matter density profiles in low surface brightness and dwarf galaxies (the cusp-

core problem397, 398), the deficit of dark matter in the inner regions of massive dwarf galaxies (the too-big-to-fail

problem399, 400), and the large variety of shapes of dwarf rotation curves (the diversity problem401). Most of

these problems have been found by contrasting dark matter-only simulations with observations, which do not

take into account the complex baryonic dark matter interactions. It is therefore possible that these challenges can

be solved through the proper modeling of baryonic physics. For instance, the existence of dark matter cores can

potentially be explained by the gravitational transfer of energy from supernovae into the orbits of dark matter

particles402–406. Alternatively, these discrepancies between observations and cold dark matter simulations can

also be explored through alternative dark matter models. These small-scale problems have therefore generated

significant interest in the exploration of alternative dark matter scenarios.

5.1 Alternative Forms of Dark Matter

A wide range of alternative dark matter models have been proposed over the last decades. However, not all

of these models have been studied in detail through simulations. Mostly three main classes of alternative

dark matter models have been simulated: warm dark matter, self-interacting dark matter, and fuzzy dark

matter. Many of these models have been invoked to address small-scale problems of the cold dark matter

paradigm (see Box 2).

Warm Dark Matter: Cold dark matter models exhibit a high-k cut-off in the initial power spectrum

due to free-streaming or collisional damping. For a canonical weakly interactive massive particle this

cut-off is of the order of 1 comoving parsec corresponding to a mass scale of 10−6 M⊙
407. Warm dark

matter models, on the other hand, have an effective free-streaming length λfs that scales inversely with

particle mass408. For recent cosmologies3, this relation is approximately λfs = 33(mWDM/1keV)−1.11 kpc

and the corresponding free-streaming mass is Mfs = 2×107(mWDM/1keV)−3.33 M⊙. The reduction of

small-scale power within warm dark matter models has two consequences: first, a reduction of low mass

halos, and second a reduction of the central density of halos. Simulations of warm dark matter models are

typically carried out with the same numerical methods as cold dark matter simulations, but with modified

initial conditions. However, the power spectrum cut-off leads to artificial and numerical discreteness

effects in N-body simulations28. Special care is then required to avoid a contamination of results in that

case. More recently alternative methods based on phase-space tessellation techniques have been employed
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to study warm dark matter models avoiding these numerical artifacts78.

Self-Interacting Dark Matter: Dark matter models that involve dark matter self-interactions409, 410 have

also been explored extensively. Self-interactions are commonly quantified in terms of the cross section

per unit particle mass, σ/m. Models with constant and velocity-dependent cross sections have both

been studied with simulations411. The high central dark matter densities observed in clusters exclude

self-interacting dark matter models with σ/m & 0.5cm2/g for these cluster mass scales. Recently, more

general self-interacting dark matter models have been suggested. Those have both truncated power spectra

and self-interactions412, 413. Such models affect the internal structure of dark matter halos through the

scattering of particles that cause the formation of density cores. On the other hand, the truncated power

spectra also lead, similar to warm dark matter models, to a suppression of halo substructure. Various recent

simulations have demonstrated that models with σ/m≈ 0.5−10cm2/g produce dark matter cores in dwarf

galaxies with sizes ∼ 0.3−1.5kpc and central densities 2−0.2×108 M⊙/kpc3 = 7.4−0.74GeV/cm3

that can alleviate some cold dark matter small-scale problems414–417. Simulations of self-interacting dark

matter are based on the N-body approach coupled to a local Monte Carlo-based probabilistic scattering

scheme to model particle self-interactions.

Fuzzy Dark Matter: An ultralight bosonic scalar field is a completely different alternative to the cold dark

matter paradigm418, where a bosonic fluid with a particle mass of m ∼ 10−22 eV suppresses small-scale

structure owing to macroscopic quantum properties419–421 with a typical de Broglie wavelength of λDB ∼
1kpc422, 423. The dark matter fluid forms in this case a cosmological Bose-Einstein condensate424–426.

Such an ultralight scalar field of spin-0 at zero temperature is described in the non-relativistic limit by the

Schrödinger-Poisson equations419, 420, 427, 428: ih̄∂ψ/∂ t =−h̄2/2m∇2ψ +mV ψ and ∇2V = 4πG(ρ − ρ̄),
where ρ = |ψ|2 is the fluid density, ρ̄ is the mean density, and V is the potential. One consequence of

the macroscopic quantum behavior of the fluid is that the fluid admits stable, minimum-energy soliton

configurations forming at the centers of self-gravitating halos. These kpc-scale soliton cores offer one

possible solution to the cusp-core problem of cold dark matter. Numerically, the Schrödinger-Poisson

equations can, for example, be solved through adaptive spectral methods or through a reformulation into a

hydrodynamics problem, that can be solved with hydrodynamical discretization techniques, based on the

Madelung formulation429, 430.

5.2 Alternative Forms of Dark Energy

Cosmological simulations must include at least a cosmological constant to account for the accelerated

expansion of the Universe. A wide range of alternative dark energy models have, however, been considered

in the literature431 and a number of these have also been studied with simulations432.

Dynamical dark energy: The most simple extension in the dark energy sector is to assume a dark energy

density that is time dependent but still spatially homogeneous – at least on sub-horizon scales. This

behavior can, for example, be obtained in scalar field models of dark energy432. Cosmic structure growth is

then only affected via an altered background expansion. The only change required to perform cosmological

simulations of such models is then to modify the calculation of the Hubble expansion rate in the numerical

integration433, 434. As the growth function is different than in ΛCDM, extra care is also required when

choosing the amplitude of matter density fluctuations in the initial conditions, i.e. taking into account

at what redshift observational constraints on the amount of fluctuations are aimed to be matched. For

example, models with a higher dark energy density at early times suppress structure growth and have hence

a lower amplitude of fluctuations at redshift zero for the same scalar amplitude in the cosmic microwave

background433, 434. Dynamical dark energy can have a surprisingly large impact on galaxy properties in

simulations435. In practice, this results in degeneracies between cosmology and the feedback physics that
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is required to match observations.

Inhomogeneous dark energy: Models of dark energy that exhibit sizable spatial fluctuations within the

horizon represent the next level of complexity. For such models, and even more so for the coupled dark

energy models, a clear distinction between dark energy and modified gravity is often not possible as accel-

erations arising from spatial fluctuations in the dark energy field can also be interpreted as modifications

to the laws of gravity. Relatively little simulation work has been done on models in which inhomogeneous

dark energy interacts with matter only gravitationally, such as, for example, in the clustering dark energy

scenario436.

Coupled dark energy: In the hope to alleviate the puzzle of the similar energy density of matter and

dark energy at the present cosmic epoch, additional non-gravitational couplings between these sectors

have been proposed437. Such a coupling of dark energy to matter could either be universal, i.e. involving

all matter species, or non-universal, with dark energy, for example, coupling only to dark matter but

not to baryons. Models with a universal coupling typically require a screening mechanism that hides its

effects in dense environments like the solar system, where experimental tests of gravity tightly constrain a

direct coupling to baryons. In contrast, models with a coupling only to dark matter are observationally

much less constrained. In both cases, growing perturbations in the matter density field can naturally give

rise to corresponding fluctuations in the coupled dark energy field. Coupled dark energy scenarios have

been widely studied with simulations, either avoiding438, 439 or including440, 441 a treatment of the spatial

fluctuations of dark energy. In the former case, the main effects of coupling terms are a time dependence

of the gravitating particle mass of the coupled matter species, as well as a velocity dependent friction term.

Accounting for the spatial fluctuation additionally results in a fifth force proportional to the gradient of the

dark energy field. These effects have, for example, been found to lower the concentrations and baryon

fraction of halos439, thereby reducing potential tensions compared to a ΛCDM cosmology.

5.3 Alternative Forms of Gravity

While general relativity has been tested to high precision within the solar system, constraints on galactic

and intergalactic scales are much weaker. Indeed, additional components that have so far not been directly

observed, dark matter and dark energy, need to be added to allow a viable description of cosmology by

general relativity. As an alternative, modifications of the laws of gravity have been proposed, which could

make at least one of these components obsolete.

Modified gravity as an alternative to dark matter: Dark matter models successfully explain observa-

tions on many different scales, including the cosmic microwave background, the Lyman-α forest, the

clustering of galaxies, and the internal dynamics of galaxies and galaxy clusters. Most work aimed at

replacing the role of dark matter by a modification of the laws of gravity has focused only on a subset of

these areas. For example, modified Newtonian dynamics442, 443, a change in Newton’s second law at small

acceleration values (~F = mµ(|~a|/a0)~a, with a0 ∼ 10−10ms−2 and µ(x)→ 1 for x ≫ 1 and µ(x)→ x for

x ≪ 1), or alternatively a change in Poisson’s equation of Newtonian gravity (~∇ ·(µ(|~a|/a0)~a) = 4πρ), has

been proposed to account for the flat rotation curves of galaxies at large radii. Since this modified Poisson’s

equation is non-linear, gravity algorithms that are based on the principle of linear force superposition such

as direct summation, tree and Fourier transform-based schemes are not suitable to simulate these kinds of

models. Simulations have therefore been performed with the multigrid method with the full approximation

scheme24. The non-linear partial differential equation is then discretized on a grid with a finite difference

representation of the differential operator and iteratively solved using Gauss-Seidel relaxation. Since

modified Newtonian dynamics is not a relativistic theory, relativistic extensions of it have also been

proposed, for example, tensor-vector-scalar gravity (TeVeS)444, 445. Here gravity is mediated by a tensor
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(metric), vector and scalar field. However, these models have not been widely studied in full cosmological

simulations yet. Models without a dark matter component such as modified Newtonian dynamics also

naturally account for the tight observed relation between the gravitational acceleration inferred from galaxy

rotation curves and that expected from the observed baryonic mass446, 447. However, galaxy formation

simulations within the ΛCDM framework can also produce a sufficiently tight relation448–450.

Modified gravity as an alternative to dark energy: Dark energy has only been observed through its

impact on the background expansion of the Universe. Replacing dark energy with a modification to the

laws of gravity is, compared to replacing dark matter, easier. In fact, a cosmological constant in the Einstein

field equations can also be interpreted as modified gravity rather than an unexpectedly small zero-point

energy of a quantum field. In the literature, a wide range of much more sophisticated modified gravity

theories have been considered. While many of these can account for the observed accelerated expansion

of the Universe, Occam’s razor would typically disfavor them compared to a cosmological constant in the

absence of observational evidence beyond the observed background expansion. Cosmological simulations

have been widely used to investigate the observational signatures of such extended gravity models to guide

observational searches for potential modifications of gravity over a wide range of scales. Many modified

gravity models that exhibit interesting behavior on, for example, galactic and intergalactic scales have

been designed such that they approach general relativity in dense environments such as the solar system to

avoid violating experimental constraints. Such screening mechanisms typically involve non-linear partial

differential equations, which renders them numerically challenging and requires tailored techniques451.

Most schemes resort to the multigrid method with the full approximation scheme24, e.g. employed on an

adaptively refining mesh452–454. With such methods cosmological simulations have been carried out for a

number of screened modified gravity models, including Chameleon- f (R), DGP, symmetron, dilaton, and

Galileon gravity455–457. Most such studies focused on collisionless simulations. Semi-analytical galaxy

formation models combined with Chameleon- f (R) gravity demonstrated that the gravity modification

effects on basic properties such as galaxy stellar mass functions and cosmic star formation rate densities

are rather small and comparable to the uncertainties of the semi-analytical models458. Clustering signals

and relative velocities of halo pairs can, however, change notably458, 459. Post-processing ΛCDM galaxy

formation simulations with a modified gravity solver suggests that there should be characteristic changes in

the internal kinematics of galaxies such as features in their rotation curves near the screening threshold460,

which can also result in degeneracies with the core/cusp problem461. Fully self-consistent simulation

studies of galaxy formation in such screened modified gravity models have only started very recently462.

Such simulations should in principle also take into account effects that modified gravity has on stellar

physics463.

6 Conclusions and Outlook

Cosmological simulations of galaxy formation play a crucial role for our understanding of galaxy for-

mation. Especially, the last years have seen enormous progress on two fronts: large volume simulations

modeling large samples of galaxies, and zoom simulations with refined galaxy formation models that

resolve the physical processes in more detail. Modern galaxy formation simulations reproduce now a

plethora of observational results and create virtual universes that are to first order nearly identical to the

real Universe. At the same time, these simulations are also employed to explore alternative cosmological

models with modifications to the nature of dark matter, dark energy and gravity. This progress in the field

of galaxy formation simulations has mostly been driven by a better understanding of galaxy formation

physics, refined numerical methods, and the steady growth of computing power.
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Cosmological simulations of galaxy formation use a variety of different numerical methods, and dif-

ferent implementations of galaxy formation physics. Despite these differences, such simulations have

now converged on a wide range of predictions for the evolution of galaxies. It therefore seems that the

basic physical mechanisms that shape the galaxy population have been identified, and that their current

modeling is sufficient to produce realistic galaxy populations. However, these physical processes are

implemented through still rather crude sub-resolution models. Sub-resolution models aim to capture the

relevant physics through an effective description. In fact, cosmological simulations will always have to

rely on these sub-resolution models since truly ab initio cosmological simulations of galaxy formation

are and will remain impossible. One danger associated with the application of sub-resolution models is

the belief that the reproduction of large amounts of observational data automatically implies a correct

and physically plausible effective model and therefore detailed understanding of galaxy formation. This

is problematic since sub-resolution models contain per construction a certain number of adjustable and

degenerate parameters, and at the same time do not really capture the detailed physics at play but only

provide an effective coarse description. Caution is therefore required to not over-interpret some of the

recent successes generated by these models.

One of the next goals of computational galaxy formation is to understand which detailed physical processes

drive the outcomes of effective physical models. For example, many simulations employ rather crude

and incomplete models for the generation of galactic outflows without a detailed modeling of the driving

process. Future simulations should aim at understanding these processes in more detail to illuminate

the true physical processes at work going beyond the crude effective models to gain more fundamental

insights. This will also lead to a better understanding of what physics actually drives the overall behavior

of currently existing coarse-grained effective sub-resolution models. While constructing new models

and simulations, it is important to keep in mind that the major goal of simulations is not primarily to fit

observed data, but rather to gain insights into galaxy formation physics. Advances in this direction benefit

often more from failures of certain ideas or models, rather than a perfect reproduction of observational data

that is to some degree subject to the calibration of free model parameters and the coarse-grained nature

of the employed models. Another frontier of cosmological galaxy formation simulations is the desire to

provide large volume simulations that match the statistical sample sizes of upcoming large observational

surveys. This requires very large volume simulations with well-understood sub-resolution models. The

development and better understanding of refined sub-resolution models, the desire to achieve higher

numerical resolution, and simulations with larger volumes represent the main challenges of cosmological

simulations of the next decade.
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257. González, M., Audit, E. & Huynh, P. HERACLES: a three-dimensional radiation hydrodynam-

ics code. A&A 464, 429–435 (2007). DOI 10.1051/0004-6361:20065486.

258. Rosdahl, J., Blaizot, J., Aubert, D., Stranex, T. & Teyssier, R. RAMSES-RT: radiation hydro-

dynamics in the cosmological context. MNRAS 436, 2188–2231 (2013). DOI 10.1093/mn-

ras/stt1722. 1304.7126.

259. Kannan, R. et al. AREPO-RT: radiation hydrodynamics on a moving mesh. MNRAS 485,

117–149 (2019). DOI 10.1093/mnras/stz287. 1804.01987.

260. Krumholz, M. R., Klein, R. I., McKee, C. F. & Bolstad, J. Equations and Algorithms for

Mixed-frame Flux-limited Diffusion Radiation Hydrodynamics. ApJ 667, 626–643 (2007).

DOI 10.1086/520791. astro-ph/0611003.

261. Finlator, K., Özel, F. & Davé, R. A new moment method for continuum radiative trans-

fer in cosmological re-ionization. MNRAS 393, 1090–1106 (2009). DOI 10.1111/j.1365-

2966.2008.14190.x. 0808.3578.

262. Petkova, M. & Springel, V. An implementation of radiative transfer in the cosmologi-

cal simulation code GADGET. MNRAS 396, 1383–1403 (2009). DOI 10.1111/j.1365-

2966.2009.14843.x. 0812.1801.
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